Regulation of metal ions in smart metal-cluster nodes of metal-organic frameworks with open metal sites for improved photocatalytic CO2 reduction reaction

We demonstrate that the regulation of metal species in metal-cluster nodes of PCN-250-Fe3 could realize a substantial improvement of conversion activity and selectivity of CO2 reduction. The photocatalysis results revealed that all bi-metallic PCN-250-Fe2M (M = Mn, Zn, Ni, Co) show better catalytic...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 276; p. 119173
Main Authors Dong, Hong, Zhang, Xin, Lu, Yang, Yang, Yan, Zhang, Yang-Peng, Tang, Hong-Liang, Zhang, Feng-Ming, Yang, Zhao-Di, Sun, Xiaojun, Feng, Yujie
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 05.11.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We demonstrate that the regulation of metal species in metal-cluster nodes of PCN-250-Fe3 could realize a substantial improvement of conversion activity and selectivity of CO2 reduction. The photocatalysis results revealed that all bi-metallic PCN-250-Fe2M (M = Mn, Zn, Ni, Co) show better catalytic activity for stable reducing CO2 into CO compared with mono-metallic PCN-250-Fe3. [Display omitted] •We realized a substantial improvement of CO2 reduction activity by regulating the metal ions in metal-cluster nodes of MOFs.•PCN-250-Fe2Mn shows the maximum photocatalytic activity of 21.51 mmol h−1 g−1.•PCN-250-Fe2Mn is the best performance MOF-based photocatalyst for CO2 reduction on the similar reaction condition until now.•Introducing the second MII could promote the migration of photogenerated electrons to active sites Metal-organic frameworks (MOFs) have exhibited promising potential in the field of photocatalysis CO2 conversion, while improving the conversion activity of CO2 by regulating the metal species in the metal-cluster nodes of MOFs has not been systematically explored. Herein, we realized a substantial improvement of CO2 conversion activity by regulating the metal species in metal-cluster nodes of MOFs and obtain the best performance MOF photocatalysts for CO2 conversion. A stable MOF, PCN-250-Fe3 with Fe2IIIFeII metal-cluster nodes and open metal sites was synthesized, and we further improve its CO2 reduction activity by tuning the species of MII metal ions in the cluster. The photocatalytic results revealed that all bi-metallic PCN-250-Fe2M (M = Mn, Zn, Ni, Co) show better catalytic activity and selectivity for stable reducing CO2 into CO, compared with mono-metallic PCN-250-Fe3. Especially, PCN-250-Fe2Mn shows the maximum photocatalytic activity of 21.51 mmol h−1 g−1 under visible light irradiation, which is the best performance MOF-based photocatalyst for CO2 conversion on the similar reaction condition until now. Further investigations and theoretical calculations reveal that the introduction of the second MII metal ions could promote the migration of photogenerated electrons to active sites and improve the CO2 adsorption and activation by favoring the CO2 reduction rout and restraining the production of hydrogen evolution intermediate.
AbstractList Metal-organic frameworks (MOFs) have exhibited promising potential in the field of photocatalysis CO2 conversion, while improving the conversion activity of CO2 by regulating the metal species in the metal-cluster nodes of MOFs has not been systematically explored. Herein, we realized a substantial improvement of CO2 conversion activity by regulating the metal species in metal-cluster nodes of MOFs and obtain the best performance MOF photocatalysts for CO2 conversion. A stable MOF, PCN-250-Fe3 with Fe2IIIFeII metal-cluster nodes and open metal sites was synthesized, and we further improve its CO2 reduction activity by tuning the species of MII metal ions in the cluster. The photocatalytic results revealed that all bi-metallic PCN-250-Fe2M (M = Mn, Zn, Ni, Co) show better catalytic activity and selectivity for stable reducing CO2 into CO, compared with mono-metallic PCN-250-Fe3. Especially, PCN-250-Fe2Mn shows the maximum photocatalytic activity of 21.51 mmol h−1 g−1 under visible light irradiation, which is the best performance MOF-based photocatalyst for CO2 conversion on the similar reaction condition until now. Further investigations and theoretical calculations reveal that the introduction of the second MII metal ions could promote the migration of photogenerated electrons to active sites and improve the CO2 adsorption and activation by favoring the CO2 reduction rout and restraining the production of hydrogen evolution intermediate.
We demonstrate that the regulation of metal species in metal-cluster nodes of PCN-250-Fe3 could realize a substantial improvement of conversion activity and selectivity of CO2 reduction. The photocatalysis results revealed that all bi-metallic PCN-250-Fe2M (M = Mn, Zn, Ni, Co) show better catalytic activity for stable reducing CO2 into CO compared with mono-metallic PCN-250-Fe3. [Display omitted] •We realized a substantial improvement of CO2 reduction activity by regulating the metal ions in metal-cluster nodes of MOFs.•PCN-250-Fe2Mn shows the maximum photocatalytic activity of 21.51 mmol h−1 g−1.•PCN-250-Fe2Mn is the best performance MOF-based photocatalyst for CO2 reduction on the similar reaction condition until now.•Introducing the second MII could promote the migration of photogenerated electrons to active sites Metal-organic frameworks (MOFs) have exhibited promising potential in the field of photocatalysis CO2 conversion, while improving the conversion activity of CO2 by regulating the metal species in the metal-cluster nodes of MOFs has not been systematically explored. Herein, we realized a substantial improvement of CO2 conversion activity by regulating the metal species in metal-cluster nodes of MOFs and obtain the best performance MOF photocatalysts for CO2 conversion. A stable MOF, PCN-250-Fe3 with Fe2IIIFeII metal-cluster nodes and open metal sites was synthesized, and we further improve its CO2 reduction activity by tuning the species of MII metal ions in the cluster. The photocatalytic results revealed that all bi-metallic PCN-250-Fe2M (M = Mn, Zn, Ni, Co) show better catalytic activity and selectivity for stable reducing CO2 into CO, compared with mono-metallic PCN-250-Fe3. Especially, PCN-250-Fe2Mn shows the maximum photocatalytic activity of 21.51 mmol h−1 g−1 under visible light irradiation, which is the best performance MOF-based photocatalyst for CO2 conversion on the similar reaction condition until now. Further investigations and theoretical calculations reveal that the introduction of the second MII metal ions could promote the migration of photogenerated electrons to active sites and improve the CO2 adsorption and activation by favoring the CO2 reduction rout and restraining the production of hydrogen evolution intermediate.
ArticleNumber 119173
Author Zhang, Xin
Dong, Hong
Feng, Yujie
Sun, Xiaojun
Yang, Yan
Yang, Zhao-Di
Lu, Yang
Zhang, Yang-Peng
Tang, Hong-Liang
Zhang, Feng-Ming
Author_xml – sequence: 1
  givenname: Hong
  surname: Dong
  fullname: Dong, Hong
  organization: School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, PR China
– sequence: 2
  givenname: Xin
  surname: Zhang
  fullname: Zhang, Xin
  organization: School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, PR China
– sequence: 3
  givenname: Yang
  surname: Lu
  fullname: Lu, Yang
  organization: School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, PR China
– sequence: 4
  givenname: Yan
  surname: Yang
  fullname: Yang, Yan
  organization: School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, PR China
– sequence: 5
  givenname: Yang-Peng
  surname: Zhang
  fullname: Zhang, Yang-Peng
  organization: School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, PR China
– sequence: 6
  givenname: Hong-Liang
  surname: Tang
  fullname: Tang, Hong-Liang
  organization: School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, PR China
– sequence: 7
  givenname: Feng-Ming
  surname: Zhang
  fullname: Zhang, Feng-Ming
  email: zhangfm80@163.com
  organization: School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, PR China
– sequence: 8
  givenname: Zhao-Di
  surname: Yang
  fullname: Yang, Zhao-Di
  email: yangzhaodi@163.com
  organization: School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, PR China
– sequence: 9
  givenname: Xiaojun
  surname: Sun
  fullname: Sun, Xiaojun
  organization: School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, PR China
– sequence: 10
  givenname: Yujie
  surname: Feng
  fullname: Feng, Yujie
  email: yujief@hit.edu.cn
  organization: School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China
BookMark eNqFUctuFDEQtFCQ2AT-gIMlzrP4MQ8vByS0IoAUKRKCs9VjtxMvs_ZgexLlV_hanJ2IAwc42S5VVZe7zslZiAEJec3ZljPevz1sYTZQxq1gokJ8xwf5jGy4GmQjlZJnZMN2om-kHOQLcp7zgTEmpFAb8usr3iwTFB8DjY4escBE6yNTH2g-Qior1phpyQUTDdFi_kNtYrqB4A11CY54H9OPTO99uaVxxvDkln2pChcT9cc5xTu0dL6NJdbEMD2UKt5fC5rQLuYUIyGcLi_JcwdTxldP5wX5fvnx2_5zc3X96cv-w1VjpGxLgx1aYCBH1rW2QmA5tsPYjS10vdqNTCiHu94oZ60wIKGTyinh2OgMtKqXF-TN6lvD_VwwF32ISwp1pBZtJ7gQwyAq693KMinmnNBp48tpbyWBnzRn-rELfdBrF_qxC712UcXtX-I5-brch__J3q8yrN-_85h0Nh6DQesTmqJt9P82-A2-A6uw
CitedBy_id crossref_primary_10_1016_j_jcis_2021_06_127
crossref_primary_10_1039_D1TA04493A
crossref_primary_10_1039_D1QI01352A
crossref_primary_10_1016_j_apcatb_2021_120635
crossref_primary_10_1016_j_cej_2021_129459
crossref_primary_10_1016_j_cclet_2021_09_035
crossref_primary_10_1016_j_jece_2024_112458
crossref_primary_10_1080_03067319_2024_2384653
crossref_primary_10_1016_j_rser_2021_111298
crossref_primary_10_1021_acscatal_2c06255
crossref_primary_10_1016_j_jwpe_2023_103586
crossref_primary_10_1016_j_jssc_2023_123931
crossref_primary_10_1016_j_mtener_2024_101542
crossref_primary_10_1007_s11426_022_1284_x
crossref_primary_10_1016_j_cej_2022_135622
crossref_primary_10_3390_s20226686
crossref_primary_10_1016_j_diamond_2023_110611
crossref_primary_10_1007_s10854_021_06944_w
crossref_primary_10_3389_fnano_2021_698351
crossref_primary_10_1021_acsaem_1c03868
crossref_primary_10_1063_5_0099758
crossref_primary_10_1016_j_mcat_2024_114162
crossref_primary_10_1016_S1872_2067_22_64115_9
crossref_primary_10_1039_D1TA10148J
crossref_primary_10_3390_nano14161340
crossref_primary_10_1002_cssc_202400504
crossref_primary_10_1002_slct_202003559
crossref_primary_10_1016_S1872_2067_24_60195_6
crossref_primary_10_1002_adfm_202104231
crossref_primary_10_1016_j_jclepro_2024_143263
crossref_primary_10_1021_acsami_1c16612
crossref_primary_10_1039_D3TA06964H
crossref_primary_10_1039_D4TA06207H
crossref_primary_10_1007_s12161_023_02450_3
crossref_primary_10_1016_j_cej_2022_137011
crossref_primary_10_1039_D3RA06718A
crossref_primary_10_1016_j_cej_2022_138747
crossref_primary_10_1038_s44160_024_00490_z
crossref_primary_10_1039_D1RA06023F
crossref_primary_10_1039_D1TA02926F
crossref_primary_10_1016_j_cej_2021_134125
crossref_primary_10_1016_j_cej_2022_140425
crossref_primary_10_1039_D3DT01668D
crossref_primary_10_1016_S1872_2067_21_63939_6
crossref_primary_10_1016_j_cej_2025_160037
crossref_primary_10_1002_asia_202300297
crossref_primary_10_1021_acs_inorgchem_4c03810
crossref_primary_10_1002_aesr_202200004
crossref_primary_10_1021_acscatal_4c06456
crossref_primary_10_1016_j_joule_2021_08_003
crossref_primary_10_1039_D0TA10278D
crossref_primary_10_1021_acsami_3c04225
crossref_primary_10_1021_acs_inorgchem_2c01497
crossref_primary_10_1021_acsmacrolett_2c00035
crossref_primary_10_1002_anie_202423018
crossref_primary_10_1039_D0AY02310H
crossref_primary_10_1039_D3CC05514K
crossref_primary_10_1021_acs_inorgchem_2c01539
crossref_primary_10_1051_e3sconf_202125202056
crossref_primary_10_1002_cssc_202101173
crossref_primary_10_1021_acsami_2c15114
crossref_primary_10_3390_catal10111293
crossref_primary_10_1016_j_cattod_2023_114149
crossref_primary_10_1002_slct_202004839
crossref_primary_10_1016_j_ccr_2023_215257
crossref_primary_10_1016_S1872_2067_23_64556_5
crossref_primary_10_1021_acsomega_2c05030
crossref_primary_10_1039_D1CY01505B
crossref_primary_10_1016_j_psep_2020_10_025
crossref_primary_10_1021_acs_inorgchem_2c04078
crossref_primary_10_3866_PKU_WHXB202403032
crossref_primary_10_1016_j_mtchem_2024_102197
crossref_primary_10_1016_j_nxener_2023_100041
crossref_primary_10_1016_j_jcis_2022_08_120
crossref_primary_10_1016_j_jece_2023_110424
crossref_primary_10_1021_acsami_3c02298
crossref_primary_10_1021_acsomega_2c00663
crossref_primary_10_1016_j_ccr_2022_214664
crossref_primary_10_1016_j_jmst_2025_02_009
crossref_primary_10_1021_acsaem_1c02369
crossref_primary_10_1039_D0DT02309D
crossref_primary_10_1039_D3CS00205E
crossref_primary_10_3390_catal13030613
crossref_primary_10_1002_ange_202111622
crossref_primary_10_1039_D3NJ05781J
crossref_primary_10_1039_D4QI01449A
crossref_primary_10_1007_s12274_023_6258_x
crossref_primary_10_1016_j_mattod_2024_12_019
crossref_primary_10_1039_D4EE03065F
crossref_primary_10_1002_adsu_202200394
crossref_primary_10_1016_j_jes_2022_01_005
crossref_primary_10_1016_j_cej_2024_154636
crossref_primary_10_1007_s40843_024_2996_2
crossref_primary_10_1002_asia_202100813
crossref_primary_10_1016_j_apsusc_2023_159227
crossref_primary_10_1016_j_fuel_2024_132973
crossref_primary_10_1002_anie_202204948
crossref_primary_10_1002_ange_202314384
crossref_primary_10_1016_j_jcis_2022_12_154
crossref_primary_10_1016_j_jclepro_2021_126974
crossref_primary_10_1002_anie_202404563
crossref_primary_10_1039_D1RA01913A
crossref_primary_10_1080_07388551_2020_1869689
crossref_primary_10_1039_D2QI02366K
crossref_primary_10_1016_S1872_2067_20_63715_9
crossref_primary_10_1016_j_jfca_2022_105080
crossref_primary_10_1039_D2TA04528A
crossref_primary_10_1016_j_cej_2021_132157
crossref_primary_10_1021_acsmaterialslett_4c00715
crossref_primary_10_1039_D1SE00804H
crossref_primary_10_1016_j_apsusc_2022_153758
crossref_primary_10_1016_j_jclepro_2022_130551
crossref_primary_10_1016_j_jece_2023_109408
crossref_primary_10_1039_D4TC04325A
crossref_primary_10_1002_cplu_202400229
crossref_primary_10_1002_ange_202423018
crossref_primary_10_1016_j_apsusc_2023_157453
crossref_primary_10_1002_anie_202111622
crossref_primary_10_1016_j_ccr_2024_216022
crossref_primary_10_1039_D2NJ02812C
crossref_primary_10_1016_j_molstruc_2024_140190
crossref_primary_10_1016_j_cclet_2024_109700
crossref_primary_10_1021_acs_inorgchem_3c02026
crossref_primary_10_1039_D1NJ05440F
crossref_primary_10_1016_j_ces_2023_118886
crossref_primary_10_1016_j_ica_2024_122520
crossref_primary_10_1021_acsanm_2c03732
crossref_primary_10_1002_smll_202202939
crossref_primary_10_1016_j_ccr_2022_214639
crossref_primary_10_1039_D4QI02143F
crossref_primary_10_1016_j_cej_2023_148162
crossref_primary_10_1016_j_chemosphere_2021_131530
crossref_primary_10_1039_D0NJ04322B
crossref_primary_10_1039_D2DT03916H
crossref_primary_10_1002_anie_202012019
crossref_primary_10_1016_j_jcis_2024_05_186
crossref_primary_10_1016_j_crcon_2023_100211
crossref_primary_10_1007_s11356_023_30258_5
crossref_primary_10_1038_s41598_024_76199_y
crossref_primary_10_1002_smll_202102089
crossref_primary_10_1016_j_mtsust_2024_100745
crossref_primary_10_1016_j_checat_2024_101154
crossref_primary_10_1039_D3TA04403C
crossref_primary_10_1002_ange_202404563
crossref_primary_10_1002_anie_202314384
crossref_primary_10_1016_j_cclet_2024_110733
crossref_primary_10_1039_D1QI00411E
crossref_primary_10_1021_acsami_2c19236
crossref_primary_10_1016_j_ccr_2022_214505
crossref_primary_10_1016_j_jallcom_2023_170479
crossref_primary_10_1021_acs_inorgchem_4c04599
crossref_primary_10_1073_pnas_2118278119
crossref_primary_10_1002_cnl2_107
crossref_primary_10_1016_j_foodchem_2021_129202
crossref_primary_10_1016_j_cej_2024_157716
crossref_primary_10_1021_acs_inorgchem_1c03348
crossref_primary_10_1016_j_seppur_2024_126544
crossref_primary_10_1021_acs_inorgchem_3c02765
crossref_primary_10_1039_D1EE02714J
crossref_primary_10_1002_ange_202012019
crossref_primary_10_1016_j_gee_2022_12_010
crossref_primary_10_1002_ange_202204948
crossref_primary_10_1021_acs_inorgchem_2c00235
crossref_primary_10_1016_j_ccr_2023_215210
crossref_primary_10_1016_j_ccr_2024_216324
crossref_primary_10_3390_molecules28207121
crossref_primary_10_1016_j_apenergy_2024_124977
crossref_primary_10_1016_j_cej_2025_161820
crossref_primary_10_1021_acs_iecr_1c02058
crossref_primary_10_1016_j_cej_2020_128178
crossref_primary_10_1039_D1NR04417F
crossref_primary_10_1016_j_jclepro_2021_130164
Cites_doi 10.1021/acsami.9b14995
10.1039/C9TA01628G
10.1016/j.ultsonch.2018.02.001
10.1016/j.apcatb.2018.01.028
10.1021/jacs.5b08773
10.1021/acsami.7b08451
10.1021/acsami.9b16473
10.1021/jacs.6b05304
10.1039/b807080f
10.1021/jacs.7b10107
10.1039/C8TA00154E
10.1021/jacs.7b09074
10.1016/j.ccr.2019.03.019
10.1002/adfm.201502253
10.1021/acs.inorgchem.5b00752
10.1002/anie.201309426
10.1002/anie.200705998
10.1039/c3ta12433a
10.1073/pnas.79.2.701
10.1016/j.cclet.2018.06.021
10.1039/C9CS00163H
10.1039/C9EE00717B
10.1021/ja1068596
10.1016/j.apcatb.2019.118144
10.1016/j.cej.2019.122342
10.1039/C8SC03471K
10.1016/j.apcatb.2014.06.037
10.1002/anie.201701627
10.1039/B804323J
10.1021/acscatal.8b04887
10.1002/anie.201506966
10.1021/cs501169t
10.1002/chem.201804153
10.1021/acs.inorgchem.9b02658
10.1021/jz500202x
10.1021/acsami.9b00415
10.1021/ja042802q
10.1021/jacs.9b01920
10.1039/b802426j
10.1039/C6TA00429F
10.1021/jacs.5b13335
10.1002/anie.201608597
10.1126/science.1239872
10.1039/C4CC09797A
10.1002/anie.201913284
10.1039/C6CS00250A
10.1021/ja4074003
10.1002/adma.201601387
10.1002/anie.201207199
10.1002/anie.201811545
10.1038/s41560-019-0431-1
10.1002/anie.201905869
10.1016/j.apcatb.2019.01.014
10.1021/jacs.7b09163
10.1002/anie.201508941
10.1038/nature16455
10.1021/jacs.8b11042
10.1021/jacs.7b01559
10.1016/j.apcatb.2018.02.055
10.1016/j.jhazmat.2018.12.030
10.1021/acscatal.5b01767
10.1021/ef800209a
10.1002/aenm.201701580
10.1021/jacs.6b00007
10.1038/nmat2578
10.1038/s41467-018-06938-z
10.1039/C7CY02286G
10.1021/jacs.6b11027
10.1038/nature11475
10.1038/ncomms6723
10.1016/j.apcatb.2017.07.023
10.1038/s41467-018-02819-7
10.1002/adma.201500116
10.1021/ja203564w
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Nov 5, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Nov 5, 2020
DBID AAYXX
CITATION
7SR
7ST
7U5
8BQ
8FD
C1K
FR3
JG9
KR7
L7M
SOI
DOI 10.1016/j.apcatb.2020.119173
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
ExternalDocumentID 10_1016_j_apcatb_2020_119173
S0926337320305889
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPD
SSG
SSZ
T5K
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
XPP
7SR
7ST
7U5
8BQ
8FD
C1K
EFKBS
FR3
JG9
KR7
L7M
SOI
ID FETCH-LOGICAL-c334t-e5eda0a3b054dc33ad1e47b5b4a5689b028fe96c8fdd2ca3a538f82f0bfca4863
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Wed Aug 13 06:10:36 EDT 2025
Thu Apr 24 23:01:00 EDT 2025
Tue Jul 01 04:35:06 EDT 2025
Sat Mar 02 16:00:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Open metal sites
Bi-metallic clusters
Photocatalytic CO2 reduction
Metal-organic frameworks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-e5eda0a3b054dc33ad1e47b5b4a5689b028fe96c8fdd2ca3a538f82f0bfca4863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2452122772
PQPubID 2045281
ParticipantIDs proquest_journals_2452122772
crossref_citationtrail_10_1016_j_apcatb_2020_119173
crossref_primary_10_1016_j_apcatb_2020_119173
elsevier_sciencedirect_doi_10_1016_j_apcatb_2020_119173
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-05
PublicationDateYYYYMMDD 2020-11-05
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-05
  day: 05
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Li, Zhang, Zhou (bib0350) 2018; 30
Park, Jiang, Feng, Mao, Zhou (bib0175) 2016; 138
Wang, Xie, deKrafft, Lin (bib0315) 2011; 133
Dong, Zhang, Yan, Wang, Sun, Zhang, Feng, Zhang (bib0165) 2019; 11
Liao, Gong, Zhang, Gao, Yang, Fang (bib0020) 2019; 12
Thoi, Kornienko, Margarit, Yang, Chang (bib0375) 2013; 135
Choi, Kim, Rungtaweevoranit, Trickett, Barmanbek, Alshammari, Yang, Yaghi (bib0310) 2017; 139
Xu, Hu, Wang, Li, Zhang, Luo, Yu, Jiang (bib0320) 2015; 137
Wang, Huang, Liu, Sun, Li (bib0235) 2014; 4
Qin, Yuan, Zhang, Li, Du, Huang, Guan, Drake, Pang, Lan, Alsalme, Zhou (bib0325) 2019; 141
Liu, Mu, Yao, Guo, Guo, Zhang, Lu (bib0335) 2019; 245
Zhang, Dong, Zhang, Sun, Liu, Yang, Liu, Wei (bib0180) 2017; 9
Benson, Kubiak, Sathrum, Smieja (bib0040) 2009; 38
Sun, Gao, Fu, Zeng, Chen, Li (bib0295) 2015; 51
Wang, Liu, Guo, Gao, Gong, Wang, Liu, Li, Gurzadyan, Sun (bib0305) 2018; 6
Hwang, Hong, Chang, Jhung, Seo, Kim, Vimont, Daturi, Serre, Ferey (bib0365) 2008; 47
Wang, Huang, He, Chen, Liu, Shen, Lan (bib0055) 2018; 9
Li, Kuppler, Zhou (bib0120) 2009; 38
Ye, Guo, Wan, Li, Song, Chen, Zhang, Xiang, Chen (bib0140) 2017; 139
Shimizu, Taylor, Kim (bib0150) 2013; 341
Feng, Wang, Wei, Chen, Simon, Arvapally, Martin, Bosch, Liu, Fordham, Yuan, Omary, Haranczyk, Smit, Zhou (bib0265) 2014; 5
Dong, Zhang, Huang, Lu, Ji, Liu, Lan (bib0260) 2020; 59
Lehn, Ziessel (bib0015) 1982; 79
Mahmoud, Audi, Assoud, Ghaddar, Hmadeh (bib0330) 2019; 141
Lin, Kong, Zhang, Chen (bib0360) 2017; 7
Li, Sun, Xu, Shao, Wu, Xu, Pan, Ju, Zhu, Xie (bib0400) 2019; 4
Sudik, Millward, Ockwig, Cote, Kim, Yaghi (bib0125) 2005; 127
Habisreutinger, Schmidt-Mende, Stolarczyk (bib0085) 2013; 52
Liu, Low, Li, Razmjou, Wang, Yao, Wang (bib0090) 2013; 1
Han, Ou, Deng, Song, Tian, Deng, Xu, Lin (bib0230) 2018; 57
Dong, Yang, Zhang, Meng, Sheng, Sun, Feng, Zhang (bib0185) 2018; 24
Li, Wang, Liu, Lim, Zou, Zhao (bib0215) 2016; 138
Kajiwara, Fujii, Tsujimoto, Kobayashi, Higuchi, Tanaka, Kitagawa (bib0280) 2016; 55
Hod, Sampson, Deria, Kubiak, Farha, Hupp (bib0225) 2015; 5
Wang, Huang, Shen, Liao, Chen, Zhang (bib0250) 2018; 140
Tahir, Amin (bib0105) 2015; 162
Xie, Liu, Dong, Li, Lan, Su (bib0405) 2019; 10
Abazari, Sanati, Morsali, Slawin, Carpenter-Warren, Chen, Zheng (bib0205) 2019; 7
Liang, Lei, Gao, Sun, Jiao, Wu, Qamar, Xie (bib0035) 2015; 54
Fei, Sampson, Lee, Kubiak, Cohen (bib0300) 2015; 54
Chen, Qiu, Zhang, Zhu, Liu, Sun, Bu, Zhang, Lin (bib0275) 2018; 30
Huang, Liang, Wang, Cao (bib0155) 2017; 46
Abazari, Ataei, Morsali, Slawin, Carpenter-Warren (bib0190) 2019; 11
Zhang, Wei, Dong, Liu, Shi, An, Zhao, Kong, Wang, Meng, Zhang, Ye (bib0255) 2016; 55
Ye, Gao, Cao, Chen, Yao, Hou, Sun (bib0290) 2018; 227
Weng, Wu, Wang, Jiang, Yang, Huo, Wang, Ma, Brudvig, Batista, Liang, Feng, Wang (bib0245) 2018; 9
Raziq, Sun, Wang, Zhang, Humayun, Ali, Bai, Qu, Yu, Jing (bib0380) 2018; 8
Abazari, Salehi, Mahjoub (bib0135) 2018; 46
Wang, Chen, Zhang, Du, Amal, Qiao, Wu, Yin (bib0395) 2019; 48
Wang, Yao, Lin, Ding, Wang (bib0210) 2014; 53
Mu, Zhu, Li, Zhang, Su, Lian, Qi, Deng, Zhang, Wang, Zhu, Peng (bib0170) 2020; 262
Poloni, Lee, Berger, Smit, Neaton (bib0355) 2014; 5
Ozin (bib0065) 2015; 27
Stevens, Siriwardane, Logan (bib0370) 2008; 22
Chen, Xing, Wang, Su (bib0070) 2016; 4
Abazari, Sanati, Morsali, Slawin, Carpenter-Warren (bib0195) 2019; 11
Zhao, Wang, Feng, Chen, Yang, Gao, Cao (bib0115) 2018; 8
Luo, Dong, Liu, Li, Lan (bib0075) 2019; 390
Jiang, Liang, Zheng, Liu, Wang, Wang, Zhang, Qin, Dai, Whangbo, Huang (bib0100) 2017; 219
Chu, Majumdar (bib0005) 2012; 488
Bi, Li, You, Chen, Yuan, Huang, Wu, Chu, Wu, Xie (bib0385) 2018; 30
Gao, Meng, Zhao, Yin, Wang, Guo, Zhao, Chang, He, Li, Zhao, Huang, Gao, Tang (bib0080) 2016; 28
Liu, Zhou, Kou, Chen, Tian, Gao, Yan, Zou (bib0095) 2010; 132
Xin, Wang, Chen, Li, Dong, Lan (bib0050) 2019
Wang, Wang, Gao, Shen, Pu, Zhang, Lin, Wang (bib0060) 2020; 270
Liu, Fan, Li, Wei, Xu, Zhang, Su (bib0285) 2018; 231
Kuriki, Yamamoto, Higuchi, Yamamoto, Akatsuka, Lu, Yagi, Yoshida, Ishitani, Maeda (bib0030) 2017; 56
Wang, Liu, Zhang, Dong, Li, Kan, Li, Lan (bib0220) 2019; 9
Shi, Wang, Zhang, Chang, Ye (bib0270) 2015; 25
Mu, Dai, Zhao, Zhang, Xu, Guo (bib0340) 2019
Gao, Lin, Jiao, Sun, Luo, Zhang, Li, Yang, Xie (bib0010) 2016; 529
Lee, Farha, Roberts, Scheidt, Nguyen, Hupp (bib0160) 2009; 38
Abazari, Mahjoub, Shariati (bib0130) 2019; 366
Listorti, Durrant, Barber (bib0045) 2009; 8
Iwase, Yoshino, Takayama, Ng, Amal, Kudo (bib0110) 2016; 138
Zhang, Hong, Li, Wang, Huang, Chen, Tu, Yu, Xu, Zhou, Zhang (bib0240) 2019; 58
Wang, Hou, Wu, Zhao, Ma (bib0345) 2019; 30
Zhang, Dong, Qin, Guan, Liu, Li, Lu, Lan, Su, Zhou (bib0145) 2017; 139
Sanati, Abazari, Morsali, Kirillov, Junk, Wang (bib0200) 2019; 58
Dong, Meng, Zhang, Tang, Liu, Wang, Wei, Zhang, Bai, Sun (bib0025) 2020; 379
Li, Bi, Chen, Sun, Ju, Yan, Zhu, Wu, Chu, Wu, Xie (bib0390) 2017; 139
Choi (10.1016/j.apcatb.2020.119173_bib0310) 2017; 139
Ye (10.1016/j.apcatb.2020.119173_bib0140) 2017; 139
Raziq (10.1016/j.apcatb.2020.119173_bib0380) 2018; 8
Gao (10.1016/j.apcatb.2020.119173_bib0080) 2016; 28
Sudik (10.1016/j.apcatb.2020.119173_bib0125) 2005; 127
Luo (10.1016/j.apcatb.2020.119173_bib0075) 2019; 390
Dong (10.1016/j.apcatb.2020.119173_bib0185) 2018; 24
Liang (10.1016/j.apcatb.2020.119173_bib0035) 2015; 54
Listorti (10.1016/j.apcatb.2020.119173_bib0045) 2009; 8
Zhang (10.1016/j.apcatb.2020.119173_bib0180) 2017; 9
Abazari (10.1016/j.apcatb.2020.119173_bib0205) 2019; 7
Wang (10.1016/j.apcatb.2020.119173_bib0060) 2020; 270
Zhang (10.1016/j.apcatb.2020.119173_bib0145) 2017; 139
Zhang (10.1016/j.apcatb.2020.119173_bib0240) 2019; 58
Sun (10.1016/j.apcatb.2020.119173_bib0295) 2015; 51
Benson (10.1016/j.apcatb.2020.119173_bib0040) 2009; 38
Abazari (10.1016/j.apcatb.2020.119173_bib0190) 2019; 11
Wang (10.1016/j.apcatb.2020.119173_bib0315) 2011; 133
Li (10.1016/j.apcatb.2020.119173_bib0350) 2018; 30
Dong (10.1016/j.apcatb.2020.119173_bib0260) 2020; 59
Hod (10.1016/j.apcatb.2020.119173_bib0225) 2015; 5
Feng (10.1016/j.apcatb.2020.119173_bib0265) 2014; 5
Li (10.1016/j.apcatb.2020.119173_bib0120) 2009; 38
Li (10.1016/j.apcatb.2020.119173_bib0400) 2019; 4
Habisreutinger (10.1016/j.apcatb.2020.119173_bib0085) 2013; 52
Shimizu (10.1016/j.apcatb.2020.119173_bib0150) 2013; 341
Wang (10.1016/j.apcatb.2020.119173_bib0210) 2014; 53
Lin (10.1016/j.apcatb.2020.119173_bib0360) 2017; 7
Dong (10.1016/j.apcatb.2020.119173_bib0025) 2020; 379
Zhao (10.1016/j.apcatb.2020.119173_bib0115) 2018; 8
Abazari (10.1016/j.apcatb.2020.119173_bib0135) 2018; 46
Tahir (10.1016/j.apcatb.2020.119173_bib0105) 2015; 162
Liu (10.1016/j.apcatb.2020.119173_bib0285) 2018; 231
Qin (10.1016/j.apcatb.2020.119173_bib0325) 2019; 141
Thoi (10.1016/j.apcatb.2020.119173_bib0375) 2013; 135
Park (10.1016/j.apcatb.2020.119173_bib0175) 2016; 138
Kuriki (10.1016/j.apcatb.2020.119173_bib0030) 2017; 56
Iwase (10.1016/j.apcatb.2020.119173_bib0110) 2016; 138
Chen (10.1016/j.apcatb.2020.119173_bib0275) 2018; 30
Lehn (10.1016/j.apcatb.2020.119173_bib0015) 1982; 79
Han (10.1016/j.apcatb.2020.119173_bib0230) 2018; 57
Wang (10.1016/j.apcatb.2020.119173_bib0220) 2019; 9
Abazari (10.1016/j.apcatb.2020.119173_bib0130) 2019; 366
Sanati (10.1016/j.apcatb.2020.119173_bib0200) 2019; 58
Hwang (10.1016/j.apcatb.2020.119173_bib0365) 2008; 47
Fei (10.1016/j.apcatb.2020.119173_bib0300) 2015; 54
Poloni (10.1016/j.apcatb.2020.119173_bib0355) 2014; 5
Wang (10.1016/j.apcatb.2020.119173_bib0055) 2018; 9
Li (10.1016/j.apcatb.2020.119173_bib0390) 2017; 139
Abazari (10.1016/j.apcatb.2020.119173_bib0195) 2019; 11
Shi (10.1016/j.apcatb.2020.119173_bib0270) 2015; 25
Liu (10.1016/j.apcatb.2020.119173_bib0095) 2010; 132
Bi (10.1016/j.apcatb.2020.119173_bib0385) 2018; 30
Ye (10.1016/j.apcatb.2020.119173_bib0290) 2018; 227
Wang (10.1016/j.apcatb.2020.119173_bib0305) 2018; 6
Weng (10.1016/j.apcatb.2020.119173_bib0245) 2018; 9
Mu (10.1016/j.apcatb.2020.119173_bib0340) 2019
Gao (10.1016/j.apcatb.2020.119173_bib0010) 2016; 529
Liao (10.1016/j.apcatb.2020.119173_bib0020) 2019; 12
Liu (10.1016/j.apcatb.2020.119173_bib0090) 2013; 1
Jiang (10.1016/j.apcatb.2020.119173_bib0100) 2017; 219
Mu (10.1016/j.apcatb.2020.119173_bib0170) 2020; 262
Li (10.1016/j.apcatb.2020.119173_bib0215) 2016; 138
Chu (10.1016/j.apcatb.2020.119173_bib0005) 2012; 488
Wang (10.1016/j.apcatb.2020.119173_bib0235) 2014; 4
Wang (10.1016/j.apcatb.2020.119173_bib0345) 2019; 30
Xin (10.1016/j.apcatb.2020.119173_bib0050) 2019
Chen (10.1016/j.apcatb.2020.119173_bib0070) 2016; 4
Stevens (10.1016/j.apcatb.2020.119173_bib0370) 2008; 22
Lee (10.1016/j.apcatb.2020.119173_bib0160) 2009; 38
Wang (10.1016/j.apcatb.2020.119173_bib0395) 2019; 48
Kajiwara (10.1016/j.apcatb.2020.119173_bib0280) 2016; 55
Ozin (10.1016/j.apcatb.2020.119173_bib0065) 2015; 27
Zhang (10.1016/j.apcatb.2020.119173_bib0255) 2016; 55
Xie (10.1016/j.apcatb.2020.119173_bib0405) 2019; 10
Xu (10.1016/j.apcatb.2020.119173_bib0320) 2015; 137
Huang (10.1016/j.apcatb.2020.119173_bib0155) 2017; 46
Mahmoud (10.1016/j.apcatb.2020.119173_bib0330) 2019; 141
Liu (10.1016/j.apcatb.2020.119173_bib0335) 2019; 245
Dong (10.1016/j.apcatb.2020.119173_bib0165) 2019; 11
Wang (10.1016/j.apcatb.2020.119173_bib0250) 2018; 140
References_xml – volume: 25
  start-page: 5360
  year: 2015
  end-page: 5367
  ident: bib0270
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 11563
  year: 2013
  end-page: 11569
  ident: bib0090
  publication-title: J. Mater. Chem. A
– volume: 139
  start-page: 14889
  year: 2017
  end-page: 14892
  ident: bib0390
  publication-title: J. Am. Chem. Soc.
– volume: 8
  year: 2018
  ident: bib0380
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 861
  year: 2014
  end-page: 865
  ident: bib0355
  publication-title: J. Phys. Chem. Lett.
– volume: 28
  start-page: 6485
  year: 2016
  end-page: 6490
  ident: bib0080
  publication-title: Adv. Mater.
– volume: 127
  start-page: 7110
  year: 2005
  end-page: 7118
  ident: bib0125
  publication-title: J. Am. Chem. Soc.
– volume: 529
  start-page: 68
  year: 2016
  end-page: 71
  ident: bib0010
  publication-title: Nature
– volume: 219
  start-page: 209
  year: 2017
  end-page: 215
  ident: bib0100
  publication-title: Appl. Catal. B
– volume: 141
  start-page: 2054
  year: 2019
  end-page: 2060
  ident: bib0325
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 5310
  year: 2019
  end-page: 5349
  ident: bib0395
  publication-title: Chem. Soc. Rev.
– volume: 390
  start-page: 86
  year: 2019
  end-page: 126
  ident: bib0075
  publication-title: Coord. Chem. Rev.
– volume: 139
  start-page: 6183
  year: 2017
  end-page: 6189
  ident: bib0145
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 15604
  year: 2017
  end-page: 15607
  ident: bib0140
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 2645
  year: 2015
  end-page: 2648
  ident: bib0295
  publication-title: Chem. Commun.
– volume: 9
  start-page: 27332
  year: 2017
  end-page: 27337
  ident: bib0180
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 4768
  year: 2018
  end-page: 4775
  ident: bib0305
  publication-title: J. Mater. Chem. A
– volume: 24
  start-page: 17148
  year: 2018
  end-page: 17154
  ident: bib0185
  publication-title: Chem. – Eur. J.
– volume: 7
  start-page: 11953
  year: 2019
  end-page: 11966
  ident: bib0205
  publication-title: J. Mater. Chem. A
– volume: 138
  start-page: 2142
  year: 2016
  end-page: 2145
  ident: bib0215
  publication-title: J. Am. Chem. Soc.
– volume: 231
  start-page: 173
  year: 2018
  end-page: 181
  ident: bib0285
  publication-title: Appl. Catal. B
– volume: 245
  start-page: 496
  year: 2019
  end-page: 501
  ident: bib0335
  publication-title: Appl. Catal. B
– volume: 139
  start-page: 356
  year: 2017
  end-page: 362
  ident: bib0310
  publication-title: J. Am. Chem. Soc.
– volume: 366
  start-page: 439
  year: 2019
  end-page: 451
  ident: bib0130
  publication-title: J. Hazard. Mater.
– volume: 138
  start-page: 3518
  year: 2016
  end-page: 3525
  ident: bib0175
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 38
  year: 2018
  end-page: 41
  ident: bib0250
  publication-title: J. Am. Chem. Soc.
– volume: 270
  year: 2020
  ident: bib0060
  publication-title: Appl. Catal. B
– volume: 162
  start-page: 98
  year: 2015
  end-page: 109
  ident: bib0105
  publication-title: Appl. Catal. B
– volume: 135
  start-page: 14413
  year: 2013
  end-page: 14424
  ident: bib0375
  publication-title: J. Am. Chem. Soc.
– volume: 7
  year: 2017
  ident: bib0360
  publication-title: Adv. Energy Mater.
– volume: 54
  start-page: 6821
  year: 2015
  end-page: 6828
  ident: bib0300
  publication-title: Inorg. Chem.
– volume: 4
  start-page: 2657
  year: 2016
  end-page: 2662
  ident: bib0070
  publication-title: J. Mater. Chem. A
– volume: 30
  year: 2018
  ident: bib0275
  publication-title: Adv. Mater.
– volume: 47
  start-page: 4144
  year: 2008
  end-page: 4148
  ident: bib0365
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  start-page: 45442
  year: 2019
  end-page: 45454
  ident: bib0190
  publication-title: ACS Appl. Mater. Interfaces
– volume: 59
  start-page: 2659
  year: 2020
  end-page: 2663
  ident: bib0260
  publication-title: Angew. Chem. Int. Ed.
– volume: 57
  start-page: 16811
  year: 2018
  end-page: 16815
  ident: bib0230
  publication-title: Angew. Chem. Int. Ed.
– volume: 379
  year: 2020
  ident: bib0025
  publication-title: Chem. Eng. J.
– volume: 52
  start-page: 7372
  year: 2013
  end-page: 7408
  ident: bib0085
  publication-title: Angew. Chem. Int. Ed.
– volume: 12
  start-page: 2080
  year: 2019
  end-page: 2147
  ident: bib0020
  publication-title: Energy Environ. Sci.
– volume: 30
  start-page: 398
  year: 2019
  end-page: 402
  ident: bib0345
  publication-title: Chin. Chem. Lett.
– volume: 11
  start-page: 14759
  year: 2019
  end-page: 14773
  ident: bib0195
  publication-title: ACS Appl. Mater. Interfaces
– volume: 53
  start-page: 1034
  year: 2014
  end-page: 1038
  ident: bib0210
  publication-title: Angew. Chem. Int. Ed.
– volume: 137
  start-page: 13440
  year: 2015
  end-page: 13443
  ident: bib0320
  publication-title: J. Am. Chem. Soc.
– volume: 30
  year: 2018
  ident: bib0350
  publication-title: Adv. Mater.
– volume: 133
  start-page: 13445
  year: 2011
  end-page: 13454
  ident: bib0315
  publication-title: J. Am. Chem. Soc.
– volume: 30
  year: 2018
  ident: bib0385
  publication-title: Adv. Mater.
– volume: 11
  start-page: 45080
  year: 2019
  end-page: 45086
  ident: bib0165
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 415
  year: 2018
  ident: bib0245
  publication-title: Nat. Commun.
– volume: 55
  start-page: 14310
  year: 2016
  end-page: 14314
  ident: bib0255
  publication-title: Angew. Chem. Int. Ed.
– volume: 27
  start-page: 1957
  year: 2015
  end-page: 1963
  ident: bib0065
  publication-title: Adv. Mater.
– volume: 9
  start-page: 4466
  year: 2018
  ident: bib0055
  publication-title: Nat. Commun.
– volume: 79
  start-page: 701
  year: 1982
  end-page: 704
  ident: bib0015
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 10
  start-page: 185
  year: 2019
  end-page: 190
  ident: bib0405
  publication-title: Chem. Sci.
– volume: 262
  year: 2020
  ident: bib0170
  publication-title: Appl. Catal. B
– volume: 132
  start-page: 14385
  year: 2010
  end-page: 14387
  ident: bib0095
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 1450
  year: 2009
  end-page: 1459
  ident: bib0160
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 929
  year: 2009
  end-page: 930
  ident: bib0045
  publication-title: Nat. Mater.
– year: 2019
  ident: bib0340
  publication-title: Chin. Chem. Lett.
– volume: 54
  start-page: 13971
  year: 2015
  end-page: 13974
  ident: bib0035
  publication-title: Angew. Chem. Int. Ed.
– volume: 138
  start-page: 10260
  year: 2016
  end-page: 10264
  ident: bib0110
  publication-title: J. Am. Chem. Soc.
– volume: 341
  start-page: 354
  year: 2013
  end-page: 355
  ident: bib0150
  publication-title: Science
– volume: 4
  start-page: 4254
  year: 2014
  end-page: 4260
  ident: bib0235
  publication-title: ACS Catal.
– volume: 22
  start-page: 3070
  year: 2008
  end-page: 3079
  ident: bib0370
  publication-title: Energy Fuels
– volume: 46
  start-page: 126
  year: 2017
  end-page: 157
  ident: bib0155
  publication-title: Chem. Soc. Rev.
– volume: 227
  start-page: 54
  year: 2018
  end-page: 60
  ident: bib0290
  publication-title: Appl. Catal. B
– volume: 46
  start-page: 59
  year: 2018
  end-page: 67
  ident: bib0135
  publication-title: Ultrason. Sonochem.
– volume: 4
  start-page: 690
  year: 2019
  end-page: 699
  ident: bib0400
  publication-title: Nat. Energy
– volume: 5
  start-page: 6302
  year: 2015
  end-page: 6309
  ident: bib0225
  publication-title: ACS Catal.
– volume: 5
  start-page: 5723
  year: 2014
  ident: bib0265
  publication-title: Nat. Commun.
– volume: 55
  start-page: 2697
  year: 2016
  end-page: 2700
  ident: bib0280
  publication-title: Angew. Chem. Int. Ed.
– volume: 488
  start-page: 294
  year: 2012
  end-page: 303
  ident: bib0005
  publication-title: Nature
– volume: 58
  start-page: 11752
  year: 2019
  end-page: 11756
  ident: bib0240
  publication-title: Angew. Chem. Int. Ed.
– volume: 38
  start-page: 89
  year: 2009
  end-page: 99
  ident: bib0040
  publication-title: Chem. Soc. Rev.
– volume: 38
  start-page: 1477
  year: 2009
  end-page: 1504
  ident: bib0120
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 1726
  year: 2019
  end-page: 1732
  ident: bib0220
  publication-title: ACS Catal.
– volume: 8
  start-page: 1288
  year: 2018
  end-page: 1295
  ident: bib0115
  publication-title: Catal. Sci. Technol.
– volume: 141
  start-page: 7115
  year: 2019
  end-page: 7121
  ident: bib0330
  publication-title: J. Am. Chem. Soc.
– volume: 56
  start-page: 4867
  year: 2017
  end-page: 4871
  ident: bib0030
  publication-title: Angew. Chem. Int. Ed.
– year: 2019
  ident: bib0050
  publication-title: Nano Energy
– volume: 58
  start-page: 16100
  year: 2019
  end-page: 16111
  ident: bib0200
  publication-title: Inorg. Chem.
– volume: 11
  start-page: 45080
  year: 2019
  ident: 10.1016/j.apcatb.2020.119173_bib0165
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b14995
– volume: 7
  start-page: 11953
  year: 2019
  ident: 10.1016/j.apcatb.2020.119173_bib0205
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA01628G
– volume: 46
  start-page: 59
  year: 2018
  ident: 10.1016/j.apcatb.2020.119173_bib0135
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2018.02.001
– volume: 227
  start-page: 54
  year: 2018
  ident: 10.1016/j.apcatb.2020.119173_bib0290
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.01.028
– volume: 137
  start-page: 13440
  year: 2015
  ident: 10.1016/j.apcatb.2020.119173_bib0320
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b08773
– volume: 9
  start-page: 27332
  year: 2017
  ident: 10.1016/j.apcatb.2020.119173_bib0180
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b08451
– volume: 11
  start-page: 45442
  year: 2019
  ident: 10.1016/j.apcatb.2020.119173_bib0190
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b16473
– volume: 138
  start-page: 10260
  year: 2016
  ident: 10.1016/j.apcatb.2020.119173_bib0110
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05304
– volume: 38
  start-page: 1450
  year: 2009
  ident: 10.1016/j.apcatb.2020.119173_bib0160
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b807080f
– volume: 140
  start-page: 38
  year: 2018
  ident: 10.1016/j.apcatb.2020.119173_bib0250
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10107
– volume: 6
  start-page: 4768
  year: 2018
  ident: 10.1016/j.apcatb.2020.119173_bib0305
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA00154E
– volume: 139
  start-page: 14889
  year: 2017
  ident: 10.1016/j.apcatb.2020.119173_bib0390
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b09074
– volume: 390
  start-page: 86
  year: 2019
  ident: 10.1016/j.apcatb.2020.119173_bib0075
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2019.03.019
– volume: 25
  start-page: 5360
  year: 2015
  ident: 10.1016/j.apcatb.2020.119173_bib0270
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201502253
– volume: 54
  start-page: 6821
  year: 2015
  ident: 10.1016/j.apcatb.2020.119173_bib0300
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b00752
– volume: 53
  start-page: 1034
  year: 2014
  ident: 10.1016/j.apcatb.2020.119173_bib0210
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201309426
– volume: 47
  start-page: 4144
  year: 2008
  ident: 10.1016/j.apcatb.2020.119173_bib0365
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200705998
– volume: 1
  start-page: 11563
  year: 2013
  ident: 10.1016/j.apcatb.2020.119173_bib0090
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta12433a
– volume: 30
  year: 2018
  ident: 10.1016/j.apcatb.2020.119173_bib0385
  publication-title: Adv. Mater.
– volume: 79
  start-page: 701
  year: 1982
  ident: 10.1016/j.apcatb.2020.119173_bib0015
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.79.2.701
– volume: 30
  start-page: 398
  year: 2019
  ident: 10.1016/j.apcatb.2020.119173_bib0345
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2018.06.021
– volume: 48
  start-page: 5310
  year: 2019
  ident: 10.1016/j.apcatb.2020.119173_bib0395
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00163H
– volume: 12
  start-page: 2080
  year: 2019
  ident: 10.1016/j.apcatb.2020.119173_bib0020
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00717B
– volume: 30
  year: 2018
  ident: 10.1016/j.apcatb.2020.119173_bib0275
  publication-title: Adv. Mater.
– volume: 132
  start-page: 14385
  year: 2010
  ident: 10.1016/j.apcatb.2020.119173_bib0095
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1068596
– volume: 262
  year: 2020
  ident: 10.1016/j.apcatb.2020.119173_bib0170
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.118144
– volume: 379
  year: 2020
  ident: 10.1016/j.apcatb.2020.119173_bib0025
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122342
– volume: 10
  start-page: 185
  year: 2019
  ident: 10.1016/j.apcatb.2020.119173_bib0405
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC03471K
– volume: 162
  start-page: 98
  year: 2015
  ident: 10.1016/j.apcatb.2020.119173_bib0105
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2014.06.037
– volume: 56
  start-page: 4867
  year: 2017
  ident: 10.1016/j.apcatb.2020.119173_bib0030
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201701627
– volume: 38
  start-page: 89
  year: 2009
  ident: 10.1016/j.apcatb.2020.119173_bib0040
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B804323J
– volume: 9
  start-page: 1726
  year: 2019
  ident: 10.1016/j.apcatb.2020.119173_bib0220
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b04887
– year: 2019
  ident: 10.1016/j.apcatb.2020.119173_bib0050
  publication-title: Nano Energy
– volume: 54
  start-page: 13971
  year: 2015
  ident: 10.1016/j.apcatb.2020.119173_bib0035
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201506966
– volume: 4
  start-page: 4254
  year: 2014
  ident: 10.1016/j.apcatb.2020.119173_bib0235
  publication-title: ACS Catal.
  doi: 10.1021/cs501169t
– volume: 24
  start-page: 17148
  year: 2018
  ident: 10.1016/j.apcatb.2020.119173_bib0185
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201804153
– volume: 58
  start-page: 16100
  year: 2019
  ident: 10.1016/j.apcatb.2020.119173_bib0200
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b02658
– volume: 5
  start-page: 861
  year: 2014
  ident: 10.1016/j.apcatb.2020.119173_bib0355
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz500202x
– volume: 11
  start-page: 14759
  year: 2019
  ident: 10.1016/j.apcatb.2020.119173_bib0195
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b00415
– volume: 127
  start-page: 7110
  year: 2005
  ident: 10.1016/j.apcatb.2020.119173_bib0125
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja042802q
– volume: 141
  start-page: 7115
  year: 2019
  ident: 10.1016/j.apcatb.2020.119173_bib0330
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b01920
– volume: 38
  start-page: 1477
  year: 2009
  ident: 10.1016/j.apcatb.2020.119173_bib0120
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b802426j
– volume: 4
  start-page: 2657
  year: 2016
  ident: 10.1016/j.apcatb.2020.119173_bib0070
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA00429F
– volume: 138
  start-page: 2142
  year: 2016
  ident: 10.1016/j.apcatb.2020.119173_bib0215
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b13335
– volume: 55
  start-page: 14310
  year: 2016
  ident: 10.1016/j.apcatb.2020.119173_bib0255
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201608597
– volume: 341
  start-page: 354
  year: 2013
  ident: 10.1016/j.apcatb.2020.119173_bib0150
  publication-title: Science
  doi: 10.1126/science.1239872
– volume: 51
  start-page: 2645
  year: 2015
  ident: 10.1016/j.apcatb.2020.119173_bib0295
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC09797A
– volume: 59
  start-page: 2659
  year: 2020
  ident: 10.1016/j.apcatb.2020.119173_bib0260
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201913284
– volume: 46
  start-page: 126
  year: 2017
  ident: 10.1016/j.apcatb.2020.119173_bib0155
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00250A
– volume: 135
  start-page: 14413
  year: 2013
  ident: 10.1016/j.apcatb.2020.119173_bib0375
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4074003
– volume: 270
  year: 2020
  ident: 10.1016/j.apcatb.2020.119173_bib0060
  publication-title: Appl. Catal. B
– volume: 28
  start-page: 6485
  year: 2016
  ident: 10.1016/j.apcatb.2020.119173_bib0080
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601387
– volume: 52
  start-page: 7372
  year: 2013
  ident: 10.1016/j.apcatb.2020.119173_bib0085
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201207199
– volume: 57
  start-page: 16811
  year: 2018
  ident: 10.1016/j.apcatb.2020.119173_bib0230
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201811545
– volume: 4
  start-page: 690
  year: 2019
  ident: 10.1016/j.apcatb.2020.119173_bib0400
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0431-1
– volume: 58
  start-page: 11752
  year: 2019
  ident: 10.1016/j.apcatb.2020.119173_bib0240
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201905869
– volume: 245
  start-page: 496
  year: 2019
  ident: 10.1016/j.apcatb.2020.119173_bib0335
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.01.014
– year: 2019
  ident: 10.1016/j.apcatb.2020.119173_bib0340
  publication-title: Chin. Chem. Lett.
– volume: 139
  start-page: 15604
  year: 2017
  ident: 10.1016/j.apcatb.2020.119173_bib0140
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b09163
– volume: 55
  start-page: 2697
  year: 2016
  ident: 10.1016/j.apcatb.2020.119173_bib0280
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201508941
– volume: 529
  start-page: 68
  year: 2016
  ident: 10.1016/j.apcatb.2020.119173_bib0010
  publication-title: Nature
  doi: 10.1038/nature16455
– volume: 141
  start-page: 2054
  year: 2019
  ident: 10.1016/j.apcatb.2020.119173_bib0325
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b11042
– volume: 30
  year: 2018
  ident: 10.1016/j.apcatb.2020.119173_bib0350
  publication-title: Adv. Mater.
– volume: 139
  start-page: 6183
  year: 2017
  ident: 10.1016/j.apcatb.2020.119173_bib0145
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01559
– volume: 231
  start-page: 173
  year: 2018
  ident: 10.1016/j.apcatb.2020.119173_bib0285
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.02.055
– volume: 366
  start-page: 439
  year: 2019
  ident: 10.1016/j.apcatb.2020.119173_bib0130
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2018.12.030
– volume: 5
  start-page: 6302
  year: 2015
  ident: 10.1016/j.apcatb.2020.119173_bib0225
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01767
– volume: 22
  start-page: 3070
  year: 2008
  ident: 10.1016/j.apcatb.2020.119173_bib0370
  publication-title: Energy Fuels
  doi: 10.1021/ef800209a
– volume: 8
  year: 2018
  ident: 10.1016/j.apcatb.2020.119173_bib0380
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701580
– volume: 138
  start-page: 3518
  year: 2016
  ident: 10.1016/j.apcatb.2020.119173_bib0175
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00007
– volume: 8
  start-page: 929
  year: 2009
  ident: 10.1016/j.apcatb.2020.119173_bib0045
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2578
– volume: 9
  start-page: 4466
  year: 2018
  ident: 10.1016/j.apcatb.2020.119173_bib0055
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06938-z
– volume: 8
  start-page: 1288
  year: 2018
  ident: 10.1016/j.apcatb.2020.119173_bib0115
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C7CY02286G
– volume: 139
  start-page: 356
  year: 2017
  ident: 10.1016/j.apcatb.2020.119173_bib0310
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11027
– volume: 488
  start-page: 294
  year: 2012
  ident: 10.1016/j.apcatb.2020.119173_bib0005
  publication-title: Nature
  doi: 10.1038/nature11475
– volume: 5
  start-page: 5723
  year: 2014
  ident: 10.1016/j.apcatb.2020.119173_bib0265
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6723
– volume: 219
  start-page: 209
  year: 2017
  ident: 10.1016/j.apcatb.2020.119173_bib0100
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2017.07.023
– volume: 7
  year: 2017
  ident: 10.1016/j.apcatb.2020.119173_bib0360
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 415
  year: 2018
  ident: 10.1016/j.apcatb.2020.119173_bib0245
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-02819-7
– volume: 27
  start-page: 1957
  year: 2015
  ident: 10.1016/j.apcatb.2020.119173_bib0065
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500116
– volume: 133
  start-page: 13445
  year: 2011
  ident: 10.1016/j.apcatb.2020.119173_bib0315
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja203564w
SSID ssj0002328
Score 2.6619234
Snippet We demonstrate that the regulation of metal species in metal-cluster nodes of PCN-250-Fe3 could realize a substantial improvement of conversion activity and...
Metal-organic frameworks (MOFs) have exhibited promising potential in the field of photocatalysis CO2 conversion, while improving the conversion activity of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119173
SubjectTerms Bi-metallic clusters
Carbon dioxide
Catalytic activity
Chemical reduction
Clusters
Conversion
Hydrogen evolution
Hydrogen production
Irradiation
Light irradiation
Manganese
Metal ions
Metal-organic frameworks
Nickel
Nodes
Open metal sites
Photocatalysis
Photocatalysts
Photocatalytic CO2 reduction
Radiation
Selectivity
Species
Zinc
Title Regulation of metal ions in smart metal-cluster nodes of metal-organic frameworks with open metal sites for improved photocatalytic CO2 reduction reaction
URI https://dx.doi.org/10.1016/j.apcatb.2020.119173
https://www.proquest.com/docview/2452122772
Volume 276
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQPVAOVdmCSkuRD726u4mdxDmiFWhLVSrxkLhZfqpbQbIi4cCFH9Jf2xnHgRapQuISOX7JyYzHn-15EPIZtrGVzCzMbycFE9YIVotas4xXwNOFhAceDXw_KRcX4viyuFwj89EWBtUqk-wfZHqU1ilnmv7mdLVcTs9mdV5yXvEceVZKNOITokIu_3L_qOYBiCFKY6jMsPZoPhd1vPTK6t7ALjFH2QE7F_6_5emJoI6rz9Fb8ibBRnowjGyLrPlmQjbmY7S2Cdn8y7HghOwcPtqvQbM0gbt35PfpEHseqEHbQK89FiPn0WVDu2v48iGP2atbdKFAm9b57qEqG4JAWRpGna6O4kkuxSBcqTe8ju4oYGG6jAcW3tHVz7Zv40HRHYyfzn_k9AZdxsZhAGqNiW1ycXR4Pl-wFJ6BWc5Fz3zhnZ5pbgD1OcjSLvOiMoURuihlbQC5BF-XVgbncqu5BtkaZB5mJqAr9ZLvkPWmbfx7QgMAGSsq7aAAEqWUPqusLU0AuFVmepfwkSrKJt_lGELjSo1Kar_UQEuFtFQDLXcJe2i1Gnx3PFO_Ggmu_uFBBcvLMy33Rv5QSQZ0Cu-0szyH7cuHF3f8kbzGt2j8WOyR9f7m1n8CFNSb_cjm--TVwddvi5M_g1AKBQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKofSAYKGi0IIPcDS7sZ3EOXBA21Zb-kCCVurNOLYjtmqTVZMK9cKH8Bv8IGPHaQEJVULqJbL80sgzmZfHMwCv0YzNZWLw_7ZSUGFKQQtRaJrwHGk6lfjxroGDw2x2LD6cpCdL8HN4C-PDKiPv73l64NaxZxxPc7yYz8efJwXLOM858zQrZREjK_fc1Te029p3u1uI5DeM7WwfTWc0lhaghnPRUZc6qyeal6ixWOzSNnEiL9NS6DSTRYlSt3JFZmRlLTOaa-QLlWTVpKx8GvCM47734L7Abl824e33m7gSVFEC-0foqAdveK8Xgsr0wuiuRLOUeWaFphL_lzz8SzIEcbfzCB5GPZW874_iMSy5egQr06E83AhWf8tkOIK17ZsHc7gscoz2Cfz41Be7R_STpiLnzg97UifzmrTneNR9HzVnlz5nA6kb69rrqbSvOmVINQSRtcS7jomv-hV38_ffLUHlm8yDh8RZsvjadE3wTF0h_GT6kZELn6M2gIFqcmg8heM7QdoaLNdN7Z4BqVBzMiLXFgewkUnpktyYrKxQv8sSvQ58wIoyMVm6r9lxpoaouFPV41J5XKoel-tAr1ct-mQht8zPB4SrP4heoTy7ZeXGQB8qMp1W-Uv0hDG0l57_98avYGV2dLCv9ncP917AAz8SXl6mG7DcXVy6TVTBuvJlIHkCX-76H_sFEVZHlw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+metal+ions+in+smart+metal-cluster+nodes+of+metal-organic+frameworks+with+open+metal+sites+for+improved+photocatalytic+CO2+reduction+reaction&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Dong%2C+Hong&rft.au=Zhang%2C+Xin&rft.au=Lu%2C+Yang&rft.au=Yang%2C+Yan&rft.date=2020-11-05&rft.issn=0926-3373&rft.volume=276&rft.spage=119173&rft_id=info:doi/10.1016%2Fj.apcatb.2020.119173&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2020_119173
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon