Regulation of metal ions in smart metal-cluster nodes of metal-organic frameworks with open metal sites for improved photocatalytic CO2 reduction reaction
We demonstrate that the regulation of metal species in metal-cluster nodes of PCN-250-Fe3 could realize a substantial improvement of conversion activity and selectivity of CO2 reduction. The photocatalysis results revealed that all bi-metallic PCN-250-Fe2M (M = Mn, Zn, Ni, Co) show better catalytic...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 276; p. 119173 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
05.11.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We demonstrate that the regulation of metal species in metal-cluster nodes of PCN-250-Fe3 could realize a substantial improvement of conversion activity and selectivity of CO2 reduction. The photocatalysis results revealed that all bi-metallic PCN-250-Fe2M (M = Mn, Zn, Ni, Co) show better catalytic activity for stable reducing CO2 into CO compared with mono-metallic PCN-250-Fe3.
[Display omitted]
•We realized a substantial improvement of CO2 reduction activity by regulating the metal ions in metal-cluster nodes of MOFs.•PCN-250-Fe2Mn shows the maximum photocatalytic activity of 21.51 mmol h−1 g−1.•PCN-250-Fe2Mn is the best performance MOF-based photocatalyst for CO2 reduction on the similar reaction condition until now.•Introducing the second MII could promote the migration of photogenerated electrons to active sites
Metal-organic frameworks (MOFs) have exhibited promising potential in the field of photocatalysis CO2 conversion, while improving the conversion activity of CO2 by regulating the metal species in the metal-cluster nodes of MOFs has not been systematically explored. Herein, we realized a substantial improvement of CO2 conversion activity by regulating the metal species in metal-cluster nodes of MOFs and obtain the best performance MOF photocatalysts for CO2 conversion. A stable MOF, PCN-250-Fe3 with Fe2IIIFeII metal-cluster nodes and open metal sites was synthesized, and we further improve its CO2 reduction activity by tuning the species of MII metal ions in the cluster. The photocatalytic results revealed that all bi-metallic PCN-250-Fe2M (M = Mn, Zn, Ni, Co) show better catalytic activity and selectivity for stable reducing CO2 into CO, compared with mono-metallic PCN-250-Fe3. Especially, PCN-250-Fe2Mn shows the maximum photocatalytic activity of 21.51 mmol h−1 g−1 under visible light irradiation, which is the best performance MOF-based photocatalyst for CO2 conversion on the similar reaction condition until now. Further investigations and theoretical calculations reveal that the introduction of the second MII metal ions could promote the migration of photogenerated electrons to active sites and improve the CO2 adsorption and activation by favoring the CO2 reduction rout and restraining the production of hydrogen evolution intermediate. |
---|---|
AbstractList | Metal-organic frameworks (MOFs) have exhibited promising potential in the field of photocatalysis CO2 conversion, while improving the conversion activity of CO2 by regulating the metal species in the metal-cluster nodes of MOFs has not been systematically explored. Herein, we realized a substantial improvement of CO2 conversion activity by regulating the metal species in metal-cluster nodes of MOFs and obtain the best performance MOF photocatalysts for CO2 conversion. A stable MOF, PCN-250-Fe3 with Fe2IIIFeII metal-cluster nodes and open metal sites was synthesized, and we further improve its CO2 reduction activity by tuning the species of MII metal ions in the cluster. The photocatalytic results revealed that all bi-metallic PCN-250-Fe2M (M = Mn, Zn, Ni, Co) show better catalytic activity and selectivity for stable reducing CO2 into CO, compared with mono-metallic PCN-250-Fe3. Especially, PCN-250-Fe2Mn shows the maximum photocatalytic activity of 21.51 mmol h−1 g−1 under visible light irradiation, which is the best performance MOF-based photocatalyst for CO2 conversion on the similar reaction condition until now. Further investigations and theoretical calculations reveal that the introduction of the second MII metal ions could promote the migration of photogenerated electrons to active sites and improve the CO2 adsorption and activation by favoring the CO2 reduction rout and restraining the production of hydrogen evolution intermediate. We demonstrate that the regulation of metal species in metal-cluster nodes of PCN-250-Fe3 could realize a substantial improvement of conversion activity and selectivity of CO2 reduction. The photocatalysis results revealed that all bi-metallic PCN-250-Fe2M (M = Mn, Zn, Ni, Co) show better catalytic activity for stable reducing CO2 into CO compared with mono-metallic PCN-250-Fe3. [Display omitted] •We realized a substantial improvement of CO2 reduction activity by regulating the metal ions in metal-cluster nodes of MOFs.•PCN-250-Fe2Mn shows the maximum photocatalytic activity of 21.51 mmol h−1 g−1.•PCN-250-Fe2Mn is the best performance MOF-based photocatalyst for CO2 reduction on the similar reaction condition until now.•Introducing the second MII could promote the migration of photogenerated electrons to active sites Metal-organic frameworks (MOFs) have exhibited promising potential in the field of photocatalysis CO2 conversion, while improving the conversion activity of CO2 by regulating the metal species in the metal-cluster nodes of MOFs has not been systematically explored. Herein, we realized a substantial improvement of CO2 conversion activity by regulating the metal species in metal-cluster nodes of MOFs and obtain the best performance MOF photocatalysts for CO2 conversion. A stable MOF, PCN-250-Fe3 with Fe2IIIFeII metal-cluster nodes and open metal sites was synthesized, and we further improve its CO2 reduction activity by tuning the species of MII metal ions in the cluster. The photocatalytic results revealed that all bi-metallic PCN-250-Fe2M (M = Mn, Zn, Ni, Co) show better catalytic activity and selectivity for stable reducing CO2 into CO, compared with mono-metallic PCN-250-Fe3. Especially, PCN-250-Fe2Mn shows the maximum photocatalytic activity of 21.51 mmol h−1 g−1 under visible light irradiation, which is the best performance MOF-based photocatalyst for CO2 conversion on the similar reaction condition until now. Further investigations and theoretical calculations reveal that the introduction of the second MII metal ions could promote the migration of photogenerated electrons to active sites and improve the CO2 adsorption and activation by favoring the CO2 reduction rout and restraining the production of hydrogen evolution intermediate. |
ArticleNumber | 119173 |
Author | Zhang, Xin Dong, Hong Feng, Yujie Sun, Xiaojun Yang, Yan Yang, Zhao-Di Lu, Yang Zhang, Yang-Peng Tang, Hong-Liang Zhang, Feng-Ming |
Author_xml | – sequence: 1 givenname: Hong surname: Dong fullname: Dong, Hong organization: School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, PR China – sequence: 2 givenname: Xin surname: Zhang fullname: Zhang, Xin organization: School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, PR China – sequence: 3 givenname: Yang surname: Lu fullname: Lu, Yang organization: School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, PR China – sequence: 4 givenname: Yan surname: Yang fullname: Yang, Yan organization: School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, PR China – sequence: 5 givenname: Yang-Peng surname: Zhang fullname: Zhang, Yang-Peng organization: School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, PR China – sequence: 6 givenname: Hong-Liang surname: Tang fullname: Tang, Hong-Liang organization: School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, PR China – sequence: 7 givenname: Feng-Ming surname: Zhang fullname: Zhang, Feng-Ming email: zhangfm80@163.com organization: School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, PR China – sequence: 8 givenname: Zhao-Di surname: Yang fullname: Yang, Zhao-Di email: yangzhaodi@163.com organization: School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, PR China – sequence: 9 givenname: Xiaojun surname: Sun fullname: Sun, Xiaojun organization: School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, PR China – sequence: 10 givenname: Yujie surname: Feng fullname: Feng, Yujie email: yujief@hit.edu.cn organization: School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China |
BookMark | eNqFUctuFDEQtFCQ2AT-gIMlzrP4MQ8vByS0IoAUKRKCs9VjtxMvs_ZgexLlV_hanJ2IAwc42S5VVZe7zslZiAEJec3ZljPevz1sYTZQxq1gokJ8xwf5jGy4GmQjlZJnZMN2om-kHOQLcp7zgTEmpFAb8usr3iwTFB8DjY4escBE6yNTH2g-Qior1phpyQUTDdFi_kNtYrqB4A11CY54H9OPTO99uaVxxvDkln2pChcT9cc5xTu0dL6NJdbEMD2UKt5fC5rQLuYUIyGcLi_JcwdTxldP5wX5fvnx2_5zc3X96cv-w1VjpGxLgx1aYCBH1rW2QmA5tsPYjS10vdqNTCiHu94oZ60wIKGTyinh2OgMtKqXF-TN6lvD_VwwF32ISwp1pBZtJ7gQwyAq693KMinmnNBp48tpbyWBnzRn-rELfdBrF_qxC712UcXtX-I5-brch__J3q8yrN-_85h0Nh6DQesTmqJt9P82-A2-A6uw |
CitedBy_id | crossref_primary_10_1016_j_jcis_2021_06_127 crossref_primary_10_1039_D1TA04493A crossref_primary_10_1039_D1QI01352A crossref_primary_10_1016_j_apcatb_2021_120635 crossref_primary_10_1016_j_cej_2021_129459 crossref_primary_10_1016_j_cclet_2021_09_035 crossref_primary_10_1016_j_jece_2024_112458 crossref_primary_10_1080_03067319_2024_2384653 crossref_primary_10_1016_j_rser_2021_111298 crossref_primary_10_1021_acscatal_2c06255 crossref_primary_10_1016_j_jwpe_2023_103586 crossref_primary_10_1016_j_jssc_2023_123931 crossref_primary_10_1016_j_mtener_2024_101542 crossref_primary_10_1007_s11426_022_1284_x crossref_primary_10_1016_j_cej_2022_135622 crossref_primary_10_3390_s20226686 crossref_primary_10_1016_j_diamond_2023_110611 crossref_primary_10_1007_s10854_021_06944_w crossref_primary_10_3389_fnano_2021_698351 crossref_primary_10_1021_acsaem_1c03868 crossref_primary_10_1063_5_0099758 crossref_primary_10_1016_j_mcat_2024_114162 crossref_primary_10_1016_S1872_2067_22_64115_9 crossref_primary_10_1039_D1TA10148J crossref_primary_10_3390_nano14161340 crossref_primary_10_1002_cssc_202400504 crossref_primary_10_1002_slct_202003559 crossref_primary_10_1016_S1872_2067_24_60195_6 crossref_primary_10_1002_adfm_202104231 crossref_primary_10_1016_j_jclepro_2024_143263 crossref_primary_10_1021_acsami_1c16612 crossref_primary_10_1039_D3TA06964H crossref_primary_10_1039_D4TA06207H crossref_primary_10_1007_s12161_023_02450_3 crossref_primary_10_1016_j_cej_2022_137011 crossref_primary_10_1039_D3RA06718A crossref_primary_10_1016_j_cej_2022_138747 crossref_primary_10_1038_s44160_024_00490_z crossref_primary_10_1039_D1RA06023F crossref_primary_10_1039_D1TA02926F crossref_primary_10_1016_j_cej_2021_134125 crossref_primary_10_1016_j_cej_2022_140425 crossref_primary_10_1039_D3DT01668D crossref_primary_10_1016_S1872_2067_21_63939_6 crossref_primary_10_1016_j_cej_2025_160037 crossref_primary_10_1002_asia_202300297 crossref_primary_10_1021_acs_inorgchem_4c03810 crossref_primary_10_1002_aesr_202200004 crossref_primary_10_1021_acscatal_4c06456 crossref_primary_10_1016_j_joule_2021_08_003 crossref_primary_10_1039_D0TA10278D crossref_primary_10_1021_acsami_3c04225 crossref_primary_10_1021_acs_inorgchem_2c01497 crossref_primary_10_1021_acsmacrolett_2c00035 crossref_primary_10_1002_anie_202423018 crossref_primary_10_1039_D0AY02310H crossref_primary_10_1039_D3CC05514K crossref_primary_10_1021_acs_inorgchem_2c01539 crossref_primary_10_1051_e3sconf_202125202056 crossref_primary_10_1002_cssc_202101173 crossref_primary_10_1021_acsami_2c15114 crossref_primary_10_3390_catal10111293 crossref_primary_10_1016_j_cattod_2023_114149 crossref_primary_10_1002_slct_202004839 crossref_primary_10_1016_j_ccr_2023_215257 crossref_primary_10_1016_S1872_2067_23_64556_5 crossref_primary_10_1021_acsomega_2c05030 crossref_primary_10_1039_D1CY01505B crossref_primary_10_1016_j_psep_2020_10_025 crossref_primary_10_1021_acs_inorgchem_2c04078 crossref_primary_10_3866_PKU_WHXB202403032 crossref_primary_10_1016_j_mtchem_2024_102197 crossref_primary_10_1016_j_nxener_2023_100041 crossref_primary_10_1016_j_jcis_2022_08_120 crossref_primary_10_1016_j_jece_2023_110424 crossref_primary_10_1021_acsami_3c02298 crossref_primary_10_1021_acsomega_2c00663 crossref_primary_10_1016_j_ccr_2022_214664 crossref_primary_10_1016_j_jmst_2025_02_009 crossref_primary_10_1021_acsaem_1c02369 crossref_primary_10_1039_D0DT02309D crossref_primary_10_1039_D3CS00205E crossref_primary_10_3390_catal13030613 crossref_primary_10_1002_ange_202111622 crossref_primary_10_1039_D3NJ05781J crossref_primary_10_1039_D4QI01449A crossref_primary_10_1007_s12274_023_6258_x crossref_primary_10_1016_j_mattod_2024_12_019 crossref_primary_10_1039_D4EE03065F crossref_primary_10_1002_adsu_202200394 crossref_primary_10_1016_j_jes_2022_01_005 crossref_primary_10_1016_j_cej_2024_154636 crossref_primary_10_1007_s40843_024_2996_2 crossref_primary_10_1002_asia_202100813 crossref_primary_10_1016_j_apsusc_2023_159227 crossref_primary_10_1016_j_fuel_2024_132973 crossref_primary_10_1002_anie_202204948 crossref_primary_10_1002_ange_202314384 crossref_primary_10_1016_j_jcis_2022_12_154 crossref_primary_10_1016_j_jclepro_2021_126974 crossref_primary_10_1002_anie_202404563 crossref_primary_10_1039_D1RA01913A crossref_primary_10_1080_07388551_2020_1869689 crossref_primary_10_1039_D2QI02366K crossref_primary_10_1016_S1872_2067_20_63715_9 crossref_primary_10_1016_j_jfca_2022_105080 crossref_primary_10_1039_D2TA04528A crossref_primary_10_1016_j_cej_2021_132157 crossref_primary_10_1021_acsmaterialslett_4c00715 crossref_primary_10_1039_D1SE00804H crossref_primary_10_1016_j_apsusc_2022_153758 crossref_primary_10_1016_j_jclepro_2022_130551 crossref_primary_10_1016_j_jece_2023_109408 crossref_primary_10_1039_D4TC04325A crossref_primary_10_1002_cplu_202400229 crossref_primary_10_1002_ange_202423018 crossref_primary_10_1016_j_apsusc_2023_157453 crossref_primary_10_1002_anie_202111622 crossref_primary_10_1016_j_ccr_2024_216022 crossref_primary_10_1039_D2NJ02812C crossref_primary_10_1016_j_molstruc_2024_140190 crossref_primary_10_1016_j_cclet_2024_109700 crossref_primary_10_1021_acs_inorgchem_3c02026 crossref_primary_10_1039_D1NJ05440F crossref_primary_10_1016_j_ces_2023_118886 crossref_primary_10_1016_j_ica_2024_122520 crossref_primary_10_1021_acsanm_2c03732 crossref_primary_10_1002_smll_202202939 crossref_primary_10_1016_j_ccr_2022_214639 crossref_primary_10_1039_D4QI02143F crossref_primary_10_1016_j_cej_2023_148162 crossref_primary_10_1016_j_chemosphere_2021_131530 crossref_primary_10_1039_D0NJ04322B crossref_primary_10_1039_D2DT03916H crossref_primary_10_1002_anie_202012019 crossref_primary_10_1016_j_jcis_2024_05_186 crossref_primary_10_1016_j_crcon_2023_100211 crossref_primary_10_1007_s11356_023_30258_5 crossref_primary_10_1038_s41598_024_76199_y crossref_primary_10_1002_smll_202102089 crossref_primary_10_1016_j_mtsust_2024_100745 crossref_primary_10_1016_j_checat_2024_101154 crossref_primary_10_1039_D3TA04403C crossref_primary_10_1002_ange_202404563 crossref_primary_10_1002_anie_202314384 crossref_primary_10_1016_j_cclet_2024_110733 crossref_primary_10_1039_D1QI00411E crossref_primary_10_1021_acsami_2c19236 crossref_primary_10_1016_j_ccr_2022_214505 crossref_primary_10_1016_j_jallcom_2023_170479 crossref_primary_10_1021_acs_inorgchem_4c04599 crossref_primary_10_1073_pnas_2118278119 crossref_primary_10_1002_cnl2_107 crossref_primary_10_1016_j_foodchem_2021_129202 crossref_primary_10_1016_j_cej_2024_157716 crossref_primary_10_1021_acs_inorgchem_1c03348 crossref_primary_10_1016_j_seppur_2024_126544 crossref_primary_10_1021_acs_inorgchem_3c02765 crossref_primary_10_1039_D1EE02714J crossref_primary_10_1002_ange_202012019 crossref_primary_10_1016_j_gee_2022_12_010 crossref_primary_10_1002_ange_202204948 crossref_primary_10_1021_acs_inorgchem_2c00235 crossref_primary_10_1016_j_ccr_2023_215210 crossref_primary_10_1016_j_ccr_2024_216324 crossref_primary_10_3390_molecules28207121 crossref_primary_10_1016_j_apenergy_2024_124977 crossref_primary_10_1016_j_cej_2025_161820 crossref_primary_10_1021_acs_iecr_1c02058 crossref_primary_10_1016_j_cej_2020_128178 crossref_primary_10_1039_D1NR04417F crossref_primary_10_1016_j_jclepro_2021_130164 |
Cites_doi | 10.1021/acsami.9b14995 10.1039/C9TA01628G 10.1016/j.ultsonch.2018.02.001 10.1016/j.apcatb.2018.01.028 10.1021/jacs.5b08773 10.1021/acsami.7b08451 10.1021/acsami.9b16473 10.1021/jacs.6b05304 10.1039/b807080f 10.1021/jacs.7b10107 10.1039/C8TA00154E 10.1021/jacs.7b09074 10.1016/j.ccr.2019.03.019 10.1002/adfm.201502253 10.1021/acs.inorgchem.5b00752 10.1002/anie.201309426 10.1002/anie.200705998 10.1039/c3ta12433a 10.1073/pnas.79.2.701 10.1016/j.cclet.2018.06.021 10.1039/C9CS00163H 10.1039/C9EE00717B 10.1021/ja1068596 10.1016/j.apcatb.2019.118144 10.1016/j.cej.2019.122342 10.1039/C8SC03471K 10.1016/j.apcatb.2014.06.037 10.1002/anie.201701627 10.1039/B804323J 10.1021/acscatal.8b04887 10.1002/anie.201506966 10.1021/cs501169t 10.1002/chem.201804153 10.1021/acs.inorgchem.9b02658 10.1021/jz500202x 10.1021/acsami.9b00415 10.1021/ja042802q 10.1021/jacs.9b01920 10.1039/b802426j 10.1039/C6TA00429F 10.1021/jacs.5b13335 10.1002/anie.201608597 10.1126/science.1239872 10.1039/C4CC09797A 10.1002/anie.201913284 10.1039/C6CS00250A 10.1021/ja4074003 10.1002/adma.201601387 10.1002/anie.201207199 10.1002/anie.201811545 10.1038/s41560-019-0431-1 10.1002/anie.201905869 10.1016/j.apcatb.2019.01.014 10.1021/jacs.7b09163 10.1002/anie.201508941 10.1038/nature16455 10.1021/jacs.8b11042 10.1021/jacs.7b01559 10.1016/j.apcatb.2018.02.055 10.1016/j.jhazmat.2018.12.030 10.1021/acscatal.5b01767 10.1021/ef800209a 10.1002/aenm.201701580 10.1021/jacs.6b00007 10.1038/nmat2578 10.1038/s41467-018-06938-z 10.1039/C7CY02286G 10.1021/jacs.6b11027 10.1038/nature11475 10.1038/ncomms6723 10.1016/j.apcatb.2017.07.023 10.1038/s41467-018-02819-7 10.1002/adma.201500116 10.1021/ja203564w |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Nov 5, 2020 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Nov 5, 2020 |
DBID | AAYXX CITATION 7SR 7ST 7U5 8BQ 8FD C1K FR3 JG9 KR7 L7M SOI |
DOI | 10.1016/j.apcatb.2020.119173 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
ExternalDocumentID | 10_1016_j_apcatb_2020_119173 S0926337320305889 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPD SSG SSZ T5K ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ XPP 7SR 7ST 7U5 8BQ 8FD C1K EFKBS FR3 JG9 KR7 L7M SOI |
ID | FETCH-LOGICAL-c334t-e5eda0a3b054dc33ad1e47b5b4a5689b028fe96c8fdd2ca3a538f82f0bfca4863 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Wed Aug 13 06:10:36 EDT 2025 Thu Apr 24 23:01:00 EDT 2025 Tue Jul 01 04:35:06 EDT 2025 Sat Mar 02 16:00:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Open metal sites Bi-metallic clusters Photocatalytic CO2 reduction Metal-organic frameworks |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-e5eda0a3b054dc33ad1e47b5b4a5689b028fe96c8fdd2ca3a538f82f0bfca4863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2452122772 |
PQPubID | 2045281 |
ParticipantIDs | proquest_journals_2452122772 crossref_citationtrail_10_1016_j_apcatb_2020_119173 crossref_primary_10_1016_j_apcatb_2020_119173 elsevier_sciencedirect_doi_10_1016_j_apcatb_2020_119173 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-05 |
PublicationDateYYYYMMDD | 2020-11-05 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Li, Zhang, Zhou (bib0350) 2018; 30 Park, Jiang, Feng, Mao, Zhou (bib0175) 2016; 138 Wang, Xie, deKrafft, Lin (bib0315) 2011; 133 Dong, Zhang, Yan, Wang, Sun, Zhang, Feng, Zhang (bib0165) 2019; 11 Liao, Gong, Zhang, Gao, Yang, Fang (bib0020) 2019; 12 Thoi, Kornienko, Margarit, Yang, Chang (bib0375) 2013; 135 Choi, Kim, Rungtaweevoranit, Trickett, Barmanbek, Alshammari, Yang, Yaghi (bib0310) 2017; 139 Xu, Hu, Wang, Li, Zhang, Luo, Yu, Jiang (bib0320) 2015; 137 Wang, Huang, Liu, Sun, Li (bib0235) 2014; 4 Qin, Yuan, Zhang, Li, Du, Huang, Guan, Drake, Pang, Lan, Alsalme, Zhou (bib0325) 2019; 141 Liu, Mu, Yao, Guo, Guo, Zhang, Lu (bib0335) 2019; 245 Zhang, Dong, Zhang, Sun, Liu, Yang, Liu, Wei (bib0180) 2017; 9 Benson, Kubiak, Sathrum, Smieja (bib0040) 2009; 38 Sun, Gao, Fu, Zeng, Chen, Li (bib0295) 2015; 51 Wang, Liu, Guo, Gao, Gong, Wang, Liu, Li, Gurzadyan, Sun (bib0305) 2018; 6 Hwang, Hong, Chang, Jhung, Seo, Kim, Vimont, Daturi, Serre, Ferey (bib0365) 2008; 47 Wang, Huang, He, Chen, Liu, Shen, Lan (bib0055) 2018; 9 Li, Kuppler, Zhou (bib0120) 2009; 38 Ye, Guo, Wan, Li, Song, Chen, Zhang, Xiang, Chen (bib0140) 2017; 139 Shimizu, Taylor, Kim (bib0150) 2013; 341 Feng, Wang, Wei, Chen, Simon, Arvapally, Martin, Bosch, Liu, Fordham, Yuan, Omary, Haranczyk, Smit, Zhou (bib0265) 2014; 5 Dong, Zhang, Huang, Lu, Ji, Liu, Lan (bib0260) 2020; 59 Lehn, Ziessel (bib0015) 1982; 79 Mahmoud, Audi, Assoud, Ghaddar, Hmadeh (bib0330) 2019; 141 Lin, Kong, Zhang, Chen (bib0360) 2017; 7 Li, Sun, Xu, Shao, Wu, Xu, Pan, Ju, Zhu, Xie (bib0400) 2019; 4 Sudik, Millward, Ockwig, Cote, Kim, Yaghi (bib0125) 2005; 127 Habisreutinger, Schmidt-Mende, Stolarczyk (bib0085) 2013; 52 Liu, Low, Li, Razmjou, Wang, Yao, Wang (bib0090) 2013; 1 Han, Ou, Deng, Song, Tian, Deng, Xu, Lin (bib0230) 2018; 57 Dong, Yang, Zhang, Meng, Sheng, Sun, Feng, Zhang (bib0185) 2018; 24 Li, Wang, Liu, Lim, Zou, Zhao (bib0215) 2016; 138 Kajiwara, Fujii, Tsujimoto, Kobayashi, Higuchi, Tanaka, Kitagawa (bib0280) 2016; 55 Hod, Sampson, Deria, Kubiak, Farha, Hupp (bib0225) 2015; 5 Wang, Huang, Shen, Liao, Chen, Zhang (bib0250) 2018; 140 Tahir, Amin (bib0105) 2015; 162 Xie, Liu, Dong, Li, Lan, Su (bib0405) 2019; 10 Abazari, Sanati, Morsali, Slawin, Carpenter-Warren, Chen, Zheng (bib0205) 2019; 7 Liang, Lei, Gao, Sun, Jiao, Wu, Qamar, Xie (bib0035) 2015; 54 Fei, Sampson, Lee, Kubiak, Cohen (bib0300) 2015; 54 Chen, Qiu, Zhang, Zhu, Liu, Sun, Bu, Zhang, Lin (bib0275) 2018; 30 Huang, Liang, Wang, Cao (bib0155) 2017; 46 Abazari, Ataei, Morsali, Slawin, Carpenter-Warren (bib0190) 2019; 11 Zhang, Wei, Dong, Liu, Shi, An, Zhao, Kong, Wang, Meng, Zhang, Ye (bib0255) 2016; 55 Ye, Gao, Cao, Chen, Yao, Hou, Sun (bib0290) 2018; 227 Weng, Wu, Wang, Jiang, Yang, Huo, Wang, Ma, Brudvig, Batista, Liang, Feng, Wang (bib0245) 2018; 9 Raziq, Sun, Wang, Zhang, Humayun, Ali, Bai, Qu, Yu, Jing (bib0380) 2018; 8 Abazari, Salehi, Mahjoub (bib0135) 2018; 46 Wang, Chen, Zhang, Du, Amal, Qiao, Wu, Yin (bib0395) 2019; 48 Wang, Yao, Lin, Ding, Wang (bib0210) 2014; 53 Mu, Zhu, Li, Zhang, Su, Lian, Qi, Deng, Zhang, Wang, Zhu, Peng (bib0170) 2020; 262 Poloni, Lee, Berger, Smit, Neaton (bib0355) 2014; 5 Ozin (bib0065) 2015; 27 Stevens, Siriwardane, Logan (bib0370) 2008; 22 Chen, Xing, Wang, Su (bib0070) 2016; 4 Abazari, Sanati, Morsali, Slawin, Carpenter-Warren (bib0195) 2019; 11 Zhao, Wang, Feng, Chen, Yang, Gao, Cao (bib0115) 2018; 8 Luo, Dong, Liu, Li, Lan (bib0075) 2019; 390 Jiang, Liang, Zheng, Liu, Wang, Wang, Zhang, Qin, Dai, Whangbo, Huang (bib0100) 2017; 219 Chu, Majumdar (bib0005) 2012; 488 Bi, Li, You, Chen, Yuan, Huang, Wu, Chu, Wu, Xie (bib0385) 2018; 30 Gao, Meng, Zhao, Yin, Wang, Guo, Zhao, Chang, He, Li, Zhao, Huang, Gao, Tang (bib0080) 2016; 28 Liu, Zhou, Kou, Chen, Tian, Gao, Yan, Zou (bib0095) 2010; 132 Xin, Wang, Chen, Li, Dong, Lan (bib0050) 2019 Wang, Wang, Gao, Shen, Pu, Zhang, Lin, Wang (bib0060) 2020; 270 Liu, Fan, Li, Wei, Xu, Zhang, Su (bib0285) 2018; 231 Kuriki, Yamamoto, Higuchi, Yamamoto, Akatsuka, Lu, Yagi, Yoshida, Ishitani, Maeda (bib0030) 2017; 56 Wang, Liu, Zhang, Dong, Li, Kan, Li, Lan (bib0220) 2019; 9 Shi, Wang, Zhang, Chang, Ye (bib0270) 2015; 25 Mu, Dai, Zhao, Zhang, Xu, Guo (bib0340) 2019 Gao, Lin, Jiao, Sun, Luo, Zhang, Li, Yang, Xie (bib0010) 2016; 529 Lee, Farha, Roberts, Scheidt, Nguyen, Hupp (bib0160) 2009; 38 Abazari, Mahjoub, Shariati (bib0130) 2019; 366 Listorti, Durrant, Barber (bib0045) 2009; 8 Iwase, Yoshino, Takayama, Ng, Amal, Kudo (bib0110) 2016; 138 Zhang, Hong, Li, Wang, Huang, Chen, Tu, Yu, Xu, Zhou, Zhang (bib0240) 2019; 58 Wang, Hou, Wu, Zhao, Ma (bib0345) 2019; 30 Zhang, Dong, Qin, Guan, Liu, Li, Lu, Lan, Su, Zhou (bib0145) 2017; 139 Sanati, Abazari, Morsali, Kirillov, Junk, Wang (bib0200) 2019; 58 Dong, Meng, Zhang, Tang, Liu, Wang, Wei, Zhang, Bai, Sun (bib0025) 2020; 379 Li, Bi, Chen, Sun, Ju, Yan, Zhu, Wu, Chu, Wu, Xie (bib0390) 2017; 139 Choi (10.1016/j.apcatb.2020.119173_bib0310) 2017; 139 Ye (10.1016/j.apcatb.2020.119173_bib0140) 2017; 139 Raziq (10.1016/j.apcatb.2020.119173_bib0380) 2018; 8 Gao (10.1016/j.apcatb.2020.119173_bib0080) 2016; 28 Sudik (10.1016/j.apcatb.2020.119173_bib0125) 2005; 127 Luo (10.1016/j.apcatb.2020.119173_bib0075) 2019; 390 Dong (10.1016/j.apcatb.2020.119173_bib0185) 2018; 24 Liang (10.1016/j.apcatb.2020.119173_bib0035) 2015; 54 Listorti (10.1016/j.apcatb.2020.119173_bib0045) 2009; 8 Zhang (10.1016/j.apcatb.2020.119173_bib0180) 2017; 9 Abazari (10.1016/j.apcatb.2020.119173_bib0205) 2019; 7 Wang (10.1016/j.apcatb.2020.119173_bib0060) 2020; 270 Zhang (10.1016/j.apcatb.2020.119173_bib0145) 2017; 139 Zhang (10.1016/j.apcatb.2020.119173_bib0240) 2019; 58 Sun (10.1016/j.apcatb.2020.119173_bib0295) 2015; 51 Benson (10.1016/j.apcatb.2020.119173_bib0040) 2009; 38 Abazari (10.1016/j.apcatb.2020.119173_bib0190) 2019; 11 Wang (10.1016/j.apcatb.2020.119173_bib0315) 2011; 133 Li (10.1016/j.apcatb.2020.119173_bib0350) 2018; 30 Dong (10.1016/j.apcatb.2020.119173_bib0260) 2020; 59 Hod (10.1016/j.apcatb.2020.119173_bib0225) 2015; 5 Feng (10.1016/j.apcatb.2020.119173_bib0265) 2014; 5 Li (10.1016/j.apcatb.2020.119173_bib0120) 2009; 38 Li (10.1016/j.apcatb.2020.119173_bib0400) 2019; 4 Habisreutinger (10.1016/j.apcatb.2020.119173_bib0085) 2013; 52 Shimizu (10.1016/j.apcatb.2020.119173_bib0150) 2013; 341 Wang (10.1016/j.apcatb.2020.119173_bib0210) 2014; 53 Lin (10.1016/j.apcatb.2020.119173_bib0360) 2017; 7 Dong (10.1016/j.apcatb.2020.119173_bib0025) 2020; 379 Zhao (10.1016/j.apcatb.2020.119173_bib0115) 2018; 8 Abazari (10.1016/j.apcatb.2020.119173_bib0135) 2018; 46 Tahir (10.1016/j.apcatb.2020.119173_bib0105) 2015; 162 Liu (10.1016/j.apcatb.2020.119173_bib0285) 2018; 231 Qin (10.1016/j.apcatb.2020.119173_bib0325) 2019; 141 Thoi (10.1016/j.apcatb.2020.119173_bib0375) 2013; 135 Park (10.1016/j.apcatb.2020.119173_bib0175) 2016; 138 Kuriki (10.1016/j.apcatb.2020.119173_bib0030) 2017; 56 Iwase (10.1016/j.apcatb.2020.119173_bib0110) 2016; 138 Chen (10.1016/j.apcatb.2020.119173_bib0275) 2018; 30 Lehn (10.1016/j.apcatb.2020.119173_bib0015) 1982; 79 Han (10.1016/j.apcatb.2020.119173_bib0230) 2018; 57 Wang (10.1016/j.apcatb.2020.119173_bib0220) 2019; 9 Abazari (10.1016/j.apcatb.2020.119173_bib0130) 2019; 366 Sanati (10.1016/j.apcatb.2020.119173_bib0200) 2019; 58 Hwang (10.1016/j.apcatb.2020.119173_bib0365) 2008; 47 Fei (10.1016/j.apcatb.2020.119173_bib0300) 2015; 54 Poloni (10.1016/j.apcatb.2020.119173_bib0355) 2014; 5 Wang (10.1016/j.apcatb.2020.119173_bib0055) 2018; 9 Li (10.1016/j.apcatb.2020.119173_bib0390) 2017; 139 Abazari (10.1016/j.apcatb.2020.119173_bib0195) 2019; 11 Shi (10.1016/j.apcatb.2020.119173_bib0270) 2015; 25 Liu (10.1016/j.apcatb.2020.119173_bib0095) 2010; 132 Bi (10.1016/j.apcatb.2020.119173_bib0385) 2018; 30 Ye (10.1016/j.apcatb.2020.119173_bib0290) 2018; 227 Wang (10.1016/j.apcatb.2020.119173_bib0305) 2018; 6 Weng (10.1016/j.apcatb.2020.119173_bib0245) 2018; 9 Mu (10.1016/j.apcatb.2020.119173_bib0340) 2019 Gao (10.1016/j.apcatb.2020.119173_bib0010) 2016; 529 Liao (10.1016/j.apcatb.2020.119173_bib0020) 2019; 12 Liu (10.1016/j.apcatb.2020.119173_bib0090) 2013; 1 Jiang (10.1016/j.apcatb.2020.119173_bib0100) 2017; 219 Mu (10.1016/j.apcatb.2020.119173_bib0170) 2020; 262 Li (10.1016/j.apcatb.2020.119173_bib0215) 2016; 138 Chu (10.1016/j.apcatb.2020.119173_bib0005) 2012; 488 Wang (10.1016/j.apcatb.2020.119173_bib0235) 2014; 4 Wang (10.1016/j.apcatb.2020.119173_bib0345) 2019; 30 Xin (10.1016/j.apcatb.2020.119173_bib0050) 2019 Chen (10.1016/j.apcatb.2020.119173_bib0070) 2016; 4 Stevens (10.1016/j.apcatb.2020.119173_bib0370) 2008; 22 Lee (10.1016/j.apcatb.2020.119173_bib0160) 2009; 38 Wang (10.1016/j.apcatb.2020.119173_bib0395) 2019; 48 Kajiwara (10.1016/j.apcatb.2020.119173_bib0280) 2016; 55 Ozin (10.1016/j.apcatb.2020.119173_bib0065) 2015; 27 Zhang (10.1016/j.apcatb.2020.119173_bib0255) 2016; 55 Xie (10.1016/j.apcatb.2020.119173_bib0405) 2019; 10 Xu (10.1016/j.apcatb.2020.119173_bib0320) 2015; 137 Huang (10.1016/j.apcatb.2020.119173_bib0155) 2017; 46 Mahmoud (10.1016/j.apcatb.2020.119173_bib0330) 2019; 141 Liu (10.1016/j.apcatb.2020.119173_bib0335) 2019; 245 Dong (10.1016/j.apcatb.2020.119173_bib0165) 2019; 11 Wang (10.1016/j.apcatb.2020.119173_bib0250) 2018; 140 |
References_xml | – volume: 25 start-page: 5360 year: 2015 end-page: 5367 ident: bib0270 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 11563 year: 2013 end-page: 11569 ident: bib0090 publication-title: J. Mater. Chem. A – volume: 139 start-page: 14889 year: 2017 end-page: 14892 ident: bib0390 publication-title: J. Am. Chem. Soc. – volume: 8 year: 2018 ident: bib0380 publication-title: Adv. Energy Mater. – volume: 5 start-page: 861 year: 2014 end-page: 865 ident: bib0355 publication-title: J. Phys. Chem. Lett. – volume: 28 start-page: 6485 year: 2016 end-page: 6490 ident: bib0080 publication-title: Adv. Mater. – volume: 127 start-page: 7110 year: 2005 end-page: 7118 ident: bib0125 publication-title: J. Am. Chem. Soc. – volume: 529 start-page: 68 year: 2016 end-page: 71 ident: bib0010 publication-title: Nature – volume: 219 start-page: 209 year: 2017 end-page: 215 ident: bib0100 publication-title: Appl. Catal. B – volume: 141 start-page: 2054 year: 2019 end-page: 2060 ident: bib0325 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 5310 year: 2019 end-page: 5349 ident: bib0395 publication-title: Chem. Soc. Rev. – volume: 390 start-page: 86 year: 2019 end-page: 126 ident: bib0075 publication-title: Coord. Chem. Rev. – volume: 139 start-page: 6183 year: 2017 end-page: 6189 ident: bib0145 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 15604 year: 2017 end-page: 15607 ident: bib0140 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 2645 year: 2015 end-page: 2648 ident: bib0295 publication-title: Chem. Commun. – volume: 9 start-page: 27332 year: 2017 end-page: 27337 ident: bib0180 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 4768 year: 2018 end-page: 4775 ident: bib0305 publication-title: J. Mater. Chem. A – volume: 24 start-page: 17148 year: 2018 end-page: 17154 ident: bib0185 publication-title: Chem. – Eur. J. – volume: 7 start-page: 11953 year: 2019 end-page: 11966 ident: bib0205 publication-title: J. Mater. Chem. A – volume: 138 start-page: 2142 year: 2016 end-page: 2145 ident: bib0215 publication-title: J. Am. Chem. Soc. – volume: 231 start-page: 173 year: 2018 end-page: 181 ident: bib0285 publication-title: Appl. Catal. B – volume: 245 start-page: 496 year: 2019 end-page: 501 ident: bib0335 publication-title: Appl. Catal. B – volume: 139 start-page: 356 year: 2017 end-page: 362 ident: bib0310 publication-title: J. Am. Chem. Soc. – volume: 366 start-page: 439 year: 2019 end-page: 451 ident: bib0130 publication-title: J. Hazard. Mater. – volume: 138 start-page: 3518 year: 2016 end-page: 3525 ident: bib0175 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 38 year: 2018 end-page: 41 ident: bib0250 publication-title: J. Am. Chem. Soc. – volume: 270 year: 2020 ident: bib0060 publication-title: Appl. Catal. B – volume: 162 start-page: 98 year: 2015 end-page: 109 ident: bib0105 publication-title: Appl. Catal. B – volume: 135 start-page: 14413 year: 2013 end-page: 14424 ident: bib0375 publication-title: J. Am. Chem. Soc. – volume: 7 year: 2017 ident: bib0360 publication-title: Adv. Energy Mater. – volume: 54 start-page: 6821 year: 2015 end-page: 6828 ident: bib0300 publication-title: Inorg. Chem. – volume: 4 start-page: 2657 year: 2016 end-page: 2662 ident: bib0070 publication-title: J. Mater. Chem. A – volume: 30 year: 2018 ident: bib0275 publication-title: Adv. Mater. – volume: 47 start-page: 4144 year: 2008 end-page: 4148 ident: bib0365 publication-title: Angew. Chem. Int. Ed. – volume: 11 start-page: 45442 year: 2019 end-page: 45454 ident: bib0190 publication-title: ACS Appl. Mater. Interfaces – volume: 59 start-page: 2659 year: 2020 end-page: 2663 ident: bib0260 publication-title: Angew. Chem. Int. Ed. – volume: 57 start-page: 16811 year: 2018 end-page: 16815 ident: bib0230 publication-title: Angew. Chem. Int. Ed. – volume: 379 year: 2020 ident: bib0025 publication-title: Chem. Eng. J. – volume: 52 start-page: 7372 year: 2013 end-page: 7408 ident: bib0085 publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 2080 year: 2019 end-page: 2147 ident: bib0020 publication-title: Energy Environ. Sci. – volume: 30 start-page: 398 year: 2019 end-page: 402 ident: bib0345 publication-title: Chin. Chem. Lett. – volume: 11 start-page: 14759 year: 2019 end-page: 14773 ident: bib0195 publication-title: ACS Appl. Mater. Interfaces – volume: 53 start-page: 1034 year: 2014 end-page: 1038 ident: bib0210 publication-title: Angew. Chem. Int. Ed. – volume: 137 start-page: 13440 year: 2015 end-page: 13443 ident: bib0320 publication-title: J. Am. Chem. Soc. – volume: 30 year: 2018 ident: bib0350 publication-title: Adv. Mater. – volume: 133 start-page: 13445 year: 2011 end-page: 13454 ident: bib0315 publication-title: J. Am. Chem. Soc. – volume: 30 year: 2018 ident: bib0385 publication-title: Adv. Mater. – volume: 11 start-page: 45080 year: 2019 end-page: 45086 ident: bib0165 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 415 year: 2018 ident: bib0245 publication-title: Nat. Commun. – volume: 55 start-page: 14310 year: 2016 end-page: 14314 ident: bib0255 publication-title: Angew. Chem. Int. Ed. – volume: 27 start-page: 1957 year: 2015 end-page: 1963 ident: bib0065 publication-title: Adv. Mater. – volume: 9 start-page: 4466 year: 2018 ident: bib0055 publication-title: Nat. Commun. – volume: 79 start-page: 701 year: 1982 end-page: 704 ident: bib0015 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 10 start-page: 185 year: 2019 end-page: 190 ident: bib0405 publication-title: Chem. Sci. – volume: 262 year: 2020 ident: bib0170 publication-title: Appl. Catal. B – volume: 132 start-page: 14385 year: 2010 end-page: 14387 ident: bib0095 publication-title: J. Am. Chem. Soc. – volume: 38 start-page: 1450 year: 2009 end-page: 1459 ident: bib0160 publication-title: Chem. Soc. Rev. – volume: 8 start-page: 929 year: 2009 end-page: 930 ident: bib0045 publication-title: Nat. Mater. – year: 2019 ident: bib0340 publication-title: Chin. Chem. Lett. – volume: 54 start-page: 13971 year: 2015 end-page: 13974 ident: bib0035 publication-title: Angew. Chem. Int. Ed. – volume: 138 start-page: 10260 year: 2016 end-page: 10264 ident: bib0110 publication-title: J. Am. Chem. Soc. – volume: 341 start-page: 354 year: 2013 end-page: 355 ident: bib0150 publication-title: Science – volume: 4 start-page: 4254 year: 2014 end-page: 4260 ident: bib0235 publication-title: ACS Catal. – volume: 22 start-page: 3070 year: 2008 end-page: 3079 ident: bib0370 publication-title: Energy Fuels – volume: 46 start-page: 126 year: 2017 end-page: 157 ident: bib0155 publication-title: Chem. Soc. Rev. – volume: 227 start-page: 54 year: 2018 end-page: 60 ident: bib0290 publication-title: Appl. Catal. B – volume: 46 start-page: 59 year: 2018 end-page: 67 ident: bib0135 publication-title: Ultrason. Sonochem. – volume: 4 start-page: 690 year: 2019 end-page: 699 ident: bib0400 publication-title: Nat. Energy – volume: 5 start-page: 6302 year: 2015 end-page: 6309 ident: bib0225 publication-title: ACS Catal. – volume: 5 start-page: 5723 year: 2014 ident: bib0265 publication-title: Nat. Commun. – volume: 55 start-page: 2697 year: 2016 end-page: 2700 ident: bib0280 publication-title: Angew. Chem. Int. Ed. – volume: 488 start-page: 294 year: 2012 end-page: 303 ident: bib0005 publication-title: Nature – volume: 58 start-page: 11752 year: 2019 end-page: 11756 ident: bib0240 publication-title: Angew. Chem. Int. Ed. – volume: 38 start-page: 89 year: 2009 end-page: 99 ident: bib0040 publication-title: Chem. Soc. Rev. – volume: 38 start-page: 1477 year: 2009 end-page: 1504 ident: bib0120 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 1726 year: 2019 end-page: 1732 ident: bib0220 publication-title: ACS Catal. – volume: 8 start-page: 1288 year: 2018 end-page: 1295 ident: bib0115 publication-title: Catal. Sci. Technol. – volume: 141 start-page: 7115 year: 2019 end-page: 7121 ident: bib0330 publication-title: J. Am. Chem. Soc. – volume: 56 start-page: 4867 year: 2017 end-page: 4871 ident: bib0030 publication-title: Angew. Chem. Int. Ed. – year: 2019 ident: bib0050 publication-title: Nano Energy – volume: 58 start-page: 16100 year: 2019 end-page: 16111 ident: bib0200 publication-title: Inorg. Chem. – volume: 11 start-page: 45080 year: 2019 ident: 10.1016/j.apcatb.2020.119173_bib0165 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b14995 – volume: 7 start-page: 11953 year: 2019 ident: 10.1016/j.apcatb.2020.119173_bib0205 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA01628G – volume: 46 start-page: 59 year: 2018 ident: 10.1016/j.apcatb.2020.119173_bib0135 publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2018.02.001 – volume: 227 start-page: 54 year: 2018 ident: 10.1016/j.apcatb.2020.119173_bib0290 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.01.028 – volume: 137 start-page: 13440 year: 2015 ident: 10.1016/j.apcatb.2020.119173_bib0320 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08773 – volume: 9 start-page: 27332 year: 2017 ident: 10.1016/j.apcatb.2020.119173_bib0180 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b08451 – volume: 11 start-page: 45442 year: 2019 ident: 10.1016/j.apcatb.2020.119173_bib0190 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b16473 – volume: 138 start-page: 10260 year: 2016 ident: 10.1016/j.apcatb.2020.119173_bib0110 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05304 – volume: 38 start-page: 1450 year: 2009 ident: 10.1016/j.apcatb.2020.119173_bib0160 publication-title: Chem. Soc. Rev. doi: 10.1039/b807080f – volume: 140 start-page: 38 year: 2018 ident: 10.1016/j.apcatb.2020.119173_bib0250 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10107 – volume: 6 start-page: 4768 year: 2018 ident: 10.1016/j.apcatb.2020.119173_bib0305 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA00154E – volume: 139 start-page: 14889 year: 2017 ident: 10.1016/j.apcatb.2020.119173_bib0390 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b09074 – volume: 390 start-page: 86 year: 2019 ident: 10.1016/j.apcatb.2020.119173_bib0075 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2019.03.019 – volume: 25 start-page: 5360 year: 2015 ident: 10.1016/j.apcatb.2020.119173_bib0270 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201502253 – volume: 54 start-page: 6821 year: 2015 ident: 10.1016/j.apcatb.2020.119173_bib0300 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b00752 – volume: 53 start-page: 1034 year: 2014 ident: 10.1016/j.apcatb.2020.119173_bib0210 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201309426 – volume: 47 start-page: 4144 year: 2008 ident: 10.1016/j.apcatb.2020.119173_bib0365 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200705998 – volume: 1 start-page: 11563 year: 2013 ident: 10.1016/j.apcatb.2020.119173_bib0090 publication-title: J. Mater. Chem. A doi: 10.1039/c3ta12433a – volume: 30 year: 2018 ident: 10.1016/j.apcatb.2020.119173_bib0385 publication-title: Adv. Mater. – volume: 79 start-page: 701 year: 1982 ident: 10.1016/j.apcatb.2020.119173_bib0015 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.79.2.701 – volume: 30 start-page: 398 year: 2019 ident: 10.1016/j.apcatb.2020.119173_bib0345 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2018.06.021 – volume: 48 start-page: 5310 year: 2019 ident: 10.1016/j.apcatb.2020.119173_bib0395 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00163H – volume: 12 start-page: 2080 year: 2019 ident: 10.1016/j.apcatb.2020.119173_bib0020 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00717B – volume: 30 year: 2018 ident: 10.1016/j.apcatb.2020.119173_bib0275 publication-title: Adv. Mater. – volume: 132 start-page: 14385 year: 2010 ident: 10.1016/j.apcatb.2020.119173_bib0095 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1068596 – volume: 262 year: 2020 ident: 10.1016/j.apcatb.2020.119173_bib0170 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.118144 – volume: 379 year: 2020 ident: 10.1016/j.apcatb.2020.119173_bib0025 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122342 – volume: 10 start-page: 185 year: 2019 ident: 10.1016/j.apcatb.2020.119173_bib0405 publication-title: Chem. Sci. doi: 10.1039/C8SC03471K – volume: 162 start-page: 98 year: 2015 ident: 10.1016/j.apcatb.2020.119173_bib0105 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2014.06.037 – volume: 56 start-page: 4867 year: 2017 ident: 10.1016/j.apcatb.2020.119173_bib0030 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201701627 – volume: 38 start-page: 89 year: 2009 ident: 10.1016/j.apcatb.2020.119173_bib0040 publication-title: Chem. Soc. Rev. doi: 10.1039/B804323J – volume: 9 start-page: 1726 year: 2019 ident: 10.1016/j.apcatb.2020.119173_bib0220 publication-title: ACS Catal. doi: 10.1021/acscatal.8b04887 – year: 2019 ident: 10.1016/j.apcatb.2020.119173_bib0050 publication-title: Nano Energy – volume: 54 start-page: 13971 year: 2015 ident: 10.1016/j.apcatb.2020.119173_bib0035 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201506966 – volume: 4 start-page: 4254 year: 2014 ident: 10.1016/j.apcatb.2020.119173_bib0235 publication-title: ACS Catal. doi: 10.1021/cs501169t – volume: 24 start-page: 17148 year: 2018 ident: 10.1016/j.apcatb.2020.119173_bib0185 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201804153 – volume: 58 start-page: 16100 year: 2019 ident: 10.1016/j.apcatb.2020.119173_bib0200 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b02658 – volume: 5 start-page: 861 year: 2014 ident: 10.1016/j.apcatb.2020.119173_bib0355 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz500202x – volume: 11 start-page: 14759 year: 2019 ident: 10.1016/j.apcatb.2020.119173_bib0195 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b00415 – volume: 127 start-page: 7110 year: 2005 ident: 10.1016/j.apcatb.2020.119173_bib0125 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja042802q – volume: 141 start-page: 7115 year: 2019 ident: 10.1016/j.apcatb.2020.119173_bib0330 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b01920 – volume: 38 start-page: 1477 year: 2009 ident: 10.1016/j.apcatb.2020.119173_bib0120 publication-title: Chem. Soc. Rev. doi: 10.1039/b802426j – volume: 4 start-page: 2657 year: 2016 ident: 10.1016/j.apcatb.2020.119173_bib0070 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA00429F – volume: 138 start-page: 2142 year: 2016 ident: 10.1016/j.apcatb.2020.119173_bib0215 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b13335 – volume: 55 start-page: 14310 year: 2016 ident: 10.1016/j.apcatb.2020.119173_bib0255 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201608597 – volume: 341 start-page: 354 year: 2013 ident: 10.1016/j.apcatb.2020.119173_bib0150 publication-title: Science doi: 10.1126/science.1239872 – volume: 51 start-page: 2645 year: 2015 ident: 10.1016/j.apcatb.2020.119173_bib0295 publication-title: Chem. Commun. doi: 10.1039/C4CC09797A – volume: 59 start-page: 2659 year: 2020 ident: 10.1016/j.apcatb.2020.119173_bib0260 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201913284 – volume: 46 start-page: 126 year: 2017 ident: 10.1016/j.apcatb.2020.119173_bib0155 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00250A – volume: 135 start-page: 14413 year: 2013 ident: 10.1016/j.apcatb.2020.119173_bib0375 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4074003 – volume: 270 year: 2020 ident: 10.1016/j.apcatb.2020.119173_bib0060 publication-title: Appl. Catal. B – volume: 28 start-page: 6485 year: 2016 ident: 10.1016/j.apcatb.2020.119173_bib0080 publication-title: Adv. Mater. doi: 10.1002/adma.201601387 – volume: 52 start-page: 7372 year: 2013 ident: 10.1016/j.apcatb.2020.119173_bib0085 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201207199 – volume: 57 start-page: 16811 year: 2018 ident: 10.1016/j.apcatb.2020.119173_bib0230 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201811545 – volume: 4 start-page: 690 year: 2019 ident: 10.1016/j.apcatb.2020.119173_bib0400 publication-title: Nat. Energy doi: 10.1038/s41560-019-0431-1 – volume: 58 start-page: 11752 year: 2019 ident: 10.1016/j.apcatb.2020.119173_bib0240 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201905869 – volume: 245 start-page: 496 year: 2019 ident: 10.1016/j.apcatb.2020.119173_bib0335 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.01.014 – year: 2019 ident: 10.1016/j.apcatb.2020.119173_bib0340 publication-title: Chin. Chem. Lett. – volume: 139 start-page: 15604 year: 2017 ident: 10.1016/j.apcatb.2020.119173_bib0140 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b09163 – volume: 55 start-page: 2697 year: 2016 ident: 10.1016/j.apcatb.2020.119173_bib0280 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201508941 – volume: 529 start-page: 68 year: 2016 ident: 10.1016/j.apcatb.2020.119173_bib0010 publication-title: Nature doi: 10.1038/nature16455 – volume: 141 start-page: 2054 year: 2019 ident: 10.1016/j.apcatb.2020.119173_bib0325 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b11042 – volume: 30 year: 2018 ident: 10.1016/j.apcatb.2020.119173_bib0350 publication-title: Adv. Mater. – volume: 139 start-page: 6183 year: 2017 ident: 10.1016/j.apcatb.2020.119173_bib0145 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01559 – volume: 231 start-page: 173 year: 2018 ident: 10.1016/j.apcatb.2020.119173_bib0285 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.02.055 – volume: 366 start-page: 439 year: 2019 ident: 10.1016/j.apcatb.2020.119173_bib0130 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.12.030 – volume: 5 start-page: 6302 year: 2015 ident: 10.1016/j.apcatb.2020.119173_bib0225 publication-title: ACS Catal. doi: 10.1021/acscatal.5b01767 – volume: 22 start-page: 3070 year: 2008 ident: 10.1016/j.apcatb.2020.119173_bib0370 publication-title: Energy Fuels doi: 10.1021/ef800209a – volume: 8 year: 2018 ident: 10.1016/j.apcatb.2020.119173_bib0380 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701580 – volume: 138 start-page: 3518 year: 2016 ident: 10.1016/j.apcatb.2020.119173_bib0175 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00007 – volume: 8 start-page: 929 year: 2009 ident: 10.1016/j.apcatb.2020.119173_bib0045 publication-title: Nat. Mater. doi: 10.1038/nmat2578 – volume: 9 start-page: 4466 year: 2018 ident: 10.1016/j.apcatb.2020.119173_bib0055 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06938-z – volume: 8 start-page: 1288 year: 2018 ident: 10.1016/j.apcatb.2020.119173_bib0115 publication-title: Catal. Sci. Technol. doi: 10.1039/C7CY02286G – volume: 139 start-page: 356 year: 2017 ident: 10.1016/j.apcatb.2020.119173_bib0310 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11027 – volume: 488 start-page: 294 year: 2012 ident: 10.1016/j.apcatb.2020.119173_bib0005 publication-title: Nature doi: 10.1038/nature11475 – volume: 5 start-page: 5723 year: 2014 ident: 10.1016/j.apcatb.2020.119173_bib0265 publication-title: Nat. Commun. doi: 10.1038/ncomms6723 – volume: 219 start-page: 209 year: 2017 ident: 10.1016/j.apcatb.2020.119173_bib0100 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.07.023 – volume: 7 year: 2017 ident: 10.1016/j.apcatb.2020.119173_bib0360 publication-title: Adv. Energy Mater. – volume: 9 start-page: 415 year: 2018 ident: 10.1016/j.apcatb.2020.119173_bib0245 publication-title: Nat. Commun. doi: 10.1038/s41467-018-02819-7 – volume: 27 start-page: 1957 year: 2015 ident: 10.1016/j.apcatb.2020.119173_bib0065 publication-title: Adv. Mater. doi: 10.1002/adma.201500116 – volume: 133 start-page: 13445 year: 2011 ident: 10.1016/j.apcatb.2020.119173_bib0315 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja203564w |
SSID | ssj0002328 |
Score | 2.6619234 |
Snippet | We demonstrate that the regulation of metal species in metal-cluster nodes of PCN-250-Fe3 could realize a substantial improvement of conversion activity and... Metal-organic frameworks (MOFs) have exhibited promising potential in the field of photocatalysis CO2 conversion, while improving the conversion activity of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 119173 |
SubjectTerms | Bi-metallic clusters Carbon dioxide Catalytic activity Chemical reduction Clusters Conversion Hydrogen evolution Hydrogen production Irradiation Light irradiation Manganese Metal ions Metal-organic frameworks Nickel Nodes Open metal sites Photocatalysis Photocatalysts Photocatalytic CO2 reduction Radiation Selectivity Species Zinc |
Title | Regulation of metal ions in smart metal-cluster nodes of metal-organic frameworks with open metal sites for improved photocatalytic CO2 reduction reaction |
URI | https://dx.doi.org/10.1016/j.apcatb.2020.119173 https://www.proquest.com/docview/2452122772 |
Volume | 276 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQPVAOVdmCSkuRD726u4mdxDmiFWhLVSrxkLhZfqpbQbIi4cCFH9Jf2xnHgRapQuISOX7JyYzHn-15EPIZtrGVzCzMbycFE9YIVotas4xXwNOFhAceDXw_KRcX4viyuFwj89EWBtUqk-wfZHqU1ilnmv7mdLVcTs9mdV5yXvEceVZKNOITokIu_3L_qOYBiCFKY6jMsPZoPhd1vPTK6t7ALjFH2QE7F_6_5emJoI6rz9Fb8ibBRnowjGyLrPlmQjbmY7S2Cdn8y7HghOwcPtqvQbM0gbt35PfpEHseqEHbQK89FiPn0WVDu2v48iGP2atbdKFAm9b57qEqG4JAWRpGna6O4kkuxSBcqTe8ju4oYGG6jAcW3tHVz7Zv40HRHYyfzn_k9AZdxsZhAGqNiW1ycXR4Pl-wFJ6BWc5Fz3zhnZ5pbgD1OcjSLvOiMoURuihlbQC5BF-XVgbncqu5BtkaZB5mJqAr9ZLvkPWmbfx7QgMAGSsq7aAAEqWUPqusLU0AuFVmepfwkSrKJt_lGELjSo1Kar_UQEuFtFQDLXcJe2i1Gnx3PFO_Ggmu_uFBBcvLMy33Rv5QSQZ0Cu-0szyH7cuHF3f8kbzGt2j8WOyR9f7m1n8CFNSb_cjm--TVwddvi5M_g1AKBQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKofSAYKGi0IIPcDS7sZ3EOXBA21Zb-kCCVurNOLYjtmqTVZMK9cKH8Bv8IGPHaQEJVULqJbL80sgzmZfHMwCv0YzNZWLw_7ZSUGFKQQtRaJrwHGk6lfjxroGDw2x2LD6cpCdL8HN4C-PDKiPv73l64NaxZxxPc7yYz8efJwXLOM858zQrZREjK_fc1Te029p3u1uI5DeM7WwfTWc0lhaghnPRUZc6qyeal6ixWOzSNnEiL9NS6DSTRYlSt3JFZmRlLTOaa-QLlWTVpKx8GvCM47734L7Abl824e33m7gSVFEC-0foqAdveK8Xgsr0wuiuRLOUeWaFphL_lzz8SzIEcbfzCB5GPZW874_iMSy5egQr06E83AhWf8tkOIK17ZsHc7gscoz2Cfz41Be7R_STpiLnzg97UifzmrTneNR9HzVnlz5nA6kb69rrqbSvOmVINQSRtcS7jomv-hV38_ffLUHlm8yDh8RZsvjadE3wTF0h_GT6kZELn6M2gIFqcmg8heM7QdoaLNdN7Z4BqVBzMiLXFgewkUnpktyYrKxQv8sSvQ58wIoyMVm6r9lxpoaouFPV41J5XKoel-tAr1ct-mQht8zPB4SrP4heoTy7ZeXGQB8qMp1W-Uv0hDG0l57_98avYGV2dLCv9ncP917AAz8SXl6mG7DcXVy6TVTBuvJlIHkCX-76H_sFEVZHlw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+metal+ions+in+smart+metal-cluster+nodes+of+metal-organic+frameworks+with+open+metal+sites+for+improved+photocatalytic+CO2+reduction+reaction&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Dong%2C+Hong&rft.au=Zhang%2C+Xin&rft.au=Lu%2C+Yang&rft.au=Yang%2C+Yan&rft.date=2020-11-05&rft.issn=0926-3373&rft.volume=276&rft.spage=119173&rft_id=info:doi/10.1016%2Fj.apcatb.2020.119173&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2020_119173 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |