Visible light promoted Fe3S4 Fenton oxidation of atrazine

[Display omitted] •Visible light could promote Fe3S4 Fenton oxidation of atrazine by 4.9 times.•The promoted activity was attributed to the efficient surface iron redox cycle.•The efficient surface iron redox cycle was triggered by visible light.•The formation of FeOOH accounted for poor Fenton acti...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 277; p. 119229
Main Authors Shi, Yanbiao, Wang, Xiaobing, Liu, Xiufan, Ling, Cancan, Shen, Wenjuan, Zhang, Lizhi
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.11.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Visible light could promote Fe3S4 Fenton oxidation of atrazine by 4.9 times.•The promoted activity was attributed to the efficient surface iron redox cycle.•The efficient surface iron redox cycle was triggered by visible light.•The formation of FeOOH accounted for poor Fenton activity of Fe3S4 in dark.•Visible light excited Fe3S4 to produce photo-generated electrons and O2−. We demonstrate that visible light irradiation can promote Fe3S4 Fenton oxidation of atrazine. The visible light irradiation could increase the atrazine Fenton degradation rate by 4.9 times. The enhanced atrazine degradation activity under visible light was attributed to the higher surficial Fe(II)/Fe(III) ratio of Fe3S4 and the efficient surface iron redox cycle triggered by visible light. Experimental results revealed that the operando formation of FeOOH on the Fe3S4 surface blocked the iron redox cycle and inhibited the H2O2 decomposition, accounting for the largely decreased Fenton activity of Fe3S4 in dark, while these problems were successfully solved by the introduction of visible light irradiation, which excite Fe3S4 to produce abundant photo-generated electrons and O2− for efficient regeneration of active Fe(II) species of Fe3S4 and in-situ formed FeOOH.
AbstractList We demonstrate that visible light irradiation can promote Fe3S4 Fenton oxidation of atrazine. The visible light irradiation could increase the atrazine Fenton degradation rate by 4.9 times. The enhanced atrazine degradation activity under visible light was attributed to the higher surficial Fe(II)/Fe(III) ratio of Fe3S4 and the efficient surface iron redox cycle triggered by visible light. Experimental results revealed that the operando formation of FeOOH on the Fe3S4 surface blocked the iron redox cycle and inhibited the H2O2 decomposition, accounting for the largely decreased Fenton activity of Fe3S4 in dark, while these problems were successfully solved by the introduction of visible light irradiation, which excite Fe3S4 to produce abundant photo-generated electrons and ·O2− for efficient regeneration of active Fe(II) species of Fe3S4 and in-situ formed FeOOH.
[Display omitted] •Visible light could promote Fe3S4 Fenton oxidation of atrazine by 4.9 times.•The promoted activity was attributed to the efficient surface iron redox cycle.•The efficient surface iron redox cycle was triggered by visible light.•The formation of FeOOH accounted for poor Fenton activity of Fe3S4 in dark.•Visible light excited Fe3S4 to produce photo-generated electrons and O2−. We demonstrate that visible light irradiation can promote Fe3S4 Fenton oxidation of atrazine. The visible light irradiation could increase the atrazine Fenton degradation rate by 4.9 times. The enhanced atrazine degradation activity under visible light was attributed to the higher surficial Fe(II)/Fe(III) ratio of Fe3S4 and the efficient surface iron redox cycle triggered by visible light. Experimental results revealed that the operando formation of FeOOH on the Fe3S4 surface blocked the iron redox cycle and inhibited the H2O2 decomposition, accounting for the largely decreased Fenton activity of Fe3S4 in dark, while these problems were successfully solved by the introduction of visible light irradiation, which excite Fe3S4 to produce abundant photo-generated electrons and O2− for efficient regeneration of active Fe(II) species of Fe3S4 and in-situ formed FeOOH.
ArticleNumber 119229
Author Ling, Cancan
Zhang, Lizhi
Shen, Wenjuan
Liu, Xiufan
Shi, Yanbiao
Wang, Xiaobing
Author_xml – sequence: 1
  givenname: Yanbiao
  surname: Shi
  fullname: Shi, Yanbiao
  organization: Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, PR China
– sequence: 2
  givenname: Xiaobing
  surname: Wang
  fullname: Wang, Xiaobing
  organization: Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, PR China
– sequence: 3
  givenname: Xiufan
  surname: Liu
  fullname: Liu, Xiufan
  organization: Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, PR China
– sequence: 4
  givenname: Cancan
  surname: Ling
  fullname: Ling, Cancan
  organization: Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, PR China
– sequence: 5
  givenname: Wenjuan
  surname: Shen
  fullname: Shen, Wenjuan
  organization: Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, PR China
– sequence: 6
  givenname: Lizhi
  orcidid: 0000-0002-6842-9167
  surname: Zhang
  fullname: Zhang, Lizhi
  email: zhanglz@mail.ccnu.edu.cn
  organization: Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, PR China
BookMark eNqFUMtOwzAQtFCRaAt_wCES5wS_SBwOSKiigFSJA4-r5dgbcJTGxXYR8PW4hBMHuOyuVjM7szNDk8ENgNAxwQXBpDztCrXRKjYFxTStSE1pvYemRFQsZ0KwCZrimpY5YxU7QLMQOowxZVRMUf1kg216yHr7_BKzjXdrF8FkS2D3PNUhuiFz79aoaHdTm6no1acd4BDtt6oPcPTT5-hxefWwuMlXd9e3i8tVrhnjMQcFWpgSaKu1Ykm1xIJiUTUcjCI8mTVGYNM2glYYQDFSnZkW6rJpiKJKsTk6Ge8mb69bCFF2buuHJCkp5yWmJccioc5HlPYuBA-t1DZ-e052bS8JlruoZCfHqOQuKjlGlcj8F3nj7Vr5j_9oFyMN0vtvFrwM2sKgwVgPOkrj7N8HvgBkNYZX
CitedBy_id crossref_primary_10_1016_j_ceramint_2023_01_205
crossref_primary_10_1016_j_jece_2024_113422
crossref_primary_10_1016_j_cej_2024_158065
crossref_primary_10_3390_catal13020253
crossref_primary_10_1016_j_apt_2022_103671
crossref_primary_10_1016_j_jece_2024_112851
crossref_primary_10_1016_j_colsurfa_2024_133380
crossref_primary_10_1039_D3EN00911D
crossref_primary_10_3390_catal12060623
crossref_primary_10_1016_j_colsurfa_2024_136097
crossref_primary_10_1016_j_cej_2021_132234
crossref_primary_10_1016_j_watres_2021_117558
crossref_primary_10_1021_acs_est_3c09316
crossref_primary_10_1073_pnas_2205562119
crossref_primary_10_1016_j_seppur_2024_128304
crossref_primary_10_1016_j_cplett_2021_139001
crossref_primary_10_1016_j_apcatb_2024_123753
crossref_primary_10_1016_j_colsurfa_2022_128591
crossref_primary_10_1021_acs_est_2c00132
crossref_primary_10_1016_j_cej_2024_157245
crossref_primary_10_1016_j_chemosphere_2023_140285
crossref_primary_10_1016_j_chemosphere_2022_136006
crossref_primary_10_1002_smll_202411116
crossref_primary_10_1021_acsami_3c15898
crossref_primary_10_1016_j_cej_2022_138104
crossref_primary_10_1021_acs_langmuir_1c03024
crossref_primary_10_1016_j_jwpe_2025_107096
crossref_primary_10_1016_j_seppur_2023_123387
crossref_primary_10_1016_j_seppur_2022_120812
crossref_primary_10_1016_j_chemosphere_2021_133199
crossref_primary_10_1016_j_jece_2024_113441
crossref_primary_10_1016_j_jhazmat_2022_128913
crossref_primary_10_1016_j_jece_2024_112630
crossref_primary_10_1016_j_jhazmat_2021_126698
crossref_primary_10_1021_acsapm_3c00987
crossref_primary_10_1021_acs_analchem_2c01797
crossref_primary_10_1016_j_jcis_2021_08_072
crossref_primary_10_1016_j_seppur_2025_132510
crossref_primary_10_1111_jace_18348
crossref_primary_10_1016_j_jre_2022_01_010
crossref_primary_10_1016_j_apcatb_2024_123811
crossref_primary_10_1016_j_apcata_2023_119142
crossref_primary_10_1016_j_cej_2025_160768
crossref_primary_10_1021_acs_est_2c06571
crossref_primary_10_1016_j_flatc_2025_100838
crossref_primary_10_1016_j_arabjc_2022_104338
crossref_primary_10_1016_j_apcatb_2021_120029
crossref_primary_10_54751_revistafoco_v16n9_058
crossref_primary_10_1016_j_jclepro_2022_130375
crossref_primary_10_1016_j_jhazmat_2022_128592
crossref_primary_10_1016_j_jhazmat_2021_127415
crossref_primary_10_1016_j_jhazmat_2022_128408
crossref_primary_10_1039_D3EN00776F
crossref_primary_10_1016_j_apsusc_2024_161976
crossref_primary_10_1016_j_cej_2025_161747
crossref_primary_10_1039_D1NJ00134E
crossref_primary_10_1016_j_apsusc_2024_161581
crossref_primary_10_1016_j_envres_2021_110785
crossref_primary_10_1002_chem_202102120
crossref_primary_10_1016_j_psep_2024_12_028
crossref_primary_10_1016_j_jphotochem_2023_115149
crossref_primary_10_1021_acs_langmuir_4c00072
crossref_primary_10_1016_j_memsci_2023_121874
crossref_primary_10_1016_j_jallcom_2022_166023
crossref_primary_10_12677_MS_2020_1011109
crossref_primary_10_1016_j_colsurfa_2024_133694
crossref_primary_10_3390_foods11162416
crossref_primary_10_1007_s12613_024_2858_z
crossref_primary_10_1016_j_cej_2024_152604
crossref_primary_10_1007_s10971_023_06253_0
crossref_primary_10_1016_j_apcatb_2022_121410
crossref_primary_10_1039_D0NJ05271J
crossref_primary_10_1016_j_colsurfa_2022_130116
crossref_primary_10_1002_adfm_202405643
crossref_primary_10_1002_slct_202402115
crossref_primary_10_1016_j_cej_2023_142465
crossref_primary_10_1016_j_chemosphere_2022_135909
crossref_primary_10_1021_acs_inorgchem_3c01176
crossref_primary_10_1016_j_jcis_2022_09_132
crossref_primary_10_1016_j_apcatb_2021_120051
crossref_primary_10_1021_acs_est_4c04022
crossref_primary_10_1016_j_actbio_2023_02_015
crossref_primary_10_1016_j_colsurfa_2024_134312
crossref_primary_10_1016_j_seppur_2023_126059
crossref_primary_10_3389_fenvs_2023_1212355
crossref_primary_10_1016_j_watres_2023_119828
crossref_primary_10_1016_j_seppur_2022_121334
crossref_primary_10_1016_j_cej_2023_148313
crossref_primary_10_1007_s10562_023_04472_2
crossref_primary_10_1021_acsestengg_3c00470
crossref_primary_10_1016_j_jcis_2021_10_168
crossref_primary_10_1039_D0RA08116G
crossref_primary_10_1016_j_cej_2022_140757
crossref_primary_10_1016_j_jenvman_2022_114613
crossref_primary_10_1039_D2NJ04933C
crossref_primary_10_1007_s12598_023_02589_2
crossref_primary_10_1016_j_jece_2025_116074
crossref_primary_10_3390_magnetochemistry11030022
crossref_primary_10_1016_j_chemosphere_2023_138111
crossref_primary_10_1016_j_seppur_2022_120873
crossref_primary_10_1021_acs_est_2c04624
crossref_primary_10_1016_j_seppur_2022_120471
crossref_primary_10_1016_j_jwpe_2024_105272
crossref_primary_10_1016_j_jhazmat_2020_124961
crossref_primary_10_1016_j_colsurfa_2023_132298
crossref_primary_10_1039_D3NJ04276F
crossref_primary_10_1002_advs_202206869
crossref_primary_10_1016_j_chemosphere_2022_137509
crossref_primary_10_1007_s11164_022_04657_1
crossref_primary_10_1016_j_jwpe_2024_106520
crossref_primary_10_1016_j_jece_2023_109998
crossref_primary_10_1016_j_watres_2021_117548
crossref_primary_10_1016_j_scitotenv_2022_159157
crossref_primary_10_1016_j_nantod_2022_101397
crossref_primary_10_1016_j_seppur_2024_129486
crossref_primary_10_1016_j_apcatb_2024_124255
crossref_primary_10_1039_D2NJ01943D
crossref_primary_10_1039_D3NJ05947B
crossref_primary_10_1002_eem2_12701
crossref_primary_10_1016_j_chemosphere_2023_138221
Cites_doi 10.1016/S0920-5861(99)00102-9
10.1016/j.jallcom.2009.08.127
10.1021/cr0503658
10.1016/j.watres.2017.01.024
10.1016/j.apcatb.2014.05.036
10.1080/09593330.2018.1483972
10.1021/ja409130c
10.1021/cr900136g
10.1016/j.chemosphere.2019.125568
10.1016/j.cej.2018.11.192
10.1016/j.apcatb.2018.03.110
10.1016/j.jhazmat.2018.03.055
10.1021/acs.est.9b02946
10.1180/claymin.2012.047.3.01
10.1016/j.apcatb.2016.08.037
10.1021/es00010a017
10.1016/j.apcatb.2013.11.034
10.1021/acs.est.9b06141
10.1021/acs.est.5b04323
10.1021/acs.est.6b02833
10.1021/es506110w
10.1016/j.watres.2016.09.019
10.1021/es300303f
10.1016/j.jhazmat.2019.121102
10.1016/j.seppur.2017.05.008
10.1016/j.jhazmat.2015.02.017
10.1016/j.cej.2018.01.034
10.1021/acs.est.6b05906
10.1039/C8CC08045C
10.1126/science.1154833
10.1016/j.gca.2015.10.015
10.1016/j.nanoen.2020.104810
10.1039/C5TA03442F
10.1021/acs.est.6b06429
10.1039/C6SC02716D
10.1002/slct.201700851
10.1016/j.apcatb.2019.01.003
10.1186/1467-4866-8-1
10.1039/C5FD00186B
10.1016/j.jphotochem.2019.112072
10.1016/j.jhazmat.2016.02.073
10.1016/j.chemgeo.2017.08.007
10.1039/C8NR06507A
10.1016/j.apcatb.2003.09.010
10.1016/j.cej.2017.07.176
10.1029/96GL02831
10.1016/j.watres.2018.03.006
10.1021/acs.est.7b02740
10.1016/j.jallcom.2017.11.301
10.1021/acs.estlett.8b00065
10.1021/acs.jpcc.6b00216
10.1016/j.jes.2018.06.015
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Nov 15, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Nov 15, 2020
DBID AAYXX
CITATION
7SR
7ST
7U5
8BQ
8FD
C1K
FR3
JG9
KR7
L7M
SOI
DOI 10.1016/j.apcatb.2020.119229
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
ExternalDocumentID 10_1016_j_apcatb_2020_119229
S0926337320306445
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPD
SSG
SSZ
T5K
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
XPP
7SR
7ST
7U5
8BQ
8FD
C1K
EFKBS
FR3
JG9
KR7
L7M
SOI
ID FETCH-LOGICAL-c334t-eaec8d6e2fcca30236082087b4eda14119dd80dfb8270eea3175dfe96bb1a2aa3
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Wed Aug 13 04:30:11 EDT 2025
Tue Jul 01 04:35:06 EDT 2025
Thu Apr 24 22:56:05 EDT 2025
Sat Mar 02 15:59:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Visible light irradiation
Surface iron redox cycle
Reusability
Heterogeneous Fenton reaction
Atrazine degradation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-eaec8d6e2fcca30236082087b4eda14119dd80dfb8270eea3175dfe96bb1a2aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6842-9167
PQID 2446026408
PQPubID 2045281
ParticipantIDs proquest_journals_2446026408
crossref_citationtrail_10_1016_j_apcatb_2020_119229
crossref_primary_10_1016_j_apcatb_2020_119229
elsevier_sciencedirect_doi_10_1016_j_apcatb_2020_119229
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-15
PublicationDateYYYYMMDD 2020-11-15
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-15
  day: 15
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Cheng, Yuan, Liao, Zhang (bib0180) 2016; 50
Zeng, Twardowska, Wei, Sun, Wang, Zhu, Cai (bib0095) 2015; 288
Sun, Chu, Geng, Lu, Qu, Crittenden, Elimelech, Kim (bib0075) 2018; 5
Xu, Wang (bib0060) 2012; 46
Kong, Yan, Qu, Yan, Li (bib0130) 2015; 3
Wang, Wang, Chen, Shi, Zhang (bib0220) 2020; 244
Moreira, Boaventura, Brillas, Vilar (bib0010) 2017; 202
Cao, Quan, Zhao, Chen, Yu, Niu (bib0210) 2020; 382
Zhang, Hu, Ma, Ding, Li (bib0215) 2020; 73
Sharifvaghefi, Zheng (bib0145) 2017; 2
Hunger, Benning (bib0110) 2007; 8
Rickard, Luther (bib0115) 2007; 107
Andreozzi, Caprio, Insola, Marotta (bib0005) 1999; 53
Pera-Titus, Garcı́a-Molina, Baños, Giménez, Esplugas (bib0020) 2004; 47
Zhang, Chen, Li, Xu, Xia (bib0080) 2020; 386
Choe, Byun, Kim, Kim (bib0155) 2018; 233
Liu, Hu, Sun, Xiong, Yu, Feng, Wu, Tang, Zhou (bib0050) 2019; 40
Zhao, Lan, Yu, Fu, Liu, Mu (bib0140) 2018; 54
Qin, Song, Ai, Zhang, Zhang (bib0195) 2015; 49
Shuai, Gu, Fang, Zhou, Gao (bib0205) 2019; 80
Yang, Xu, Xu, Han (bib0070) 2013; 135
Tong, Yuan, Ma, Jin, Liu, Cheng, Liu, Gan, Wang (bib0090) 2016; 50
Hou, Huang, Jia, Ai, Zhao, Zhang (bib0040) 2017; 51
Yang, Zhang, Cai, He, Niu (bib0160) 2018; 735
Huang, Chen, Walter, Zong, Wang, Zhang, Qafoku, Wang, Rosso (bib0035) 2019; 53
Kim, Lee, Monllor-Satoca, Kim, Lee, Choi (bib0200) 2019; 372
Brillas, Sirés, Oturan (bib0230) 2009; 109
Liu, Wang, Liu, Li, Cheng, Wu, Fang, Li, Liu (bib0260) 2020; 54
Martin, Lee, Hoffmann (bib0235) 1995; 29
Roldan, de Leeuw (bib0120) 2016; 188
Zhang, Zhang, Wang, Huang, Chen, Li, Zou (bib0030) 2019; 245
Guan, Wang, Li, Zhang, Cui, Lu, Zou, Hu (bib0150) 2018; 10
Ike, Linden, Orbell, Duke (bib0015) 2018; 338
Li, Zhao, Wang, Xie, Ma (bib0025) 2016; 105
Qian, Ren, Zhu, Yue, Han, Jia, Zhao (bib0045) 2017; 51
Zhang, Yuan, Liao (bib0185) 2016; 172
Yan, Zheng, Meng, Zhou (bib0240) 2017; 185
Chen, Xie, Huang, Qiu (bib0065) 2017; 322
Pereira, Oliveira, Murad (bib0085) 2012; 47
Liu, Jin, Xu, Liu, Li, Zhou, Wang, Dahlgren, Wang (bib0250) 2019; 359
Santos-Carballal, Roldan, de Leeuw (bib0175) 2016; 120
Zhou, Wu, Mao, Zhang, Lim (bib0245) 2014; 160-161
Liu, Ai, Cao, Zhang (bib0225) 2014; 150-151
Roberts, Reynolds, Verosub, Adam (bib0100) 1996; 23
Ding, Wang, Shen, Mu, Wang, Chen, Zhang (bib0055) 2017; 112
Zhang, Chen (bib0165) 2009; 488
Yanina, Rosso (bib0255) 2008; 320
Moon, Bush, Gibbs, Mata (bib0105) 2017; 468
Chen, Huang, Hou, Ai, Zhang (bib0170) 2017; 51
Yang, Yu, Shan, Gao, Pan (bib0190) 2018; 137
Li, Wei, Zuo, Huang, Luo, An, Pelenovich, Mai, Zhang (bib0125) 2017; 8
Liu, Ai, Dahlgren, Zhang, Wang (bib0135) 2017; 330
Zhang (10.1016/j.apcatb.2020.119229_bib0030) 2019; 245
Kim (10.1016/j.apcatb.2020.119229_bib0200) 2019; 372
Roldan (10.1016/j.apcatb.2020.119229_bib0120) 2016; 188
Ding (10.1016/j.apcatb.2020.119229_bib0055) 2017; 112
Tong (10.1016/j.apcatb.2020.119229_bib0090) 2016; 50
Liu (10.1016/j.apcatb.2020.119229_bib0135) 2017; 330
Zhang (10.1016/j.apcatb.2020.119229_bib0185) 2016; 172
Li (10.1016/j.apcatb.2020.119229_bib0025) 2016; 105
Liu (10.1016/j.apcatb.2020.119229_bib0260) 2020; 54
Yanina (10.1016/j.apcatb.2020.119229_bib0255) 2008; 320
Martin (10.1016/j.apcatb.2020.119229_bib0235) 1995; 29
Xu (10.1016/j.apcatb.2020.119229_bib0060) 2012; 46
Yang (10.1016/j.apcatb.2020.119229_bib0190) 2018; 137
Chen (10.1016/j.apcatb.2020.119229_bib0065) 2017; 322
Kong (10.1016/j.apcatb.2020.119229_bib0130) 2015; 3
Sun (10.1016/j.apcatb.2020.119229_bib0075) 2018; 5
Brillas (10.1016/j.apcatb.2020.119229_bib0230) 2009; 109
Zhang (10.1016/j.apcatb.2020.119229_bib0080) 2020; 386
Zhou (10.1016/j.apcatb.2020.119229_bib0245) 2014; 160-161
Chen (10.1016/j.apcatb.2020.119229_bib0170) 2017; 51
Santos-Carballal (10.1016/j.apcatb.2020.119229_bib0175) 2016; 120
Liu (10.1016/j.apcatb.2020.119229_bib0225) 2014; 150-151
Pereira (10.1016/j.apcatb.2020.119229_bib0085) 2012; 47
Liu (10.1016/j.apcatb.2020.119229_bib0250) 2019; 359
Guan (10.1016/j.apcatb.2020.119229_bib0150) 2018; 10
Moreira (10.1016/j.apcatb.2020.119229_bib0010) 2017; 202
Cheng (10.1016/j.apcatb.2020.119229_bib0180) 2016; 50
Choe (10.1016/j.apcatb.2020.119229_bib0155) 2018; 233
Cao (10.1016/j.apcatb.2020.119229_bib0210) 2020; 382
Yang (10.1016/j.apcatb.2020.119229_bib0070) 2013; 135
Rickard (10.1016/j.apcatb.2020.119229_bib0115) 2007; 107
Wang (10.1016/j.apcatb.2020.119229_bib0220) 2020; 244
Huang (10.1016/j.apcatb.2020.119229_bib0035) 2019; 53
Hou (10.1016/j.apcatb.2020.119229_bib0040) 2017; 51
Sharifvaghefi (10.1016/j.apcatb.2020.119229_bib0145) 2017; 2
Zeng (10.1016/j.apcatb.2020.119229_bib0095) 2015; 288
Qin (10.1016/j.apcatb.2020.119229_bib0195) 2015; 49
Ike (10.1016/j.apcatb.2020.119229_bib0015) 2018; 338
Pera-Titus (10.1016/j.apcatb.2020.119229_bib0020) 2004; 47
Liu (10.1016/j.apcatb.2020.119229_bib0050) 2019; 40
Moon (10.1016/j.apcatb.2020.119229_bib0105) 2017; 468
Andreozzi (10.1016/j.apcatb.2020.119229_bib0005) 1999; 53
Yang (10.1016/j.apcatb.2020.119229_bib0160) 2018; 735
Yan (10.1016/j.apcatb.2020.119229_bib0240) 2017; 185
Li (10.1016/j.apcatb.2020.119229_bib0125) 2017; 8
Shuai (10.1016/j.apcatb.2020.119229_bib0205) 2019; 80
Roberts (10.1016/j.apcatb.2020.119229_bib0100) 1996; 23
Hunger (10.1016/j.apcatb.2020.119229_bib0110) 2007; 8
Zhao (10.1016/j.apcatb.2020.119229_bib0140) 2018; 54
Qian (10.1016/j.apcatb.2020.119229_bib0045) 2017; 51
Zhang (10.1016/j.apcatb.2020.119229_bib0215) 2020; 73
Zhang (10.1016/j.apcatb.2020.119229_bib0165) 2009; 488
References_xml – volume: 51
  start-page: 11278
  year: 2017
  end-page: 11287
  ident: bib0170
  article-title: Photochemistry of hydrochar: reactive oxygen species generation and sulfadimidine degradation
  publication-title: Environ. Sci. Technol.
– volume: 468
  start-page: 42
  year: 2017
  end-page: 48
  ident: bib0105
  article-title: Divergent Fe and S mineralization pathways during the oxidative transformation of greigite, Fe
  publication-title: Chem. Geol.
– volume: 3
  start-page: 15755
  year: 2015
  end-page: 15763
  ident: bib0130
  article-title: β-Cyclodextrin stabilized magnetic Fe
  publication-title: J. Mater. Chem. A
– volume: 109
  start-page: 6570
  year: 2009
  end-page: 6631
  ident: bib0230
  article-title: Electro-fenton process and related electrochemical technologies based on Fenton’s reaction chemistry
  publication-title: Chem. Rev.
– volume: 150-151
  start-page: 1
  year: 2014
  end-page: 11
  ident: bib0225
  article-title: Ferrous ions promoted aerobic simazine degradation with Fe@Fe
  publication-title: Appl. Catal. B
– volume: 288
  start-page: 51
  year: 2015
  end-page: 59
  ident: bib0095
  article-title: Removal of trace metals and improvement of dredged sediment dewaterability by bioleaching combined with Fenton-like reaction
  publication-title: J. Hazard. Mater.
– volume: 47
  start-page: 219
  year: 2004
  end-page: 256
  ident: bib0020
  article-title: Degradation of chlorophenols by means of advanced oxidation processes: a general review
  publication-title: Appl. Catal. B
– volume: 2
  start-page: 4678
  year: 2017
  end-page: 4685
  ident: bib0145
  article-title: Dispersed Ni and Co promoted MoS
  publication-title: ChemistrySelect
– volume: 120
  start-page: 8616
  year: 2016
  end-page: 8629
  ident: bib0175
  article-title: Early oxidation processes on the greigite Fe
  publication-title: J. Phys. Chem. C
– volume: 80
  start-page: 5
  year: 2019
  end-page: 13
  ident: bib0205
  article-title: Effects of iron (hydr)oxides on the degradation of diethyl phthalate ester in heterogeneous (photo)-Fenton reactions
  publication-title: J. Environ. Sci. China (China)
– volume: 322
  start-page: 152
  year: 2017
  end-page: 162
  ident: bib0065
  article-title: Ionothermal synthesis of Fe
  publication-title: J. Hazard. Mater.
– volume: 320
  start-page: 218
  year: 2008
  end-page: 222
  ident: bib0255
  article-title: Linked reactivity at mineral-water interfaces through bulk crystal conduction
  publication-title: Science
– volume: 50
  start-page: 11646
  year: 2016
  end-page: 11653
  ident: bib0180
  article-title: Oxidizing impact induced by Mackinawite (FeS) nanoparticles at oxic conditions due to production of hydroxyl radicals
  publication-title: Environ. Sci. Technol.
– volume: 172
  start-page: 444
  year: 2016
  end-page: 457
  ident: bib0185
  article-title: Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions
  publication-title: Geochim. Cosmochim. Acta
– volume: 338
  start-page: 651
  year: 2018
  end-page: 669
  ident: bib0015
  article-title: Critical review of the science and sustainability of persulphate advanced oxidation processes
  publication-title: Chem. Eng. J.
– volume: 112
  start-page: 9
  year: 2017
  end-page: 18
  ident: bib0055
  article-title: Fe@Fe
  publication-title: Water Res.
– volume: 51
  start-page: 5118
  year: 2017
  end-page: 5126
  ident: bib0040
  article-title: Hydroxylamine promoted goethite surface fenton degradation of organic pollutants
  publication-title: Environ. Sci. Technol.
– volume: 50
  start-page: 214
  year: 2016
  end-page: 221
  ident: bib0090
  article-title: Production of abundant hydroxyl radicals from oxygenation of subsurface sediments
  publication-title: Environ. Sci. Technol.
– volume: 188
  start-page: 161
  year: 2016
  end-page: 180
  ident: bib0120
  article-title: Methanol formation from CO
  publication-title: Faraday Discuss.
– volume: 54
  start-page: 4810
  year: 2020
  end-page: 4819
  ident: bib0260
  article-title: Conduction band of hematite can mediate cytochrome reduction by Fe(II) under dark and anoxic conditions
  publication-title: Environ. Sci. Technol.
– volume: 54
  start-page: 13010
  year: 2018
  end-page: 13013
  ident: bib0140
  article-title: Deep eutectic-solvothermal synthesis of nanostructured Fe
  publication-title: Chem. Commun.
– volume: 137
  start-page: 37
  year: 2018
  end-page: 46
  ident: bib0190
  article-title: Enhanced Fe(III)-mediated Fenton oxidation of atrazine in the presence of functionalized multi-walled carbon nanotubes
  publication-title: Water Res.
– volume: 372
  start-page: 121
  year: 2019
  end-page: 128
  ident: bib0200
  article-title: Homogeneous photocatalytic Fe
  publication-title: J. Hazard. Mater.
– volume: 185
  start-page: 83
  year: 2017
  end-page: 93
  ident: bib0240
  article-title: Assessment of catalytic activities of selected iron hydroxysulphates biosynthesized using Acidithiobacillus ferrooxidans for the degradation of phenol in heterogeneous Fenton-like reactions
  publication-title: Sep. Purif. Technol.
– volume: 245
  start-page: 410
  year: 2019
  end-page: 419
  ident: bib0030
  article-title: Heterogeneous degradation of organic contaminants in the photo-Fenton reaction employing pure cubic β-Fe
  publication-title: Appl. Catal. B
– volume: 8
  start-page: 160
  year: 2017
  end-page: 164
  ident: bib0125
  article-title: Greigite Fe
  publication-title: Chem. Sci.
– volume: 23
  start-page: 2859
  year: 1996
  end-page: 2862
  ident: bib0100
  article-title: Environmental magnetic implications of Greigite (Fe
  publication-title: Geophys. Res. Lett.
– volume: 73
  year: 2020
  ident: bib0215
  article-title: Pyroelectric effect in CdS nanorods decorated with a molecular Co-catalyst for hydrogen evolution
  publication-title: Nano Energy
– volume: 135
  start-page: 16058
  year: 2013
  end-page: 16061
  ident: bib0070
  article-title: Iron oxychloride (FeOCl): an efficient fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 1
  year: 2007
  ident: bib0110
  article-title: Greigite: a true intermediate on the polysulfide pathway to pyrite
  publication-title: Geochem. Trans.
– volume: 160-161
  start-page: 325
  year: 2014
  end-page: 334
  ident: bib0245
  article-title: Rapid degradation of sulfonamides in a novel heterogeneous sonophotochemical magnetite-catalyzed Fenton-like (US/UV/Fe
  publication-title: Appl. Catal. B
– volume: 202
  start-page: 217
  year: 2017
  end-page: 261
  ident: bib0010
  article-title: Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters
  publication-title: Appl. Catal. B
– volume: 40
  start-page: 3632
  year: 2019
  end-page: 3640
  ident: bib0050
  article-title: Enhancement of Fenton processes at initial circumneutral pH for the degradation of norfloxacin with Fe@Fe
  publication-title: Environ. Technol.
– volume: 53
  start-page: 10197
  year: 2019
  end-page: 10207
  ident: bib0035
  article-title: Facet-specific photocatalytic degradation of organics by heterogeneous fenton chemistry on hematite nanoparticles
  publication-title: Environ. Sci. Technol.
– volume: 107
  start-page: 514
  year: 2007
  end-page: 562
  ident: bib0115
  article-title: Chemistry of Iron sulfides
  publication-title: Chem. Rev.
– volume: 330
  start-page: 1232
  year: 2017
  end-page: 1239
  ident: bib0135
  article-title: Adsorption and reduction of roxarsone on magnetic greigite (Fe
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 17902
  year: 2018
  end-page: 17911
  ident: bib0150
  article-title: “Transformed” Fe
  publication-title: Nanoscale
– volume: 49
  start-page: 7948
  year: 2015
  end-page: 7956
  ident: bib0195
  article-title: Protocatechuic acid promoted alachlor degradation in Fe(III)/H
  publication-title: Environ. Sci. Technol.
– volume: 386
  year: 2020
  ident: bib0080
  article-title: Quantitative investigation into the enhancing utilization efficiency of H
  publication-title: Photobiol., A
– volume: 105
  start-page: 479
  year: 2016
  end-page: 486
  ident: bib0025
  article-title: Strongly enhanced Fenton degradation of organic pollutants by cysteine: an aliphatic amino acid accelerator outweighs hydroquinone analogues
  publication-title: Water Res.
– volume: 488
  start-page: 339
  year: 2009
  end-page: 345
  ident: bib0165
  article-title: Magnetic greigite (Fe
  publication-title: J. Alloys. Compd.
– volume: 47
  start-page: 285
  year: 2012
  end-page: 302
  ident: bib0085
  article-title: Iron oxide catalysts: fenton and fenton-like reactions- a review
  publication-title: Clay Miner.
– volume: 244
  year: 2020
  ident: bib0220
  article-title: Pyrite enables persulfate activation for efficient atrazine degradation
  publication-title: Chemosphere
– volume: 51
  start-page: 3993
  year: 2017
  end-page: 4000
  ident: bib0045
  article-title: Visible light assisted heterogeneous fenton-like degradation of organic pollutant via α-FeOOH/Mesoporous carbon composites
  publication-title: Environ. Sci. Technol.
– volume: 29
  start-page: 2567
  year: 1995
  end-page: 2573
  ident: bib0235
  article-title: Chemical mechanism of inorganic oxidants in the TiO
  publication-title: Environ. Sci. Technol.
– volume: 5
  start-page: 186
  year: 2018
  end-page: 191
  ident: bib0075
  article-title: Reinventing fenton chemistry: iron oxychloride nanosheet for pH-Insensitive H
  publication-title: Environ. Sci. Technol. Lett.
– volume: 233
  start-page: 272
  year: 2018
  end-page: 280
  ident: bib0155
  article-title: Fe
  publication-title: Appl. Catal. B
– volume: 53
  start-page: 51
  year: 1999
  end-page: 59
  ident: bib0005
  article-title: Advanced oxidation processes (AOP) for water purification and recovery
  publication-title: Catal. Today
– volume: 735
  start-page: 1955
  year: 2018
  end-page: 1961
  ident: bib0160
  article-title: Synthesis of Cd
  publication-title: J. Alloys. Compd.
– volume: 46
  start-page: 10145
  year: 2012
  end-page: 10153
  ident: bib0060
  article-title: Magnetic nanoscaled Fe
  publication-title: Environ. Sci. Technol.
– volume: 382
  year: 2020
  ident: bib0210
  article-title: Selective electrochemical H
  publication-title: J. Hazard. Mater.
– volume: 359
  start-page: 564
  year: 2019
  end-page: 571
  ident: bib0250
  article-title: Insight into pH dependent Cr(VI) removal with magnetic Fe
  publication-title: Chem. Eng. J.
– volume: 53
  start-page: 51
  year: 1999
  ident: 10.1016/j.apcatb.2020.119229_bib0005
  article-title: Advanced oxidation processes (AOP) for water purification and recovery
  publication-title: Catal. Today
  doi: 10.1016/S0920-5861(99)00102-9
– volume: 488
  start-page: 339
  year: 2009
  ident: 10.1016/j.apcatb.2020.119229_bib0165
  article-title: Magnetic greigite (Fe3S4) nanomaterials: shape-controlled solvothermal synthesis and their calcination conversion into hematite (α-Fe2O3) nanomaterials
  publication-title: J. Alloys. Compd.
  doi: 10.1016/j.jallcom.2009.08.127
– volume: 107
  start-page: 514
  year: 2007
  ident: 10.1016/j.apcatb.2020.119229_bib0115
  article-title: Chemistry of Iron sulfides
  publication-title: Chem. Rev.
  doi: 10.1021/cr0503658
– volume: 112
  start-page: 9
  year: 2017
  ident: 10.1016/j.apcatb.2020.119229_bib0055
  article-title: Fe@Fe2O3 promoted electrochemical mineralization of atrazine via a triazinon ring opening mechanism
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.01.024
– volume: 160-161
  start-page: 325
  year: 2014
  ident: 10.1016/j.apcatb.2020.119229_bib0245
  article-title: Rapid degradation of sulfonamides in a novel heterogeneous sonophotochemical magnetite-catalyzed Fenton-like (US/UV/Fe3O4/oxalate) system
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2014.05.036
– volume: 40
  start-page: 3632
  year: 2019
  ident: 10.1016/j.apcatb.2020.119229_bib0050
  article-title: Enhancement of Fenton processes at initial circumneutral pH for the degradation of norfloxacin with Fe@Fe2O3 core-shell nanomaterials
  publication-title: Environ. Technol.
  doi: 10.1080/09593330.2018.1483972
– volume: 135
  start-page: 16058
  year: 2013
  ident: 10.1016/j.apcatb.2020.119229_bib0070
  article-title: Iron oxychloride (FeOCl): an efficient fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja409130c
– volume: 109
  start-page: 6570
  year: 2009
  ident: 10.1016/j.apcatb.2020.119229_bib0230
  article-title: Electro-fenton process and related electrochemical technologies based on Fenton’s reaction chemistry
  publication-title: Chem. Rev.
  doi: 10.1021/cr900136g
– volume: 244
  year: 2020
  ident: 10.1016/j.apcatb.2020.119229_bib0220
  article-title: Pyrite enables persulfate activation for efficient atrazine degradation
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.125568
– volume: 359
  start-page: 564
  year: 2019
  ident: 10.1016/j.apcatb.2020.119229_bib0250
  article-title: Insight into pH dependent Cr(VI) removal with magnetic Fe3S4
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.11.192
– volume: 233
  start-page: 272
  year: 2018
  ident: 10.1016/j.apcatb.2020.119229_bib0155
  article-title: Fe3S4/Fe7S8-promoted degradation of phenol via heterogeneous, catalytic H2O2 scission mediated by S-modified surface Fe2+ species
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.03.110
– volume: 372
  start-page: 121
  year: 2019
  ident: 10.1016/j.apcatb.2020.119229_bib0200
  article-title: Homogeneous photocatalytic Fe3+/Fe2+ redox cycle for simultaneous Cr(VI) reduction and organic pollutant oxidation: roles of hydroxyl radical and degradation intermediates
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2018.03.055
– volume: 53
  start-page: 10197
  year: 2019
  ident: 10.1016/j.apcatb.2020.119229_bib0035
  article-title: Facet-specific photocatalytic degradation of organics by heterogeneous fenton chemistry on hematite nanoparticles
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b02946
– volume: 47
  start-page: 285
  year: 2012
  ident: 10.1016/j.apcatb.2020.119229_bib0085
  article-title: Iron oxide catalysts: fenton and fenton-like reactions- a review
  publication-title: Clay Miner.
  doi: 10.1180/claymin.2012.047.3.01
– volume: 202
  start-page: 217
  year: 2017
  ident: 10.1016/j.apcatb.2020.119229_bib0010
  article-title: Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2016.08.037
– volume: 29
  start-page: 2567
  year: 1995
  ident: 10.1016/j.apcatb.2020.119229_bib0235
  article-title: Chemical mechanism of inorganic oxidants in the TiO2/UV process: increased rates of degradation of chlorinated hydrocarbons
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00010a017
– volume: 150-151
  start-page: 1
  year: 2014
  ident: 10.1016/j.apcatb.2020.119229_bib0225
  article-title: Ferrous ions promoted aerobic simazine degradation with Fe@Fe2O3 core-shell nanowires
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2013.11.034
– volume: 54
  start-page: 4810
  year: 2020
  ident: 10.1016/j.apcatb.2020.119229_bib0260
  article-title: Conduction band of hematite can mediate cytochrome reduction by Fe(II) under dark and anoxic conditions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b06141
– volume: 50
  start-page: 214
  year: 2016
  ident: 10.1016/j.apcatb.2020.119229_bib0090
  article-title: Production of abundant hydroxyl radicals from oxygenation of subsurface sediments
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b04323
– volume: 50
  start-page: 11646
  year: 2016
  ident: 10.1016/j.apcatb.2020.119229_bib0180
  article-title: Oxidizing impact induced by Mackinawite (FeS) nanoparticles at oxic conditions due to production of hydroxyl radicals
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b02833
– volume: 49
  start-page: 7948
  year: 2015
  ident: 10.1016/j.apcatb.2020.119229_bib0195
  article-title: Protocatechuic acid promoted alachlor degradation in Fe(III)/H2O2 fenton system
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es506110w
– volume: 105
  start-page: 479
  year: 2016
  ident: 10.1016/j.apcatb.2020.119229_bib0025
  article-title: Strongly enhanced Fenton degradation of organic pollutants by cysteine: an aliphatic amino acid accelerator outweighs hydroquinone analogues
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.09.019
– volume: 46
  start-page: 10145
  year: 2012
  ident: 10.1016/j.apcatb.2020.119229_bib0060
  article-title: Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient fenton-like heterogeneous catalyst for degradation of 4-Chlorophenol
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es300303f
– volume: 382
  year: 2020
  ident: 10.1016/j.apcatb.2020.119229_bib0210
  article-title: Selective electrochemical H2O2 generation and activation on a bifunctional catalyst for heterogeneous electro-Fenton catalysis
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121102
– volume: 185
  start-page: 83
  year: 2017
  ident: 10.1016/j.apcatb.2020.119229_bib0240
  article-title: Assessment of catalytic activities of selected iron hydroxysulphates biosynthesized using Acidithiobacillus ferrooxidans for the degradation of phenol in heterogeneous Fenton-like reactions
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2017.05.008
– volume: 288
  start-page: 51
  year: 2015
  ident: 10.1016/j.apcatb.2020.119229_bib0095
  article-title: Removal of trace metals and improvement of dredged sediment dewaterability by bioleaching combined with Fenton-like reaction
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.02.017
– volume: 338
  start-page: 651
  year: 2018
  ident: 10.1016/j.apcatb.2020.119229_bib0015
  article-title: Critical review of the science and sustainability of persulphate advanced oxidation processes
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.01.034
– volume: 51
  start-page: 5118
  year: 2017
  ident: 10.1016/j.apcatb.2020.119229_bib0040
  article-title: Hydroxylamine promoted goethite surface fenton degradation of organic pollutants
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b05906
– volume: 54
  start-page: 13010
  year: 2018
  ident: 10.1016/j.apcatb.2020.119229_bib0140
  article-title: Deep eutectic-solvothermal synthesis of nanostructured Fe3S4 for electrochemical N2 fixation under ambient conditions
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC08045C
– volume: 320
  start-page: 218
  year: 2008
  ident: 10.1016/j.apcatb.2020.119229_bib0255
  article-title: Linked reactivity at mineral-water interfaces through bulk crystal conduction
  publication-title: Science
  doi: 10.1126/science.1154833
– volume: 172
  start-page: 444
  year: 2016
  ident: 10.1016/j.apcatb.2020.119229_bib0185
  article-title: Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2015.10.015
– volume: 73
  year: 2020
  ident: 10.1016/j.apcatb.2020.119229_bib0215
  article-title: Pyroelectric effect in CdS nanorods decorated with a molecular Co-catalyst for hydrogen evolution
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104810
– volume: 3
  start-page: 15755
  year: 2015
  ident: 10.1016/j.apcatb.2020.119229_bib0130
  article-title: β-Cyclodextrin stabilized magnetic Fe3S4 nanoparticles for efficient removal of Pb(II)
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA03442F
– volume: 51
  start-page: 3993
  year: 2017
  ident: 10.1016/j.apcatb.2020.119229_bib0045
  article-title: Visible light assisted heterogeneous fenton-like degradation of organic pollutant via α-FeOOH/Mesoporous carbon composites
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b06429
– volume: 8
  start-page: 160
  year: 2017
  ident: 10.1016/j.apcatb.2020.119229_bib0125
  article-title: Greigite Fe3S4 as a new anode material for high-performance sodium-ion batteries
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC02716D
– volume: 2
  start-page: 4678
  year: 2017
  ident: 10.1016/j.apcatb.2020.119229_bib0145
  article-title: Dispersed Ni and Co promoted MoS2 catalysts with Magnetic Greigite as a core: performance and stability in Hydrodesulfurization
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201700851
– volume: 245
  start-page: 410
  year: 2019
  ident: 10.1016/j.apcatb.2020.119229_bib0030
  article-title: Heterogeneous degradation of organic contaminants in the photo-Fenton reaction employing pure cubic β-Fe2O3
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.01.003
– volume: 8
  start-page: 1
  year: 2007
  ident: 10.1016/j.apcatb.2020.119229_bib0110
  article-title: Greigite: a true intermediate on the polysulfide pathway to pyrite
  publication-title: Geochem. Trans.
  doi: 10.1186/1467-4866-8-1
– volume: 188
  start-page: 161
  year: 2016
  ident: 10.1016/j.apcatb.2020.119229_bib0120
  article-title: Methanol formation from CO2 catalyzed by Fe3S4{111}: formate versus hydrocarboxyl pathways
  publication-title: Faraday Discuss.
  doi: 10.1039/C5FD00186B
– volume: 386
  year: 2020
  ident: 10.1016/j.apcatb.2020.119229_bib0080
  article-title: Quantitative investigation into the enhancing utilization efficiency of H2O2 catalyzed by FeOCl under visible light, J. Photochem
  publication-title: Photobiol., A
  doi: 10.1016/j.jphotochem.2019.112072
– volume: 322
  start-page: 152
  year: 2017
  ident: 10.1016/j.apcatb.2020.119229_bib0065
  article-title: Ionothermal synthesis of Fe3O4 magnetic nanoparticles as efficient heterogeneous Fenton-like catalysts for degradation of organic pollutants with H2O2
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.02.073
– volume: 468
  start-page: 42
  year: 2017
  ident: 10.1016/j.apcatb.2020.119229_bib0105
  article-title: Divergent Fe and S mineralization pathways during the oxidative transformation of greigite, Fe3S4
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2017.08.007
– volume: 10
  start-page: 17902
  year: 2018
  ident: 10.1016/j.apcatb.2020.119229_bib0150
  article-title: “Transformed” Fe3S4 tetragonal nanosheets: a high-efficiency and body-clearable agent for magnetic resonance imaging guided photothermal and chemodynamic synergistic therapy
  publication-title: Nanoscale
  doi: 10.1039/C8NR06507A
– volume: 47
  start-page: 219
  year: 2004
  ident: 10.1016/j.apcatb.2020.119229_bib0020
  article-title: Degradation of chlorophenols by means of advanced oxidation processes: a general review
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2003.09.010
– volume: 330
  start-page: 1232
  year: 2017
  ident: 10.1016/j.apcatb.2020.119229_bib0135
  article-title: Adsorption and reduction of roxarsone on magnetic greigite (Fe3S4): indispensable role of structural sulfide
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.07.176
– volume: 23
  start-page: 2859
  year: 1996
  ident: 10.1016/j.apcatb.2020.119229_bib0100
  article-title: Environmental magnetic implications of Greigite (Fe3S4) Formation in a 3 m.y. Lake sediment record from Butte Valley, northern California
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/96GL02831
– volume: 137
  start-page: 37
  year: 2018
  ident: 10.1016/j.apcatb.2020.119229_bib0190
  article-title: Enhanced Fe(III)-mediated Fenton oxidation of atrazine in the presence of functionalized multi-walled carbon nanotubes
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.03.006
– volume: 51
  start-page: 11278
  year: 2017
  ident: 10.1016/j.apcatb.2020.119229_bib0170
  article-title: Photochemistry of hydrochar: reactive oxygen species generation and sulfadimidine degradation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b02740
– volume: 735
  start-page: 1955
  year: 2018
  ident: 10.1016/j.apcatb.2020.119229_bib0160
  article-title: Synthesis of CdxZn1-xS@Fe3S4 magnetic photocatalyst nanoparticles for the photodegradation of methylene blue
  publication-title: J. Alloys. Compd.
  doi: 10.1016/j.jallcom.2017.11.301
– volume: 5
  start-page: 186
  year: 2018
  ident: 10.1016/j.apcatb.2020.119229_bib0075
  article-title: Reinventing fenton chemistry: iron oxychloride nanosheet for pH-Insensitive H2O2 activation
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.8b00065
– volume: 120
  start-page: 8616
  year: 2016
  ident: 10.1016/j.apcatb.2020.119229_bib0175
  article-title: Early oxidation processes on the greigite Fe3S4(001) surface by water: a density functional theory study
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b00216
– volume: 80
  start-page: 5
  year: 2019
  ident: 10.1016/j.apcatb.2020.119229_bib0205
  article-title: Effects of iron (hydr)oxides on the degradation of diethyl phthalate ester in heterogeneous (photo)-Fenton reactions
  publication-title: J. Environ. Sci. China (China)
  doi: 10.1016/j.jes.2018.06.015
SSID ssj0002328
Score 2.6270754
Snippet [Display omitted] •Visible light could promote Fe3S4 Fenton oxidation of atrazine by 4.9 times.•The promoted activity was attributed to the efficient surface...
We demonstrate that visible light irradiation can promote Fe3S4 Fenton oxidation of atrazine. The visible light irradiation could increase the atrazine Fenton...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119229
SubjectTerms Atrazine
Atrazine degradation
Degradation
Herbicides
Heterogeneous Fenton reaction
Hydrogen peroxide
Iron
Iron sulfides
Irradiation
Light
Light irradiation
Oxidation
Radiation
Regeneration
Reusability
Surface iron redox cycle
Visible light irradiation
Title Visible light promoted Fe3S4 Fenton oxidation of atrazine
URI https://dx.doi.org/10.1016/j.apcatb.2020.119229
https://www.proquest.com/docview/2446026408
Volume 277
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KPagH0WqxWksOXmPT7DbZHEtpqYq9VMXbso8JVEpb2gie_O3u5OELQfASSJgNyezut9-yM_MBXAoTW9FH4aeB1j7nJvKVcUQuMTxiWjhGrulE924aTR74zVP_qQbDKheGwipL7C8wPUfr8km39GZ3PZ93Z0ESRozFLCTayzklmnMe0yi_evsM83CMIUdjZ-yTdZU-l8d4qbVRmXa7xJCwIwlzovnr8vQDqPPVZ3wIByVt9AbFlx1BDZcN2B1Wam0N2P9SWLABzdFn_pprVk7g7TEkj3M3BxboLWhT7q3zYDy03hjZjLsrKQp7q9d5obTkrVJPZZu8AvUJPIxH98OJX6on-IYxnvmo0AgbYZi6TiJpoIhWexFrjlb1uPtda0VgUy3COEBURCRsikmkdU-FSrEm1JerJZ6CJzgTKaK2KhZUkT5RSUoJtY6aoRWm3wJWOU2asrQ4KVwsZBVD9iwLV0tytSxc3QL_o9W6KK3xh31c9Yf8NkSkQ_8_Wrar7pPlFN1Kx2tIfosH4uzfLz6HPbqj3MRevw31bPOCF46kZLqTj8IO7AyubyfTdxxT5ao
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HtSDaFV8m4PX0DS7STbHUiz11YsPvC37mECltKVG8Oe7k2zqA0HwkkOyE5LZ7Dffkpn5AC6EyaxIUIRFpHXIuUlDZRyRyw1PmRaOkWv6o3s3SoeP_Po5eV6BflMLQ2mVHvtrTK_Q2p_peG925uNx5z7K45SxjMVEezlPVmGNulMlLVjrXd0MR0tAdqShAmQ3PiSDpoKuSvNSc6NK7TaKMcFHHldc89cI9QOrqwA02IYtzxyDXv1wO7CC0zas9xvBtjZsfukt2Ib9y88SNmfm1_DrLuRPY7cMJhhMaF8ezKt8PLTBANk9d0cSFQ5m7-NabCmYFYEqF1UT6j14HFw-9IehF1AIDWO8DFGhETbFuHDzROpAKQV8kWmOVnW5e11rRWQLLeIsQlTEJWyBeap1V8VKsX1oTWdTPIBAcCYKRG1VJqgpfa7ygmpqHTtDK0xyCKxxmjS-uziJXExkk0b2ImtXS3K1rF19COHSal531_hjfNbMh_z2lUgXAP6wPGmmT_pV-iodtSEFLh6Jo3_f-BzWhw93t_L2anRzDBt0hUoVu8kJtMrFG546zlLqM_9NfgAEYehb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visible+light+promoted+Fe3S4+Fenton+oxidation+of+atrazine&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Shi%2C+Yanbiao&rft.au=Wang%2C+Xiaobing&rft.au=Liu%2C+Xiufan&rft.au=Ling%2C+Cancan&rft.date=2020-11-15&rft.issn=0926-3373&rft.volume=277&rft.spage=119229&rft_id=info:doi/10.1016%2Fj.apcatb.2020.119229&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2020_119229
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon