Evaluation of ozone as an efficient and sustainable reagent for chalcopyrite leaching: Process optimization and oxidative mechanism
[Display omitted] •Chalcopyrite leaching in sulfuric acid solution with ozone was studied.•Ozone leaching mechanism is changed by increased temperature.•Ferric sulfate addition decreased copper recovery by inhibiting ozone diffusion.•All different oxidative leaching follows shrinking core model by m...
Saved in:
Published in | Journal of industrial and engineering chemistry (Seoul, Korea) Vol. 104; pp. 333 - 344 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
25.12.2021
한국공업화학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Chalcopyrite leaching in sulfuric acid solution with ozone was studied.•Ozone leaching mechanism is changed by increased temperature.•Ferric sulfate addition decreased copper recovery by inhibiting ozone diffusion.•All different oxidative leaching follows shrinking core model by mixed control.•Ozone is a highly efficient, economic, green, and sustainable reagent.
Chalcopyrite is the main copper-bearing mineral and is refractory to oxidative leaching. There are many investigations to optimize copper extraction from this mineral but most of the processes are energy intensive and environmental threatening. Ozone at low concentration is an efficient reagent for high extraction of copper from chalcopyrite, which is also ecofriendly. This paper presents a comprehensive investigation on the process optimization for both copper and iron extraction from chalcopyrite using ozone. The following variables were tested during 48-h leaching periods: temperature, ferric sulfate, ozone and sulfuric acid concentrations, solid/liquid ratio, and leaching time. Ozone leaching recovered 100% of the copper from chalcopyrite at 25 °C without addition of ferric. The overall reaction kinetics followed the shrinking core model by mixed control of diffusion through the product layer and chemical reactions. The proposed leaching mechanism was verified via various characterization techniques. Green chemistry metrics were evaluated, and the optimized process was demonstrated to be environmentally attractive. Ozone leaching appears to have strong potential as a “green” and technically feasible method to leach copper from chalcopyrite. |
---|---|
AbstractList | Chalcopyrite is the main copper-bearing mineral and is refractory to oxidative leaching. There are manyinvestigations to optimize copper extraction from this mineral but most of the processes are energyintensive and environmental threatening. Ozone at low concentration is an efficient reagent for highextraction of copper from chalcopyrite, which is also ecofriendly. This paper presents a comprehensiveinvestigation on the process optimization for both copper and iron extraction from chalcopyrite usingozone. The following variables were tested during 48-h leaching periods: temperature, ferric sulfate,ozone and sulfuric acid concentrations, solid/liquid ratio, and leaching time. Ozone leaching recovered100% of the copper from chalcopyrite at 25 C without addition of ferric. The overall reaction kinetics followedthe shrinking core model by mixed control of diffusion through the product layer and chemicalreactions. The proposed leaching mechanism was verified via various characterization techniques.
Green chemistry metrics were evaluated, and the optimized process was demonstrated to be environmentallyattractive. Ozone leaching appears to have strong potential as a ‘‘green” and technically feasiblemethod to leach copper from chalcopyrite. KCI Citation Count: 3 [Display omitted] •Chalcopyrite leaching in sulfuric acid solution with ozone was studied.•Ozone leaching mechanism is changed by increased temperature.•Ferric sulfate addition decreased copper recovery by inhibiting ozone diffusion.•All different oxidative leaching follows shrinking core model by mixed control.•Ozone is a highly efficient, economic, green, and sustainable reagent. Chalcopyrite is the main copper-bearing mineral and is refractory to oxidative leaching. There are many investigations to optimize copper extraction from this mineral but most of the processes are energy intensive and environmental threatening. Ozone at low concentration is an efficient reagent for high extraction of copper from chalcopyrite, which is also ecofriendly. This paper presents a comprehensive investigation on the process optimization for both copper and iron extraction from chalcopyrite using ozone. The following variables were tested during 48-h leaching periods: temperature, ferric sulfate, ozone and sulfuric acid concentrations, solid/liquid ratio, and leaching time. Ozone leaching recovered 100% of the copper from chalcopyrite at 25 °C without addition of ferric. The overall reaction kinetics followed the shrinking core model by mixed control of diffusion through the product layer and chemical reactions. The proposed leaching mechanism was verified via various characterization techniques. Green chemistry metrics were evaluated, and the optimized process was demonstrated to be environmentally attractive. Ozone leaching appears to have strong potential as a “green” and technically feasible method to leach copper from chalcopyrite. |
Author | Wang, Jingxiu Faraji, Fariborz Ghahreman, Ahmad |
Author_xml | – sequence: 1 givenname: Jingxiu surname: Wang fullname: Wang, Jingxiu – sequence: 2 givenname: Fariborz surname: Faraji fullname: Faraji, Fariborz email: f.faraji@queensu.ca – sequence: 3 givenname: Ahmad surname: Ghahreman fullname: Ghahreman, Ahmad email: ahmad.g@queensu.ca |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002804708$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kEtLJDEURsOgMOr4B1xl66LKpKo6VRnciPgCQRkU3IV0ctPetjppktio2_njk7Jn5cLVfXDPF3L2yY4PHgg54qzmjIuTZb1EMHXDGl6zoWat-EH2-NCLqpfd007pm0ZUbBBPP8l-SkvGBGsHsUf-Xmz0-KozBk-Do-Gj5FKdqPYUnEOD4HMZLE2vKWv0ej4CjaAX096FSM2zHk1Yv0fMQEfQ5hn94je9j8FASjSsM67wY_vAlBPe0JZpA3QFhfWYVr_IrtNjgsP_9YA8Xl48nF9Xt3dXN-dnt5Vp2y5X1s44NAC8Y8zahlk9dH0njRCD7cHOgFthpBBSO2jamQQuWgbO9PO5tQ5ke0COt7k-OvViUAWNn3UR1EtUZ38ebpSUXM46Xm6b7a2JIaUITq0jrnR8V5ypSblaqkm5mpQrNqiivEDDF8hg_vx6jhrH79HTLQpFwAYhqjS5N2AxgsnKBvwO_weSmKLk |
CitedBy_id | crossref_primary_10_1007_s40831_022_00561_5 crossref_primary_10_1016_j_jiec_2021_11_055 crossref_primary_10_3390_systems11020078 crossref_primary_10_1016_j_seppur_2025_132043 crossref_primary_10_1016_j_mineng_2023_108209 crossref_primary_10_21285_1814_3520_2022_2_320_335 crossref_primary_10_1016_j_cep_2025_110263 crossref_primary_10_1016_j_molliq_2024_124682 crossref_primary_10_3390_met13061145 crossref_primary_10_1039_D3EE02978F crossref_primary_10_1515_ijfe_2024_0113 crossref_primary_10_3390_ma16062312 crossref_primary_10_1016_j_hydromet_2022_105966 crossref_primary_10_1016_j_mineng_2024_108673 crossref_primary_10_1016_j_ultsonch_2024_106998 crossref_primary_10_17073_0021_3438_2024_4_33_42 crossref_primary_10_1007_s40831_023_00672_7 crossref_primary_10_1016_j_psep_2025_106979 crossref_primary_10_1007_s11837_025_07265_7 crossref_primary_10_1016_j_cej_2023_143493 |
Cites_doi | 10.1080/01919510600558635 10.1179/1879139512Y.0000000001 10.1016/j.hydromet.2015.11.011 10.1016/j.hydromet.2018.10.021 10.1016/j.hydromet.2007.11.011 10.3390/met9111173 10.1016/j.hydromet.2012.05.004 10.1179/cmq.1990.29.2.133 10.1016/j.hydromet.2014.08.006 10.3390/min10070633 10.3103/S1067821220010095 10.1016/j.hydromet.2019.105120 10.1179/cmq.2010.49.3.219 10.1016/j.hydromet.2004.10.017 10.1080/00084433.2018.1460437 10.1080/08827508.2011.584093 10.1016/j.rinp.2017.07.035 10.1016/j.hydromet.2004.10.009 10.1016/j.biortech.2012.01.084 10.1016/j.electacta.2012.07.119 10.23939/chcht03.02.139 10.1016/j.jmrt.2019.06.020 10.1016/j.hydromet.2008.06.012 10.1016/j.hydromet.2019.02.002 10.1016/j.hydromet.2004.01.003 10.1007/s11814-017-0053-x 10.1016/j.hydromet.2010.10.013 10.1016/j.mineng.2010.11.008 10.1016/j.hydromet.2009.01.002 10.1007/s11837-005-0252-5 10.1007/s12613-011-0489-7 10.1515/revce-2019-0073 |
ContentType | Journal Article |
Copyright | 2021 The Korean Society of Industrial and Engineering Chemistry |
Copyright_xml | – notice: 2021 The Korean Society of Industrial and Engineering Chemistry |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1016/j.jiec.2021.08.036 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1876-794X |
EndPage | 344 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9919541 10_1016_j_jiec_2021_08_036 S1226086X21004846 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9ZL AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABNUV ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO9 EP2 EP3 FDB FIRID FNPLU FYGXN GBLVA HH5 IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SSG SSZ T5K ~G- 2WC AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION EJD HZ~ MZR OK1 RIG SSH ZY4 ZZE 85H ABPIF ABTAH ACYCR AJBFU |
ID | FETCH-LOGICAL-c334t-dd51e2ee1400dd20da84749c668d7ed5e1d6c9669afe2359e1630efc7bbddfe93 |
IEDL.DBID | .~1 |
ISSN | 1226-086X |
IngestDate | Tue Nov 21 21:17:46 EST 2023 Tue Jul 01 03:34:22 EDT 2025 Thu Apr 24 22:56:54 EDT 2025 Fri Feb 23 02:42:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ozonation Leaching mechanism Diffusion inhibition Ferric sulfate Copper Sulfidic ores |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-dd51e2ee1400dd20da84749c668d7ed5e1d6c9669afe2359e1630efc7bbddfe93 |
PageCount | 12 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9919541 crossref_primary_10_1016_j_jiec_2021_08_036 crossref_citationtrail_10_1016_j_jiec_2021_08_036 elsevier_sciencedirect_doi_10_1016_j_jiec_2021_08_036 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-25 |
PublicationDateYYYYMMDD | 2021-12-25 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-25 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | Journal of industrial and engineering chemistry (Seoul, Korea) |
PublicationYear | 2021 |
Publisher | Elsevier B.V 한국공업화학회 |
Publisher_xml | – name: Elsevier B.V – name: 한국공업화학회 |
References | Nazari, Dixon, Dreisinger (b0050) 2011; 105 Naderi, Abdollahy, Mostoufi, Koleini, Shojaosadati, Manafi (b0145) 2011; 18 Ghomi, Mozammel, Moghanni, Shahkar (b0045) 2019; 189 Wang, Faraji, Ghahreman (b0150) 2020; 10 Li, Kawashima, Li, Chandra, Gerson (b0015) 2013; 197 Sokić, Marković, Stanković, Kamberović, Štrbac, Manojlović, Petronijević (b0065) 2019; 9 Havlik, Dvorscikova, Ivanova, Kammel (b0130) 1999; 53 Zhong, Li (b0170) 2019; 8 Hiroyoshi, Kuroiwa, Miki, Tsunekawa, Hirajima (b0140) 2004; 74 Tian, Wang, Xin, Li, Guo (b0105) 2016; 159 Levenspiel (b0190) 1999 Rodríguez-Rodríguez, Nava-Alonso, Uribe-Salas (b0120) 2018; 57 Yoon, Kim, Chung, Lee, Shin, Kim, Jang, Kim, Lee, Yoo (b0035) 2017; 34 Koleini, Aghazadeh, Sandström (b0010) 2011; 24 Ghahremaninezhad, Dixon, Asselin (b0020) 2013; 87 Mubarok, Sukamto, Ichlas, Sugiarto (b0095) 2018; 35 Rakovsky, Anachkov, Zaikov (b0080) 2009; 3 M.J. Nicol, The Role of Electrochemistry in Hydrometallurgy. In 4th International Symposium on Hydrometallurgy; AIME: Salt Lake City, Utah, USA, 1993. Fomchenko, Muravyov (b0180) 2019; 185 Wen, Zhao, Xiao, Ma, Kang, Li, Song (b0040) 2017; 7 F.R.C. Pedroza, M.D.J.S.; Aguilar, T.P. Treviño, A.M. Luévanos, M.S. Castillo, Min. Proc. Ext. Met. Rev. 33 (2012) 269–279. https://doi.org/10.1080/08827508.2011.584093. Sokić, Marković, Živković (b0030) 2009; 95 Biń (b0205) 2006; 28 Rodríguez-Rodríguez, Nava-Alonso, Uribe-Salas (b0110) 2014; 149 Nava, Uribe, Perez (b0090) 2003; 3 Guo, Xin, Hao, Tian, Nonferr (b0160) 2017; 27 Ghahremaninezhad, Dixon, Asselin (b0195) 2012; 125 Krylova (b0135) 2020; 61 Chang-Li, Jin-Lan, Zhen-Yuan, Yi, Chen-Yan (b0075) 2012; 110 Li, Li, Qian (b0115) 2009; 97 Shin, Ahn, Lee (b0165) 2019; 183 Havlik, Laubertova, Miskufova, Kondas, Vranka (b0070) 2005; 77 Thao, Tsuji, Jeon, Park, Tabelin, Ito, Hiroyoshi (b0175) 2020; 194 F. Faraji, A. Alizadeh, F. Rashchi, N. Mostoufi, Rev. Chem. Eng. (in press) https://doi.org/10.1515/revce-2019-0073. Havlik, Skrobian (b0055) 1990; 29 Al-Harahsheh, Kingman, Al-Harahsheh (b0060) 2008; 91 Carrillo-Pedroza, Sánchez-Castillo, Soria-Aguilar, Martínez-Luévanos, Gutiérrez (b0125) 2010; 49 Wang (b0005) 2005; 57 Xian, Wen, Deng, Liu, Nie (b0025) 2012; 51 Ukasik, Havlik (b0100) 2005; 77 Hernández, Dupont, Herreros, Jimenez, Torres (b0155) 2019; 9 Sokić (10.1016/j.jiec.2021.08.036_b0030) 2009; 95 Rakovsky (10.1016/j.jiec.2021.08.036_b0080) 2009; 3 Nava (10.1016/j.jiec.2021.08.036_b0090) 2003; 3 Wang (10.1016/j.jiec.2021.08.036_b0005) 2005; 57 Thao (10.1016/j.jiec.2021.08.036_b0175) 2020; 194 Carrillo-Pedroza (10.1016/j.jiec.2021.08.036_b0125) 2010; 49 Li (10.1016/j.jiec.2021.08.036_b0015) 2013; 197 Chang-Li (10.1016/j.jiec.2021.08.036_b0075) 2012; 110 Rodríguez-Rodríguez (10.1016/j.jiec.2021.08.036_b0120) 2018; 57 Mubarok (10.1016/j.jiec.2021.08.036_b0095) 2018; 35 10.1016/j.jiec.2021.08.036_b0200 Sokić (10.1016/j.jiec.2021.08.036_b0065) 2019; 9 Havlik (10.1016/j.jiec.2021.08.036_b0055) 1990; 29 10.1016/j.jiec.2021.08.036_b0185 Xian (10.1016/j.jiec.2021.08.036_b0025) 2012; 51 10.1016/j.jiec.2021.08.036_b0085 Krylova (10.1016/j.jiec.2021.08.036_b0135) 2020; 61 Fomchenko (10.1016/j.jiec.2021.08.036_b0180) 2019; 185 Wen (10.1016/j.jiec.2021.08.036_b0040) 2017; 7 Ghahremaninezhad (10.1016/j.jiec.2021.08.036_b0195) 2012; 125 Al-Harahsheh (10.1016/j.jiec.2021.08.036_b0060) 2008; 91 Hernández (10.1016/j.jiec.2021.08.036_b0155) 2019; 9 Shin (10.1016/j.jiec.2021.08.036_b0165) 2019; 183 Havlik (10.1016/j.jiec.2021.08.036_b0070) 2005; 77 Levenspiel (10.1016/j.jiec.2021.08.036_b0190) 1999 Tian (10.1016/j.jiec.2021.08.036_b0105) 2016; 159 Wang (10.1016/j.jiec.2021.08.036_b0150) 2020; 10 Biń (10.1016/j.jiec.2021.08.036_b0205) 2006; 28 Rodríguez-Rodríguez (10.1016/j.jiec.2021.08.036_b0110) 2014; 149 Havlik (10.1016/j.jiec.2021.08.036_b0130) 1999; 53 Hiroyoshi (10.1016/j.jiec.2021.08.036_b0140) 2004; 74 Guo (10.1016/j.jiec.2021.08.036_b0160) 2017; 27 Naderi (10.1016/j.jiec.2021.08.036_b0145) 2011; 18 Ukasik (10.1016/j.jiec.2021.08.036_b0100) 2005; 77 Li (10.1016/j.jiec.2021.08.036_b0115) 2009; 97 Nazari (10.1016/j.jiec.2021.08.036_b0050) 2011; 105 Koleini (10.1016/j.jiec.2021.08.036_b0010) 2011; 24 Yoon (10.1016/j.jiec.2021.08.036_b0035) 2017; 34 Zhong (10.1016/j.jiec.2021.08.036_b0170) 2019; 8 Ghahremaninezhad (10.1016/j.jiec.2021.08.036_b0020) 2013; 87 Ghomi (10.1016/j.jiec.2021.08.036_b0045) 2019; 189 |
References_xml | – volume: 10 start-page: 633 year: 2020 ident: b0150 publication-title: Minerals – volume: 97 start-page: 61 year: 2009 end-page: 66 ident: b0115 publication-title: Hydrometallurgy – volume: 149 start-page: 168 year: 2014 end-page: 176 ident: b0110 publication-title: Hydrometallurgy – volume: 24 start-page: 381 year: 2011 end-page: 386 ident: b0010 publication-title: Miner. Eng. – volume: 91 start-page: 89 year: 2008 end-page: 97 ident: b0060 publication-title: Hydrometallurgy – volume: 57 start-page: 294 year: 2018 end-page: 303 ident: b0120 publication-title: Can. Metall. Q. – volume: 194 year: 2020 ident: b0175 publication-title: Hydrometallurgy – volume: 9 start-page: 1 year: 2019 end-page: 13 ident: b0065 publication-title: Metals – reference: M.J. Nicol, The Role of Electrochemistry in Hydrometallurgy. In 4th International Symposium on Hydrometallurgy; AIME: Salt Lake City, Utah, USA, 1993. – volume: 77 start-page: 51 year: 2005 end-page: 59 ident: b0070 publication-title: Hydrometallurgy – volume: 3 start-page: 139 year: 2009 end-page: 161 ident: b0080 publication-title: Chem. Chem. Technol. – volume: 77 start-page: 139 year: 2005 end-page: 145 ident: b0100 publication-title: Hydrometallurgy – volume: 57 start-page: 48 year: 2005 end-page: 51 ident: b0005 publication-title: JOM – volume: 95 start-page: 273 year: 2009 end-page: 279 ident: b0030 publication-title: Hydrometallurgy – volume: 197 start-page: 1 year: 2013 end-page: 32 ident: b0015 publication-title: Adv. Colloid Interface Sci. – volume: 125 start-page: 42 year: 2012 end-page: 49 ident: b0195 publication-title: Hydrometallurgy – volume: 18 start-page: 638 year: 2011 end-page: 645 ident: b0145 publication-title: Int. J. Miner. Metall. – volume: 185 start-page: 82 year: 2019 end-page: 87 ident: b0180 publication-title: Hydrometallurgy – volume: 7 start-page: 2594 year: 2017 end-page: 2600 ident: b0040 publication-title: Results Phys. – volume: 27 start-page: 1888 year: 2017 end-page: 1895 ident: b0160 publication-title: Metal. Soc. – volume: 9 start-page: 1 year: 2019 end-page: 13 ident: b0155 publication-title: Minerals – year: 1999 ident: b0190 article-title: Chemical Reaction Engineering – volume: 34 start-page: 1748 year: 2017 end-page: 1755 ident: b0035 publication-title: Korean J. Chem. Eng. – reference: F.R.C. Pedroza, M.D.J.S.; Aguilar, T.P. Treviño, A.M. Luévanos, M.S. Castillo, Min. Proc. Ext. Met. Rev. 33 (2012) 269–279. https://doi.org/10.1080/08827508.2011.584093. – volume: 74 start-page: 103 year: 2004 end-page: 116 ident: b0140 publication-title: Hydrometallurgy – volume: 110 start-page: 462 year: 2012 end-page: 467 ident: b0075 publication-title: Bioresour. Technol. – volume: 3 start-page: 316 year: 2003 end-page: 323 ident: b0090 publication-title: Eur. J. Miner. Process. Environ. Prot. – volume: 105 start-page: 251 year: 2011 end-page: 258 ident: b0050 publication-title: Hydrometallurgy – volume: 29 start-page: 133 year: 1990 end-page: 139 ident: b0055 publication-title: Can. Metall. Q. – volume: 28 start-page: 67 year: 2006 end-page: 75 ident: b0205 publication-title: Ozone Sci. Eng. – volume: 53 start-page: 57 year: 1999 end-page: 60 ident: b0130 publication-title: Metall – volume: 61 start-page: 49 year: 2020 end-page: 56 ident: b0135 publication-title: Russ. J. Non-Ferr Met. – volume: 35 start-page: 133 year: 2018 end-page: 140 ident: b0095 publication-title: Miner. Metall. Proc. – volume: 8 start-page: 3487 year: 2019 end-page: 3494 ident: b0170 publication-title: J. Mater. Res. Technol. – reference: F. Faraji, A. Alizadeh, F. Rashchi, N. Mostoufi, Rev. Chem. Eng. (in press) https://doi.org/10.1515/revce-2019-0073. – volume: 159 start-page: 126 year: 2016 end-page: 131 ident: b0105 publication-title: Hydrometallurgy – volume: 49 start-page: 219 year: 2010 end-page: 226 ident: b0125 publication-title: Can. Metall. Q. – volume: 87 start-page: 97 year: 2013 end-page: 112 ident: b0020 publication-title: Electrochim. Acta – volume: 51 start-page: 133 year: 2012 end-page: 140 ident: b0025 publication-title: Can. Metall. Q. – volume: 189 year: 2019 ident: b0045 publication-title: Hydrometallurgy – volume: 183 start-page: 71 year: 2019 end-page: 78 ident: b0165 publication-title: Hydrometallurgy – volume: 28 start-page: 67 year: 2006 ident: 10.1016/j.jiec.2021.08.036_b0205 publication-title: Ozone Sci. Eng. doi: 10.1080/01919510600558635 – volume: 51 start-page: 133 year: 2012 ident: 10.1016/j.jiec.2021.08.036_b0025 publication-title: Can. Metall. Q. doi: 10.1179/1879139512Y.0000000001 – volume: 159 start-page: 126 year: 2016 ident: 10.1016/j.jiec.2021.08.036_b0105 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2015.11.011 – volume: 183 start-page: 71 year: 2019 ident: 10.1016/j.jiec.2021.08.036_b0165 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2018.10.021 – volume: 53 start-page: 57 year: 1999 ident: 10.1016/j.jiec.2021.08.036_b0130 publication-title: Metall – volume: 91 start-page: 89 year: 2008 ident: 10.1016/j.jiec.2021.08.036_b0060 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2007.11.011 – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.jiec.2021.08.036_b0065 publication-title: Metals doi: 10.3390/met9111173 – volume: 125 start-page: 42 year: 2012 ident: 10.1016/j.jiec.2021.08.036_b0195 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2012.05.004 – volume: 29 start-page: 133 year: 1990 ident: 10.1016/j.jiec.2021.08.036_b0055 publication-title: Can. Metall. Q. doi: 10.1179/cmq.1990.29.2.133 – volume: 149 start-page: 168 year: 2014 ident: 10.1016/j.jiec.2021.08.036_b0110 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2014.08.006 – volume: 10 start-page: 633 year: 2020 ident: 10.1016/j.jiec.2021.08.036_b0150 publication-title: Minerals doi: 10.3390/min10070633 – volume: 61 start-page: 49 year: 2020 ident: 10.1016/j.jiec.2021.08.036_b0135 publication-title: Russ. J. Non-Ferr Met. doi: 10.3103/S1067821220010095 – volume: 189 year: 2019 ident: 10.1016/j.jiec.2021.08.036_b0045 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2019.105120 – volume: 3 start-page: 316 year: 2003 ident: 10.1016/j.jiec.2021.08.036_b0090 publication-title: Eur. J. Miner. Process. Environ. Prot. – volume: 49 start-page: 219 year: 2010 ident: 10.1016/j.jiec.2021.08.036_b0125 publication-title: Can. Metall. Q. doi: 10.1179/cmq.2010.49.3.219 – volume: 77 start-page: 139 year: 2005 ident: 10.1016/j.jiec.2021.08.036_b0100 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2004.10.017 – volume: 57 start-page: 294 year: 2018 ident: 10.1016/j.jiec.2021.08.036_b0120 publication-title: Can. Metall. Q. doi: 10.1080/00084433.2018.1460437 – volume: 194 year: 2020 ident: 10.1016/j.jiec.2021.08.036_b0175 publication-title: Hydrometallurgy – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.jiec.2021.08.036_b0155 publication-title: Minerals – ident: 10.1016/j.jiec.2021.08.036_b0085 doi: 10.1080/08827508.2011.584093 – volume: 35 start-page: 133 year: 2018 ident: 10.1016/j.jiec.2021.08.036_b0095 publication-title: Miner. Metall. Proc. – volume: 7 start-page: 2594 year: 2017 ident: 10.1016/j.jiec.2021.08.036_b0040 publication-title: Results Phys. doi: 10.1016/j.rinp.2017.07.035 – volume: 77 start-page: 51 year: 2005 ident: 10.1016/j.jiec.2021.08.036_b0070 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2004.10.009 – volume: 110 start-page: 462 year: 2012 ident: 10.1016/j.jiec.2021.08.036_b0075 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.01.084 – volume: 87 start-page: 97 year: 2013 ident: 10.1016/j.jiec.2021.08.036_b0020 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.07.119 – volume: 3 start-page: 139 year: 2009 ident: 10.1016/j.jiec.2021.08.036_b0080 publication-title: Chem. Chem. Technol. doi: 10.23939/chcht03.02.139 – volume: 8 start-page: 3487 year: 2019 ident: 10.1016/j.jiec.2021.08.036_b0170 publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2019.06.020 – volume: 95 start-page: 273 year: 2009 ident: 10.1016/j.jiec.2021.08.036_b0030 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2008.06.012 – volume: 197 start-page: 1 year: 2013 ident: 10.1016/j.jiec.2021.08.036_b0015 publication-title: Adv. Colloid Interface Sci. – volume: 185 start-page: 82 year: 2019 ident: 10.1016/j.jiec.2021.08.036_b0180 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2019.02.002 – volume: 74 start-page: 103 year: 2004 ident: 10.1016/j.jiec.2021.08.036_b0140 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2004.01.003 – volume: 34 start-page: 1748 year: 2017 ident: 10.1016/j.jiec.2021.08.036_b0035 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-017-0053-x – volume: 105 start-page: 251 year: 2011 ident: 10.1016/j.jiec.2021.08.036_b0050 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2010.10.013 – volume: 24 start-page: 381 year: 2011 ident: 10.1016/j.jiec.2021.08.036_b0010 publication-title: Miner. Eng. doi: 10.1016/j.mineng.2010.11.008 – volume: 27 start-page: 1888 year: 2017 ident: 10.1016/j.jiec.2021.08.036_b0160 publication-title: Metal. Soc. – ident: 10.1016/j.jiec.2021.08.036_b0200 – volume: 97 start-page: 61 year: 2009 ident: 10.1016/j.jiec.2021.08.036_b0115 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2009.01.002 – volume: 57 start-page: 48 year: 2005 ident: 10.1016/j.jiec.2021.08.036_b0005 publication-title: JOM doi: 10.1007/s11837-005-0252-5 – volume: 18 start-page: 638 year: 2011 ident: 10.1016/j.jiec.2021.08.036_b0145 publication-title: Int. J. Miner. Metall. doi: 10.1007/s12613-011-0489-7 – ident: 10.1016/j.jiec.2021.08.036_b0185 doi: 10.1515/revce-2019-0073 – year: 1999 ident: 10.1016/j.jiec.2021.08.036_b0190 |
SSID | ssj0060386 ssib009049966 |
Score | 2.396646 |
Snippet | [Display omitted]
•Chalcopyrite leaching in sulfuric acid solution with ozone was studied.•Ozone leaching mechanism is changed by increased temperature.•Ferric... Chalcopyrite is the main copper-bearing mineral and is refractory to oxidative leaching. There are manyinvestigations to optimize copper extraction from this... |
SourceID | nrf crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 333 |
SubjectTerms | Copper Diffusion inhibition Ferric sulfate Leaching mechanism Ozonation Sulfidic ores 화학공학 |
Title | Evaluation of ozone as an efficient and sustainable reagent for chalcopyrite leaching: Process optimization and oxidative mechanism |
URI | https://dx.doi.org/10.1016/j.jiec.2021.08.036 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002804708 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Industrial and Engineering Chemistry, 2021, 104(0), , pp.333-344 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELVKuZQD4qMVbaGyEDe0Tda73sTcoihRCiIXqJSbZXts2DbZjZIgFQ5c-OPM7DohSKgHTiuvbGvXY828kea9YeyN6ssgLGCairErQfwPicFMKwFbWJlb0YVGrunjtJhc5-9ncnbAhlsuDJVVRt_f-vTGW8c3nXianWVZdj6liBwQkM8EiZ5hGCUGe96jW375c1fmUXSzptsjTU5odiTOtDVeN6UnGUPRyng2Ms3_DE4PqlXYCzvjJ-xxxIt80H7SU3bgq2fs0Z6K4HP2a7RT7OZ14PWPuvLcrLmpuG8EIjCu4AD4-g9ZiiNWJFIVR8zK3Vczd_Xy-wrhJ5_H8sp3PHIIeI1eZRHpms0-9V0JjV44X3giDpfrxTG7Ho8-DydJ7K2QuCzLNwmATL3wHvOrLgCaxGCYypUrij70PEifQuEwFVImeJFJ5RG3dX1wPWsBglfZCTus8HdeMC4xsbXKWmF7LgdVWDAmqL4XIUuDNHDK0u2haheFx6n_xVxvK8xuNBlCkyE0NcXMilP2drdm2cpu3Dtbbm2l_7o8GuPCveteo2H1rSs1qWzT80utb1cac4krjchZyTw9-8_Nz9kRjaj0RciX7HCz-uZfIYDZ2Ivmhl6wh4OrD5Ppb-Uk8u4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOQAHBAVEoRQLlRNakvWuN9lKPSDaKqGPC62Um7E9Nmyb7EZJELSHXvqT-gc7s-uEIqEekHpa7cOWPeOd-Uaa-YaxjbwrvTCAYSr6rgjxP0QaI60ITGZkakQbarqmg8Osd5x-GcjBErua18JQWmWw_Y1Nr611eNIK0myNi6L1NUbkgIB8IIj0DN1oyKzcc2e_MG6bbvW3UcnvhdjdOfrci0JrgcgmSTqLAGTshHMYXrQBcEUarXSa2yzrQseBdDFkFiOBXHsnEpk7hC1t523HGADviIEJ7f79FM0FtU34eLHIK8naSd1eklYX0fJCpU6TVHZSOOJNFA1vaM0L_U9veK-c-Bt-bvcJexwAKv_UyOApW3LlCnt0g7bwGbvcWVCE88rz6rwqHddTrkvuakYKdGR4A3z6pzqLIzilKi6OIJnbH3poq_HZBPEuH4Z8zk0eihZ4hWZsFOpD63mq3wXUBOV85KhSuZiOnrPjO5H4C7Zc4nZeMi4xkja5McJ0bAp5ZkBrn3ed8EnspYZVFs-FqmxgOqeGG0M1T2k7UaQIRYpQ1IUzyVbZh8WYccPzcevXcq4r9ddpVeiIbh33DhWrTm2hiNabrt8rdTpRGLz0FUL1XKbxq_-c_C170Ds62Ff7_cO91-whvaG8GyHX2PJs8tO9QfQ0M-v1aeXs213_HtcsSDBj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+ozone+as+an+efficient+and+sustainable+reagent+for+chalcopyrite+leaching%3A+Process+optimization+and+oxidative+mechanism&rft.jtitle=Journal+of+industrial+and+engineering+chemistry+%28Seoul%2C+Korea%29&rft.au=Jingxiu+Wang&rft.au=Fariborz+Faraji&rft.au=Ahmad+Ghahreman&rft.date=2021-12-25&rft.pub=%ED%95%9C%EA%B5%AD%EA%B3%B5%EC%97%85%ED%99%94%ED%95%99%ED%9A%8C&rft.issn=1226-086X&rft.eissn=1876-794X&rft.spage=333&rft.epage=344&rft_id=info:doi/10.1016%2Fj.jiec.2021.08.036&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_9919541 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-086X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-086X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-086X&client=summon |