Anisotropic adaptive variance scaling for Gaussian estimation of distribution algorithm
Traditional Gaussian estimation of distribution algorithms (EDAs) are confronted with issues that the variable variances decrease fast and the main search direction tends to become perpendicular to the improvement direction of the fitness function, which reduces the search efficiency of Gaussian EDA...
Saved in:
Published in | Knowledge-based systems Vol. 146; pp. 142 - 151 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.04.2018
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Traditional Gaussian estimation of distribution algorithms (EDAs) are confronted with issues that the variable variances decrease fast and the main search direction tends to become perpendicular to the improvement direction of the fitness function, which reduces the search efficiency of Gaussian EDAs (GEDAs) and makes them subject to premature convergence. In this paper, a novel anisotropic adaptive variance scaling (AAVS) technique is proposed to improve the performance of traditional GEDAs and a new GEDA variant named AAVS-EDA is developed. The advantages of AAVS over the existing variance scaling strategies lie in its ability for tuning the variances and main search direction of GEDA simultaneously, which are achieved by anisotropically scaling the variances along different eigendirections based on corresponding landscape characteristics captured by a simple topology-based detection method. Besides, AAVS-EDA also adopts an auxiliary global monitor to ensure its convergence by shrinking all the variances if no improvement is achieved in a generation. The evaluation results on 30 benchmark functions of CEC2014 test suite demonstrate that AAVS-EDA possesses stronger global optimization efficiency than traditional GEDAs. The comparison with other state-of-the-art evolutionary algorithms also shows that AAVS-EDA is efficient and competitive. |
---|---|
AbstractList | Traditional Gaussian estimation of distribution algorithms (EDAs) are confronted with issues that the variable variances decrease fast and the main search direction tends to become perpendicular to the improvement direction of the fitness function, which reduces the search efficiency of Gaussian EDAs (GEDAs) and makes them subject to premature convergence. In this paper, a novel anisotropic adaptive variance scaling (AAVS) technique is proposed to improve the performance of traditional GEDAs and a new GEDA variant named AAVS-EDA is developed. The advantages of AAVS over the existing variance scaling strategies lie in its ability for tuning the variances and main search direction of GEDA simultaneously, which are achieved by anisotropically scaling the variances along different eigendirections based on corresponding landscape characteristics captured by a simple topology-based detection method. Besides, AAVS-EDA also adopts an auxiliary global monitor to ensure its convergence by shrinking all the variances if no improvement is achieved in a generation. The evaluation results on 30 benchmark functions of CEC2014 test suite demonstrate that AAVS-EDA possesses stronger global optimization efficiency than traditional GEDAs. The comparison with other state-of-the-art evolutionary algorithms also shows that AAVS-EDA is efficient and competitive. |
Author | Pang, Bei Zhang, Aimin Wang, Lin Li, Biying Liang, Yongsheng Ren, Zhigang |
Author_xml | – sequence: 1 givenname: Zhigang surname: Ren fullname: Ren, Zhigang email: renzg@mail.xjtu.edu.cn organization: Department of Automation Science and Technology, School of Electronic and Information Engineering, Xi'an Jiaotong University, No.28 Xianning West Road, Xi'an, Shaanxi 710049, China – sequence: 2 givenname: Yongsheng surname: Liang fullname: Liang, Yongsheng organization: Department of Automation Science and Technology, School of Electronic and Information Engineering, Xi'an Jiaotong University, No.28 Xianning West Road, Xi'an, Shaanxi 710049, China – sequence: 3 givenname: Lin surname: Wang fullname: Wang, Lin organization: School of Information Science and Technology, Northwest University, Xi'an, China – sequence: 4 givenname: Aimin surname: Zhang fullname: Zhang, Aimin organization: Department of Automation Science and Technology, School of Electronic and Information Engineering, Xi'an Jiaotong University, No.28 Xianning West Road, Xi'an, Shaanxi 710049, China – sequence: 5 givenname: Bei surname: Pang fullname: Pang, Bei organization: Department of Automation Science and Technology, School of Electronic and Information Engineering, Xi'an Jiaotong University, No.28 Xianning West Road, Xi'an, Shaanxi 710049, China – sequence: 6 givenname: Biying surname: Li fullname: Li, Biying organization: Department of Automation Science and Technology, School of Electronic and Information Engineering, Xi'an Jiaotong University, No.28 Xianning West Road, Xi'an, Shaanxi 710049, China |
BookMark | eNqFkE9LAzEQxYNUsK1-Aw8LnnedZP97EErRKhS8KB7DNJvUrO2mJtlCv71p15MHPQ0zvDcz7zcho850kpBrCgkFWty2yWdn3MElDGiVAEsA6BkZ06pkcZlBPSJjqHOIS8jpBZk41wIAY7Qak_dZp53x1uy0iLDBndd7Ge3RauyEjJzAje7WkTI2WmDvXBhH0nm9Ra9NFxkVNdp5q1f9qcfN2ljtP7aX5Fzhxsmrnzolb48Pr_OnePmyeJ7PlrFI08zHqlCKFXUqikqlrGRVXRdY5znLG5B1JtkKVcVyJRFomheiRElpnQFLEcsVNumU3Ax7d9Z89eEz3preduEkZ5CVLK0AiqC6G1TCGuesVFxof0rgLeoNp8CPIHnLB5D8CJID4wFkMGe_zDsb8tvDf7b7wSZD_L2WljuhZYDaaCuF543Rfy_4Bg0vkxs |
CitedBy_id | crossref_primary_10_1007_s40747_023_00975_y crossref_primary_10_1016_j_engappai_2023_107017 crossref_primary_10_1007_s10462_024_11096_4 crossref_primary_10_3390_math9243207 crossref_primary_10_3390_sym17020153 crossref_primary_10_1016_j_asoc_2023_110070 crossref_primary_10_1016_j_ins_2022_11_029 crossref_primary_10_1109_ACCESS_2018_2873401 crossref_primary_10_1016_j_biosystems_2019_04_001 crossref_primary_10_1109_ACCESS_2020_2975468 crossref_primary_10_1016_j_swevo_2024_101669 crossref_primary_10_1109_ACCESS_2019_2908262 crossref_primary_10_1016_j_asoc_2019_105680 crossref_primary_10_1016_j_knosys_2020_106416 crossref_primary_10_1016_j_swevo_2024_101502 crossref_primary_10_1016_j_asoc_2024_112628 crossref_primary_10_1016_j_swevo_2022_101148 crossref_primary_10_1016_j_eswa_2023_120261 crossref_primary_10_1016_j_swevo_2023_101324 crossref_primary_10_1007_s10489_025_06237_3 |
Cites_doi | 10.1109/TEVC.2016.2638437 10.1109/TEVC.2009.2014613 10.1162/106365601750190398 10.1162/EVCO_a_00022 10.1016/j.knosys.2014.11.016 10.1016/j.ins.2016.03.023 10.1016/j.asoc.2017.08.037 10.1016/j.ins.2016.02.007 10.1504/IJMIC.2013.051930 10.1016/j.ins.2010.02.015 10.1016/j.asoc.2016.07.012 10.1109/CEC.2017.7969327 10.1007/s00500-014-1286-9 10.1007/s00500-016-2471-9 10.1109/TEVC.2017.2657787 10.1016/j.asoc.2017.04.066 10.1016/j.tcs.2015.04.015 10.1109/TCYB.2016.2523000 10.1016/j.asoc.2012.11.049 10.1109/TCYB.2014.2352411 10.1016/j.ins.2014.05.033 10.1016/j.ins.2010.07.014 10.1016/j.swevo.2011.08.003 10.1016/j.ins.2008.01.021 10.1109/TEVC.2014.2387433 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright Elsevier Science Ltd. Apr 15, 2018 |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Apr 15, 2018 |
DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
DOI | 10.1016/j.knosys.2018.02.001 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-7409 |
EndPage | 151 |
ExternalDocumentID | 10_1016_j_knosys_2018_02_001 S0950705118300522 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW SSH UHS WUQ 7SC 8FD E3H EFKBS F2A JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c334t-f6ff2693c68f32728996a95525d0e94e2baf825fea01356c7ae1194023aa7bad3 |
IEDL.DBID | .~1 |
ISSN | 0950-7051 |
IngestDate | Mon Jul 14 09:36:34 EDT 2025 Thu Apr 24 22:55:10 EDT 2025 Tue Jul 01 04:37:54 EDT 2025 Fri Feb 23 02:18:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Search direction Premature convergence Anisotropic adaptive variance scaling Gaussian estimation of distribution algorithm |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-f6ff2693c68f32728996a95525d0e94e2baf825fea01356c7ae1194023aa7bad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2047238006 |
PQPubID | 2035257 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2047238006 crossref_citationtrail_10_1016_j_knosys_2018_02_001 crossref_primary_10_1016_j_knosys_2018_02_001 elsevier_sciencedirect_doi_10_1016_j_knosys_2018_02_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-15 |
PublicationDateYYYYMMDD | 2018-04-15 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Knowledge-based systems |
PublicationYear | 2018 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Zhou, Sun, Zhang (bib0007) 2015; 19 Ren, He, Zhong, Huang, Liang (bib0021) 2016 Qian, Li, Hu (bib0031) 2017; 61 M.R. Wagner, A. Auger, and M. Schoenauer, EEDA: A New Robust Estimation of Distribution Algorithm, Rapport de Recherche (Research Report) RR-5190, INRIA, 2004. Trivedi, Srinivasan, Biswas, Reindl (bib0052) 2016; 354 Loshchilov (bib0044) 2013 Cohen (bib0048) 1988 Bose, Biswas, Vasilakos, Laha (bib0051) 2014; 281 Shen, Wang, Wang (bib0006) 2015; 74 Liang, Ren, Wang, Pang, Hossain (bib0022) 2017 Chen, Sun, Gong, Zhang, Choi, Klasky (bib0024) 2017; 21 Echegoyen, Santana, Mendiburu, Lozano (bib0039) 2015; 598 Xu (bib0023) 2014 Bishop (bib0040) 2006 Liang, Qu, Suganthan (bib0042) 2013 Larrañaga, Lozano (bib0004) 2001 Ocenasek, Schwarz (bib0009) 2002 Santana, Mendiburu, Lozano (bib0029) 2014 Ursem (bib0041) 2000 Hauschild, Pelikan (bib0005) 2011; 1 Wang, Liu, Li, Li, Yen (bib0045) 2016; 48 Larranga, Etxeberria, Lozano, Pena (bib0003) 1999 Kundu, Das, Vasilakos, Biswas (bib0050) 2015; 19 Ocenasek, Kern, Hansen, Koumoutsakos (bib0008) 2004 Mühlenbein, Paass (bib0002) 1996 Auger, Hansen (bib0026) 2005 Cai, Sun, Xu, Jia (bib0015) 2007 Bose, Kundu, Biswas, Das (bib0049) 2012 Yuan, Gallagher (bib0011) 2005 Pošík (bib0012) 2008 Grahl, Bosman, Rothlauf (bib0013) 2006 García-Martínez, Gutiérrez, Molina, Lozano, Herrera (bib0027) 2017; 21 Zhang, Sanderson (bib0047) 2009; 13 Hansen, Ostermeier (bib0020) 2001; 9 Rastegar (bib0038) 2011; 19 Fang, Zhou, Zhang (bib0025) 2016 Rechenberg (bib0010) 1973 Bosman, Grahl, Rothlauf (bib0014) 2007 Dong, Yao (bib0017) 2008; 178 Wang, Li, Weise (bib0037) 2010; 180 Loshchilov, Schoenauer, Sebag (bib0043) 2012 Ouyang, Gao, Kong, Li, Zou (bib0046) 2016; 346 Yang, Tang, Lu (bib0033) 2015; 45 Ahn, An, Yoo (bib0036) 2012; 192 De Jong (bib0001) 2012 Li, Epitropakis, Deb, Engelbrecht (bib0034) 2017; 21 Karshenas, Santana, Bielza, Larrañaga (bib0028) 2013; 13 Bosman, Grahl, Thierens (bib0019) 2008 PourMohammadBagher, Ebadzadeh, Safabakhsh (bib0032) 2017; 58 Zhang, Zeng (bib0030) 2010; 38 Yang, Chen, Li, Chen, Xu, Zhang (bib0035) 2017; 47 Liu, Wang, Teng (bib0018) 2013; 18 Bose (10.1016/j.knosys.2018.02.001_bib0049) 2012 Ursem (10.1016/j.knosys.2018.02.001_bib0041) 2000 Loshchilov (10.1016/j.knosys.2018.02.001_bib0044) 2013 Ocenasek (10.1016/j.knosys.2018.02.001_bib0009) 2002 Trivedi (10.1016/j.knosys.2018.02.001_bib0052) 2016; 354 Larranga (10.1016/j.knosys.2018.02.001_bib0003) 1999 Shen (10.1016/j.knosys.2018.02.001_bib0006) 2015; 74 Fang (10.1016/j.knosys.2018.02.001_bib0025) 2016 Pošík (10.1016/j.knosys.2018.02.001_bib0012) 2008 Loshchilov (10.1016/j.knosys.2018.02.001_bib0043) 2012 10.1016/j.knosys.2018.02.001_bib0016 Larrañaga (10.1016/j.knosys.2018.02.001_bib0004) 2001 Zhou (10.1016/j.knosys.2018.02.001_bib0007) 2015; 19 Ren (10.1016/j.knosys.2018.02.001_bib0021) 2016 Bosman (10.1016/j.knosys.2018.02.001_bib0014) 2007 Hauschild (10.1016/j.knosys.2018.02.001_bib0005) 2011; 1 Santana (10.1016/j.knosys.2018.02.001_bib0029) 2014 Karshenas (10.1016/j.knosys.2018.02.001_bib0028) 2013; 13 Liu (10.1016/j.knosys.2018.02.001_bib0018) 2013; 18 Mühlenbein (10.1016/j.knosys.2018.02.001_bib0002) 1996 García-Martínez (10.1016/j.knosys.2018.02.001_bib0027) 2017; 21 Li (10.1016/j.knosys.2018.02.001_bib0034) 2017; 21 Ahn (10.1016/j.knosys.2018.02.001_bib0036) 2012; 192 Bose (10.1016/j.knosys.2018.02.001_bib0051) 2014; 281 Qian (10.1016/j.knosys.2018.02.001_bib0031) 2017; 61 Dong (10.1016/j.knosys.2018.02.001_bib0017) 2008; 178 Auger (10.1016/j.knosys.2018.02.001_bib0026) 2005 Wang (10.1016/j.knosys.2018.02.001_bib0037) 2010; 180 Xu (10.1016/j.knosys.2018.02.001_bib0023) 2014 Zhang (10.1016/j.knosys.2018.02.001_bib0047) 2009; 13 Grahl (10.1016/j.knosys.2018.02.001_bib0013) 2006 Zhang (10.1016/j.knosys.2018.02.001_bib0030) 2010; 38 Yang (10.1016/j.knosys.2018.02.001_bib0035) 2017; 47 Hansen (10.1016/j.knosys.2018.02.001_bib0020) 2001; 9 PourMohammadBagher (10.1016/j.knosys.2018.02.001_bib0032) 2017; 58 Echegoyen (10.1016/j.knosys.2018.02.001_bib0039) 2015; 598 Yuan (10.1016/j.knosys.2018.02.001_bib0011) 2005 De Jong (10.1016/j.knosys.2018.02.001_bib0001) 2012 Ocenasek (10.1016/j.knosys.2018.02.001_bib0008) 2004 Bosman (10.1016/j.knosys.2018.02.001_bib0019) 2008 Cai (10.1016/j.knosys.2018.02.001_bib0015) 2007 Cohen (10.1016/j.knosys.2018.02.001_bib0048) 1988 Liang (10.1016/j.knosys.2018.02.001_bib0042) 2013 Chen (10.1016/j.knosys.2018.02.001_bib0024) 2017; 21 Rastegar (10.1016/j.knosys.2018.02.001_bib0038) 2011; 19 Kundu (10.1016/j.knosys.2018.02.001_bib0050) 2015; 19 Bishop (10.1016/j.knosys.2018.02.001_bib0040) 2006 Ouyang (10.1016/j.knosys.2018.02.001_bib0046) 2016; 346 Liang (10.1016/j.knosys.2018.02.001_bib0022) 2017 Yang (10.1016/j.knosys.2018.02.001_bib0033) 2015; 45 Wang (10.1016/j.knosys.2018.02.001_bib0045) 2016; 48 Rechenberg (10.1016/j.knosys.2018.02.001_bib0010) 1973 |
References_xml | – volume: 19 start-page: 637 year: 2015 end-page: 659 ident: bib0050 article-title: A modified differential evolution-based combined routing and sleep scheduling scheme for lifetime maximization of wireless sensor networks publication-title: Soft Comput. – volume: 178 start-page: 3000 year: 2008 end-page: 3023 ident: bib0017 article-title: Unified eigen analysis on multivariate Gaussian based estimation of distribution algorithms publication-title: Inf. Sci. – volume: 47 start-page: 636 year: 2017 end-page: 650 ident: bib0035 article-title: Multimodal estimation of distribution algorithms publication-title: IEEE Trans. Cybern. – start-page: 459 year: 2012 end-page: 466 ident: bib0049 article-title: Circular antenna array design using novel perturbation based artificial bee colony algorithm publication-title: Swarm, Evolutionary, and Memetic Computing (SEMCCO), 2012 Third International Conference on – volume: 18 start-page: 26 year: 2013 end-page: 33 ident: bib0018 article-title: Variance analysis and adaptive control in intelligent system based on Gaussian model publication-title: Int. J. Model. Identif. Control. – volume: 21 start-page: 5573 year: 2017 end-page: 5583 ident: bib0027 article-title: Since CEC 2005 competition on real-parameter optimisation: a decade of research, progress and comparative analysis's weakness publication-title: Soft Comput. – year: 2006 ident: bib0040 article-title: Pattern Recognition and Machine Learning (Information Science and Statistics) – volume: 45 start-page: 1438 year: 2015 end-page: 1449 ident: bib0033 article-title: Improving estimation of distribution algorithm on multimodal problems by detecting promising areas publication-title: IEEE Trans. Cybern. – volume: 192 start-page: 109 year: 2012 end-page: 119 ident: bib0036 article-title: Estimation of particle swarm distribution algorithms: combining the benefits of PSO and EDAs publication-title: Inf. Sci. – start-page: 227 year: 2002 end-page: 232 ident: bib0009 article-title: Estimation of distribution algorithm for mixed continuous-discrete optimization problems publication-title: 2nd Euro-International Symp. Comput. Intell. – start-page: 301 year: 2017 end-page: 307 ident: bib0022 article-title: Inferior solutions in Gaussian EDA: useless or useful? publication-title: 2017 IEEE Congr. Evol. Comput. – start-page: 265 year: 2014 end-page: 269 ident: bib0023 article-title: Chaos elitism estimation of distribution algorithm publication-title: Fifth Int. Conf. Intell. Control Inf. Process. – reference: M.R. Wagner, A. Auger, and M. Schoenauer, EEDA: A New Robust Estimation of Distribution Algorithm, Rapport de Recherche (Research Report) RR-5190, INRIA, 2004. – start-page: 369 year: 2013 end-page: 376 ident: bib0044 article-title: CMA-ES with restarts for solving CEC 2013 benchmark problems publication-title: Evol. Comput. (CEC), 2013 IEEE Congr. – year: 2013 ident: bib0042 article-title: Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization – start-page: 3268 year: 2016 end-page: 3275 ident: bib0025 article-title: An estimation of distribution algorithm guided by mean shift publication-title: 2016 IEEE Congr. Evol. Comput. – volume: 281 start-page: 443 year: 2014 end-page: 461 ident: bib0051 article-title: Optimal filter design using an improved artificial bee colony algorithm publication-title: Inf. Sci. – volume: 74 start-page: 167 year: 2015 end-page: 175 ident: bib0006 article-title: A bi-population EDA for solving the no-idle permutation flow-shop scheduling problem with the total tardiness criterion publication-title: Knowl.-Based Syst. – start-page: 397 year: 2006 end-page: 404 ident: bib0013 article-title: The correlation-triggered adaptive variance scaling IDEA publication-title: Proc. 8th Annu. Conf. Genet. Evol. Comput. – start-page: 549 year: 2008 end-page: 558 ident: bib0012 article-title: Preventing premature convergence in a simple EDA via global step size setting publication-title: Parallel Probl. Solving from Nature–PPSN X – start-page: 609 year: 2007 end-page: 616 ident: bib0015 article-title: Cross entropy and adaptive variance scaling in continuous EDA publication-title: Proc. 9th Annu. Conf. Genet. Evol. Comput. – volume: 21 start-page: 588 year: 2017 end-page: 600 ident: bib0024 article-title: Personalized Search inspired fast interactive estimation of distribution algorithm and its application publication-title: IEEE Trans. Evol. Comput. – year: 1996 ident: bib0002 article-title: From Recombination of Genes to the Estimation of Distributions I. Binary parameters – volume: 180 start-page: 2405 year: 2010 end-page: 2420 ident: bib0037 article-title: Estimation of distribution and differential evolution cooperation for large scale economic load dispatch optimization of power systems publication-title: Inf. Sci. – start-page: 94 year: 2014 end-page: 105 ident: bib0029 article-title: Customized selection in estimation of distribution algorithms publication-title: Asia-Pacific Conf. Simulated Evol. Learn. – start-page: 20 year: 1988 end-page: 26 ident: bib0048 article-title: Statistical Power Analysis for the Behavioral Sciences – volume: 598 start-page: 64 year: 2015 end-page: 86 ident: bib0039 article-title: Comprehensive characterization of the behaviors of estimation of distribution algorithms publication-title: Theor. Comput. Sci. – start-page: 737 year: 2012 end-page: 750 ident: bib0001 article-title: Evolutionary computation: a unified approach publication-title: Proc. 14th Annu. Conf. Companion Genet. Evol. Comput. – year: 1973 ident: bib0010 article-title: Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien der Biologischen Evolution – volume: 9 start-page: 159 year: 2001 end-page: 195 ident: bib0020 article-title: Completely derandomized self-adaptation in evolution strategies publication-title: Evol. Comput. – volume: 58 start-page: 388 year: 2017 end-page: 400 ident: bib0032 article-title: Graphical model based continuous estimation of distribution algorithm publication-title: Appl. Soft Comput. – volume: 346 start-page: 318 year: 2016 end-page: 337 ident: bib0046 article-title: Hybrid harmony search particle swarm optimization with global dimension selection publication-title: Inf. Sci. – volume: 13 start-page: 945 year: 2009 end-page: 958 ident: bib0047 article-title: JADE: adaptive differential evolution with optional external archive publication-title: IEEE Trans. Evol. Comput. – volume: 1 start-page: 111 year: 2011 end-page: 128 ident: bib0005 article-title: An introduction and survey of estimation of distribution algorithms publication-title: Swarm Evol. Comput. – volume: 48 start-page: 329 year: 2016 end-page: 346 ident: bib0045 article-title: Utilizing cumulative population distribution information in differential evolution publication-title: Appl. Soft Comput. – start-page: 1769 year: 2005 end-page: 1776 ident: bib0026 article-title: A restart CMA evolution strategy with increasing population size publication-title: Evol. Comput. 2005. 2005 IEEE Congr. – volume: 38 start-page: 2929 year: 2010 end-page: 2932 ident: bib0030 article-title: Estimation of distribution algorithm based on sequential importance sampling particle filters publication-title: Acta Electron. Sin. – start-page: 19 year: 2000 end-page: 26 ident: bib0041 article-title: Multinational GAs: multimodal optimization techniques in dynamic environments publication-title: Proc. 2nd Annu. Conf. Genet. Evol. Comput. – start-page: 492 year: 2007 end-page: 499 ident: bib0014 article-title: SDR: a better trigger for adaptive variance scaling in normal EDAs publication-title: Proc. 9th Annu. Conf. Genet. Evol. Comput. – year: 1999 ident: bib0003 article-title: Optimization by Learning and Simulation of Bayesian and Gaussian Networks – year: 2016 ident: bib0021 article-title: Enhance continuous estimation of distribution algorithm by variance enlargement and reflecting sampling publication-title: 2016 IEEE Congr. Evol. Comput. CEC 2016 – volume: 13 start-page: 2412 year: 2013 end-page: 2432 ident: bib0028 article-title: Regularized continuous estimation of distribution algorithms publication-title: Appl. Soft Comput. – volume: 21 start-page: 518 year: 2017 end-page: 538 ident: bib0034 article-title: Seeking multiple solutions: an updated survey on niching methods and their applications publication-title: IEEE Trans. Evol. Comput. – volume: 19 start-page: 225 year: 2011 end-page: 248 ident: bib0038 article-title: On the optimal convergence probability of univariate estimation of distribution algorithms publication-title: Evol. Comput. – start-page: 133 year: 2008 end-page: 143 ident: bib0019 article-title: Enhancing the performance of maximum–likelihood Gaussian EDAs using anticipated mean shift publication-title: Int. Conf. Parallel Probl. Solving from Nat. – volume: 19 start-page: 807 year: 2015 end-page: 822 ident: bib0007 article-title: An estimation of distribution algorithm with cheap and expensive local search methods publication-title: IEEE Trans. Evol. Comput. – start-page: 296 year: 2012 end-page: 305 ident: bib0043 article-title: Alternative restart strategies for CMA-ES publication-title: Int. Conf. Parallel Probl. Solving from Nat. – year: 2001 ident: bib0004 article-title: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation – start-page: 352 year: 2004 end-page: 361 ident: bib0008 article-title: A mixed Bayesian optimization algorithm with variance adaptation publication-title: Int. Conf. Parallel Probl. Solving from Nat. – volume: 61 start-page: 921 year: 2017 end-page: 934 ident: bib0031 article-title: A copula-based hybrid estimation of distribution algorithm for m-machine reentrant permutation flow-shop scheduling problem publication-title: Appl. Soft Comput. – start-page: 719 year: 2005 end-page: 726 ident: bib0011 article-title: On the importance of diversity maintenance in estimation of distribution algorithms publication-title: Proc. 7th Annu. Conf. Genet. Evol. Comput. – volume: 354 start-page: 275 year: 2016 end-page: 300 ident: bib0052 article-title: A genetic algorithm-differential evolution based hybrid framework: case study on unit commitment scheduling problem publication-title: Inf. Sci. – start-page: 719 year: 2005 ident: 10.1016/j.knosys.2018.02.001_bib0011 article-title: On the importance of diversity maintenance in estimation of distribution algorithms – volume: 21 start-page: 518 year: 2017 ident: 10.1016/j.knosys.2018.02.001_bib0034 article-title: Seeking multiple solutions: an updated survey on niching methods and their applications publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2638437 – year: 2001 ident: 10.1016/j.knosys.2018.02.001_bib0004 – start-page: 3268 year: 2016 ident: 10.1016/j.knosys.2018.02.001_bib0025 article-title: An estimation of distribution algorithm guided by mean shift – start-page: 227 year: 2002 ident: 10.1016/j.knosys.2018.02.001_bib0009 article-title: Estimation of distribution algorithm for mixed continuous-discrete optimization problems – start-page: 459 year: 2012 ident: 10.1016/j.knosys.2018.02.001_bib0049 article-title: Circular antenna array design using novel perturbation based artificial bee colony algorithm – volume: 13 start-page: 945 year: 2009 ident: 10.1016/j.knosys.2018.02.001_bib0047 article-title: JADE: adaptive differential evolution with optional external archive publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2014613 – year: 2013 ident: 10.1016/j.knosys.2018.02.001_bib0042 – volume: 9 start-page: 159 year: 2001 ident: 10.1016/j.knosys.2018.02.001_bib0020 article-title: Completely derandomized self-adaptation in evolution strategies publication-title: Evol. Comput. doi: 10.1162/106365601750190398 – start-page: 609 year: 2007 ident: 10.1016/j.knosys.2018.02.001_bib0015 article-title: Cross entropy and adaptive variance scaling in continuous EDA – volume: 19 start-page: 225 year: 2011 ident: 10.1016/j.knosys.2018.02.001_bib0038 article-title: On the optimal convergence probability of univariate estimation of distribution algorithms publication-title: Evol. Comput. doi: 10.1162/EVCO_a_00022 – volume: 74 start-page: 167 year: 2015 ident: 10.1016/j.knosys.2018.02.001_bib0006 article-title: A bi-population EDA for solving the no-idle permutation flow-shop scheduling problem with the total tardiness criterion publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2014.11.016 – volume: 354 start-page: 275 year: 2016 ident: 10.1016/j.knosys.2018.02.001_bib0052 article-title: A genetic algorithm-differential evolution based hybrid framework: case study on unit commitment scheduling problem publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.03.023 – start-page: 19 year: 2000 ident: 10.1016/j.knosys.2018.02.001_bib0041 article-title: Multinational GAs: multimodal optimization techniques in dynamic environments – volume: 61 start-page: 921 year: 2017 ident: 10.1016/j.knosys.2018.02.001_bib0031 article-title: A copula-based hybrid estimation of distribution algorithm for m-machine reentrant permutation flow-shop scheduling problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.08.037 – volume: 346 start-page: 318 year: 2016 ident: 10.1016/j.knosys.2018.02.001_bib0046 article-title: Hybrid harmony search particle swarm optimization with global dimension selection publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.02.007 – volume: 18 start-page: 26 year: 2013 ident: 10.1016/j.knosys.2018.02.001_bib0018 article-title: Variance analysis and adaptive control in intelligent system based on Gaussian model publication-title: Int. J. Model. Identif. Control. doi: 10.1504/IJMIC.2013.051930 – volume: 180 start-page: 2405 year: 2010 ident: 10.1016/j.knosys.2018.02.001_bib0037 article-title: Estimation of distribution and differential evolution cooperation for large scale economic load dispatch optimization of power systems publication-title: Inf. Sci. doi: 10.1016/j.ins.2010.02.015 – start-page: 94 year: 2014 ident: 10.1016/j.knosys.2018.02.001_bib0029 article-title: Customized selection in estimation of distribution algorithms – volume: 48 start-page: 329 year: 2016 ident: 10.1016/j.knosys.2018.02.001_bib0045 article-title: Utilizing cumulative population distribution information in differential evolution publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.07.012 – start-page: 133 year: 2008 ident: 10.1016/j.knosys.2018.02.001_bib0019 article-title: Enhancing the performance of maximum–likelihood Gaussian EDAs using anticipated mean shift – start-page: 265 year: 2014 ident: 10.1016/j.knosys.2018.02.001_bib0023 article-title: Chaos elitism estimation of distribution algorithm – start-page: 1769 year: 2005 ident: 10.1016/j.knosys.2018.02.001_bib0026 article-title: A restart CMA evolution strategy with increasing population size – start-page: 301 year: 2017 ident: 10.1016/j.knosys.2018.02.001_bib0022 article-title: Inferior solutions in Gaussian EDA: useless or useful? publication-title: 2017 IEEE Congr. Evol. Comput. doi: 10.1109/CEC.2017.7969327 – volume: 19 start-page: 637 year: 2015 ident: 10.1016/j.knosys.2018.02.001_bib0050 article-title: A modified differential evolution-based combined routing and sleep scheduling scheme for lifetime maximization of wireless sensor networks publication-title: Soft Comput. doi: 10.1007/s00500-014-1286-9 – volume: 21 start-page: 5573 year: 2017 ident: 10.1016/j.knosys.2018.02.001_bib0027 article-title: Since CEC 2005 competition on real-parameter optimisation: a decade of research, progress and comparative analysis's weakness publication-title: Soft Comput. doi: 10.1007/s00500-016-2471-9 – volume: 21 start-page: 588 year: 2017 ident: 10.1016/j.knosys.2018.02.001_bib0024 article-title: Personalized Search inspired fast interactive estimation of distribution algorithm and its application publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2657787 – start-page: 369 year: 2013 ident: 10.1016/j.knosys.2018.02.001_bib0044 article-title: CMA-ES with restarts for solving CEC 2013 benchmark problems – year: 1973 ident: 10.1016/j.knosys.2018.02.001_bib0010 – volume: 58 start-page: 388 year: 2017 ident: 10.1016/j.knosys.2018.02.001_bib0032 article-title: Graphical model based continuous estimation of distribution algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.04.066 – start-page: 737 year: 2012 ident: 10.1016/j.knosys.2018.02.001_bib0001 article-title: Evolutionary computation: a unified approach – ident: 10.1016/j.knosys.2018.02.001_bib0016 – volume: 598 start-page: 64 year: 2015 ident: 10.1016/j.knosys.2018.02.001_bib0039 article-title: Comprehensive characterization of the behaviors of estimation of distribution algorithms publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2015.04.015 – volume: 47 start-page: 636 year: 2017 ident: 10.1016/j.knosys.2018.02.001_bib0035 article-title: Multimodal estimation of distribution algorithms publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2523000 – volume: 13 start-page: 2412 year: 2013 ident: 10.1016/j.knosys.2018.02.001_bib0028 article-title: Regularized continuous estimation of distribution algorithms publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.11.049 – year: 2006 ident: 10.1016/j.knosys.2018.02.001_bib0040 – start-page: 352 year: 2004 ident: 10.1016/j.knosys.2018.02.001_bib0008 article-title: A mixed Bayesian optimization algorithm with variance adaptation – volume: 45 start-page: 1438 year: 2015 ident: 10.1016/j.knosys.2018.02.001_bib0033 article-title: Improving estimation of distribution algorithm on multimodal problems by detecting promising areas publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2352411 – volume: 281 start-page: 443 year: 2014 ident: 10.1016/j.knosys.2018.02.001_bib0051 article-title: Optimal filter design using an improved artificial bee colony algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.05.033 – start-page: 397 year: 2006 ident: 10.1016/j.knosys.2018.02.001_bib0013 article-title: The correlation-triggered adaptive variance scaling IDEA – year: 1996 ident: 10.1016/j.knosys.2018.02.001_bib0002 – start-page: 549 year: 2008 ident: 10.1016/j.knosys.2018.02.001_bib0012 article-title: Preventing premature convergence in a simple EDA via global step size setting – volume: 192 start-page: 109 year: 2012 ident: 10.1016/j.knosys.2018.02.001_bib0036 article-title: Estimation of particle swarm distribution algorithms: combining the benefits of PSO and EDAs publication-title: Inf. Sci. doi: 10.1016/j.ins.2010.07.014 – start-page: 20 year: 1988 ident: 10.1016/j.knosys.2018.02.001_bib0048 – volume: 1 start-page: 111 year: 2011 ident: 10.1016/j.knosys.2018.02.001_bib0005 article-title: An introduction and survey of estimation of distribution algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.08.003 – volume: 178 start-page: 3000 issue: 15 year: 2008 ident: 10.1016/j.knosys.2018.02.001_bib0017 article-title: Unified eigen analysis on multivariate Gaussian based estimation of distribution algorithms publication-title: Inf. Sci. doi: 10.1016/j.ins.2008.01.021 – year: 2016 ident: 10.1016/j.knosys.2018.02.001_bib0021 article-title: Enhance continuous estimation of distribution algorithm by variance enlargement and reflecting sampling – volume: 38 start-page: 2929 year: 2010 ident: 10.1016/j.knosys.2018.02.001_bib0030 article-title: Estimation of distribution algorithm based on sequential importance sampling particle filters publication-title: Acta Electron. Sin. – year: 1999 ident: 10.1016/j.knosys.2018.02.001_bib0003 – start-page: 492 year: 2007 ident: 10.1016/j.knosys.2018.02.001_bib0014 article-title: SDR: a better trigger for adaptive variance scaling in normal EDAs – start-page: 296 year: 2012 ident: 10.1016/j.knosys.2018.02.001_bib0043 article-title: Alternative restart strategies for CMA-ES – volume: 19 start-page: 807 year: 2015 ident: 10.1016/j.knosys.2018.02.001_bib0007 article-title: An estimation of distribution algorithm with cheap and expensive local search methods publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2387433 |
SSID | ssj0002218 |
Score | 2.3156817 |
Snippet | Traditional Gaussian estimation of distribution algorithms (EDAs) are confronted with issues that the variable variances decrease fast and the main search... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 142 |
SubjectTerms | Anisotropic adaptive variance scaling Anisotropy Convergence Evolutionary algorithms Fitness Gaussian distribution Gaussian estimation of distribution algorithm Genetic algorithms Global optimization Normal distribution Optimization Performance enhancement Premature convergence Scaling Search direction Searching Variance Variance analysis |
Title | Anisotropic adaptive variance scaling for Gaussian estimation of distribution algorithm |
URI | https://dx.doi.org/10.1016/j.knosys.2018.02.001 https://www.proquest.com/docview/2047238006 |
Volume | 146 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4QwEG6MXrz4Nr7Tg9e6SykFjpuNumqyFzXujbTQKj6A7LImXvztzkDRaGJMPAKFkPmm38zAPAg5VtKTcawN09zTTBihWMRNzKLIgjXVItNpk-U7lqNbcTkJJgtk2NXCYFql4_6W0xu2dmd6Tpq9Ks971-AcgL6ih4wt1znysBAhavnJ-1eaB-fNNz5czHB1Vz7X5Hg9FeXsDZt2e1HbudP7zTz9IOrG-pytkRXnNtJB-2brZMEUG2S1G8lA3Q7dJHeDIp-V9bSs8pSqTFXIZvQVAmJEl84AEbBVFDxVeq7mM6ygpNhnoy1gpKWlGXbSdUOwqHq-L6d5_fCyRW7PTm-GI-ZmJ7DU90XNrLSWy9hPZWR9HmJYJVUcBDzI-iYWhmtlITi0RoEPGMg0VMbzYggmfaVCrTJ_mywWZWF2CA19EwgIQyzG0QGgmWURACwBxSwKRbRL_E5kSeoai-N8i-ekyyB7TFpBJyjopM8xkW6XsM-7qraxxh_rww6N5JuCJMD9f9x50IGXuA2K1wWOWwPO2fv3g_fJMh7hvyUvOCCL9XRuDsFFqfVRo4NHZGlwcTUafwAFiueT |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yHvTiW3ybg9ewNk3S9riIur72oqK3kLaJ1ke77FbBf-9MmwoKInhtklJmkm9mmplvCDkwKlBJklqW8iBlwgrDYm4TFscOrGkq8jRrsnxHangrzu_l_Qw56mphMK3SY3-L6Q1a-yd9L83-uCj61-AcwH5FDxkp1zng8CyyU8kemR2cXQxHX4DMefObD-czXNBV0DVpXs9lNf1A3u4gbsk7g98s1A-sbgzQyRJZ8J4jHbQft0xmbLlCFruuDNQf0lVyNyiLaVVPqnGRUZObMQIafYeYGBVMp6AUMFcUnFV6at6mWERJkWqjrWGklaM5kun6PljUvDxUk6J-fF0jtyfHN0dD5tsnsCwMRc2cco6rJMxU7EIeYWSlTCIll_mhTYTlqXEQHzprwA2UKouMDYIE4snQmCg1ebhOemVV2g1Co9BKAZGIw1BagkLzPAYdK1BkHkci3iRhJzKdeW5xbHHxorsksifdClqjoPUhx1y6TcK-Vo1bbo0_5kedNvS3PaIB_v9YudMpT_sziuMCO64B7Gz9-8X7ZG54c3WpL89GF9tkHkfwqimQO6RXT97sLngsdbrnd-Qn90LqRA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anisotropic+adaptive+variance+scaling+for+Gaussian+estimation+of+distribution+algorithm&rft.jtitle=Knowledge-based+systems&rft.au=Ren%2C+Zhigang&rft.au=Liang%2C+Yongsheng&rft.au=Wang%2C+Lin&rft.au=Zhang%2C+Aimin&rft.date=2018-04-15&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=146&rft.spage=142&rft.epage=151&rft_id=info:doi/10.1016%2Fj.knosys.2018.02.001&rft.externalDocID=S0950705118300522 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |