Visible light promoted Fe3S4 Fenton oxidation of atrazine
[Display omitted] •Visible light could promote Fe3S4 Fenton oxidation of atrazine by 4.9 times.•The promoted activity was attributed to the efficient surface iron redox cycle.•The efficient surface iron redox cycle was triggered by visible light.•The formation of FeOOH accounted for poor Fenton acti...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 277; p. 119229 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.11.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Visible light could promote Fe3S4 Fenton oxidation of atrazine by 4.9 times.•The promoted activity was attributed to the efficient surface iron redox cycle.•The efficient surface iron redox cycle was triggered by visible light.•The formation of FeOOH accounted for poor Fenton activity of Fe3S4 in dark.•Visible light excited Fe3S4 to produce photo-generated electrons and O2−.
We demonstrate that visible light irradiation can promote Fe3S4 Fenton oxidation of atrazine. The visible light irradiation could increase the atrazine Fenton degradation rate by 4.9 times. The enhanced atrazine degradation activity under visible light was attributed to the higher surficial Fe(II)/Fe(III) ratio of Fe3S4 and the efficient surface iron redox cycle triggered by visible light. Experimental results revealed that the operando formation of FeOOH on the Fe3S4 surface blocked the iron redox cycle and inhibited the H2O2 decomposition, accounting for the largely decreased Fenton activity of Fe3S4 in dark, while these problems were successfully solved by the introduction of visible light irradiation, which excite Fe3S4 to produce abundant photo-generated electrons and O2− for efficient regeneration of active Fe(II) species of Fe3S4 and in-situ formed FeOOH. |
---|---|
AbstractList | We demonstrate that visible light irradiation can promote Fe3S4 Fenton oxidation of atrazine. The visible light irradiation could increase the atrazine Fenton degradation rate by 4.9 times. The enhanced atrazine degradation activity under visible light was attributed to the higher surficial Fe(II)/Fe(III) ratio of Fe3S4 and the efficient surface iron redox cycle triggered by visible light. Experimental results revealed that the operando formation of FeOOH on the Fe3S4 surface blocked the iron redox cycle and inhibited the H2O2 decomposition, accounting for the largely decreased Fenton activity of Fe3S4 in dark, while these problems were successfully solved by the introduction of visible light irradiation, which excite Fe3S4 to produce abundant photo-generated electrons and ·O2− for efficient regeneration of active Fe(II) species of Fe3S4 and in-situ formed FeOOH. [Display omitted] •Visible light could promote Fe3S4 Fenton oxidation of atrazine by 4.9 times.•The promoted activity was attributed to the efficient surface iron redox cycle.•The efficient surface iron redox cycle was triggered by visible light.•The formation of FeOOH accounted for poor Fenton activity of Fe3S4 in dark.•Visible light excited Fe3S4 to produce photo-generated electrons and O2−. We demonstrate that visible light irradiation can promote Fe3S4 Fenton oxidation of atrazine. The visible light irradiation could increase the atrazine Fenton degradation rate by 4.9 times. The enhanced atrazine degradation activity under visible light was attributed to the higher surficial Fe(II)/Fe(III) ratio of Fe3S4 and the efficient surface iron redox cycle triggered by visible light. Experimental results revealed that the operando formation of FeOOH on the Fe3S4 surface blocked the iron redox cycle and inhibited the H2O2 decomposition, accounting for the largely decreased Fenton activity of Fe3S4 in dark, while these problems were successfully solved by the introduction of visible light irradiation, which excite Fe3S4 to produce abundant photo-generated electrons and O2− for efficient regeneration of active Fe(II) species of Fe3S4 and in-situ formed FeOOH. |
ArticleNumber | 119229 |
Author | Ling, Cancan Zhang, Lizhi Shen, Wenjuan Liu, Xiufan Shi, Yanbiao Wang, Xiaobing |
Author_xml | – sequence: 1 givenname: Yanbiao surname: Shi fullname: Shi, Yanbiao organization: Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, PR China – sequence: 2 givenname: Xiaobing surname: Wang fullname: Wang, Xiaobing organization: Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, PR China – sequence: 3 givenname: Xiufan surname: Liu fullname: Liu, Xiufan organization: Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, PR China – sequence: 4 givenname: Cancan surname: Ling fullname: Ling, Cancan organization: Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, PR China – sequence: 5 givenname: Wenjuan surname: Shen fullname: Shen, Wenjuan organization: Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, PR China – sequence: 6 givenname: Lizhi orcidid: 0000-0002-6842-9167 surname: Zhang fullname: Zhang, Lizhi email: zhanglz@mail.ccnu.edu.cn organization: Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, PR China |
BookMark | eNqFUMtOwzAQtFCRaAt_wCES5wS_SBwOSKiigFSJA4-r5dgbcJTGxXYR8PW4hBMHuOyuVjM7szNDk8ENgNAxwQXBpDztCrXRKjYFxTStSE1pvYemRFQsZ0KwCZrimpY5YxU7QLMQOowxZVRMUf1kg216yHr7_BKzjXdrF8FkS2D3PNUhuiFz79aoaHdTm6no1acd4BDtt6oPcPTT5-hxefWwuMlXd9e3i8tVrhnjMQcFWpgSaKu1Ykm1xIJiUTUcjCI8mTVGYNM2glYYQDFSnZkW6rJpiKJKsTk6Ge8mb69bCFF2buuHJCkp5yWmJccioc5HlPYuBA-t1DZ-e052bS8JlruoZCfHqOQuKjlGlcj8F3nj7Vr5j_9oFyMN0vtvFrwM2sKgwVgPOkrj7N8HvgBkNYZX |
CitedBy_id | crossref_primary_10_1016_j_ceramint_2023_01_205 crossref_primary_10_1016_j_jece_2024_113422 crossref_primary_10_1016_j_cej_2024_158065 crossref_primary_10_3390_catal13020253 crossref_primary_10_1016_j_apt_2022_103671 crossref_primary_10_1016_j_jece_2024_112851 crossref_primary_10_1016_j_colsurfa_2024_133380 crossref_primary_10_1039_D3EN00911D crossref_primary_10_3390_catal12060623 crossref_primary_10_1016_j_colsurfa_2024_136097 crossref_primary_10_1016_j_cej_2021_132234 crossref_primary_10_1016_j_watres_2021_117558 crossref_primary_10_1021_acs_est_3c09316 crossref_primary_10_1073_pnas_2205562119 crossref_primary_10_1016_j_seppur_2024_128304 crossref_primary_10_1016_j_cplett_2021_139001 crossref_primary_10_1016_j_apcatb_2024_123753 crossref_primary_10_1016_j_colsurfa_2022_128591 crossref_primary_10_1021_acs_est_2c00132 crossref_primary_10_1016_j_cej_2024_157245 crossref_primary_10_1016_j_chemosphere_2023_140285 crossref_primary_10_1016_j_chemosphere_2022_136006 crossref_primary_10_1002_smll_202411116 crossref_primary_10_1021_acsami_3c15898 crossref_primary_10_1016_j_cej_2022_138104 crossref_primary_10_1021_acs_langmuir_1c03024 crossref_primary_10_1016_j_jwpe_2025_107096 crossref_primary_10_1016_j_seppur_2023_123387 crossref_primary_10_1016_j_seppur_2022_120812 crossref_primary_10_1016_j_chemosphere_2021_133199 crossref_primary_10_1016_j_jece_2024_113441 crossref_primary_10_1016_j_jhazmat_2022_128913 crossref_primary_10_1016_j_jece_2024_112630 crossref_primary_10_1016_j_jhazmat_2021_126698 crossref_primary_10_1021_acsapm_3c00987 crossref_primary_10_1021_acs_analchem_2c01797 crossref_primary_10_1016_j_jcis_2021_08_072 crossref_primary_10_1016_j_seppur_2025_132510 crossref_primary_10_1111_jace_18348 crossref_primary_10_1016_j_jre_2022_01_010 crossref_primary_10_1016_j_apcatb_2024_123811 crossref_primary_10_1016_j_apcata_2023_119142 crossref_primary_10_1016_j_cej_2025_160768 crossref_primary_10_1021_acs_est_2c06571 crossref_primary_10_1016_j_flatc_2025_100838 crossref_primary_10_1016_j_arabjc_2022_104338 crossref_primary_10_1016_j_apcatb_2021_120029 crossref_primary_10_54751_revistafoco_v16n9_058 crossref_primary_10_1016_j_jclepro_2022_130375 crossref_primary_10_1016_j_jhazmat_2022_128592 crossref_primary_10_1016_j_jhazmat_2021_127415 crossref_primary_10_1016_j_jhazmat_2022_128408 crossref_primary_10_1039_D3EN00776F crossref_primary_10_1016_j_apsusc_2024_161976 crossref_primary_10_1016_j_cej_2025_161747 crossref_primary_10_1039_D1NJ00134E crossref_primary_10_1016_j_apsusc_2024_161581 crossref_primary_10_1016_j_envres_2021_110785 crossref_primary_10_1002_chem_202102120 crossref_primary_10_1016_j_psep_2024_12_028 crossref_primary_10_1016_j_jphotochem_2023_115149 crossref_primary_10_1021_acs_langmuir_4c00072 crossref_primary_10_1016_j_memsci_2023_121874 crossref_primary_10_1016_j_jallcom_2022_166023 crossref_primary_10_12677_MS_2020_1011109 crossref_primary_10_1016_j_colsurfa_2024_133694 crossref_primary_10_3390_foods11162416 crossref_primary_10_1007_s12613_024_2858_z crossref_primary_10_1016_j_cej_2024_152604 crossref_primary_10_1007_s10971_023_06253_0 crossref_primary_10_1016_j_apcatb_2022_121410 crossref_primary_10_1039_D0NJ05271J crossref_primary_10_1016_j_colsurfa_2022_130116 crossref_primary_10_1002_adfm_202405643 crossref_primary_10_1002_slct_202402115 crossref_primary_10_1016_j_cej_2023_142465 crossref_primary_10_1016_j_chemosphere_2022_135909 crossref_primary_10_1021_acs_inorgchem_3c01176 crossref_primary_10_1016_j_jcis_2022_09_132 crossref_primary_10_1016_j_apcatb_2021_120051 crossref_primary_10_1021_acs_est_4c04022 crossref_primary_10_1016_j_actbio_2023_02_015 crossref_primary_10_1016_j_colsurfa_2024_134312 crossref_primary_10_1016_j_seppur_2023_126059 crossref_primary_10_3389_fenvs_2023_1212355 crossref_primary_10_1016_j_watres_2023_119828 crossref_primary_10_1016_j_seppur_2022_121334 crossref_primary_10_1016_j_cej_2023_148313 crossref_primary_10_1007_s10562_023_04472_2 crossref_primary_10_1021_acsestengg_3c00470 crossref_primary_10_1016_j_jcis_2021_10_168 crossref_primary_10_1039_D0RA08116G crossref_primary_10_1016_j_cej_2022_140757 crossref_primary_10_1016_j_jenvman_2022_114613 crossref_primary_10_1039_D2NJ04933C crossref_primary_10_1007_s12598_023_02589_2 crossref_primary_10_1016_j_jece_2025_116074 crossref_primary_10_3390_magnetochemistry11030022 crossref_primary_10_1016_j_chemosphere_2023_138111 crossref_primary_10_1016_j_seppur_2022_120873 crossref_primary_10_1021_acs_est_2c04624 crossref_primary_10_1016_j_seppur_2022_120471 crossref_primary_10_1016_j_jwpe_2024_105272 crossref_primary_10_1016_j_jhazmat_2020_124961 crossref_primary_10_1016_j_colsurfa_2023_132298 crossref_primary_10_1039_D3NJ04276F crossref_primary_10_1002_advs_202206869 crossref_primary_10_1016_j_chemosphere_2022_137509 crossref_primary_10_1007_s11164_022_04657_1 crossref_primary_10_1016_j_jwpe_2024_106520 crossref_primary_10_1016_j_jece_2023_109998 crossref_primary_10_1016_j_watres_2021_117548 crossref_primary_10_1016_j_scitotenv_2022_159157 crossref_primary_10_1016_j_nantod_2022_101397 crossref_primary_10_1016_j_seppur_2024_129486 crossref_primary_10_1016_j_apcatb_2024_124255 crossref_primary_10_1039_D2NJ01943D crossref_primary_10_1039_D3NJ05947B crossref_primary_10_1002_eem2_12701 crossref_primary_10_1016_j_chemosphere_2023_138221 |
Cites_doi | 10.1016/S0920-5861(99)00102-9 10.1016/j.jallcom.2009.08.127 10.1021/cr0503658 10.1016/j.watres.2017.01.024 10.1016/j.apcatb.2014.05.036 10.1080/09593330.2018.1483972 10.1021/ja409130c 10.1021/cr900136g 10.1016/j.chemosphere.2019.125568 10.1016/j.cej.2018.11.192 10.1016/j.apcatb.2018.03.110 10.1016/j.jhazmat.2018.03.055 10.1021/acs.est.9b02946 10.1180/claymin.2012.047.3.01 10.1016/j.apcatb.2016.08.037 10.1021/es00010a017 10.1016/j.apcatb.2013.11.034 10.1021/acs.est.9b06141 10.1021/acs.est.5b04323 10.1021/acs.est.6b02833 10.1021/es506110w 10.1016/j.watres.2016.09.019 10.1021/es300303f 10.1016/j.jhazmat.2019.121102 10.1016/j.seppur.2017.05.008 10.1016/j.jhazmat.2015.02.017 10.1016/j.cej.2018.01.034 10.1021/acs.est.6b05906 10.1039/C8CC08045C 10.1126/science.1154833 10.1016/j.gca.2015.10.015 10.1016/j.nanoen.2020.104810 10.1039/C5TA03442F 10.1021/acs.est.6b06429 10.1039/C6SC02716D 10.1002/slct.201700851 10.1016/j.apcatb.2019.01.003 10.1186/1467-4866-8-1 10.1039/C5FD00186B 10.1016/j.jphotochem.2019.112072 10.1016/j.jhazmat.2016.02.073 10.1016/j.chemgeo.2017.08.007 10.1039/C8NR06507A 10.1016/j.apcatb.2003.09.010 10.1016/j.cej.2017.07.176 10.1029/96GL02831 10.1016/j.watres.2018.03.006 10.1021/acs.est.7b02740 10.1016/j.jallcom.2017.11.301 10.1021/acs.estlett.8b00065 10.1021/acs.jpcc.6b00216 10.1016/j.jes.2018.06.015 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Nov 15, 2020 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Nov 15, 2020 |
DBID | AAYXX CITATION 7SR 7ST 7U5 8BQ 8FD C1K FR3 JG9 KR7 L7M SOI |
DOI | 10.1016/j.apcatb.2020.119229 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
ExternalDocumentID | 10_1016_j_apcatb_2020_119229 S0926337320306445 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPD SSG SSZ T5K ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ XPP 7SR 7ST 7U5 8BQ 8FD C1K EFKBS FR3 JG9 KR7 L7M SOI |
ID | FETCH-LOGICAL-c334t-eaec8d6e2fcca30236082087b4eda14119dd80dfb8270eea3175dfe96bb1a2aa3 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Wed Aug 13 04:30:11 EDT 2025 Tue Jul 01 04:35:06 EDT 2025 Thu Apr 24 22:56:05 EDT 2025 Sat Mar 02 15:59:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Visible light irradiation Surface iron redox cycle Reusability Heterogeneous Fenton reaction Atrazine degradation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-eaec8d6e2fcca30236082087b4eda14119dd80dfb8270eea3175dfe96bb1a2aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6842-9167 |
PQID | 2446026408 |
PQPubID | 2045281 |
ParticipantIDs | proquest_journals_2446026408 crossref_citationtrail_10_1016_j_apcatb_2020_119229 crossref_primary_10_1016_j_apcatb_2020_119229 elsevier_sciencedirect_doi_10_1016_j_apcatb_2020_119229 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-15 |
PublicationDateYYYYMMDD | 2020-11-15 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Cheng, Yuan, Liao, Zhang (bib0180) 2016; 50 Zeng, Twardowska, Wei, Sun, Wang, Zhu, Cai (bib0095) 2015; 288 Sun, Chu, Geng, Lu, Qu, Crittenden, Elimelech, Kim (bib0075) 2018; 5 Xu, Wang (bib0060) 2012; 46 Kong, Yan, Qu, Yan, Li (bib0130) 2015; 3 Wang, Wang, Chen, Shi, Zhang (bib0220) 2020; 244 Moreira, Boaventura, Brillas, Vilar (bib0010) 2017; 202 Cao, Quan, Zhao, Chen, Yu, Niu (bib0210) 2020; 382 Zhang, Hu, Ma, Ding, Li (bib0215) 2020; 73 Sharifvaghefi, Zheng (bib0145) 2017; 2 Hunger, Benning (bib0110) 2007; 8 Rickard, Luther (bib0115) 2007; 107 Andreozzi, Caprio, Insola, Marotta (bib0005) 1999; 53 Pera-Titus, Garcı́a-Molina, Baños, Giménez, Esplugas (bib0020) 2004; 47 Zhang, Chen, Li, Xu, Xia (bib0080) 2020; 386 Choe, Byun, Kim, Kim (bib0155) 2018; 233 Liu, Hu, Sun, Xiong, Yu, Feng, Wu, Tang, Zhou (bib0050) 2019; 40 Zhao, Lan, Yu, Fu, Liu, Mu (bib0140) 2018; 54 Qin, Song, Ai, Zhang, Zhang (bib0195) 2015; 49 Shuai, Gu, Fang, Zhou, Gao (bib0205) 2019; 80 Yang, Xu, Xu, Han (bib0070) 2013; 135 Tong, Yuan, Ma, Jin, Liu, Cheng, Liu, Gan, Wang (bib0090) 2016; 50 Hou, Huang, Jia, Ai, Zhao, Zhang (bib0040) 2017; 51 Yang, Zhang, Cai, He, Niu (bib0160) 2018; 735 Huang, Chen, Walter, Zong, Wang, Zhang, Qafoku, Wang, Rosso (bib0035) 2019; 53 Kim, Lee, Monllor-Satoca, Kim, Lee, Choi (bib0200) 2019; 372 Brillas, Sirés, Oturan (bib0230) 2009; 109 Liu, Wang, Liu, Li, Cheng, Wu, Fang, Li, Liu (bib0260) 2020; 54 Martin, Lee, Hoffmann (bib0235) 1995; 29 Roldan, de Leeuw (bib0120) 2016; 188 Zhang, Zhang, Wang, Huang, Chen, Li, Zou (bib0030) 2019; 245 Guan, Wang, Li, Zhang, Cui, Lu, Zou, Hu (bib0150) 2018; 10 Ike, Linden, Orbell, Duke (bib0015) 2018; 338 Li, Zhao, Wang, Xie, Ma (bib0025) 2016; 105 Qian, Ren, Zhu, Yue, Han, Jia, Zhao (bib0045) 2017; 51 Zhang, Yuan, Liao (bib0185) 2016; 172 Yan, Zheng, Meng, Zhou (bib0240) 2017; 185 Chen, Xie, Huang, Qiu (bib0065) 2017; 322 Pereira, Oliveira, Murad (bib0085) 2012; 47 Liu, Jin, Xu, Liu, Li, Zhou, Wang, Dahlgren, Wang (bib0250) 2019; 359 Santos-Carballal, Roldan, de Leeuw (bib0175) 2016; 120 Zhou, Wu, Mao, Zhang, Lim (bib0245) 2014; 160-161 Liu, Ai, Cao, Zhang (bib0225) 2014; 150-151 Roberts, Reynolds, Verosub, Adam (bib0100) 1996; 23 Ding, Wang, Shen, Mu, Wang, Chen, Zhang (bib0055) 2017; 112 Zhang, Chen (bib0165) 2009; 488 Yanina, Rosso (bib0255) 2008; 320 Moon, Bush, Gibbs, Mata (bib0105) 2017; 468 Chen, Huang, Hou, Ai, Zhang (bib0170) 2017; 51 Yang, Yu, Shan, Gao, Pan (bib0190) 2018; 137 Li, Wei, Zuo, Huang, Luo, An, Pelenovich, Mai, Zhang (bib0125) 2017; 8 Liu, Ai, Dahlgren, Zhang, Wang (bib0135) 2017; 330 Zhang (10.1016/j.apcatb.2020.119229_bib0030) 2019; 245 Kim (10.1016/j.apcatb.2020.119229_bib0200) 2019; 372 Roldan (10.1016/j.apcatb.2020.119229_bib0120) 2016; 188 Ding (10.1016/j.apcatb.2020.119229_bib0055) 2017; 112 Tong (10.1016/j.apcatb.2020.119229_bib0090) 2016; 50 Liu (10.1016/j.apcatb.2020.119229_bib0135) 2017; 330 Zhang (10.1016/j.apcatb.2020.119229_bib0185) 2016; 172 Li (10.1016/j.apcatb.2020.119229_bib0025) 2016; 105 Liu (10.1016/j.apcatb.2020.119229_bib0260) 2020; 54 Yanina (10.1016/j.apcatb.2020.119229_bib0255) 2008; 320 Martin (10.1016/j.apcatb.2020.119229_bib0235) 1995; 29 Xu (10.1016/j.apcatb.2020.119229_bib0060) 2012; 46 Yang (10.1016/j.apcatb.2020.119229_bib0190) 2018; 137 Chen (10.1016/j.apcatb.2020.119229_bib0065) 2017; 322 Kong (10.1016/j.apcatb.2020.119229_bib0130) 2015; 3 Sun (10.1016/j.apcatb.2020.119229_bib0075) 2018; 5 Brillas (10.1016/j.apcatb.2020.119229_bib0230) 2009; 109 Zhang (10.1016/j.apcatb.2020.119229_bib0080) 2020; 386 Zhou (10.1016/j.apcatb.2020.119229_bib0245) 2014; 160-161 Chen (10.1016/j.apcatb.2020.119229_bib0170) 2017; 51 Santos-Carballal (10.1016/j.apcatb.2020.119229_bib0175) 2016; 120 Liu (10.1016/j.apcatb.2020.119229_bib0225) 2014; 150-151 Pereira (10.1016/j.apcatb.2020.119229_bib0085) 2012; 47 Liu (10.1016/j.apcatb.2020.119229_bib0250) 2019; 359 Guan (10.1016/j.apcatb.2020.119229_bib0150) 2018; 10 Moreira (10.1016/j.apcatb.2020.119229_bib0010) 2017; 202 Cheng (10.1016/j.apcatb.2020.119229_bib0180) 2016; 50 Choe (10.1016/j.apcatb.2020.119229_bib0155) 2018; 233 Cao (10.1016/j.apcatb.2020.119229_bib0210) 2020; 382 Yang (10.1016/j.apcatb.2020.119229_bib0070) 2013; 135 Rickard (10.1016/j.apcatb.2020.119229_bib0115) 2007; 107 Wang (10.1016/j.apcatb.2020.119229_bib0220) 2020; 244 Huang (10.1016/j.apcatb.2020.119229_bib0035) 2019; 53 Hou (10.1016/j.apcatb.2020.119229_bib0040) 2017; 51 Sharifvaghefi (10.1016/j.apcatb.2020.119229_bib0145) 2017; 2 Zeng (10.1016/j.apcatb.2020.119229_bib0095) 2015; 288 Qin (10.1016/j.apcatb.2020.119229_bib0195) 2015; 49 Ike (10.1016/j.apcatb.2020.119229_bib0015) 2018; 338 Pera-Titus (10.1016/j.apcatb.2020.119229_bib0020) 2004; 47 Liu (10.1016/j.apcatb.2020.119229_bib0050) 2019; 40 Moon (10.1016/j.apcatb.2020.119229_bib0105) 2017; 468 Andreozzi (10.1016/j.apcatb.2020.119229_bib0005) 1999; 53 Yang (10.1016/j.apcatb.2020.119229_bib0160) 2018; 735 Yan (10.1016/j.apcatb.2020.119229_bib0240) 2017; 185 Li (10.1016/j.apcatb.2020.119229_bib0125) 2017; 8 Shuai (10.1016/j.apcatb.2020.119229_bib0205) 2019; 80 Roberts (10.1016/j.apcatb.2020.119229_bib0100) 1996; 23 Hunger (10.1016/j.apcatb.2020.119229_bib0110) 2007; 8 Zhao (10.1016/j.apcatb.2020.119229_bib0140) 2018; 54 Qian (10.1016/j.apcatb.2020.119229_bib0045) 2017; 51 Zhang (10.1016/j.apcatb.2020.119229_bib0215) 2020; 73 Zhang (10.1016/j.apcatb.2020.119229_bib0165) 2009; 488 |
References_xml | – volume: 51 start-page: 11278 year: 2017 end-page: 11287 ident: bib0170 article-title: Photochemistry of hydrochar: reactive oxygen species generation and sulfadimidine degradation publication-title: Environ. Sci. Technol. – volume: 468 start-page: 42 year: 2017 end-page: 48 ident: bib0105 article-title: Divergent Fe and S mineralization pathways during the oxidative transformation of greigite, Fe publication-title: Chem. Geol. – volume: 3 start-page: 15755 year: 2015 end-page: 15763 ident: bib0130 article-title: β-Cyclodextrin stabilized magnetic Fe publication-title: J. Mater. Chem. A – volume: 109 start-page: 6570 year: 2009 end-page: 6631 ident: bib0230 article-title: Electro-fenton process and related electrochemical technologies based on Fenton’s reaction chemistry publication-title: Chem. Rev. – volume: 150-151 start-page: 1 year: 2014 end-page: 11 ident: bib0225 article-title: Ferrous ions promoted aerobic simazine degradation with Fe@Fe publication-title: Appl. Catal. B – volume: 288 start-page: 51 year: 2015 end-page: 59 ident: bib0095 article-title: Removal of trace metals and improvement of dredged sediment dewaterability by bioleaching combined with Fenton-like reaction publication-title: J. Hazard. Mater. – volume: 47 start-page: 219 year: 2004 end-page: 256 ident: bib0020 article-title: Degradation of chlorophenols by means of advanced oxidation processes: a general review publication-title: Appl. Catal. B – volume: 2 start-page: 4678 year: 2017 end-page: 4685 ident: bib0145 article-title: Dispersed Ni and Co promoted MoS publication-title: ChemistrySelect – volume: 120 start-page: 8616 year: 2016 end-page: 8629 ident: bib0175 article-title: Early oxidation processes on the greigite Fe publication-title: J. Phys. Chem. C – volume: 80 start-page: 5 year: 2019 end-page: 13 ident: bib0205 article-title: Effects of iron (hydr)oxides on the degradation of diethyl phthalate ester in heterogeneous (photo)-Fenton reactions publication-title: J. Environ. Sci. China (China) – volume: 322 start-page: 152 year: 2017 end-page: 162 ident: bib0065 article-title: Ionothermal synthesis of Fe publication-title: J. Hazard. Mater. – volume: 320 start-page: 218 year: 2008 end-page: 222 ident: bib0255 article-title: Linked reactivity at mineral-water interfaces through bulk crystal conduction publication-title: Science – volume: 50 start-page: 11646 year: 2016 end-page: 11653 ident: bib0180 article-title: Oxidizing impact induced by Mackinawite (FeS) nanoparticles at oxic conditions due to production of hydroxyl radicals publication-title: Environ. Sci. Technol. – volume: 172 start-page: 444 year: 2016 end-page: 457 ident: bib0185 article-title: Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions publication-title: Geochim. Cosmochim. Acta – volume: 338 start-page: 651 year: 2018 end-page: 669 ident: bib0015 article-title: Critical review of the science and sustainability of persulphate advanced oxidation processes publication-title: Chem. Eng. J. – volume: 112 start-page: 9 year: 2017 end-page: 18 ident: bib0055 article-title: Fe@Fe publication-title: Water Res. – volume: 51 start-page: 5118 year: 2017 end-page: 5126 ident: bib0040 article-title: Hydroxylamine promoted goethite surface fenton degradation of organic pollutants publication-title: Environ. Sci. Technol. – volume: 50 start-page: 214 year: 2016 end-page: 221 ident: bib0090 article-title: Production of abundant hydroxyl radicals from oxygenation of subsurface sediments publication-title: Environ. Sci. Technol. – volume: 188 start-page: 161 year: 2016 end-page: 180 ident: bib0120 article-title: Methanol formation from CO publication-title: Faraday Discuss. – volume: 54 start-page: 4810 year: 2020 end-page: 4819 ident: bib0260 article-title: Conduction band of hematite can mediate cytochrome reduction by Fe(II) under dark and anoxic conditions publication-title: Environ. Sci. Technol. – volume: 54 start-page: 13010 year: 2018 end-page: 13013 ident: bib0140 article-title: Deep eutectic-solvothermal synthesis of nanostructured Fe publication-title: Chem. Commun. – volume: 137 start-page: 37 year: 2018 end-page: 46 ident: bib0190 article-title: Enhanced Fe(III)-mediated Fenton oxidation of atrazine in the presence of functionalized multi-walled carbon nanotubes publication-title: Water Res. – volume: 372 start-page: 121 year: 2019 end-page: 128 ident: bib0200 article-title: Homogeneous photocatalytic Fe publication-title: J. Hazard. Mater. – volume: 185 start-page: 83 year: 2017 end-page: 93 ident: bib0240 article-title: Assessment of catalytic activities of selected iron hydroxysulphates biosynthesized using Acidithiobacillus ferrooxidans for the degradation of phenol in heterogeneous Fenton-like reactions publication-title: Sep. Purif. Technol. – volume: 245 start-page: 410 year: 2019 end-page: 419 ident: bib0030 article-title: Heterogeneous degradation of organic contaminants in the photo-Fenton reaction employing pure cubic β-Fe publication-title: Appl. Catal. B – volume: 8 start-page: 160 year: 2017 end-page: 164 ident: bib0125 article-title: Greigite Fe publication-title: Chem. Sci. – volume: 23 start-page: 2859 year: 1996 end-page: 2862 ident: bib0100 article-title: Environmental magnetic implications of Greigite (Fe publication-title: Geophys. Res. Lett. – volume: 73 year: 2020 ident: bib0215 article-title: Pyroelectric effect in CdS nanorods decorated with a molecular Co-catalyst for hydrogen evolution publication-title: Nano Energy – volume: 135 start-page: 16058 year: 2013 end-page: 16061 ident: bib0070 article-title: Iron oxychloride (FeOCl): an efficient fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 1 year: 2007 ident: bib0110 article-title: Greigite: a true intermediate on the polysulfide pathway to pyrite publication-title: Geochem. Trans. – volume: 160-161 start-page: 325 year: 2014 end-page: 334 ident: bib0245 article-title: Rapid degradation of sulfonamides in a novel heterogeneous sonophotochemical magnetite-catalyzed Fenton-like (US/UV/Fe publication-title: Appl. Catal. B – volume: 202 start-page: 217 year: 2017 end-page: 261 ident: bib0010 article-title: Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters publication-title: Appl. Catal. B – volume: 40 start-page: 3632 year: 2019 end-page: 3640 ident: bib0050 article-title: Enhancement of Fenton processes at initial circumneutral pH for the degradation of norfloxacin with Fe@Fe publication-title: Environ. Technol. – volume: 53 start-page: 10197 year: 2019 end-page: 10207 ident: bib0035 article-title: Facet-specific photocatalytic degradation of organics by heterogeneous fenton chemistry on hematite nanoparticles publication-title: Environ. Sci. Technol. – volume: 107 start-page: 514 year: 2007 end-page: 562 ident: bib0115 article-title: Chemistry of Iron sulfides publication-title: Chem. Rev. – volume: 330 start-page: 1232 year: 2017 end-page: 1239 ident: bib0135 article-title: Adsorption and reduction of roxarsone on magnetic greigite (Fe publication-title: Chem. Eng. J. – volume: 10 start-page: 17902 year: 2018 end-page: 17911 ident: bib0150 article-title: “Transformed” Fe publication-title: Nanoscale – volume: 49 start-page: 7948 year: 2015 end-page: 7956 ident: bib0195 article-title: Protocatechuic acid promoted alachlor degradation in Fe(III)/H publication-title: Environ. Sci. Technol. – volume: 386 year: 2020 ident: bib0080 article-title: Quantitative investigation into the enhancing utilization efficiency of H publication-title: Photobiol., A – volume: 105 start-page: 479 year: 2016 end-page: 486 ident: bib0025 article-title: Strongly enhanced Fenton degradation of organic pollutants by cysteine: an aliphatic amino acid accelerator outweighs hydroquinone analogues publication-title: Water Res. – volume: 488 start-page: 339 year: 2009 end-page: 345 ident: bib0165 article-title: Magnetic greigite (Fe publication-title: J. Alloys. Compd. – volume: 47 start-page: 285 year: 2012 end-page: 302 ident: bib0085 article-title: Iron oxide catalysts: fenton and fenton-like reactions- a review publication-title: Clay Miner. – volume: 244 year: 2020 ident: bib0220 article-title: Pyrite enables persulfate activation for efficient atrazine degradation publication-title: Chemosphere – volume: 51 start-page: 3993 year: 2017 end-page: 4000 ident: bib0045 article-title: Visible light assisted heterogeneous fenton-like degradation of organic pollutant via α-FeOOH/Mesoporous carbon composites publication-title: Environ. Sci. Technol. – volume: 29 start-page: 2567 year: 1995 end-page: 2573 ident: bib0235 article-title: Chemical mechanism of inorganic oxidants in the TiO publication-title: Environ. Sci. Technol. – volume: 5 start-page: 186 year: 2018 end-page: 191 ident: bib0075 article-title: Reinventing fenton chemistry: iron oxychloride nanosheet for pH-Insensitive H publication-title: Environ. Sci. Technol. Lett. – volume: 233 start-page: 272 year: 2018 end-page: 280 ident: bib0155 article-title: Fe publication-title: Appl. Catal. B – volume: 53 start-page: 51 year: 1999 end-page: 59 ident: bib0005 article-title: Advanced oxidation processes (AOP) for water purification and recovery publication-title: Catal. Today – volume: 735 start-page: 1955 year: 2018 end-page: 1961 ident: bib0160 article-title: Synthesis of Cd publication-title: J. Alloys. Compd. – volume: 46 start-page: 10145 year: 2012 end-page: 10153 ident: bib0060 article-title: Magnetic nanoscaled Fe publication-title: Environ. Sci. Technol. – volume: 382 year: 2020 ident: bib0210 article-title: Selective electrochemical H publication-title: J. Hazard. Mater. – volume: 359 start-page: 564 year: 2019 end-page: 571 ident: bib0250 article-title: Insight into pH dependent Cr(VI) removal with magnetic Fe publication-title: Chem. Eng. J. – volume: 53 start-page: 51 year: 1999 ident: 10.1016/j.apcatb.2020.119229_bib0005 article-title: Advanced oxidation processes (AOP) for water purification and recovery publication-title: Catal. Today doi: 10.1016/S0920-5861(99)00102-9 – volume: 488 start-page: 339 year: 2009 ident: 10.1016/j.apcatb.2020.119229_bib0165 article-title: Magnetic greigite (Fe3S4) nanomaterials: shape-controlled solvothermal synthesis and their calcination conversion into hematite (α-Fe2O3) nanomaterials publication-title: J. Alloys. Compd. doi: 10.1016/j.jallcom.2009.08.127 – volume: 107 start-page: 514 year: 2007 ident: 10.1016/j.apcatb.2020.119229_bib0115 article-title: Chemistry of Iron sulfides publication-title: Chem. Rev. doi: 10.1021/cr0503658 – volume: 112 start-page: 9 year: 2017 ident: 10.1016/j.apcatb.2020.119229_bib0055 article-title: Fe@Fe2O3 promoted electrochemical mineralization of atrazine via a triazinon ring opening mechanism publication-title: Water Res. doi: 10.1016/j.watres.2017.01.024 – volume: 160-161 start-page: 325 year: 2014 ident: 10.1016/j.apcatb.2020.119229_bib0245 article-title: Rapid degradation of sulfonamides in a novel heterogeneous sonophotochemical magnetite-catalyzed Fenton-like (US/UV/Fe3O4/oxalate) system publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2014.05.036 – volume: 40 start-page: 3632 year: 2019 ident: 10.1016/j.apcatb.2020.119229_bib0050 article-title: Enhancement of Fenton processes at initial circumneutral pH for the degradation of norfloxacin with Fe@Fe2O3 core-shell nanomaterials publication-title: Environ. Technol. doi: 10.1080/09593330.2018.1483972 – volume: 135 start-page: 16058 year: 2013 ident: 10.1016/j.apcatb.2020.119229_bib0070 article-title: Iron oxychloride (FeOCl): an efficient fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants publication-title: J. Am. Chem. Soc. doi: 10.1021/ja409130c – volume: 109 start-page: 6570 year: 2009 ident: 10.1016/j.apcatb.2020.119229_bib0230 article-title: Electro-fenton process and related electrochemical technologies based on Fenton’s reaction chemistry publication-title: Chem. Rev. doi: 10.1021/cr900136g – volume: 244 year: 2020 ident: 10.1016/j.apcatb.2020.119229_bib0220 article-title: Pyrite enables persulfate activation for efficient atrazine degradation publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.125568 – volume: 359 start-page: 564 year: 2019 ident: 10.1016/j.apcatb.2020.119229_bib0250 article-title: Insight into pH dependent Cr(VI) removal with magnetic Fe3S4 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.11.192 – volume: 233 start-page: 272 year: 2018 ident: 10.1016/j.apcatb.2020.119229_bib0155 article-title: Fe3S4/Fe7S8-promoted degradation of phenol via heterogeneous, catalytic H2O2 scission mediated by S-modified surface Fe2+ species publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.03.110 – volume: 372 start-page: 121 year: 2019 ident: 10.1016/j.apcatb.2020.119229_bib0200 article-title: Homogeneous photocatalytic Fe3+/Fe2+ redox cycle for simultaneous Cr(VI) reduction and organic pollutant oxidation: roles of hydroxyl radical and degradation intermediates publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.03.055 – volume: 53 start-page: 10197 year: 2019 ident: 10.1016/j.apcatb.2020.119229_bib0035 article-title: Facet-specific photocatalytic degradation of organics by heterogeneous fenton chemistry on hematite nanoparticles publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b02946 – volume: 47 start-page: 285 year: 2012 ident: 10.1016/j.apcatb.2020.119229_bib0085 article-title: Iron oxide catalysts: fenton and fenton-like reactions- a review publication-title: Clay Miner. doi: 10.1180/claymin.2012.047.3.01 – volume: 202 start-page: 217 year: 2017 ident: 10.1016/j.apcatb.2020.119229_bib0010 article-title: Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.08.037 – volume: 29 start-page: 2567 year: 1995 ident: 10.1016/j.apcatb.2020.119229_bib0235 article-title: Chemical mechanism of inorganic oxidants in the TiO2/UV process: increased rates of degradation of chlorinated hydrocarbons publication-title: Environ. Sci. Technol. doi: 10.1021/es00010a017 – volume: 150-151 start-page: 1 year: 2014 ident: 10.1016/j.apcatb.2020.119229_bib0225 article-title: Ferrous ions promoted aerobic simazine degradation with Fe@Fe2O3 core-shell nanowires publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2013.11.034 – volume: 54 start-page: 4810 year: 2020 ident: 10.1016/j.apcatb.2020.119229_bib0260 article-title: Conduction band of hematite can mediate cytochrome reduction by Fe(II) under dark and anoxic conditions publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b06141 – volume: 50 start-page: 214 year: 2016 ident: 10.1016/j.apcatb.2020.119229_bib0090 article-title: Production of abundant hydroxyl radicals from oxygenation of subsurface sediments publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b04323 – volume: 50 start-page: 11646 year: 2016 ident: 10.1016/j.apcatb.2020.119229_bib0180 article-title: Oxidizing impact induced by Mackinawite (FeS) nanoparticles at oxic conditions due to production of hydroxyl radicals publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b02833 – volume: 49 start-page: 7948 year: 2015 ident: 10.1016/j.apcatb.2020.119229_bib0195 article-title: Protocatechuic acid promoted alachlor degradation in Fe(III)/H2O2 fenton system publication-title: Environ. Sci. Technol. doi: 10.1021/es506110w – volume: 105 start-page: 479 year: 2016 ident: 10.1016/j.apcatb.2020.119229_bib0025 article-title: Strongly enhanced Fenton degradation of organic pollutants by cysteine: an aliphatic amino acid accelerator outweighs hydroquinone analogues publication-title: Water Res. doi: 10.1016/j.watres.2016.09.019 – volume: 46 start-page: 10145 year: 2012 ident: 10.1016/j.apcatb.2020.119229_bib0060 article-title: Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient fenton-like heterogeneous catalyst for degradation of 4-Chlorophenol publication-title: Environ. Sci. Technol. doi: 10.1021/es300303f – volume: 382 year: 2020 ident: 10.1016/j.apcatb.2020.119229_bib0210 article-title: Selective electrochemical H2O2 generation and activation on a bifunctional catalyst for heterogeneous electro-Fenton catalysis publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121102 – volume: 185 start-page: 83 year: 2017 ident: 10.1016/j.apcatb.2020.119229_bib0240 article-title: Assessment of catalytic activities of selected iron hydroxysulphates biosynthesized using Acidithiobacillus ferrooxidans for the degradation of phenol in heterogeneous Fenton-like reactions publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2017.05.008 – volume: 288 start-page: 51 year: 2015 ident: 10.1016/j.apcatb.2020.119229_bib0095 article-title: Removal of trace metals and improvement of dredged sediment dewaterability by bioleaching combined with Fenton-like reaction publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.02.017 – volume: 338 start-page: 651 year: 2018 ident: 10.1016/j.apcatb.2020.119229_bib0015 article-title: Critical review of the science and sustainability of persulphate advanced oxidation processes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.01.034 – volume: 51 start-page: 5118 year: 2017 ident: 10.1016/j.apcatb.2020.119229_bib0040 article-title: Hydroxylamine promoted goethite surface fenton degradation of organic pollutants publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b05906 – volume: 54 start-page: 13010 year: 2018 ident: 10.1016/j.apcatb.2020.119229_bib0140 article-title: Deep eutectic-solvothermal synthesis of nanostructured Fe3S4 for electrochemical N2 fixation under ambient conditions publication-title: Chem. Commun. doi: 10.1039/C8CC08045C – volume: 320 start-page: 218 year: 2008 ident: 10.1016/j.apcatb.2020.119229_bib0255 article-title: Linked reactivity at mineral-water interfaces through bulk crystal conduction publication-title: Science doi: 10.1126/science.1154833 – volume: 172 start-page: 444 year: 2016 ident: 10.1016/j.apcatb.2020.119229_bib0185 article-title: Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2015.10.015 – volume: 73 year: 2020 ident: 10.1016/j.apcatb.2020.119229_bib0215 article-title: Pyroelectric effect in CdS nanorods decorated with a molecular Co-catalyst for hydrogen evolution publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104810 – volume: 3 start-page: 15755 year: 2015 ident: 10.1016/j.apcatb.2020.119229_bib0130 article-title: β-Cyclodextrin stabilized magnetic Fe3S4 nanoparticles for efficient removal of Pb(II) publication-title: J. Mater. Chem. A doi: 10.1039/C5TA03442F – volume: 51 start-page: 3993 year: 2017 ident: 10.1016/j.apcatb.2020.119229_bib0045 article-title: Visible light assisted heterogeneous fenton-like degradation of organic pollutant via α-FeOOH/Mesoporous carbon composites publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b06429 – volume: 8 start-page: 160 year: 2017 ident: 10.1016/j.apcatb.2020.119229_bib0125 article-title: Greigite Fe3S4 as a new anode material for high-performance sodium-ion batteries publication-title: Chem. Sci. doi: 10.1039/C6SC02716D – volume: 2 start-page: 4678 year: 2017 ident: 10.1016/j.apcatb.2020.119229_bib0145 article-title: Dispersed Ni and Co promoted MoS2 catalysts with Magnetic Greigite as a core: performance and stability in Hydrodesulfurization publication-title: ChemistrySelect doi: 10.1002/slct.201700851 – volume: 245 start-page: 410 year: 2019 ident: 10.1016/j.apcatb.2020.119229_bib0030 article-title: Heterogeneous degradation of organic contaminants in the photo-Fenton reaction employing pure cubic β-Fe2O3 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.01.003 – volume: 8 start-page: 1 year: 2007 ident: 10.1016/j.apcatb.2020.119229_bib0110 article-title: Greigite: a true intermediate on the polysulfide pathway to pyrite publication-title: Geochem. Trans. doi: 10.1186/1467-4866-8-1 – volume: 188 start-page: 161 year: 2016 ident: 10.1016/j.apcatb.2020.119229_bib0120 article-title: Methanol formation from CO2 catalyzed by Fe3S4{111}: formate versus hydrocarboxyl pathways publication-title: Faraday Discuss. doi: 10.1039/C5FD00186B – volume: 386 year: 2020 ident: 10.1016/j.apcatb.2020.119229_bib0080 article-title: Quantitative investigation into the enhancing utilization efficiency of H2O2 catalyzed by FeOCl under visible light, J. Photochem publication-title: Photobiol., A doi: 10.1016/j.jphotochem.2019.112072 – volume: 322 start-page: 152 year: 2017 ident: 10.1016/j.apcatb.2020.119229_bib0065 article-title: Ionothermal synthesis of Fe3O4 magnetic nanoparticles as efficient heterogeneous Fenton-like catalysts for degradation of organic pollutants with H2O2 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.02.073 – volume: 468 start-page: 42 year: 2017 ident: 10.1016/j.apcatb.2020.119229_bib0105 article-title: Divergent Fe and S mineralization pathways during the oxidative transformation of greigite, Fe3S4 publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2017.08.007 – volume: 10 start-page: 17902 year: 2018 ident: 10.1016/j.apcatb.2020.119229_bib0150 article-title: “Transformed” Fe3S4 tetragonal nanosheets: a high-efficiency and body-clearable agent for magnetic resonance imaging guided photothermal and chemodynamic synergistic therapy publication-title: Nanoscale doi: 10.1039/C8NR06507A – volume: 47 start-page: 219 year: 2004 ident: 10.1016/j.apcatb.2020.119229_bib0020 article-title: Degradation of chlorophenols by means of advanced oxidation processes: a general review publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2003.09.010 – volume: 330 start-page: 1232 year: 2017 ident: 10.1016/j.apcatb.2020.119229_bib0135 article-title: Adsorption and reduction of roxarsone on magnetic greigite (Fe3S4): indispensable role of structural sulfide publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.07.176 – volume: 23 start-page: 2859 year: 1996 ident: 10.1016/j.apcatb.2020.119229_bib0100 article-title: Environmental magnetic implications of Greigite (Fe3S4) Formation in a 3 m.y. Lake sediment record from Butte Valley, northern California publication-title: Geophys. Res. Lett. doi: 10.1029/96GL02831 – volume: 137 start-page: 37 year: 2018 ident: 10.1016/j.apcatb.2020.119229_bib0190 article-title: Enhanced Fe(III)-mediated Fenton oxidation of atrazine in the presence of functionalized multi-walled carbon nanotubes publication-title: Water Res. doi: 10.1016/j.watres.2018.03.006 – volume: 51 start-page: 11278 year: 2017 ident: 10.1016/j.apcatb.2020.119229_bib0170 article-title: Photochemistry of hydrochar: reactive oxygen species generation and sulfadimidine degradation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b02740 – volume: 735 start-page: 1955 year: 2018 ident: 10.1016/j.apcatb.2020.119229_bib0160 article-title: Synthesis of CdxZn1-xS@Fe3S4 magnetic photocatalyst nanoparticles for the photodegradation of methylene blue publication-title: J. Alloys. Compd. doi: 10.1016/j.jallcom.2017.11.301 – volume: 5 start-page: 186 year: 2018 ident: 10.1016/j.apcatb.2020.119229_bib0075 article-title: Reinventing fenton chemistry: iron oxychloride nanosheet for pH-Insensitive H2O2 activation publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.8b00065 – volume: 120 start-page: 8616 year: 2016 ident: 10.1016/j.apcatb.2020.119229_bib0175 article-title: Early oxidation processes on the greigite Fe3S4(001) surface by water: a density functional theory study publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b00216 – volume: 80 start-page: 5 year: 2019 ident: 10.1016/j.apcatb.2020.119229_bib0205 article-title: Effects of iron (hydr)oxides on the degradation of diethyl phthalate ester in heterogeneous (photo)-Fenton reactions publication-title: J. Environ. Sci. China (China) doi: 10.1016/j.jes.2018.06.015 |
SSID | ssj0002328 |
Score | 2.6270754 |
Snippet | [Display omitted]
•Visible light could promote Fe3S4 Fenton oxidation of atrazine by 4.9 times.•The promoted activity was attributed to the efficient surface... We demonstrate that visible light irradiation can promote Fe3S4 Fenton oxidation of atrazine. The visible light irradiation could increase the atrazine Fenton... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 119229 |
SubjectTerms | Atrazine Atrazine degradation Degradation Herbicides Heterogeneous Fenton reaction Hydrogen peroxide Iron Iron sulfides Irradiation Light Light irradiation Oxidation Radiation Regeneration Reusability Surface iron redox cycle Visible light irradiation |
Title | Visible light promoted Fe3S4 Fenton oxidation of atrazine |
URI | https://dx.doi.org/10.1016/j.apcatb.2020.119229 https://www.proquest.com/docview/2446026408 |
Volume | 277 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KPagH0WqxWksOXmPT7DbZHEtpqYq9VMXbso8JVEpb2gie_O3u5OELQfASSJgNyezut9-yM_MBXAoTW9FH4aeB1j7nJvKVcUQuMTxiWjhGrulE924aTR74zVP_qQbDKheGwipL7C8wPUfr8km39GZ3PZ93Z0ESRozFLCTayzklmnMe0yi_evsM83CMIUdjZ-yTdZU-l8d4qbVRmXa7xJCwIwlzovnr8vQDqPPVZ3wIByVt9AbFlx1BDZcN2B1Wam0N2P9SWLABzdFn_pprVk7g7TEkj3M3BxboLWhT7q3zYDy03hjZjLsrKQp7q9d5obTkrVJPZZu8AvUJPIxH98OJX6on-IYxnvmo0AgbYZi6TiJpoIhWexFrjlb1uPtda0VgUy3COEBURCRsikmkdU-FSrEm1JerJZ6CJzgTKaK2KhZUkT5RSUoJtY6aoRWm3wJWOU2asrQ4KVwsZBVD9iwLV0tytSxc3QL_o9W6KK3xh31c9Yf8NkSkQ_8_Wrar7pPlFN1Kx2tIfosH4uzfLz6HPbqj3MRevw31bPOCF46kZLqTj8IO7AyubyfTdxxT5ao |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HtSDaFV8m4PX0DS7STbHUiz11YsPvC37mECltKVG8Oe7k2zqA0HwkkOyE5LZ7Dffkpn5AC6EyaxIUIRFpHXIuUlDZRyRyw1PmRaOkWv6o3s3SoeP_Po5eV6BflMLQ2mVHvtrTK_Q2p_peG925uNx5z7K45SxjMVEezlPVmGNulMlLVjrXd0MR0tAdqShAmQ3PiSDpoKuSvNSc6NK7TaKMcFHHldc89cI9QOrqwA02IYtzxyDXv1wO7CC0zas9xvBtjZsfukt2Ib9y88SNmfm1_DrLuRPY7cMJhhMaF8ezKt8PLTBANk9d0cSFQ5m7-NabCmYFYEqF1UT6j14HFw-9IehF1AIDWO8DFGhETbFuHDzROpAKQV8kWmOVnW5e11rRWQLLeIsQlTEJWyBeap1V8VKsX1oTWdTPIBAcCYKRG1VJqgpfa7ygmpqHTtDK0xyCKxxmjS-uziJXExkk0b2ImtXS3K1rF19COHSal531_hjfNbMh_z2lUgXAP6wPGmmT_pV-iodtSEFLh6Jo3_f-BzWhw93t_L2anRzDBt0hUoVu8kJtMrFG546zlLqM_9NfgAEYehb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visible+light+promoted+Fe3S4+Fenton+oxidation+of+atrazine&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Shi%2C+Yanbiao&rft.au=Wang%2C+Xiaobing&rft.au=Liu%2C+Xiufan&rft.au=Ling%2C+Cancan&rft.date=2020-11-15&rft.issn=0926-3373&rft.volume=277&rft.spage=119229&rft_id=info:doi/10.1016%2Fj.apcatb.2020.119229&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2020_119229 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |