Helly-type theorems for intersections of sets starshaped via orthogonally convex paths
Let be a family of simply connected sets in the plane. If every countable subfamily of has an intersection that is starshaped via orthogonally convex paths, then itself has such an intersection. For the d -dimensional case, let be a family of compact sets in . If every finite subfamily of has an int...
Saved in:
Published in | Aequationes mathematicae Vol. 84; no. 3; pp. 207 - 217 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Basel
SP Birkhäuser Verlag Basel
01.12.2012
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0001-9054 1420-8903 |
DOI | 10.1007/s00010-012-0151-0 |
Cover
Loading…
Abstract | Let
be a family of simply connected sets in the plane. If every countable subfamily of
has an intersection that is starshaped via orthogonally convex paths, then
itself has such an intersection. For the
d
-dimensional case, let
be a family of compact sets in
. If every finite subfamily of
has an intersection that is starshaped via orthogonally convex paths, again
itself has such an intersection. |
---|---|
AbstractList | (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Let ... be a family of simply connected sets in the plane. If every countable subfamily of ... has an intersection that is starshaped via orthogonally convex paths, then ... itself has such an intersection. For the d-dimensional case, let ... be a family of compact sets in ... If every finite subfamily of ... has an intersection that is starshaped via orthogonally convex paths, again ... itself has such an intersection.[PUBLICATION ABSTRACT] Let $${\mathcal{K}}$$ be a family of simply connected sets in the plane. If every countable subfamily of $${\mathcal{K}}$$ has an intersection that is starshaped via orthogonally convex paths, then $${\mathcal{K}}$$ itself has such an intersection. For the d-dimensional case, let $${\mathcal{K}}$$ be a family of compact sets in $${\mathbb{R} delta }$$ . If every finite subfamily of $${\mathcal{K}}$$ has an intersection that is starshaped via orthogonally convex paths, again $${\mathcal{K}}$$ itself has such an intersection. Let be a family of simply connected sets in the plane. If every countable subfamily of has an intersection that is starshaped via orthogonally convex paths, then itself has such an intersection. For the d -dimensional case, let be a family of compact sets in . If every finite subfamily of has an intersection that is starshaped via orthogonally convex paths, again itself has such an intersection. |
Author | Breen, Marilyn |
Author_xml | – sequence: 1 givenname: Marilyn surname: Breen fullname: Breen, Marilyn email: mbreen@ou.edu organization: The University of Oklahoma |
BookMark | eNp1kE1LAzEQhoNUsK3-AG8BL15W87VfRylqhYIX9RrS7Gx3S7tZM2mx_94s60EEYYYhzPO-TN4ZmXSuA0KuObvjjOX3yBjjLGFcxE55ws7IlCvBkqJkckKmwzopWaouyAxxG18iz-WUfCxhtzsl4dQDDQ04D3uktfO07QJ4BBta1yF1NUUISDEYj43poaLH1lDnQ-M2rjPRg1rXHeGL9iY0eEnOa7NDuPqZc_L-9Pi2WCar1-eXxcMqsVKqkFRrpaQVNpNQFFmdQi6NzIQUtuK1tGVpCpWpuhaZWUtR2FjFWhRKlrzKwEg5J7ejb-_d5wEw6H2LNn7JdOAOqLkoZM7TlKURvfmDbt3Bx9MjxXOWCiXzgeIjZb1D9FDr3rd740-aMz0krcekdQxQD0lrFjVi1GBkuw34X87_ir4B6DCCcA |
CODEN | AEMABN |
Cites_doi | 10.1007/PL00000393 10.1016/B978-0-444-89596-7.50017-1 10.1007/s00013-004-1120-1 10.1515/ADVGEOM.2008.012 10.7146/math.scand.a-10455 10.1007/s00605-002-0512-1 10.1090/pspum/007/0157289 10.1023/A:1011367730490 |
ContentType | Journal Article |
Copyright | Springer Basel AG 2012 Springer Basel 2012 |
Copyright_xml | – notice: Springer Basel AG 2012 – notice: Springer Basel 2012 |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
DOI | 10.1007/s00010-012-0151-0 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1420-8903 |
EndPage | 217 |
ExternalDocumentID | 2818784481 10_1007_s00010_012_0151_0 |
Genre | Feature |
GroupedDBID | --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 692 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DARCH DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- MBV N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 P19 P2P P9R PF0 PQQKQ PT4 PT5 Q2X QOK QOS R4E R89 R9I REI RHV RNI RNS ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TWZ U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION 7SC 7TB 8FD ABRTQ FR3 H8D JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c334t-db443c2c63e886f5e73a36232cd1f3c99a8464ff26ab328c28c8b284391d6ea33 |
IEDL.DBID | AGYKE |
ISSN | 0001-9054 |
IngestDate | Thu Jul 10 23:44:11 EDT 2025 Fri Jul 25 19:33:46 EDT 2025 Tue Jul 01 01:41:41 EDT 2025 Fri Feb 21 02:37:26 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Sets starshaped via orthogonally convex paths 52.A35 52.A30 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-db443c2c63e886f5e73a36232cd1f3c99a8464ff26ab328c28c8b284391d6ea33 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 1170524375 |
PQPubID | 36840 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1283715505 proquest_journals_1170524375 crossref_primary_10_1007_s00010_012_0151_0 springer_journals_10_1007_s00010_012_0151_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-12-01 |
PublicationDateYYYYMMDD | 2012-12-01 |
PublicationDate_xml | – month: 12 year: 2012 text: 2012-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Aequationes mathematicae |
PublicationTitleAbbrev | Aequat. Math |
PublicationYear | 2012 |
Publisher | SP Birkhäuser Verlag Basel Springer Nature B.V |
Publisher_xml | – name: SP Birkhäuser Verlag Basel – name: Springer Nature B.V |
References | Nadler, S.: Hyperspaces of Sets. New York (1978) BobylevN.A.The Helly theorem for star-shaped setsJ. Math. Sci.200110518191825187114610.1023/A:1011367730490 BreenM.Planar compact sets whose intersections are starshaped via orthogonally convex pathsAdv. Geom.2008816116924052341147.5200310.1515/ADVGEOM.2008.012 Valentine, F.A.: Convex Sets. New York (1964) BreenM.A Krasnosel’skii-type theorem for paths of bounded lengthArch. Math.1997686064142184710.1007/PL00000393 BreenM.Helly-type theorems for sets starshaped via staircase pathsBeiträge zur Algebra und Geometrie20084952753924680731180.52012 BreenM.Intersections of sets sharshaped via paths of bounded lengthMonatsh. Math.200313910510919879101033.5200510.1007/s00605-002-0512-1 KleeV.L.JrThe structure of semispacesMath. Scand.195645464809430070.39203 EckhoffJ.GruberP.M.WillsJ.M.Helly, Radon, and Carathéodory type theoremsHandbook of Convex Geometry, vol. A1993New YorkNorth Holland389448 LayS.R.Convex Sets and Their Applications1982New YorkWiley0492.52001 Danzer, L., Grünbaum, B., Klee, V.: Helly’s theorem and its relatives, Convexity. In: Proceedings of the Symposium in Pure Mathematics, vol. 7, pp. 101–180. American Mathematical Society, Providence (1962) ApostolT.M.Mathematical Analysis1960ReadingAddison-Wesley BreenM.A Helly-type theorem for countable intersections of starshaped setsArch. Math.20058428228821341431080.5200610.1007/s00013-004-1120-1 M. Breen (151_CR4) 1997; 68 T.M. Apostol (151_CR1) 1960 M. Breen (151_CR5) 2008; 49 S.R. Lay (151_CR11) 1982 V.L. Klee Jr (151_CR10) 1956; 4 J. Eckhoff (151_CR9) 1993 M. Breen (151_CR6) 2003; 139 M. Breen (151_CR7) 2008; 8 151_CR8 151_CR13 151_CR12 N.A. Bobylev (151_CR2) 2001; 105 M. Breen (151_CR3) 2005; 84 |
References_xml | – reference: BreenM.A Helly-type theorem for countable intersections of starshaped setsArch. Math.20058428228821341431080.5200610.1007/s00013-004-1120-1 – reference: ApostolT.M.Mathematical Analysis1960ReadingAddison-Wesley – reference: EckhoffJ.GruberP.M.WillsJ.M.Helly, Radon, and Carathéodory type theoremsHandbook of Convex Geometry, vol. A1993New YorkNorth Holland389448 – reference: KleeV.L.JrThe structure of semispacesMath. Scand.195645464809430070.39203 – reference: BreenM.A Krasnosel’skii-type theorem for paths of bounded lengthArch. Math.1997686064142184710.1007/PL00000393 – reference: BreenM.Intersections of sets sharshaped via paths of bounded lengthMonatsh. Math.200313910510919879101033.5200510.1007/s00605-002-0512-1 – reference: BreenM.Planar compact sets whose intersections are starshaped via orthogonally convex pathsAdv. Geom.2008816116924052341147.5200310.1515/ADVGEOM.2008.012 – reference: LayS.R.Convex Sets and Their Applications1982New YorkWiley0492.52001 – reference: Danzer, L., Grünbaum, B., Klee, V.: Helly’s theorem and its relatives, Convexity. In: Proceedings of the Symposium in Pure Mathematics, vol. 7, pp. 101–180. American Mathematical Society, Providence (1962) – reference: BobylevN.A.The Helly theorem for star-shaped setsJ. Math. Sci.200110518191825187114610.1023/A:1011367730490 – reference: BreenM.Helly-type theorems for sets starshaped via staircase pathsBeiträge zur Algebra und Geometrie20084952753924680731180.52012 – reference: Nadler, S.: Hyperspaces of Sets. New York (1978) – reference: Valentine, F.A.: Convex Sets. New York (1964) – volume-title: Mathematical Analysis year: 1960 ident: 151_CR1 – volume: 68 start-page: 60 year: 1997 ident: 151_CR4 publication-title: Arch. Math. doi: 10.1007/PL00000393 – volume: 49 start-page: 527 year: 2008 ident: 151_CR5 publication-title: Beiträge zur Algebra und Geometrie – ident: 151_CR12 – ident: 151_CR13 – start-page: 389 volume-title: Handbook of Convex Geometry, vol. A year: 1993 ident: 151_CR9 doi: 10.1016/B978-0-444-89596-7.50017-1 – volume-title: Convex Sets and Their Applications year: 1982 ident: 151_CR11 – volume: 84 start-page: 282 year: 2005 ident: 151_CR3 publication-title: Arch. Math. doi: 10.1007/s00013-004-1120-1 – volume: 8 start-page: 161 year: 2008 ident: 151_CR7 publication-title: Adv. Geom. doi: 10.1515/ADVGEOM.2008.012 – volume: 4 start-page: 54 year: 1956 ident: 151_CR10 publication-title: Math. Scand. doi: 10.7146/math.scand.a-10455 – volume: 139 start-page: 105 year: 2003 ident: 151_CR6 publication-title: Monatsh. Math. doi: 10.1007/s00605-002-0512-1 – ident: 151_CR8 doi: 10.1090/pspum/007/0157289 – volume: 105 start-page: 1819 year: 2001 ident: 151_CR2 publication-title: J. Math. Sci. doi: 10.1023/A:1011367730490 |
SSID | ssj0012773 |
Score | 1.8885096 |
Snippet | Let
be a family of simply connected sets in the plane. If every countable subfamily of
has an intersection that is starshaped via orthogonally convex paths,... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Let ... be a family of simply connected sets in the plane. If every countable... Let $${\mathcal{K}}$$ be a family of simply connected sets in the plane. If every countable subfamily of $${\mathcal{K}}$$ has an intersection that is... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 207 |
SubjectTerms | Analysis Combinatorics Intersections Mathematical analysis Mathematics Mathematics and Statistics Planes Theorems |
Title | Helly-type theorems for intersections of sets starshaped via orthogonally convex paths |
URI | https://link.springer.com/article/10.1007/s00010-012-0151-0 https://www.proquest.com/docview/1170524375 https://www.proquest.com/docview/1283715505 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT4QwEJ3oetGD38b1Y1MTTxoMtLTAcTWuRqMn1-iJlFLUuLJmyxr11ztlAT-iBxNukAKdlnnlvXkF2HWl5lxHqSPCQDmIwKkjPeo5mtIM0xVzZWJrhy8uxWnfP7vhN1Udt6nV7jUlWX6pm2I3C0esiMpKCTiugadhhnthFLZgpntye37ckAc0qIhl16oPuF-Tmb818j0dfWLMH7RomW16C3BVP-dEZPJ4MC6SA_X-w8Lxny-yCPMV-iTdyXBZgimdL8PcRWPdalbgGhPR4M2xv2bJpMrxyRBEtsQaS4xMqdzKDRlmxOjCEASXI3Mvn3VKXh4ksSzQ8M6i-8EbKRXtr8RuemxWod87vjo6darNFxzFmF84aeL7TFElmA5DkXEdMInJjlGVehlTUSQRufhZRoVMGA0VHmGCuY5FXiq0ZGwNWvkw1-tAWMSzBGPvCZX6QcAT6QvBGQLJzNMeS9uwV8cgfp54bMSNm3LZWTF2Vmw7K3bbsFVHKa6mm7GO5S631oq8DTvNaZwolv2QuR6O8Rrr81MuyNqwXwfmSxN_3XDjX1dvwiy1kS2DuwWtYjTW2whbiqSDw7R3eHjZqYZrB6b7tPsBje_k4A |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEJ74OKgH4zPW55p40pDALrvA0RhN1bYna7yRBRY1qbTptkb_vTMU8BE9mHBjsyQzA_Mt38w3ACeuNlKaKHNUGKQOInDuaI97juE8x3QlXJ1Q73C3p9p9_-ZBPlR93Laudq8pyfJL3TS7ERyhIioqJZB4Bp6HRcQCIY0t6PPzhjrgQUUru1R7IP2ayvxti-_J6BNh_iBFy1xztQarFUhk5zOvrsOcKTZgpdsorNpNuMd8MXh36A8qmzUjvliGAJSR_sPYlgVWhWXDnFkzsQwx4Ng-6ZHJ2OuzZkTWDB8JhA_eWVl4_sZoNrHdgv7V5d1F26lmJDipEP7EyRLfFylPlTBhqHJpAqExJwmeZl4u0ijSCDD8POdKJ4KHKV5hgilJRF6mjBZiGxaKYWF2gIlI5gm6yFNp5geBTLSvlBSI93LPeCJrwWltrHg0k8KIG9Hj0rIxWjYmy8ZuC_Zrc8bVW2FJWNyVpIAoW3Dc3MZ4JpJCF2Y4xTUkx1Oem1pwVrvhyxZ_PXD3X6uPYKl91-3Eneve7R4scwqJMir2YWEynpoDRBqT5LCMrA8Jtsi2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS-RAEC1chUUPoq7i-NkLnpRg0p3uJEdRBz9W8eCIt9BJulXQzDAdRf-9VZkk7ooeFnJL04GqSup1XtUrgB1fGylNUngqjnIPETj3dMADz3BuMV0JX2fUO3xxqU4G4dmtvG3mnLq22r2lJCc9DaTSVFb7o8Lud41vBE2ooIrKCiSeh3_ADH6NAwr0AT_oaAQeNRSzT3UIMmxpza-2-DcxfaDNTwRpnXf6CzDfAEZ2MPHwIkyZcgnmLjq1VfcLbjB3PL559DeVTRoTnxxDMMpIC2Ls6mKr0rGhZc5UjiEeHLt7PTIFe3nQjIib4R0B8sc3VhehvzKaU-yWYdA_vj488Zp5CV4uRFh5RRaGIue5EiaOlZUmEhrzk-B5EViRJ4lGsBFay5XOBI9zvOIM05NIgkIZLcQKTJfD0qwCE4m0GborUHkRRpHMdKiUFIj9bGACUfRgtzVWOprIYqSdAHJt2RQtm5JlU78HG6050-YNcSQy7ktSQ5Q9-N3dxtgmwkKXZviMa0iapz5D9WCvdcNfW3z3wLX_Wr0NP6-O-umf08vzdZjlFBF1UGzAdDV-NpsIOqpsqw6sd-N6zPI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Helly-type+theorems+for+intersections+of+sets+starshaped+via+orthogonally+convex+paths&rft.jtitle=Aequationes+mathematicae&rft.au=Breen%2C+Marilyn&rft.date=2012-12-01&rft.issn=0001-9054&rft.eissn=1420-8903&rft.volume=84&rft.issue=3&rft.spage=207&rft.epage=217&rft_id=info:doi/10.1007%2Fs00010-012-0151-0&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-9054&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-9054&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-9054&client=summon |