Helly-type theorems for intersections of sets starshaped via orthogonally convex paths

Let be a family of simply connected sets in the plane. If every countable subfamily of has an intersection that is starshaped via orthogonally convex paths, then itself has such an intersection. For the d -dimensional case, let be a family of compact sets in . If every finite subfamily of has an int...

Full description

Saved in:
Bibliographic Details
Published inAequationes mathematicae Vol. 84; no. 3; pp. 207 - 217
Main Author Breen, Marilyn
Format Journal Article
LanguageEnglish
Published Basel SP Birkhäuser Verlag Basel 01.12.2012
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0001-9054
1420-8903
DOI10.1007/s00010-012-0151-0

Cover

Loading…
Abstract Let be a family of simply connected sets in the plane. If every countable subfamily of has an intersection that is starshaped via orthogonally convex paths, then itself has such an intersection. For the d -dimensional case, let be a family of compact sets in . If every finite subfamily of has an intersection that is starshaped via orthogonally convex paths, again itself has such an intersection.
AbstractList (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Let ... be a family of simply connected sets in the plane. If every countable subfamily of ... has an intersection that is starshaped via orthogonally convex paths, then ... itself has such an intersection. For the d-dimensional case, let ... be a family of compact sets in ... If every finite subfamily of ... has an intersection that is starshaped via orthogonally convex paths, again ... itself has such an intersection.[PUBLICATION ABSTRACT]
Let $${\mathcal{K}}$$ be a family of simply connected sets in the plane. If every countable subfamily of $${\mathcal{K}}$$ has an intersection that is starshaped via orthogonally convex paths, then $${\mathcal{K}}$$ itself has such an intersection. For the d-dimensional case, let $${\mathcal{K}}$$ be a family of compact sets in $${\mathbb{R} delta }$$ . If every finite subfamily of $${\mathcal{K}}$$ has an intersection that is starshaped via orthogonally convex paths, again $${\mathcal{K}}$$ itself has such an intersection.
Let be a family of simply connected sets in the plane. If every countable subfamily of has an intersection that is starshaped via orthogonally convex paths, then itself has such an intersection. For the d -dimensional case, let be a family of compact sets in . If every finite subfamily of has an intersection that is starshaped via orthogonally convex paths, again itself has such an intersection.
Author Breen, Marilyn
Author_xml – sequence: 1
  givenname: Marilyn
  surname: Breen
  fullname: Breen, Marilyn
  email: mbreen@ou.edu
  organization: The University of Oklahoma
BookMark eNp1kE1LAzEQhoNUsK3-AG8BL15W87VfRylqhYIX9RrS7Gx3S7tZM2mx_94s60EEYYYhzPO-TN4ZmXSuA0KuObvjjOX3yBjjLGFcxE55ws7IlCvBkqJkckKmwzopWaouyAxxG18iz-WUfCxhtzsl4dQDDQ04D3uktfO07QJ4BBta1yF1NUUISDEYj43poaLH1lDnQ-M2rjPRg1rXHeGL9iY0eEnOa7NDuPqZc_L-9Pi2WCar1-eXxcMqsVKqkFRrpaQVNpNQFFmdQi6NzIQUtuK1tGVpCpWpuhaZWUtR2FjFWhRKlrzKwEg5J7ejb-_d5wEw6H2LNn7JdOAOqLkoZM7TlKURvfmDbt3Bx9MjxXOWCiXzgeIjZb1D9FDr3rd740-aMz0krcekdQxQD0lrFjVi1GBkuw34X87_ir4B6DCCcA
CODEN AEMABN
Cites_doi 10.1007/PL00000393
10.1016/B978-0-444-89596-7.50017-1
10.1007/s00013-004-1120-1
10.1515/ADVGEOM.2008.012
10.7146/math.scand.a-10455
10.1007/s00605-002-0512-1
10.1090/pspum/007/0157289
10.1023/A:1011367730490
ContentType Journal Article
Copyright Springer Basel AG 2012
Springer Basel 2012
Copyright_xml – notice: Springer Basel AG 2012
– notice: Springer Basel 2012
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s00010-012-0151-0
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1420-8903
EndPage 217
ExternalDocumentID 2818784481
10_1007_s00010_012_0151_0
Genre Feature
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
692
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DARCH
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MBV
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P2P
P9R
PF0
PQQKQ
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
REI
RHV
RNI
RNS
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TWZ
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
7SC
7TB
8FD
ABRTQ
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-db443c2c63e886f5e73a36232cd1f3c99a8464ff26ab328c28c8b284391d6ea33
IEDL.DBID AGYKE
ISSN 0001-9054
IngestDate Thu Jul 10 23:44:11 EDT 2025
Fri Jul 25 19:33:46 EDT 2025
Tue Jul 01 01:41:41 EDT 2025
Fri Feb 21 02:37:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Sets starshaped via orthogonally convex paths
52.A35
52.A30
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-db443c2c63e886f5e73a36232cd1f3c99a8464ff26ab328c28c8b284391d6ea33
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1170524375
PQPubID 36840
PageCount 11
ParticipantIDs proquest_miscellaneous_1283715505
proquest_journals_1170524375
crossref_primary_10_1007_s00010_012_0151_0
springer_journals_10_1007_s00010_012_0151_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-12-01
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Aequationes mathematicae
PublicationTitleAbbrev Aequat. Math
PublicationYear 2012
Publisher SP Birkhäuser Verlag Basel
Springer Nature B.V
Publisher_xml – name: SP Birkhäuser Verlag Basel
– name: Springer Nature B.V
References Nadler, S.: Hyperspaces of Sets. New York (1978)
BobylevN.A.The Helly theorem for star-shaped setsJ. Math. Sci.200110518191825187114610.1023/A:1011367730490
BreenM.Planar compact sets whose intersections are starshaped via orthogonally convex pathsAdv. Geom.2008816116924052341147.5200310.1515/ADVGEOM.2008.012
Valentine, F.A.: Convex Sets. New York (1964)
BreenM.A Krasnosel’skii-type theorem for paths of bounded lengthArch. Math.1997686064142184710.1007/PL00000393
BreenM.Helly-type theorems for sets starshaped via staircase pathsBeiträge zur Algebra und Geometrie20084952753924680731180.52012
BreenM.Intersections of sets sharshaped via paths of bounded lengthMonatsh. Math.200313910510919879101033.5200510.1007/s00605-002-0512-1
KleeV.L.JrThe structure of semispacesMath. Scand.195645464809430070.39203
EckhoffJ.GruberP.M.WillsJ.M.Helly, Radon, and Carathéodory type theoremsHandbook of Convex Geometry, vol. A1993New YorkNorth Holland389448
LayS.R.Convex Sets and Their Applications1982New YorkWiley0492.52001
Danzer, L., Grünbaum, B., Klee, V.: Helly’s theorem and its relatives, Convexity. In: Proceedings of the Symposium in Pure Mathematics, vol. 7, pp. 101–180. American Mathematical Society, Providence (1962)
ApostolT.M.Mathematical Analysis1960ReadingAddison-Wesley
BreenM.A Helly-type theorem for countable intersections of starshaped setsArch. Math.20058428228821341431080.5200610.1007/s00013-004-1120-1
M. Breen (151_CR4) 1997; 68
T.M. Apostol (151_CR1) 1960
M. Breen (151_CR5) 2008; 49
S.R. Lay (151_CR11) 1982
V.L. Klee Jr (151_CR10) 1956; 4
J. Eckhoff (151_CR9) 1993
M. Breen (151_CR6) 2003; 139
M. Breen (151_CR7) 2008; 8
151_CR8
151_CR13
151_CR12
N.A. Bobylev (151_CR2) 2001; 105
M. Breen (151_CR3) 2005; 84
References_xml – reference: BreenM.A Helly-type theorem for countable intersections of starshaped setsArch. Math.20058428228821341431080.5200610.1007/s00013-004-1120-1
– reference: ApostolT.M.Mathematical Analysis1960ReadingAddison-Wesley
– reference: EckhoffJ.GruberP.M.WillsJ.M.Helly, Radon, and Carathéodory type theoremsHandbook of Convex Geometry, vol. A1993New YorkNorth Holland389448
– reference: KleeV.L.JrThe structure of semispacesMath. Scand.195645464809430070.39203
– reference: BreenM.A Krasnosel’skii-type theorem for paths of bounded lengthArch. Math.1997686064142184710.1007/PL00000393
– reference: BreenM.Intersections of sets sharshaped via paths of bounded lengthMonatsh. Math.200313910510919879101033.5200510.1007/s00605-002-0512-1
– reference: BreenM.Planar compact sets whose intersections are starshaped via orthogonally convex pathsAdv. Geom.2008816116924052341147.5200310.1515/ADVGEOM.2008.012
– reference: LayS.R.Convex Sets and Their Applications1982New YorkWiley0492.52001
– reference: Danzer, L., Grünbaum, B., Klee, V.: Helly’s theorem and its relatives, Convexity. In: Proceedings of the Symposium in Pure Mathematics, vol. 7, pp. 101–180. American Mathematical Society, Providence (1962)
– reference: BobylevN.A.The Helly theorem for star-shaped setsJ. Math. Sci.200110518191825187114610.1023/A:1011367730490
– reference: BreenM.Helly-type theorems for sets starshaped via staircase pathsBeiträge zur Algebra und Geometrie20084952753924680731180.52012
– reference: Nadler, S.: Hyperspaces of Sets. New York (1978)
– reference: Valentine, F.A.: Convex Sets. New York (1964)
– volume-title: Mathematical Analysis
  year: 1960
  ident: 151_CR1
– volume: 68
  start-page: 60
  year: 1997
  ident: 151_CR4
  publication-title: Arch. Math.
  doi: 10.1007/PL00000393
– volume: 49
  start-page: 527
  year: 2008
  ident: 151_CR5
  publication-title: Beiträge zur Algebra und Geometrie
– ident: 151_CR12
– ident: 151_CR13
– start-page: 389
  volume-title: Handbook of Convex Geometry, vol. A
  year: 1993
  ident: 151_CR9
  doi: 10.1016/B978-0-444-89596-7.50017-1
– volume-title: Convex Sets and Their Applications
  year: 1982
  ident: 151_CR11
– volume: 84
  start-page: 282
  year: 2005
  ident: 151_CR3
  publication-title: Arch. Math.
  doi: 10.1007/s00013-004-1120-1
– volume: 8
  start-page: 161
  year: 2008
  ident: 151_CR7
  publication-title: Adv. Geom.
  doi: 10.1515/ADVGEOM.2008.012
– volume: 4
  start-page: 54
  year: 1956
  ident: 151_CR10
  publication-title: Math. Scand.
  doi: 10.7146/math.scand.a-10455
– volume: 139
  start-page: 105
  year: 2003
  ident: 151_CR6
  publication-title: Monatsh. Math.
  doi: 10.1007/s00605-002-0512-1
– ident: 151_CR8
  doi: 10.1090/pspum/007/0157289
– volume: 105
  start-page: 1819
  year: 2001
  ident: 151_CR2
  publication-title: J. Math. Sci.
  doi: 10.1023/A:1011367730490
SSID ssj0012773
Score 1.8885096
Snippet Let be a family of simply connected sets in the plane. If every countable subfamily of has an intersection that is starshaped via orthogonally convex paths,...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Let ... be a family of simply connected sets in the plane. If every countable...
Let $${\mathcal{K}}$$ be a family of simply connected sets in the plane. If every countable subfamily of $${\mathcal{K}}$$ has an intersection that is...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 207
SubjectTerms Analysis
Combinatorics
Intersections
Mathematical analysis
Mathematics
Mathematics and Statistics
Planes
Theorems
Title Helly-type theorems for intersections of sets starshaped via orthogonally convex paths
URI https://link.springer.com/article/10.1007/s00010-012-0151-0
https://www.proquest.com/docview/1170524375
https://www.proquest.com/docview/1283715505
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT4QwEJ3oetGD38b1Y1MTTxoMtLTAcTWuRqMn1-iJlFLUuLJmyxr11ztlAT-iBxNukAKdlnnlvXkF2HWl5lxHqSPCQDmIwKkjPeo5mtIM0xVzZWJrhy8uxWnfP7vhN1Udt6nV7jUlWX6pm2I3C0esiMpKCTiugadhhnthFLZgpntye37ckAc0qIhl16oPuF-Tmb818j0dfWLMH7RomW16C3BVP-dEZPJ4MC6SA_X-w8Lxny-yCPMV-iTdyXBZgimdL8PcRWPdalbgGhPR4M2xv2bJpMrxyRBEtsQaS4xMqdzKDRlmxOjCEASXI3Mvn3VKXh4ksSzQ8M6i-8EbKRXtr8RuemxWod87vjo6darNFxzFmF84aeL7TFElmA5DkXEdMInJjlGVehlTUSQRufhZRoVMGA0VHmGCuY5FXiq0ZGwNWvkw1-tAWMSzBGPvCZX6QcAT6QvBGQLJzNMeS9uwV8cgfp54bMSNm3LZWTF2Vmw7K3bbsFVHKa6mm7GO5S631oq8DTvNaZwolv2QuR6O8Rrr81MuyNqwXwfmSxN_3XDjX1dvwiy1kS2DuwWtYjTW2whbiqSDw7R3eHjZqYZrB6b7tPsBje_k4A
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEJ74OKgH4zPW55p40pDALrvA0RhN1bYna7yRBRY1qbTptkb_vTMU8BE9mHBjsyQzA_Mt38w3ACeuNlKaKHNUGKQOInDuaI97juE8x3QlXJ1Q73C3p9p9_-ZBPlR93Laudq8pyfJL3TS7ERyhIioqJZB4Bp6HRcQCIY0t6PPzhjrgQUUru1R7IP2ayvxti-_J6BNh_iBFy1xztQarFUhk5zOvrsOcKTZgpdsorNpNuMd8MXh36A8qmzUjvliGAJSR_sPYlgVWhWXDnFkzsQwx4Ng-6ZHJ2OuzZkTWDB8JhA_eWVl4_sZoNrHdgv7V5d1F26lmJDipEP7EyRLfFylPlTBhqHJpAqExJwmeZl4u0ijSCDD8POdKJ4KHKV5hgilJRF6mjBZiGxaKYWF2gIlI5gm6yFNp5geBTLSvlBSI93LPeCJrwWltrHg0k8KIG9Hj0rIxWjYmy8ZuC_Zrc8bVW2FJWNyVpIAoW3Dc3MZ4JpJCF2Y4xTUkx1Oem1pwVrvhyxZ_PXD3X6uPYKl91-3Eneve7R4scwqJMir2YWEynpoDRBqT5LCMrA8Jtsi2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS-RAEC1chUUPoq7i-NkLnpRg0p3uJEdRBz9W8eCIt9BJulXQzDAdRf-9VZkk7ooeFnJL04GqSup1XtUrgB1fGylNUngqjnIPETj3dMADz3BuMV0JX2fUO3xxqU4G4dmtvG3mnLq22r2lJCc9DaTSVFb7o8Lud41vBE2ooIrKCiSeh3_ADH6NAwr0AT_oaAQeNRSzT3UIMmxpza-2-DcxfaDNTwRpnXf6CzDfAEZ2MPHwIkyZcgnmLjq1VfcLbjB3PL559DeVTRoTnxxDMMpIC2Ls6mKr0rGhZc5UjiEeHLt7PTIFe3nQjIib4R0B8sc3VhehvzKaU-yWYdA_vj488Zp5CV4uRFh5RRaGIue5EiaOlZUmEhrzk-B5EViRJ4lGsBFay5XOBI9zvOIM05NIgkIZLcQKTJfD0qwCE4m0GborUHkRRpHMdKiUFIj9bGACUfRgtzVWOprIYqSdAHJt2RQtm5JlU78HG6050-YNcSQy7ktSQ5Q9-N3dxtgmwkKXZviMa0iapz5D9WCvdcNfW3z3wLX_Wr0NP6-O-umf08vzdZjlFBF1UGzAdDV-NpsIOqpsqw6sd-N6zPI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Helly-type+theorems+for+intersections+of+sets+starshaped+via+orthogonally+convex+paths&rft.jtitle=Aequationes+mathematicae&rft.au=Breen%2C+Marilyn&rft.date=2012-12-01&rft.issn=0001-9054&rft.eissn=1420-8903&rft.volume=84&rft.issue=3&rft.spage=207&rft.epage=217&rft_id=info:doi/10.1007%2Fs00010-012-0151-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-9054&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-9054&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-9054&client=summon