Let us rethink advanced mixing rules for cubic equations of state

One of the most challenging aspects of using a Van der Waals type equation of state for mixtures is determining the appropriate expressions for the coefficients a (attractive parameter) and b (covolume) involved in this equation. It has been 45 years since Huron and Vidal first proposed the “EoS/gE”...

Full description

Saved in:
Bibliographic Details
Published inFluid phase equilibria Vol. 596; p. 114455
Main Authors Privat, Romain, Jaubert, Jean-Noël, Kontogeorgis, Georgios M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2025
Elsevier
Subjects
Online AccessGet full text
ISSN0378-3812
DOI10.1016/j.fluid.2025.114455

Cover

Loading…
Abstract One of the most challenging aspects of using a Van der Waals type equation of state for mixtures is determining the appropriate expressions for the coefficients a (attractive parameter) and b (covolume) involved in this equation. It has been 45 years since Huron and Vidal first proposed the “EoS/gE” advanced mixing rules. By equating under infinite reference pressure, the mathematical expression of the excess Gibbs energy gE derived from an equation of state, to the same quantity issued from an explicit activity coefficient model, they deduced an expression for the ratio a/b. A decade after Huron and Vidal’s initial proposal, building upon the original proposal, Michelsen subsequently derived the “zero reference pressure” (ZRP) approach and proposed the approximate ZRP mixing rules MHV1 and MHV2. Throughout the 1990′s and 2000′s, the Huron-Vidal and ZRP approaches were subject, often empirically, to multiple revisions in order to remedy some of their well identified shortcomings. It would appear that the debates surrounding advanced mixing rules are now over, with the latest conclusions proposed in the 2000s enjoying a degree of consensus. The objective of this article is to reopen the debate in light of the scientific insights gained from our recent research on advanced mixing rules for cubic equations of state. The concept of deriving mixing rules by equating the excess Gibbs energy expressed from an equation of state to the same quantity expressed from an activity coefficient model (this equality is called a “matching equation”) was undoubtedly an appealing one. However, experience has shown that such a matching equation is not without its limitations, particularly due to the lack of sufficient constraints. We have reached the conclusion that the only way to derive advanced mixing rules that are free from shortcomings is to ensure that not only are the complete expressions of gE from an equation of state and from an activity coefficient model equal but also that the three separate contributions that make it up (i.e., combinatorial, residual and the product of the pressure by the excess volume P·vE) are equal. As discussed in this paper, achieving this objective is challenging and we conclude that the best and unique solution for developing safe mixing rules is to modify the matching equation proposed by Huron-Vidal and Michelsen and to only equate the residual contributions. Based on this observation, we demonstrate how the demonstrations of the ZRP and HV mixing rules can be reworked to arrive at a unique and universal (independent of the reference pressure) mixing rule, called UHVM (Unified Huron Vidal Michelsen) mixing rule. We hope that this result will encourage new thinking on mixing rules for cubic equations.
AbstractList One of the most challenging aspects of using a Van der Waals type equation of state for mixtures is determining the appropriate expressions for the coefficients a (attractive parameter) and b (covolume) involved in this equation. It has been 45 years since Huron and Vidal first proposed the “EoS/gE” advanced mixing rules. By equating under infinite reference pressure, the mathematical expression of the excess Gibbs energy gE derived from an equation of state, to the same quantity issued from an explicit activity coefficient model, they deduced an expression for the ratio a/b. A decade after Huron and Vidal’s initial proposal, building upon the original proposal, Michelsen subsequently derived the “zero reference pressure” (ZRP) approach and proposed the approximate ZRP mixing rules MHV1 and MHV2. Throughout the 1990′s and 2000′s, the Huron-Vidal and ZRP approaches were subject, often empirically, to multiple revisions in order to remedy some of their well identified shortcomings. It would appear that the debates surrounding advanced mixing rules are now over, with the latest conclusions proposed in the 2000s enjoying a degree of consensus. The objective of this article is to reopen the debate in light of the scientific insights gained from our recent research on advanced mixing rules for cubic equations of state. The concept of deriving mixing rules by equating the excess Gibbs energy expressed from an equation of state to the same quantity expressed from an activity coefficient model (this equality is called a “matching equation”) was undoubtedly an appealing one. However, experience has shown that such a matching equation is not without its limitations, particularly due to the lack of sufficient constraints. We have reached the conclusion that the only way to derive advanced mixing rules that are free from shortcomings is to ensure that not only are the complete expressions of gE from an equation of state and from an activity coefficient model equal but also that the three separate contributions that make it up (i.e., combinatorial, residual and the product of the pressure by the excess volume P·vE) are equal. As discussed in this paper, achieving this objective is challenging and we conclude that the best and unique solution for developing safe mixing rules is to modify the matching equation proposed by Huron-Vidal and Michelsen and to only equate the residual contributions. Based on this observation, we demonstrate how the demonstrations of the ZRP and HV mixing rules can be reworked to arrive at a unique and universal (independent of the reference pressure) mixing rule, called UHVM (Unified Huron Vidal Michelsen) mixing rule. We hope that this result will encourage new thinking on mixing rules for cubic equations.
One of the most challenging aspects of using a Van der Waals type equation of state for mixtures is determining the appropriate expressions for the coefficients a (attractive parameter) and b (covolume) involved in this equation. It has been 45 years since Huron and Vidal first proposed the "EoS/g E " advanced mixing rules. By equating under infinite reference pressure, the mathematical expression of the excess Gibbs energy g E derived from an equation of state, to the same quantity issued from an explicit activity coefficient model, they deduced an expression for the ratio a/b. A decade after Huron and Vidal's initial proposal, building upon the original proposal, Michelsen subsequently derived the "zero reference pressure" (ZRP) approach and proposed the approximate ZRP mixing rules MHV1 and MHV2. Throughout the 1990′s and 2000′s, the Huron-Vidal and ZRP approaches were subject, often empirically, to multiple revisions in order to remedy some of their well identified shortcomings. It would appear that the debates surrounding advanced mixing rules are now over, with the latest conclusions proposed in the 2000s enjoying a degree of consensus. The objective of this article is to reopen the debate in light of the scientific insights gained from our recent research on advanced mixing rules for cubic equations of state. The concept of deriving mixing rules by equating the excess Gibbs energy expressed from an equation of state to the same quantity expressed from an activity coefficient model (this equality is called a "matching equation") was undoubtedly an appealing one. However, experience has shown that such a matching equation is not without its limitations, particularly due to the lack of sufficient constraints. We have reached the conclusion that the only way to derive advanced mixing rules that are free from shortcomings is to ensure that not only are the complete expressions of gE from an equation of state and from an activity coefficient model equal but also that the three separate contributions that make it up (i.e., combinatorial, residual and the product of the pressure by the excess volume P⋅v E ) are equal. As discussed in this paper, achieving this objective is challenging and we conclude that the best and unique solution for developing safe mixing rules is to modify the matching equation proposed by Huron-Vidal and Michelsen and to only equate the residual contributions. Based on this observation, we demonstrate how the demonstrations of the ZRP and HV mixing rules can be reworked to arrive at a unique and universal (independent of the reference pressure) mixing rule, called UHVM (Unified Huron Vidal Michelsen) mixing rule. We hope that this result will encourage new thinking on mixing rules for cubic equations.
ArticleNumber 114455
Author Privat, Romain
Jaubert, Jean-Noël
Kontogeorgis, Georgios M.
Author_xml – sequence: 1
  givenname: Romain
  surname: Privat
  fullname: Privat, Romain
  email: romain.privat@univ-lorraine.fr
  organization: Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France
– sequence: 2
  givenname: Jean-Noël
  orcidid: 0000-0001-7831-5684
  surname: Jaubert
  fullname: Jaubert, Jean-Noël
  email: jean-noel.jaubert@univ-lorraine.fr
  organization: Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France
– sequence: 3
  givenname: Georgios M.
  surname: Kontogeorgis
  fullname: Kontogeorgis, Georgios M.
  email: gk@kt.dtu.dk
  organization: Center for Energy Resources Engineering (CERE), Department of Chemical and Biochemical Engineering, Building 229, Technical University of Denmark, Denmark
BackLink https://hal.univ-lorraine.fr/hal-05097975$$DView record in HAL
BookMark eNp9kLFOwzAURT0UibbwBSxeGRKeYztxBoaqAooUiQVmy3FeqEuagJ1E8Pc0BDEyXenpnifdsyKLtmuRkCsGMQOW3hziuhlcFSeQyJgxIaRckCXwTEVcseScrEI4AACTabIkmwJ7OgTqsd-79o2aajStxYoe3adrX6kfGgy07jy1Q-ksxY_B9K5rA-1qGnrT4wU5q00T8PI31-Tl_u55u4uKp4fH7aaILOeijzCvhVRlqSqmTI1lnqJQCJBZU3GBKoEsE4xXPC8VSGVzYSCxHDLDSpYC8DW5nv_uTaPfvTsa_6U74_RuU-jpBhLyLM_kyE5dPnet70LwWP8BDPRkSR_0jyU9WdKzpRN1O1N4mjE69DpYh5MN59H2uurcv_w3ah9zzw
Cites_doi 10.1016/0378-3812(86)80007-3
10.1016/0378-3812(91)85038-V
10.1021/je00052a026
10.1016/j.supflu.2007.11.015
10.1021/ie402541h
10.1016/0378-3812(96)03030-0
10.1021/ie049580p
10.1016/0009-2509(72)80096-4
10.1021/ie990544d
10.1016/j.fluid.2004.11.002
10.1016/j.fluid.2022.113697
10.1016/0378-3812(94)02675-Q
10.1016/S0378-3812(01)00626-4
10.1021/i160057a011
10.1016/j.fluid.2016.06.042
10.1016/j.fluid.2020.112924
10.1016/j.fluid.2016.03.012
10.1016/j.fluid.2022.113456
10.1016/j.fluid.2005.12.028
10.1016/0378-3812(95)02764-6
10.1021/ie0500063
10.1021/ie020047o
10.1021/ie00008a027
10.1016/0378-3812(90)85042-9
10.1016/S0009-2509(99)00472-8
10.1016/j.fluid.2004.06.059
10.1016/0378-3812(81)85017-0
10.1080/0031910021000044456
10.1016/j.supflu.2014.06.014
10.1016/j.fluid.2010.03.003
10.1016/S0378-3812(02)00048-1
10.1016/j.fluid.2005.12.010
10.1016/0378-3812(94)80043-X
10.1016/j.fluid.2010.03.037
10.1016/S0378-3812(99)00333-7
10.1002/aic.690420822
10.1021/ef401605c
10.1021/ie00056a041
10.1016/0378-3812(90)85053-D
10.1016/0378-3812(95)02936-2
10.1016/j.fluid.2018.12.007
10.1016/0378-3812(93)80003-6
10.1016/0378-3812(95)02792-D
10.1021/ie101266x
10.1016/j.fluid.2010.11.009
10.1016/j.supflu.2010.10.023
10.1016/j.fluid.2023.114018
10.1021/acs.iecr.1c03003
10.1002/aic.690361207
10.1002/aic.690380505
10.1021/acs.jced.9b00264
10.1016/0378-3812(93)85016-F
10.1016/0378-3812(89)80172-4
10.1021/acs.iecr.0c01734
10.1021/ie950203+
10.1016/j.ijggc.2016.11.015
10.1016/0378-3812(87)80037-7
10.1002/aic.12232
10.1016/S0378-3812(03)00177-8
10.1021/ie100121c
10.1016/0378-3812(79)80001-1
10.1021/ie2015119
10.1016/j.fluid.2016.09.003
ContentType Journal Article
Copyright 2025 The Author(s)
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2025 The Author(s)
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.fluid.2025.114455
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
ExternalDocumentID oai_HAL_hal_05097975v1
10_1016_j_fluid_2025_114455
S0378381225001256
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABNUV
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADECG
ADEWK
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AFZHZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJSZI
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSH
SSK
SSZ
T5K
WUQ
XPP
ZMT
ZY4
~G-
AAYXX
CITATION
1XC
VOOES
ID FETCH-LOGICAL-c334t-e9f458bb8d18afeb96e48e007cad34e82077413d39b8058c94a02c307a1b16003
IEDL.DBID .~1
ISSN 0378-3812
IngestDate Sun Jun 08 06:11:58 EDT 2025
Thu Jul 03 08:19:41 EDT 2025
Sat Jul 05 17:11:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Huron-Vidal
Advanced mixing rules
MHV1
Excess Gibbs energy
Cubic equations of state
Cubic equations of state Advanced mixing rules Excess Gibbs energy Huron-Vidal MHV1
Language English
License This is an open access article under the CC BY license.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-e9f458bb8d18afeb96e48e007cad34e82077413d39b8058c94a02c307a1b16003
ORCID 0000-0001-7831-5684
0000-0001-6174-9160
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0378381225001256
ParticipantIDs hal_primary_oai_HAL_hal_05097975v1
crossref_primary_10_1016_j_fluid_2025_114455
elsevier_sciencedirect_doi_10_1016_j_fluid_2025_114455
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
2025-09
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationTitle Fluid phase equilibria
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Vitu, Privat, Jaubert, Mutelet (bib0055) 2008; 45
Jaubert, Privat (bib0059) 2010; 295
Coutsikos, Kalospiros, Tassios (bib0039) 1995; 108
Kontogeorgis, Economou (bib0040) 2010; 55
Kontogeorgis, Privat, Jaubert (bib0028) 2019; 64
Schmid, Gmehling (bib0019) 2016; 425
Dahl, Michelsen (bib0009) 1990; 36
Michelsen, Mollerup (bib0030) 2007
Michelsen (bib0008) 1990; 60
Pina-Martinez, Privat, Nikolaidis, Economou, Jaubert (bib0042) 2021; 60
Mollerup (bib0065) 1986; 25
Peneloux, Abdoul, Rauzy (bib0068) 1989; 47
Orbey, Sandler (bib0037) 1995; 111
Jaubert, Le Guennec, Pina-Martinez, Ramirez-Velez, Lasala, Schmid, Nikolaidis, Economou, Privat (bib0062) 2020; 59
Voutsas, Pappa, Magoulas, Tassios (bib0074) 2006; 240
Neau, Nicolas, Jaubert, Mutelet (bib0023) 2006; 80
Jaubert, Qian, Lasala, Privat (bib0061) 2022; 560
Neau, Escandell, Nicolas (bib0072) 2010; 49
Huron, Vidal (bib0006) 1979; 3
Novenario, Caruthers, Chao (bib0069) 1996; 35
Boukouvalas, Spiliotis, Coutsikos, Tzouvaras, Tassios (bib0017) 1994; 92
Kontogeorgis, Vlamos (bib0053) 2000; 55
Kontogeorgis, Folas (bib0005) 2010
Segura, Mejía, Reich, Wisniak, Loras (bib0046) 2003; 41
Soave (bib0024) 1972; 27
Huang, Lin, Chao (bib0049) 1988; 33
Wong, Sandler (bib0011) 1992; 38
Orbey, Sandler (bib0064) 1996; 42
Gmehling (bib0015) 2003; 210
Horstmann, Jabłoniec, Krafczyk, Fischer, Gmehling (bib0016) 2005; 227
Xu, Lasala, Privat, Jaubert (bib0060) 2017; 56
Kontogeorgis, Coutsikos (bib0041) 2012; 51
Ungerer, De Sant’Ana (bib0032) 1999; 163
Michelsen (bib0007) 1990; 60
Privat, Jaubert, Kontogeorgis (bib0045) 2024
Qian, Privat, Jaubert (bib0056) 2013; 52
Voutsas, Louli, Boukouvalas, Magoulas, Tassios (bib0021) 2006; 241
Jaubert, Coniglio (bib0054) 1999; 38
Vidal (bib0029) 2003
Ahlers, Gmehling (bib0018) 2001; 191
Voutsas, Magoulas, Tassios (bib0020) 2004; 43
Pfohl (bib0031) 1999; 163
Horstmann, Fischer, Gmehling (bib0013) 2000; 167
Kalikhman, Kost, Polishuk (bib0033) 2010; 293
Wong, Orbey, Sandler (bib0035) 1992; 31
Robinson, Ng, Leu (bib0026) 1981
Peng, Robinson (bib0025) 1976; 15
Mollerup (bib0066) 1981; 7
Le Guennec, Privat, Jaubert (bib0075) 2016; 429
Ahlers, Gmehling (bib0070) 2002; 41
Pina-Martinez, Privat, Jaubert, Peng (bib0027) 2019; 485
Rabinovich, Nikolaev (bib0047) 1960; 34
Chen, Fischer, Gmehling (bib0014) 2002; 200
Soave (bib0048) 1993; 87
Peters, De Roo, Lichtenthaler (bib0050) 1987; 34
Neau, Escandell, Nicolas (bib0073) 2010; 49
Orbey, Sandler (bib0038) 1996; 121
Jaubert, Privat, Mutelet (bib0057) 2010; 56
Levelt Sengers (bib0003) 2002
Privat, Jaubert (bib0004) 2023; 567
Jaubert, Privat, Juntarachat (bib0043) 2014; 94
Holderbaum, Gmehling (bib0012) 1991; 70
Orbey, Sandler, Wong (bib0036) 1993; 85
Dahl, Fredenslund, Rasmussen (bib0010) 1991; 30
Privat, Jaubert, Kontogeorgis (bib0044) 2024; 579
Jaubert, Privat, Le Guennec, Coniglio (bib0034) 2016; 419
Kontogeorgis, Coutsikos (bib0051) 2005; 44
Fischer, Gmehling (bib0067) 1995; 112
Van der Waals (bib0001) 1967
Jaubert, Privat (bib0052) 2021; 533
Jaubert, Mutelet (bib0022) 2004; 224
Van der Waals, Rowlinson (bib0002) 2004
Qian, Privat, Jaubert, Duchet-Suchaux (bib0058) 2013; 27
Tochigi, Kojima, Sako (bib0063) 1996; 117
Escandell, Neau, Nicolas (bib0071) 2011; 301
Kontogeorgis (10.1016/j.fluid.2025.114455_bib0028) 2019; 64
Qian (10.1016/j.fluid.2025.114455_bib0058) 2013; 27
Kalikhman (10.1016/j.fluid.2025.114455_bib0033) 2010; 293
Peters (10.1016/j.fluid.2025.114455_bib0050) 1987; 34
Dahl (10.1016/j.fluid.2025.114455_bib0009) 1990; 36
Ungerer (10.1016/j.fluid.2025.114455_bib0032) 1999; 163
Neau (10.1016/j.fluid.2025.114455_bib0073) 2010; 49
Kontogeorgis (10.1016/j.fluid.2025.114455_bib0005) 2010
Soave (10.1016/j.fluid.2025.114455_bib0024) 1972; 27
Holderbaum (10.1016/j.fluid.2025.114455_bib0012) 1991; 70
Ahlers (10.1016/j.fluid.2025.114455_bib0070) 2002; 41
Horstmann (10.1016/j.fluid.2025.114455_bib0016) 2005; 227
Vitu (10.1016/j.fluid.2025.114455_bib0055) 2008; 45
Chen (10.1016/j.fluid.2025.114455_bib0014) 2002; 200
Wong (10.1016/j.fluid.2025.114455_bib0011) 1992; 38
Jaubert (10.1016/j.fluid.2025.114455_bib0043) 2014; 94
Van der Waals (10.1016/j.fluid.2025.114455_bib0002) 2004
Jaubert (10.1016/j.fluid.2025.114455_bib0057) 2010; 56
Orbey (10.1016/j.fluid.2025.114455_bib0038) 1996; 121
Mollerup (10.1016/j.fluid.2025.114455_bib0066) 1981; 7
Soave (10.1016/j.fluid.2025.114455_bib0048) 1993; 87
Robinson (10.1016/j.fluid.2025.114455_bib0026) 1981
Orbey (10.1016/j.fluid.2025.114455_bib0036) 1993; 85
Qian (10.1016/j.fluid.2025.114455_bib0056) 2013; 52
Le Guennec (10.1016/j.fluid.2025.114455_bib0075) 2016; 429
Peneloux (10.1016/j.fluid.2025.114455_bib0068) 1989; 47
Van der Waals (10.1016/j.fluid.2025.114455_bib0001) 1967
Kontogeorgis (10.1016/j.fluid.2025.114455_bib0040) 2010; 55
Kontogeorgis (10.1016/j.fluid.2025.114455_bib0051) 2005; 44
Michelsen (10.1016/j.fluid.2025.114455_bib0030) 2007
Jaubert (10.1016/j.fluid.2025.114455_bib0059) 2010; 295
Schmid (10.1016/j.fluid.2025.114455_bib0019) 2016; 425
Horstmann (10.1016/j.fluid.2025.114455_bib0013) 2000; 167
Michelsen (10.1016/j.fluid.2025.114455_bib0007) 1990; 60
Wong (10.1016/j.fluid.2025.114455_bib0035) 1992; 31
Peng (10.1016/j.fluid.2025.114455_bib0025) 1976; 15
Orbey (10.1016/j.fluid.2025.114455_bib0064) 1996; 42
Segura (10.1016/j.fluid.2025.114455_bib0046) 2003; 41
Jaubert (10.1016/j.fluid.2025.114455_bib0052) 2021; 533
Voutsas (10.1016/j.fluid.2025.114455_bib0021) 2006; 241
Voutsas (10.1016/j.fluid.2025.114455_bib0020) 2004; 43
Voutsas (10.1016/j.fluid.2025.114455_bib0074) 2006; 240
Gmehling (10.1016/j.fluid.2025.114455_bib0015) 2003; 210
Escandell (10.1016/j.fluid.2025.114455_bib0071) 2011; 301
Huron (10.1016/j.fluid.2025.114455_bib0006) 1979; 3
Ahlers (10.1016/j.fluid.2025.114455_bib0018) 2001; 191
Tochigi (10.1016/j.fluid.2025.114455_bib0063) 1996; 117
Neau (10.1016/j.fluid.2025.114455_bib0072) 2010; 49
Privat (10.1016/j.fluid.2025.114455_bib0004) 2023; 567
Dahl (10.1016/j.fluid.2025.114455_bib0010) 1991; 30
Huang (10.1016/j.fluid.2025.114455_bib0049) 1988; 33
Privat (10.1016/j.fluid.2025.114455_bib0045) 2024
Fischer (10.1016/j.fluid.2025.114455_bib0067) 1995; 112
Orbey (10.1016/j.fluid.2025.114455_bib0037) 1995; 111
Coutsikos (10.1016/j.fluid.2025.114455_bib0039) 1995; 108
Neau (10.1016/j.fluid.2025.114455_bib0023) 2006; 80
Pfohl (10.1016/j.fluid.2025.114455_bib0031) 1999; 163
Xu (10.1016/j.fluid.2025.114455_bib0060) 2017; 56
Jaubert (10.1016/j.fluid.2025.114455_bib0054) 1999; 38
Pina-Martinez (10.1016/j.fluid.2025.114455_bib0027) 2019; 485
Kontogeorgis (10.1016/j.fluid.2025.114455_bib0053) 2000; 55
Jaubert (10.1016/j.fluid.2025.114455_bib0022) 2004; 224
Vidal (10.1016/j.fluid.2025.114455_bib0029) 2003
Privat (10.1016/j.fluid.2025.114455_bib0044) 2024; 579
Boukouvalas (10.1016/j.fluid.2025.114455_bib0017) 1994; 92
Jaubert (10.1016/j.fluid.2025.114455_bib0034) 2016; 419
Rabinovich (10.1016/j.fluid.2025.114455_bib0047) 1960; 34
Michelsen (10.1016/j.fluid.2025.114455_bib0008) 1990; 60
Novenario (10.1016/j.fluid.2025.114455_bib0069) 1996; 35
Jaubert (10.1016/j.fluid.2025.114455_bib0061) 2022; 560
Jaubert (10.1016/j.fluid.2025.114455_bib0062) 2020; 59
Levelt Sengers (10.1016/j.fluid.2025.114455_bib0003) 2002
Mollerup (10.1016/j.fluid.2025.114455_bib0065) 1986; 25
Pina-Martinez (10.1016/j.fluid.2025.114455_bib0042) 2021; 60
Kontogeorgis (10.1016/j.fluid.2025.114455_bib0041) 2012; 51
References_xml – volume: 224
  start-page: 285
  year: 2004
  end-page: 304
  ident: bib0022
  article-title: VLE predictions with the Peng-Robinson equation of state and temperature-dependent k
  publication-title: Fluid. Phase Equilib.
– volume: 533
  year: 2021
  ident: bib0052
  article-title: SAFT and cubic EoS: type of deviation from ideality naturally predicted in the absence of BIPs. Application to the modelling of athermal mixtures
  publication-title: Fluid. Phase Equilib.
– volume: 27
  start-page: 7150
  year: 2013
  end-page: 7178
  ident: bib0058
  article-title: Enthalpy and heat capacity changes on mixing: fundamental aspects and prediction by means of the PPR78 cubic equation of state
  publication-title: Energy Fuels
– volume: 200
  start-page: 411
  year: 2002
  end-page: 429
  ident: bib0014
  article-title: Modification of PSRK mixing rules and results for vapor–liquid equilibria, enthalpy of mixing and activity coefficients at infinite dilution
  publication-title: Fluid. Phase Equilib.
– volume: 38
  start-page: 5011
  year: 1999
  end-page: 5018
  ident: bib0054
  article-title: The group contribution concept: a useful tool to correlate binary systems and to predict the phase behavior of multicomponent systems involving supercritical CO
  publication-title: Ind. Eng. Chem. Res.
– volume: 56
  start-page: 126
  year: 2017
  end-page: 154
  ident: bib0060
  article-title: -PPR78: a proper cubic EoS for modelling fluids involved in the design and operation of carbon dioxide capture and storage (CCS) processes
  publication-title: Int. J. Greenh. Gas Control
– volume: 41
  start-page: 3489
  year: 2002
  end-page: 3498
  ident: bib0070
  article-title: Development of a universal group contribution equation of state. 2. Prediction of vapor−liquid equilibria for asymmetric systems
  publication-title: Ind. Eng. Chem. Res.
– volume: 38
  start-page: 671
  year: 1992
  end-page: 680
  ident: bib0011
  article-title: A theoretically correct mixing rule for cubic equations of state
  publication-title: AIChE J.
– volume: 419
  start-page: 88
  year: 2016
  end-page: 95
  ident: bib0034
  article-title: Note on the properties altered by application of a Péneloux–type volume translation to an equation of state
  publication-title: Fluid. Phase Equilib.
– start-page: 1
  year: 1981
  end-page: 38
  ident: bib0026
  article-title: Behavior of CH
  publication-title: Res. Rep. GPA
– volume: 163
  start-page: 157
  year: 1999
  end-page: 159
  ident: bib0031
  article-title: Evaluation of an improved volume translation for the prediction of hydrocarbon volumetric properties
  publication-title: Fluid. Phase Equilib.
– volume: 80
  start-page: 27
  year: 2006
  end-page: 35
  ident: bib0023
  article-title: The generalized NRTL model associated with the Peng-Robinson equation of state to predict liquid-liquid equilibria between hydrocarbons, water and ethylene glycol
  publication-title: Pol. J. Chem.
– volume: 163
  start-page: 161
  year: 1999
  end-page: 162
  ident: bib0032
  article-title: Reply to the letter to the editor by O. Pfohl about the paper ‘“evaluation of an improved volume translation for the prediction of hydrocarbon volumetric properties”’ [FPE 154, 193–204 (1999)]
  publication-title: Fluid. Phase Equilib.
– volume: 112
  start-page: 1
  year: 1995
  end-page: 22
  ident: bib0067
  article-title: Further development, status and results of the PSRK method for the prediction of vapor-liquid equilibria and gas solubilities
  publication-title: Fluid. Phase Equilib.
– volume: 70
  start-page: 251
  year: 1991
  end-page: 265
  ident: bib0012
  article-title: PSRK: a group contribution equation of state based on UNIFAC
  publication-title: Fluid. Phase Equilib.
– volume: 42
  start-page: 2327
  year: 1996
  end-page: 2334
  ident: bib0064
  article-title: Analysis of excess free energy based equations of state models
  publication-title: AIChE J.
– volume: 52
  start-page: 16457
  year: 2013
  end-page: 16490
  ident: bib0056
  article-title: Predicting the phase equilibria, critical phenomena, and mixing enthalpies of binary aqueous systems containing alkanes, cycloalkanes, aromatics, alkenes, and gases (N
  publication-title: Ind. Eng. Chem. Res.
– volume: 227
  start-page: 157
  year: 2005
  end-page: 164
  ident: bib0016
  article-title: PSRK group contribution equation of state: comprehensive revision and extension IV, including critical constants and α-function parameters for 1000 components
  publication-title: Fluid. Phase Equilib.
– volume: 59
  start-page: 14981
  year: 2020
  end-page: 15027
  ident: bib0062
  article-title: Benchmark database containing binary-system-high-quality-certified data for cross-comparing thermodynamic models and assessing their accuracy
  publication-title: Ind. Eng. Chem. Res.
– volume: 567
  year: 2023
  ident: bib0004
  article-title: The state of the art of cubic equations of state with temperature-dependent binary interaction coefficients: from correlation to prediction
  publication-title: Fluid. Phase Equilib.
– volume: 85
  start-page: 41
  year: 1993
  end-page: 54
  ident: bib0036
  article-title: Accurate equation of state predictions at high temperatures and pressures using the existing UNIFAC model
  publication-title: Fluid. Phase Equilib.
– volume: 94
  start-page: 17
  year: 2014
  end-page: 29
  ident: bib0043
  article-title: General reflection on critical negative azeotropy and upgrade of the Bancroft’s rule with application to the acetone+chloroform binary system
  publication-title: J. Supercrit. Fluids
– volume: 3
  start-page: 255
  year: 1979
  end-page: 271
  ident: bib0006
  article-title: New mixing rules in simple equations of state for representing vapour-liquid equilibria of strongly non-ideal mixtures
  publication-title: Fluid. Phase Equilib.
– volume: 64
  start-page: 4619
  year: 2019
  end-page: 4637
  ident: bib0028
  article-title: Taking another look at the Van der Waals equation of state–almost 150 years later
  publication-title: J. Chem. Eng. Data
– volume: 111
  start-page: 53
  year: 1995
  end-page: 70
  ident: bib0037
  article-title: On the combination of equation of state and excess free energy models
  publication-title: Fluid. Phase Equilib.
– volume: 34
  year: 1960
  ident: bib0047
  article-title: Isotopic effect in the thermodynamic properties of liquid mixtures. I. The isotopic shift in the vapor pressure-composition diagram of mixtures of deuterochloroform with acetone
  publication-title: Zhur. Fiz. Khim.
– volume: 34
  start-page: 287
  year: 1987
  end-page: 308
  ident: bib0050
  article-title: Measurements and calculations of phase equilibria of binary mixtures of ethane + eicosane. Part I: vapour + liquid equilibria
  publication-title: Fluid. Phase Equilib.
– year: 2002
  ident: bib0003
  article-title: How Fluids Unmix: Discoveries by the School of Van der Waals and Kamerlingh Onnes
– volume: 241
  start-page: 216
  year: 2006
  end-page: 228
  ident: bib0021
  article-title: Thermodynamic property calculations with the universal mixing rule for EoS/GE models: results with the Peng–Robinson EoS and a UNIFAC model
  publication-title: Fluid. Phase Equilib.
– volume: 87
  start-page: 23
  year: 1993
  end-page: 35
  ident: bib0048
  article-title: Application of equations of state and the theory of group solutions to phase equilibrium prediction
  publication-title: Fluid. Phase Equilib.
– volume: 579
  year: 2024
  ident: bib0044
  article-title: The secret of the Wilson equation
  publication-title: Fluid. Phase Equilib.
– year: 2004
  ident: bib0002
  article-title: On the Continuity of the Gaseous and Liquid States
– year: 2003
  ident: bib0029
  article-title: Thermodynamics: Applications in Chemical Engineering and the Petroleum Industry
– volume: 44
  start-page: 3374
  year: 2005
  end-page: 3375
  ident: bib0051
  article-title: Comments on “predictions of activity coefficients of nearly athermal binary mixtures using cubic equations of state
  publication-title: Ind. Eng. Chem. Res.
– volume: 293
  start-page: 164
  year: 2010
  end-page: 167
  ident: bib0033
  article-title: About the physical validity of attaching the repulsive terms of analytical EOS models by temperature dependencies
  publication-title: Fluid. Phase Equilib.
– volume: 108
  start-page: 59
  year: 1995
  end-page: 78
  ident: bib0039
  article-title: Capabilities and limitations of the Wong-Sandler mixing rules
  publication-title: Fluid. Phase Equilib.
– volume: 92
  start-page: 75
  year: 1994
  end-page: 106
  ident: bib0017
  article-title: Prediction of vapor-liquid equilibrium with the LCVM model: a linear combination of the Vidal and Michelsen mixing rules coupled with the original UNIFAC and the
  publication-title: Fluid. Phase Equilib.
– volume: 36
  start-page: 1829
  year: 1990
  end-page: 1836
  ident: bib0009
  article-title: High-pressure vapor-liquid equilibrium with a UNIFAC-based equation of state
  publication-title: AIChe J.
– volume: 43
  start-page: 6238
  year: 2004
  end-page: 6246
  ident: bib0020
  article-title: Universal mixing rule for cubic equations of state applicable to symmetric and asymmetric systems: results with the Peng−Robinson equation of state
  publication-title: Ind. Eng. Chem. Res.
– year: 2007
  ident: bib0030
  article-title: Thermodynamic Models: Fundamentals & Computational Aspects
– volume: 49
  start-page: 7589
  year: 2010
  end-page: 7596
  ident: bib0072
  article-title: Modeling of highly nonideal systems: 2. Prediction of high pressure phase equilibria with the group contribution NRTL-PR EoS
  publication-title: Ind. Eng. Chem. Res.
– volume: 35
  start-page: 269
  year: 1996
  end-page: 277
  ident: bib0069
  article-title: A mixing rule to incorporate solution model into equation of state
  publication-title: Ind. Eng. Chem. Res.
– volume: 60
  start-page: 213
  year: 1990
  end-page: 219
  ident: bib0008
  article-title: A modified Huron-Vidal mixing rule for cubic equations of state
  publication-title: Fluid. Phase Equilib.
– volume: 41
  start-page: 283
  year: 2003
  end-page: 301
  ident: bib0046
  article-title: Isobaric vapor-liquid equilibria and densities for the binary systems oxolane + ethyl 1,1-dimethylethyl ether, oxolane + 2-propanol and propan-2-one + trichloromethane
  publication-title: Phys. Chem. Liquids
– volume: 49
  start-page: 7580
  year: 2010
  end-page: 7588
  ident: bib0073
  article-title: Modeling of highly nonideal systems: 1. A generalized version of the NRTL equation for the description of low-pressure equilibria
  publication-title: Ind. Eng. Chem. Res.
– volume: 301
  start-page: 80
  year: 2011
  end-page: 97
  ident: bib0071
  article-title: A new formulation of the predictive NRTL-PR model in terms of kij mixing rules. Extension of the group contributions for the modeling of hydrocarbons in the presence of associating compounds
  publication-title: Fluid. Phase Equilib.
– volume: 55
  start-page: 421
  year: 2010
  end-page: 437
  ident: bib0040
  article-title: Equations of state: from the ideas of Van der Waals to association theories
  publication-title: J. Supercrit. Fluids.
– volume: 60
  start-page: 17228
  year: 2021
  end-page: 17247
  ident: bib0042
  article-title: What is the optimal activity coefficient model to be combined with the
  publication-title: Ind. Eng. Chem. Res.
– volume: 47
  start-page: 115
  year: 1989
  end-page: 132
  ident: bib0068
  article-title: Excess functions and equations of state
  publication-title: Fluid. Phase Equilib.
– volume: 33
  start-page: 145
  year: 1988
  end-page: 147
  ident: bib0049
  article-title: Solubility of carbon dioxide, methane, and ethane in n-eicosane
  publication-title: J. Chem. Eng. Data
– volume: 191
  start-page: 177
  year: 2001
  end-page: 188
  ident: bib0018
  article-title: Development of an universal group contribution equation of state
  publication-title: Fluid. Phase Equilib.
– volume: 485
  start-page: 264
  year: 2019
  end-page: 269
  ident: bib0027
  article-title: Updated versions of the generalized Soave α-function suitable for the Redlich-Kwong and Peng-Robinson equations of state
  publication-title: Fluid. Phase Equilib.
– volume: 15
  start-page: 59
  year: 1976
  end-page: 64
  ident: bib0025
  article-title: A new two-constant equation of state
  publication-title: Ind. Eng. Chem. Fund.
– volume: 7
  start-page: 121
  year: 1981
  end-page: 138
  ident: bib0066
  article-title: A note on excess Gibbs energy models, equations of state and the local composition concept
  publication-title: Fluid. Phase Equilib.
– volume: 31
  start-page: 2033
  year: 1992
  end-page: 2039
  ident: bib0035
  article-title: Equation of state mixing rule for nonideal mixtures using available activity coefficient model parameters and that allows extrapolation over large ranges of temperature and pressure
  publication-title: Ind. Eng. Chem. Res.
– volume: 60
  start-page: 47
  year: 1990
  end-page: 58
  ident: bib0007
  article-title: A method for incorporating excess gibbs energy models in equations of state
  publication-title: Fluid. Phase Equilib.
– volume: 45
  start-page: 1
  year: 2008
  end-page: 26
  ident: bib0055
  article-title: Predicting the phase equilibria of CO
  publication-title: J. Supercrit. Fluids
– volume: 429
  start-page: 301
  year: 2016
  end-page: 312
  ident: bib0075
  article-title: Development of the translated-consistent
  publication-title: Fluid. Phase Equilib.
– volume: 121
  start-page: 67
  year: 1996
  end-page: 83
  ident: bib0038
  article-title: A comparison of various cubic equation of state mixing rules for the simultaneous description of excess enthalpies and vapor-liquid equilibria
  publication-title: Fluid. Phase Equilib.
– volume: 560
  year: 2022
  ident: bib0061
  article-title: The impressive impact of including enthalpy and heat capacity of mixing data when parameterising equations of state. Application to the development of the
  publication-title: Fluid. Phase Equilib.
– volume: 55
  start-page: 2351
  year: 2000
  end-page: 2358
  ident: bib0053
  article-title: An interpretation of the behavior of EoS/G
  publication-title: Chem. Eng. Sci.
– volume: 56
  start-page: 3225
  year: 2010
  end-page: 3235
  ident: bib0057
  article-title: Predicting the phase equilibria of synthetic petroleum fluids with the PPR78 approach
  publication-title: AIChE J.
– volume: 425
  start-page: 443
  year: 2016
  end-page: 450
  ident: bib0019
  article-title: Present status of the group contribution equation of state VTPR and typical applications for process development
  publication-title: Fluid. Phase Equilib.
– volume: 240
  start-page: 127
  year: 2006
  end-page: 139
  ident: bib0074
  article-title: Vapor liquid equilibrium modeling of alkane systems with equations of state: “simplicity versus complexity
  publication-title: Fluid. Phase Equilib.
– year: 2010
  ident: bib0005
  article-title: Thermodynamic Models for Industrial Applications: From Classical and Advanced Mixing Rules to Association Theories
– volume: 167
  start-page: 173
  year: 2000
  end-page: 186
  ident: bib0013
  article-title: PSRK group contribution equation of state: revision and extension III
  publication-title: Fluid. Phase Equilib.
– volume: 117
  start-page: 55
  year: 1996
  end-page: 60
  ident: bib0063
  article-title: Prediction of vapor-liquid equilibria in polymer solutions using EOS-group contribution model consistent with the second virial coefficient condition
  publication-title: Fluid. Phase Equilib.
– volume: 27
  start-page: 1197
  year: 1972
  end-page: 1203
  ident: bib0024
  article-title: Equilibrium constants from a modified Redlich-Kwong equation of state
  publication-title: Chem. Eng. Sci.
– start-page: 254
  year: 1967
  end-page: 265
  ident: bib0001
  article-title: The equation of state for gases and liquids (December 12, 1910)
  publication-title: Nobel Lectures Including Presentation Speeches and Laureates’ Biographies
– volume: 30
  start-page: 1936
  year: 1991
  end-page: 1945
  ident: bib0010
  article-title: The MHV2 model: a UNIFAC-based equation of state model for prediction of gas solubility and vapor-liquid equilibria at low and high pressures
  publication-title: Ind. Eng. Chem. Res.
– volume: 210
  start-page: 161
  year: 2003
  end-page: 173
  ident: bib0015
  article-title: Potential of thermodynamic tools (group contribution methods, factual data banks) for the development of chemical processes
  publication-title: Fluid. Phase Equilib.
– volume: 51
  start-page: 4119
  year: 2012
  end-page: 4142
  ident: bib0041
  article-title: Thirty years with EoS/g
  publication-title: Ind. Eng. Chem. Res.
– volume: 25
  start-page: 323
  year: 1986
  end-page: 327
  ident: bib0065
  article-title: A note on the derivation of mixing rules from excess gibbs energy models
  publication-title: Fluid. Phase Equilib.
– year: 2024
  ident: bib0045
  article-title: Can liquid-liquid equilibria be predicted by the combination of a cubic equation of state and a gE model not suitable for liquid-liquid equilibria?
  publication-title: Fluid. Phase Equilib.
– volume: 295
  start-page: 26
  year: 2010
  end-page: 37
  ident: bib0059
  article-title: Relationship between the binary interaction parameters (k
  publication-title: Fluid. Phase Equilib.
– volume: 25
  start-page: 323
  year: 1986
  ident: 10.1016/j.fluid.2025.114455_bib0065
  article-title: A note on the derivation of mixing rules from excess gibbs energy models
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/0378-3812(86)80007-3
– volume: 70
  start-page: 251
  year: 1991
  ident: 10.1016/j.fluid.2025.114455_bib0012
  article-title: PSRK: a group contribution equation of state based on UNIFAC
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/0378-3812(91)85038-V
– volume: 33
  start-page: 145
  year: 1988
  ident: 10.1016/j.fluid.2025.114455_bib0049
  article-title: Solubility of carbon dioxide, methane, and ethane in n-eicosane
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je00052a026
– year: 2003
  ident: 10.1016/j.fluid.2025.114455_bib0029
– volume: 45
  start-page: 1
  year: 2008
  ident: 10.1016/j.fluid.2025.114455_bib0055
  article-title: Predicting the phase equilibria of CO2 + hydrocarbon systems with the PPR78 model (PR EoS and kij calculated through a group contribution method)
  publication-title: J. Supercrit. Fluids
  doi: 10.1016/j.supflu.2007.11.015
– year: 2024
  ident: 10.1016/j.fluid.2025.114455_bib0045
  article-title: Can liquid-liquid equilibria be predicted by the combination of a cubic equation of state and a gE model not suitable for liquid-liquid equilibria?
  publication-title: Fluid. Phase Equilib.
– volume: 52
  start-page: 16457
  year: 2013
  ident: 10.1016/j.fluid.2025.114455_bib0056
  article-title: Predicting the phase equilibria, critical phenomena, and mixing enthalpies of binary aqueous systems containing alkanes, cycloalkanes, aromatics, alkenes, and gases (N2, CO2, H2S, H2) with the PPR78 equation of state
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie402541h
– volume: 121
  start-page: 67
  year: 1996
  ident: 10.1016/j.fluid.2025.114455_bib0038
  article-title: A comparison of various cubic equation of state mixing rules for the simultaneous description of excess enthalpies and vapor-liquid equilibria
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/0378-3812(96)03030-0
– volume: 43
  start-page: 6238
  year: 2004
  ident: 10.1016/j.fluid.2025.114455_bib0020
  article-title: Universal mixing rule for cubic equations of state applicable to symmetric and asymmetric systems: results with the Peng−Robinson equation of state
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie049580p
– volume: 27
  start-page: 1197
  year: 1972
  ident: 10.1016/j.fluid.2025.114455_bib0024
  article-title: Equilibrium constants from a modified Redlich-Kwong equation of state
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(72)80096-4
– volume: 38
  start-page: 5011
  year: 1999
  ident: 10.1016/j.fluid.2025.114455_bib0054
  article-title: The group contribution concept: a useful tool to correlate binary systems and to predict the phase behavior of multicomponent systems involving supercritical CO2 and fatty acids
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie990544d
– year: 2010
  ident: 10.1016/j.fluid.2025.114455_bib0005
– volume: 227
  start-page: 157
  year: 2005
  ident: 10.1016/j.fluid.2025.114455_bib0016
  article-title: PSRK group contribution equation of state: comprehensive revision and extension IV, including critical constants and α-function parameters for 1000 components
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/j.fluid.2004.11.002
– volume: 567
  year: 2023
  ident: 10.1016/j.fluid.2025.114455_bib0004
  article-title: The state of the art of cubic equations of state with temperature-dependent binary interaction coefficients: from correlation to prediction
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/j.fluid.2022.113697
– volume: 108
  start-page: 59
  year: 1995
  ident: 10.1016/j.fluid.2025.114455_bib0039
  article-title: Capabilities and limitations of the Wong-Sandler mixing rules
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/0378-3812(94)02675-Q
– volume: 191
  start-page: 177
  year: 2001
  ident: 10.1016/j.fluid.2025.114455_bib0018
  article-title: Development of an universal group contribution equation of state
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/S0378-3812(01)00626-4
– volume: 15
  start-page: 59
  year: 1976
  ident: 10.1016/j.fluid.2025.114455_bib0025
  article-title: A new two-constant equation of state
  publication-title: Ind. Eng. Chem. Fund.
  doi: 10.1021/i160057a011
– volume: 425
  start-page: 443
  year: 2016
  ident: 10.1016/j.fluid.2025.114455_bib0019
  article-title: Present status of the group contribution equation of state VTPR and typical applications for process development
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/j.fluid.2016.06.042
– volume: 533
  year: 2021
  ident: 10.1016/j.fluid.2025.114455_bib0052
  article-title: SAFT and cubic EoS: type of deviation from ideality naturally predicted in the absence of BIPs. Application to the modelling of athermal mixtures
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/j.fluid.2020.112924
– volume: 419
  start-page: 88
  year: 2016
  ident: 10.1016/j.fluid.2025.114455_bib0034
  article-title: Note on the properties altered by application of a Péneloux–type volume translation to an equation of state
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/j.fluid.2016.03.012
– volume: 560
  year: 2022
  ident: 10.1016/j.fluid.2025.114455_bib0061
  article-title: The impressive impact of including enthalpy and heat capacity of mixing data when parameterising equations of state. Application to the development of the E-PPR78 (Enhanced-Predictive-Peng-Robinson-78) model
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/j.fluid.2022.113456
– volume: 241
  start-page: 216
  year: 2006
  ident: 10.1016/j.fluid.2025.114455_bib0021
  article-title: Thermodynamic property calculations with the universal mixing rule for EoS/GE models: results with the Peng–Robinson EoS and a UNIFAC model
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/j.fluid.2005.12.028
– volume: 80
  start-page: 27
  year: 2006
  ident: 10.1016/j.fluid.2025.114455_bib0023
  article-title: The generalized NRTL model associated with the Peng-Robinson equation of state to predict liquid-liquid equilibria between hydrocarbons, water and ethylene glycol
  publication-title: Pol. J. Chem.
– volume: 111
  start-page: 53
  year: 1995
  ident: 10.1016/j.fluid.2025.114455_bib0037
  article-title: On the combination of equation of state and excess free energy models
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/0378-3812(95)02764-6
– volume: 44
  start-page: 3374
  year: 2005
  ident: 10.1016/j.fluid.2025.114455_bib0051
  article-title: Comments on “predictions of activity coefficients of nearly athermal binary mixtures using cubic equations of state
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0500063
– volume: 41
  start-page: 3489
  year: 2002
  ident: 10.1016/j.fluid.2025.114455_bib0070
  article-title: Development of a universal group contribution equation of state. 2. Prediction of vapor−liquid equilibria for asymmetric systems
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie020047o
– volume: 31
  start-page: 2033
  year: 1992
  ident: 10.1016/j.fluid.2025.114455_bib0035
  article-title: Equation of state mixing rule for nonideal mixtures using available activity coefficient model parameters and that allows extrapolation over large ranges of temperature and pressure
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie00008a027
– volume: 60
  start-page: 47
  year: 1990
  ident: 10.1016/j.fluid.2025.114455_bib0007
  article-title: A method for incorporating excess gibbs energy models in equations of state
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/0378-3812(90)85042-9
– volume: 55
  start-page: 2351
  year: 2000
  ident: 10.1016/j.fluid.2025.114455_bib0053
  article-title: An interpretation of the behavior of EoS/GE models for asymmetric systems
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(99)00472-8
– volume: 224
  start-page: 285
  year: 2004
  ident: 10.1016/j.fluid.2025.114455_bib0022
  article-title: VLE predictions with the Peng-Robinson equation of state and temperature-dependent kij calculated through a group contribution method
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/j.fluid.2004.06.059
– volume: 7
  start-page: 121
  year: 1981
  ident: 10.1016/j.fluid.2025.114455_bib0066
  article-title: A note on excess Gibbs energy models, equations of state and the local composition concept
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/0378-3812(81)85017-0
– volume: 41
  start-page: 283
  year: 2003
  ident: 10.1016/j.fluid.2025.114455_bib0046
  article-title: Isobaric vapor-liquid equilibria and densities for the binary systems oxolane + ethyl 1,1-dimethylethyl ether, oxolane + 2-propanol and propan-2-one + trichloromethane
  publication-title: Phys. Chem. Liquids
  doi: 10.1080/0031910021000044456
– volume: 94
  start-page: 17
  year: 2014
  ident: 10.1016/j.fluid.2025.114455_bib0043
  article-title: General reflection on critical negative azeotropy and upgrade of the Bancroft’s rule with application to the acetone+chloroform binary system
  publication-title: J. Supercrit. Fluids
  doi: 10.1016/j.supflu.2014.06.014
– volume: 34
  year: 1960
  ident: 10.1016/j.fluid.2025.114455_bib0047
  article-title: Isotopic effect in the thermodynamic properties of liquid mixtures. I. The isotopic shift in the vapor pressure-composition diagram of mixtures of deuterochloroform with acetone
  publication-title: Zhur. Fiz. Khim.
– volume: 163
  start-page: 157
  year: 1999
  ident: 10.1016/j.fluid.2025.114455_bib0031
  article-title: Evaluation of an improved volume translation for the prediction of hydrocarbon volumetric properties
  publication-title: Fluid. Phase Equilib.
– volume: 293
  start-page: 164
  year: 2010
  ident: 10.1016/j.fluid.2025.114455_bib0033
  article-title: About the physical validity of attaching the repulsive terms of analytical EOS models by temperature dependencies
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/j.fluid.2010.03.003
– volume: 200
  start-page: 411
  year: 2002
  ident: 10.1016/j.fluid.2025.114455_bib0014
  article-title: Modification of PSRK mixing rules and results for vapor–liquid equilibria, enthalpy of mixing and activity coefficients at infinite dilution
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/S0378-3812(02)00048-1
– volume: 240
  start-page: 127
  year: 2006
  ident: 10.1016/j.fluid.2025.114455_bib0074
  article-title: Vapor liquid equilibrium modeling of alkane systems with equations of state: “simplicity versus complexity
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/j.fluid.2005.12.010
– volume: 92
  start-page: 75
  year: 1994
  ident: 10.1016/j.fluid.2025.114455_bib0017
  article-title: Prediction of vapor-liquid equilibrium with the LCVM model: a linear combination of the Vidal and Michelsen mixing rules coupled with the original UNIFAC and the t-mPR equation of state
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/0378-3812(94)80043-X
– volume: 295
  start-page: 26
  year: 2010
  ident: 10.1016/j.fluid.2025.114455_bib0059
  article-title: Relationship between the binary interaction parameters (kij) of the Peng–Robinson and those of the Soave–Redlich–Kwong equations of state: application to the definition of the PR2SRK model
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/j.fluid.2010.03.037
– start-page: 1
  year: 1981
  ident: 10.1016/j.fluid.2025.114455_bib0026
  article-title: Behavior of CH4-CO2-H2S mixtures at sub-ambient temperatures (RR-47)
  publication-title: Res. Rep. GPA
– volume: 167
  start-page: 173
  year: 2000
  ident: 10.1016/j.fluid.2025.114455_bib0013
  article-title: PSRK group contribution equation of state: revision and extension III
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/S0378-3812(99)00333-7
– volume: 163
  start-page: 161
  year: 1999
  ident: 10.1016/j.fluid.2025.114455_bib0032
  article-title: Reply to the letter to the editor by O. Pfohl about the paper ‘“evaluation of an improved volume translation for the prediction of hydrocarbon volumetric properties”’ [FPE 154, 193–204 (1999)]
  publication-title: Fluid. Phase Equilib.
– volume: 42
  start-page: 2327
  year: 1996
  ident: 10.1016/j.fluid.2025.114455_bib0064
  article-title: Analysis of excess free energy based equations of state models
  publication-title: AIChE J.
  doi: 10.1002/aic.690420822
– year: 2004
  ident: 10.1016/j.fluid.2025.114455_bib0002
– volume: 27
  start-page: 7150
  year: 2013
  ident: 10.1016/j.fluid.2025.114455_bib0058
  article-title: Enthalpy and heat capacity changes on mixing: fundamental aspects and prediction by means of the PPR78 cubic equation of state
  publication-title: Energy Fuels
  doi: 10.1021/ef401605c
– volume: 30
  start-page: 1936
  year: 1991
  ident: 10.1016/j.fluid.2025.114455_bib0010
  article-title: The MHV2 model: a UNIFAC-based equation of state model for prediction of gas solubility and vapor-liquid equilibria at low and high pressures
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie00056a041
– volume: 60
  start-page: 213
  year: 1990
  ident: 10.1016/j.fluid.2025.114455_bib0008
  article-title: A modified Huron-Vidal mixing rule for cubic equations of state
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/0378-3812(90)85053-D
– volume: 117
  start-page: 55
  year: 1996
  ident: 10.1016/j.fluid.2025.114455_bib0063
  article-title: Prediction of vapor-liquid equilibria in polymer solutions using EOS-group contribution model consistent with the second virial coefficient condition
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/0378-3812(95)02936-2
– volume: 485
  start-page: 264
  year: 2019
  ident: 10.1016/j.fluid.2025.114455_bib0027
  article-title: Updated versions of the generalized Soave α-function suitable for the Redlich-Kwong and Peng-Robinson equations of state
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/j.fluid.2018.12.007
– volume: 85
  start-page: 41
  year: 1993
  ident: 10.1016/j.fluid.2025.114455_bib0036
  article-title: Accurate equation of state predictions at high temperatures and pressures using the existing UNIFAC model
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/0378-3812(93)80003-6
– volume: 112
  start-page: 1
  year: 1995
  ident: 10.1016/j.fluid.2025.114455_bib0067
  article-title: Further development, status and results of the PSRK method for the prediction of vapor-liquid equilibria and gas solubilities
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/0378-3812(95)02792-D
– volume: 49
  start-page: 7589
  year: 2010
  ident: 10.1016/j.fluid.2025.114455_bib0072
  article-title: Modeling of highly nonideal systems: 2. Prediction of high pressure phase equilibria with the group contribution NRTL-PR EoS
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie101266x
– volume: 301
  start-page: 80
  year: 2011
  ident: 10.1016/j.fluid.2025.114455_bib0071
  article-title: A new formulation of the predictive NRTL-PR model in terms of kij mixing rules. Extension of the group contributions for the modeling of hydrocarbons in the presence of associating compounds
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/j.fluid.2010.11.009
– start-page: 254
  year: 1967
  ident: 10.1016/j.fluid.2025.114455_bib0001
  article-title: The equation of state for gases and liquids (December 12, 1910)
– volume: 55
  start-page: 421
  year: 2010
  ident: 10.1016/j.fluid.2025.114455_bib0040
  article-title: Equations of state: from the ideas of Van der Waals to association theories
  publication-title: J. Supercrit. Fluids.
  doi: 10.1016/j.supflu.2010.10.023
– volume: 579
  year: 2024
  ident: 10.1016/j.fluid.2025.114455_bib0044
  article-title: The secret of the Wilson equation
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/j.fluid.2023.114018
– volume: 60
  start-page: 17228
  year: 2021
  ident: 10.1016/j.fluid.2025.114455_bib0042
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.1c03003
– volume: 36
  start-page: 1829
  year: 1990
  ident: 10.1016/j.fluid.2025.114455_bib0009
  article-title: High-pressure vapor-liquid equilibrium with a UNIFAC-based equation of state
  publication-title: AIChe J.
  doi: 10.1002/aic.690361207
– volume: 38
  start-page: 671
  year: 1992
  ident: 10.1016/j.fluid.2025.114455_bib0011
  article-title: A theoretically correct mixing rule for cubic equations of state
  publication-title: AIChE J.
  doi: 10.1002/aic.690380505
– volume: 64
  start-page: 4619
  year: 2019
  ident: 10.1016/j.fluid.2025.114455_bib0028
  article-title: Taking another look at the Van der Waals equation of state–almost 150 years later
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/acs.jced.9b00264
– year: 2002
  ident: 10.1016/j.fluid.2025.114455_bib0003
– volume: 87
  start-page: 23
  year: 1993
  ident: 10.1016/j.fluid.2025.114455_bib0048
  article-title: Application of equations of state and the theory of group solutions to phase equilibrium prediction
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/0378-3812(93)85016-F
– volume: 47
  start-page: 115
  year: 1989
  ident: 10.1016/j.fluid.2025.114455_bib0068
  article-title: Excess functions and equations of state
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/0378-3812(89)80172-4
– volume: 59
  start-page: 14981
  year: 2020
  ident: 10.1016/j.fluid.2025.114455_bib0062
  article-title: Benchmark database containing binary-system-high-quality-certified data for cross-comparing thermodynamic models and assessing their accuracy
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.0c01734
– volume: 35
  start-page: 269
  year: 1996
  ident: 10.1016/j.fluid.2025.114455_bib0069
  article-title: A mixing rule to incorporate solution model into equation of state
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie950203+
– volume: 56
  start-page: 126
  year: 2017
  ident: 10.1016/j.fluid.2025.114455_bib0060
  article-title: E-PPR78: a proper cubic EoS for modelling fluids involved in the design and operation of carbon dioxide capture and storage (CCS) processes
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2016.11.015
– volume: 34
  start-page: 287
  year: 1987
  ident: 10.1016/j.fluid.2025.114455_bib0050
  article-title: Measurements and calculations of phase equilibria of binary mixtures of ethane + eicosane. Part I: vapour + liquid equilibria
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/0378-3812(87)80037-7
– volume: 56
  start-page: 3225
  year: 2010
  ident: 10.1016/j.fluid.2025.114455_bib0057
  article-title: Predicting the phase equilibria of synthetic petroleum fluids with the PPR78 approach
  publication-title: AIChE J.
  doi: 10.1002/aic.12232
– volume: 210
  start-page: 161
  year: 2003
  ident: 10.1016/j.fluid.2025.114455_bib0015
  article-title: Potential of thermodynamic tools (group contribution methods, factual data banks) for the development of chemical processes
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/S0378-3812(03)00177-8
– year: 2007
  ident: 10.1016/j.fluid.2025.114455_bib0030
– volume: 49
  start-page: 7580
  year: 2010
  ident: 10.1016/j.fluid.2025.114455_bib0073
  article-title: Modeling of highly nonideal systems: 1. A generalized version of the NRTL equation for the description of low-pressure equilibria
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie100121c
– volume: 3
  start-page: 255
  year: 1979
  ident: 10.1016/j.fluid.2025.114455_bib0006
  article-title: New mixing rules in simple equations of state for representing vapour-liquid equilibria of strongly non-ideal mixtures
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/0378-3812(79)80001-1
– volume: 51
  start-page: 4119
  year: 2012
  ident: 10.1016/j.fluid.2025.114455_bib0041
  article-title: Thirty years with EoS/gE models—What have we learned?
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie2015119
– volume: 429
  start-page: 301
  year: 2016
  ident: 10.1016/j.fluid.2025.114455_bib0075
  article-title: Development of the translated-consistent tc-PR and tc-RK cubic equations of state for a safe and accurate prediction of volumetric, energetic and saturation properties of pure compounds in the sub- and super-critical domains
  publication-title: Fluid. Phase Equilib.
  doi: 10.1016/j.fluid.2016.09.003
SSID ssj0001562
Score 2.4522204
Snippet One of the most challenging aspects of using a Van der Waals type equation of state for mixtures is determining the appropriate expressions for the...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 114455
SubjectTerms Advanced mixing rules
Cubic equations of state
Engineering Sciences
Excess Gibbs energy
Huron-Vidal
MHV1
Title Let us rethink advanced mixing rules for cubic equations of state
URI https://dx.doi.org/10.1016/j.fluid.2025.114455
https://hal.univ-lorraine.fr/hal-05097975
Volume 596
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYABQQFRHpWFGAmNaztxxqiiClC6QKVuUeLYIqi0pU0QE7-dcx48JMTAGMuXRJ-du8_x3WeEziOtKZEJsYirucW0FlbEGbEcTZ2Eu14kCu3Ou5ETjNnNhE8aqF_Xwpi0ysr3lz698NZVS7dCs7tI0-69TV0B8QYmpInZ3MhuM-aaWX75_pXmAeuTcifBpAFA71p5qMjx0tM8NXKhPW40c5mp9_s9Oq091v9Zi7gz2EHbFWHEfvlOu6ihZi200a_PaWuhrW-SgnvIH6oM5yu8VNkjLDNxvcePn9M36ICX-VStMDBVLPM4lVi9lFrfKzzXuKgu2kfjwdVDP7CqYxIsSSnLLOVpxkUci4SISKvYcxQTCmK_jBLKFIR4oHiEJtSLhc2F9Fhk9yR82xGJCfAdeoCas_lMHSIswJRGnm0nsQSmAhbKlT1P2w4MIDDbNrqo4QkXpRpGWKeJPYUFmqFBMyzRbCOnhjD8Magh-Ou_Dc8A8M9HGAnswB-Gps3o1biey1_J0X_vfow2zVWZKXaCmtkyV6dALbK4U8ydDlr3r2-D0Qd-sMsV
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYAB8RRvLMRI1Li2E2esKlAKpQsgsVmJY4sgKNAmiJ_POY8KJMTA6uSS6LNz99m--wxwlljLqM6oR0MrPG6t9BLBqRdYFmQijBJZaXfejIP4nl89iIcFGLS1MC6tsvH9tU-vvHXT0m3Q7L7leffWZ6HEeIMD0sVsESzCklOnEh1Y6g-v4_HcIeMUpd5McJkAaNCKD1VpXva5zJ1iaE842VzuSv5-D1CLj-1SaxV6LtdhreGMpF9_1gYsmMkmLA_ao9o2YfWbquAW9EemIOWMTE3xiDNN0m7zk5f8E28g0_LZzAiSVaLLNNfEvNdy3zPyaklVYLQN95cXd4PYa05K8DRjvPBMZLmQaSozKhNr0igwXBoM_zrJGDcY5ZHlUZaxKJW-kDriid_T-HsnNKVIedgOdCavE7MLRKIpSyLfz1KNZAUtTKh7kfUD7EMkt3tw3sKj3mpBDNVmij2pCk3l0FQ1mnsQtBCqH_2q0GX_bXiKgM9f4VSw4_5IuTYnWRNGofig-_99-gksx3c3IzUajq8PYMVdqRPHDqFTTEtzhEyjSI-bkfQFjazNxg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Let+us+rethink+advanced+mixing+rules+for+cubic+equations+of+state&rft.jtitle=Fluid+phase+equilibria&rft.au=Privat%2C+Romain&rft.au=Jaubert%2C+Jean-No%C3%ABl&rft.au=Kontogeorgis%2C+Georgios+M.&rft.date=2025-09-01&rft.pub=Elsevier+B.V&rft.issn=0378-3812&rft.volume=596&rft_id=info:doi/10.1016%2Fj.fluid.2025.114455&rft.externalDocID=S0378381225001256
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3812&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3812&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3812&client=summon