Adaptive Image-Defogging Algorithm Based on Bright-Field Region Detection
Image defogging is an essential technology used in traffic safety monitoring, military surveillance, satellite and remote sensing image processing, medical image diagnostics, and other applications. Current methods often rely on various priors, with the dark-channel prior being the most frequently e...
Saved in:
Published in | Photonics Vol. 11; no. 8; p. 718 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Image defogging is an essential technology used in traffic safety monitoring, military surveillance, satellite and remote sensing image processing, medical image diagnostics, and other applications. Current methods often rely on various priors, with the dark-channel prior being the most frequently employed. However, halo and bright-field color distortion issues persist. To further improve image quality, an adaptive image-defogging algorithm based on bright-field region detection is proposed in this paper. Modifying the dark-channel image improves the abrupt changes in gray value in the traditional dark-channel image. By setting the first and second lower limits of transmittance and introducing an adaptive correction factor to adjust the transmittance of the bright-field region, the limitations of the dark-channel prior in extensive ranges and high-brightness areas can be significantly alleviated. In addition, a guide filter is utilized to enhance the initial transmittance image, preserving the details of the defogged image. The results of the experiment demonstrate that the algorithm presented in this paper effectively addresses the mentioned issues and has shown outstanding performance in both objective evaluation and subjective visual effects. |
---|---|
AbstractList | Image defogging is an essential technology used in traffic safety monitoring, military surveillance, satellite and remote sensing image processing, medical image diagnostics, and other applications. Current methods often rely on various priors, with the dark-channel prior being the most frequently employed. However, halo and bright-field color distortion issues persist. To further improve image quality, an adaptive image-defogging algorithm based on bright-field region detection is proposed in this paper. Modifying the dark-channel image improves the abrupt changes in gray value in the traditional dark-channel image. By setting the first and second lower limits of transmittance and introducing an adaptive correction factor to adjust the transmittance of the bright-field region, the limitations of the dark-channel prior in extensive ranges and high-brightness areas can be significantly alleviated. In addition, a guide filter is utilized to enhance the initial transmittance image, preserving the details of the defogged image. The results of the experiment demonstrate that the algorithm presented in this paper effectively addresses the mentioned issues and has shown outstanding performance in both objective evaluation and subjective visual effects. |
Author | Wang, Yue Zhang, Haifeng Cui, Sidong Duan, Jiaxin Dong, Jiawei Yue, Fengying Song, Xiaodong Zeng, Jiaxin |
Author_xml | – sequence: 1 givenname: Yue surname: Wang fullname: Wang, Yue – sequence: 2 givenname: Fengying surname: Yue fullname: Yue, Fengying – sequence: 3 givenname: Jiaxin surname: Duan fullname: Duan, Jiaxin – sequence: 4 givenname: Haifeng surname: Zhang fullname: Zhang, Haifeng – sequence: 5 givenname: Xiaodong surname: Song fullname: Song, Xiaodong – sequence: 6 givenname: Jiawei surname: Dong fullname: Dong, Jiawei – sequence: 7 givenname: Jiaxin surname: Zeng fullname: Zeng, Jiaxin – sequence: 8 givenname: Sidong surname: Cui fullname: Cui, Sidong |
BookMark | eNplUd9LwzAYDDLBOfcH-FbwuZo0TZM87ofTgiCIPoe0-dJldE1NM8H_3s6JCH4v33Ecdwd3iSad7wCha4JvKZX4rt_66DtXD4RggTkRZ2iaUZynBafZ5A--QPNh2OHxJKGC5VNULozuo_uApNzrBtI1WN80rmuSRdv44OJ2nyz1ACbxXbIMrtnGdOOgNckLNG7k1hChjiO6QudWtwPMf_4MvW3uX1eP6dPzQ7laPKU1pXlMjdQCKgxSG83HStwYWWBGmMSGSAGU8qwuQGvLrRZEWgtMiJpUhZGCGExnqDz5Gq93qg9ur8On8tqpb8KHRukQXd2CIpXVnDFRVAznlHNpGSMF4ZbLLJOGjl43J68--PcDDFHt_CF0Y31F8RjHM4aPKnJS1cEPQwD7m0qwOg6g_g1AvwBDfXr8 |
Cites_doi | 10.1016/j.compeleceng.2022.108566 10.1109/CVPR.2008.4587643 10.1109/TIP.2015.2456502 10.3390/app9194011 10.1049/ipr2.12389 10.1007/s12145-019-00395-y 10.5566/ias.v27.p87-95 10.1007/s11042-019-7574-8 10.1016/j.ins.2023.119539 10.1109/TPAMI.2012.213 10.1109/CVPR46437.2021.00710 10.1007/s11760-022-02147-w 10.1109/TIP.2019.2952690 10.1109/TIP.2021.3050850 10.1109/CVPR.2016.185 10.1023/A:1016328200723 10.1109/TIP.2016.2598681 10.1109/TIP.2021.3050643 10.1109/ICPR48806.2021.9412595 10.1109/CVPR42600.2020.00223 10.1109/TIP.2015.2446191 10.1109/ICPECA56706.2023.10076167 10.1016/j.image.2022.116916 10.1109/TIP.2018.2867951 10.3233/JIFS-221521 10.1109/CVPR52729.2023.02134 10.1523/JNEUROSCI.3128-13.2013 10.1007/s00371-021-02380-3 10.1109/ICCV.2013.82 10.1109/LSP.2019.2914559 10.1109/CVPR52688.2022.00208 10.1109/LSP.2012.2227726 10.3390/rs12142233 10.1109/ICCV.2017.511 10.1109/ACCESS.2017.2710305 10.1109/CVPR52688.2022.00572 10.1109/83.841534 |
ContentType | Journal Article |
Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG 8FH ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO F28 FR3 GNUQQ H8D H8G HCIFZ JG9 JQ2 KR7 L7M LK8 L~C L~D M7P P5Z P62 P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/photonics11080718 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Biological Science Collection ProQuest Central (New) ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Ceramic Abstracts Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Corrosion Abstracts |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2304-6732 |
ExternalDocumentID | oai_doaj_org_article_1bfa75586b5043779f551617f79229d3 10_3390_photonics11080718 |
GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAYXX ABHFT ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION GROUPED_DOAJ GS5 GX1 HCIFZ IAO ITC KQ8 KZ1 LK8 LMP M7P MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c334t-d9a8eb0e9ada77327dd96051590d198e3372c6eaaf7fa819ffe588c1b6d981d03 |
IEDL.DBID | BENPR |
ISSN | 2304-6732 |
IngestDate | Wed Aug 27 01:30:34 EDT 2025 Fri Jul 25 12:07:25 EDT 2025 Tue Jul 01 00:37:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-d9a8eb0e9ada77327dd96051590d198e3372c6eaaf7fa819ffe588c1b6d981d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3098172503?pq-origsite=%requestingapplication% |
PQID | 3098172503 |
PQPubID | 2032352 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1bfa75586b5043779f551617f79229d3 proquest_journals_3098172503 crossref_primary_10_3390_photonics11080718 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Photonics |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Gamini (ref_6) 2023; 106 Shi (ref_15) 2022; 43 Li (ref_29) 2019; 28 ref_35 ref_34 ref_11 Mittal (ref_30) 2013; 20 ref_33 ref_10 Yang (ref_1) 2021; 30 Hayashi (ref_27) 2023; 647 Ju (ref_36) 2021; 30 ref_19 ref_18 ref_17 Li (ref_21) 2020; 29 ref_38 Choi (ref_32) 2015; 24 ref_37 Hai (ref_5) 2023; 112 Tarel (ref_31) 2011; 27 Pereira (ref_25) 2022; 16 Hu (ref_2) 2023; 39 He (ref_12) 2013; 35 Zhu (ref_23) 2019; 26 Zhu (ref_13) 2015; 24 Groen (ref_26) 2013; 33 Kapoor (ref_3) 2019; 78 Stark (ref_4) 2000; 9 Cai (ref_16) 2016; 25 ref_22 Chen (ref_14) 2019; 12 ref_20 ref_9 ref_8 Narasimhan (ref_24) 2002; 48 Liu (ref_28) 2017; 5 Cui (ref_7) 2022; 16 |
References_xml | – volume: 106 start-page: 108566 year: 2023 ident: ref_6 article-title: Homomorphic Filtering for the Image Enhancement Based on Fractional-Order Derivative and Genetic Algorithm publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2022.108566 – ident: ref_8 doi: 10.1109/CVPR.2008.4587643 – volume: 24 start-page: 3888 year: 2015 ident: ref_32 article-title: Referenceless Prediction of Perceptual Fog Density and Perceptual Image Defogging publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2456502 – ident: ref_33 doi: 10.3390/app9194011 – volume: 16 start-page: 823 year: 2022 ident: ref_7 article-title: An Improved Dark Channel Defogging Algorithm Based on the HSI Colour Space publication-title: IET Image Process. doi: 10.1049/ipr2.12389 – volume: 12 start-page: 501 year: 2019 ident: ref_14 article-title: An Improved Dark Channel Prior Image Defogging Algorithm Based on Wavelength Compensation publication-title: Earth Sci. Inform. doi: 10.1007/s12145-019-00395-y – ident: ref_11 – volume: 27 start-page: 87 year: 2011 ident: ref_31 article-title: Blind contrast enhancement assessment by gradient ratioing at visible edges publication-title: Image Anal. Ster. doi: 10.5566/ias.v27.p87-95 – volume: 78 start-page: 23281 year: 2019 ident: ref_3 article-title: Fog Removal in Images Using Improved Dark Channel Prior and Contrast Limited Adaptive Histogram Equalization publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-019-7574-8 – volume: 647 start-page: 119539 year: 2023 ident: ref_27 article-title: Image Entropy Equalization: A Novel Preprocessing Technique for Image Recognition Tasks publication-title: Inf. Sci. doi: 10.1016/j.ins.2023.119539 – volume: 35 start-page: 1397 year: 2013 ident: ref_12 article-title: Guided Image Filtering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.213 – ident: ref_37 doi: 10.1109/CVPR46437.2021.00710 – volume: 16 start-page: 1877 year: 2022 ident: ref_25 article-title: Boosting Color Similarity Decisions Using the CIEDE2000_PF Metric publication-title: Signal Image Video Process. doi: 10.1007/s11760-022-02147-w – volume: 29 start-page: 2766 year: 2020 ident: ref_21 article-title: Semi-Supervised Image Dehazing publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2952690 – volume: 30 start-page: 2072 year: 2021 ident: ref_1 article-title: Sparse Gradient Regularized Deep Retinex Network for Robust Low-Light Image Enhancement publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3050850 – ident: ref_10 doi: 10.1109/CVPR.2016.185 – volume: 48 start-page: 233 year: 2002 ident: ref_24 article-title: Vision and the Atmosphere publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1016328200723 – volume: 25 start-page: 5187 year: 2016 ident: ref_16 article-title: DehazeNet: An End-to-End System for Single Image Haze Removal publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2598681 – volume: 30 start-page: 2180 year: 2021 ident: ref_36 article-title: IDE: Image Dehazing and Exposure Using an Enhanced Atmospheric Scattering Model publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3050643 – ident: ref_35 doi: 10.1109/ICPR48806.2021.9412595 – ident: ref_18 doi: 10.1109/CVPR42600.2020.00223 – volume: 24 start-page: 3522 year: 2015 ident: ref_13 article-title: A Fast Single Image Haze Removal Algorithm Using Color Attenuation Prior publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2446191 – ident: ref_38 doi: 10.1109/ICPECA56706.2023.10076167 – volume: 112 start-page: 116916 year: 2023 ident: ref_5 article-title: Advanced RetinexNet: A Fully Convolutional Network for Low-Light Image Enhancement publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2022.116916 – volume: 28 start-page: 492 year: 2019 ident: ref_29 article-title: Benchmarking Single-Image Dehazing and Beyond publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2867951 – volume: 43 start-page: 8187 year: 2022 ident: ref_15 article-title: Improved Color Image Defogging Algorithm Based on Dark Channel Prior publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-221521 – ident: ref_22 doi: 10.1109/CVPR52729.2023.02134 – volume: 33 start-page: 18814 year: 2013 ident: ref_26 article-title: From Image Statistics to Scene Gist: Evoked Neural Activity Reveals Transition from Low-Level Natural Image Structure to Scene Category publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3128-13.2013 – volume: 39 start-page: 997 year: 2023 ident: ref_2 article-title: Single Image Dehazing Algorithm Based on Sky Segmentation and Optimal Transmission Maps publication-title: Vis. Comput. doi: 10.1007/s00371-021-02380-3 – ident: ref_9 doi: 10.1109/ICCV.2013.82 – volume: 26 start-page: 981 year: 2019 ident: ref_23 article-title: Dark Channel: The Devil Is in the Details publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2019.2914559 – ident: ref_20 doi: 10.1109/CVPR52688.2022.00208 – volume: 20 start-page: 209 year: 2013 ident: ref_30 article-title: Making a “Completely Blind” Image Quality Analyzer publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2012.2227726 – ident: ref_34 doi: 10.3390/rs12142233 – ident: ref_17 doi: 10.1109/ICCV.2017.511 – volume: 5 start-page: 8890 year: 2017 ident: ref_28 article-title: Single Image Dehazing via Large Sky Region Segmentation and Multiscale Opening Dark Channel Model publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2710305 – ident: ref_19 doi: 10.1109/CVPR52688.2022.00572 – volume: 9 start-page: 889 year: 2000 ident: ref_4 article-title: Adaptive Image Contrast Enhancement Using Generalizations of Histogram Equalization publication-title: IEEE Trans. Image Process. doi: 10.1109/83.841534 |
SSID | ssj0000913854 |
Score | 2.2639742 |
Snippet | Image defogging is an essential technology used in traffic safety monitoring, military surveillance, satellite and remote sensing image processing, medical... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 718 |
SubjectTerms | Adaptive algorithms Algorithms bright-field region segmentation Dark adaptation dark-channel prior Deep learning Fog Halo effect image defogging Image enhancement Image filters Image processing Image quality Light Medical imaging Methods Military applications Military technology Parameter estimation Remote monitoring Remote sensing Satellite imagery Traffic accidents & safety Traffic surveillance transmission Transmittance Visual effects |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - May need to register for free articles dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxa-EYWCPDAhWXXiJLbHllK1SDAgKnWL7NhuB5pUNPx_zk6KijqwsEaRYt3Z996zL88I3QulOfB0TmKhFUmkyohOKCNO65iKonAu_Mf98ppNZsnzPJ3vXPXle8Iae-AmcP1IO8XTVGTae21xLp0_2om44zKOpQk-n4B5O2Iq1GAZMZEmzTEmA13fXy-r2pvNbnzfO-Cq-AVEwa9_rxwHjBmfoKOWHOJBM6hTdGDLM3TcEkXcLsPNOZoOjFr7OoWnK6gHZGRd5XeOF3jwsahA7i9XeAjwZHBV4mHQ32TsW9Xwm_X9x3hk69CCVV6g2fjp_XFC2jsRSMFYUhMjlbCaWqmM4pzF3BjQIJ6UUBNJYRnjcZFZpRx3CtDeOZsKUUQ6MxKoKWWXqFNWpb1CmClGjRaGeskEyK0lTW3CXeL9faRNuuhhG6B83Vhf5CAZfDTzvWh20dCH8OdF71odHkAu8zaX-V-57KLeNgF5u5Q2OaMwcA5MjV3_xzdu0GEMvKTp4euhTv35ZW-BV9T6LkyhbxVpyMY priority: 102 providerName: Directory of Open Access Journals |
Title | Adaptive Image-Defogging Algorithm Based on Bright-Field Region Detection |
URI | https://www.proquest.com/docview/3098172503 https://doaj.org/article/1bfa75586b5043779f551617f79229d3 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5BWVh4I8qj8sCEZOHGSWxPqAXKQwIhBBJbZMd2GWhSaPj_-FIXhJBYkwzR2Xff3fnzdwDHUhsR8nRBE2k0TZXOqUkZp96YhMmy9L69x313n18_p7cv2UtsuM0irXIRE9tAbesSe-SnnCkZwDZj_Gz6TnFqFJ6uxhEay7ASQrCUHVgZXt4_PH53WVD1Umbp_DiTh_r-dPpaNyg6O0P-e8BX-QuQWt3-P2G5xZrRBqzFJJEM5qu6CUuu2oL1mDCS6I6zbbgZWD3FeEVuJiEu0Avna-wgj8ngbRx-vnmdkGGAKUvqigzbOpyOkLJGHh3ykMmFa1oqVrUDz6PLp_NrGmcj0JLztKFWaekMc0pbLQRPhLWhFsHkhNm-ko5zkZS509oLrwPqe-8yKcu-yW2wo2V8FzpVXbk9IFxzZo20DEungOBGscylwqeo86Nc2oWThYGK6VwCowilA1qz-GPNLgzRhN8fonp1-6D-GBfRGYq-8VpkmcwN6qcJoTwe1_WFFypJlOVdOFwsQBFdalb8bID9_18fwGoSMo85S-8QOs3HpzsKmUNjerAsR1e9uEl6bf39BWfPxR0 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcCFN-qWAj7ABcmq13Zi-4DQLsuySx8H1Eq9BTu2tweabLtBiD_Fb2QmjyJUiVuvcRRF4_F83zw8Q8gb47wGnq6ZMN4xZV3OvOKSJe8FN2WZUnuP--g4X5yqL2fZ2Rb5PdyFwbLKwSa2hjrUJcbI9yW3BsA24_LD-pLh1CjMrg4jNDq1OIi_foLLtnm_nMH-vhVi_unk44L1UwVYKaVqWLDORM-jdcFpLYUOAVg8wjoP4IFHKbUo8-hc0skBXqYUM2PKsc8D_EHgEr57h9xVEpAcb6bPP1_HdLDHpslUlzyFdb6_Pq8bbHG7wWp7QHPzD_y1UwJugECLbPNH5EFPSemk06HHZCtWT8jDnp7S_vBvnpLlJLg1Wke6vAArxGYx1RivXtHJ9xWIqjm_oFMAxUDrik5br5_NsUCOfo1Y9UxnsWkLv6pn5PRWZPacbFd1FXcIlU7y4E3g6KgBX_CWZ1HppLCrkI1qRN4NAirWXcONAhwVlGZxQ5ojMkURXr-IvbLbB_XVquiPXjH2yeksM7nHbm1a24TJwbFO2gphgxyRvWEDiv4Ab4q_6rb7_-XX5N7i5OiwOFweH7wg9wVwnq4-cI9sN1c_4kvgLI1_1SoKJd9uWzP_ALZr_34 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJcWp4ibQEf4IJkxbF31_YBoYQ0aihEVUWl3hZ7bacHups2WyH-Gr8Ozz6KUCVuve5Lq_F4vnl8ngF4q4yV0U-XlCtraKJNRm3CBA3WcqaKIoTmHPfXZXZ0lnw-T8-34Hd_FgZplb1NbAy1qwrMkY8E0yqCbcrEKHS0iJPZ_OP6iuIEKay09uM0WhU59r9-xvBt82Exi2v9jvP54bdPR7SbMEALIZKaOm2Ut8xr44yUgkvnokePEM9cjMa9EJIXmTcmyGAidobgU6WKsc1c_BvHRPzuA9iWGBUNYHt6uDw5vc3wYMdNlSZtKVUIzUbri6rGhrcb5N7HV9Q_YNjMDLgDCQ3OzR_DTuegkkmrUU9gy5dPYbdzVklnCjbPYDFxZo22kiwuo02iMx8qzF6vyOTHKgqrvrgk0wiRjlQlmTY5ADpHuhw59ciBJjNfNzSw8jmc3YvUXsCgrEr_EogwgjmrHMOwLXoPVrPUJzIk2GNI-2QI73sB5eu2_UYewxaUZn5HmkOYoghvH8TO2c2F6nqVdxsxH9tgZJqqzGLvNil1wFLhWAapOddODOGgX4C8286b_K_y7f3_9ht4GLUy_7JYHu_DIx4doJYseACD-vrGv4oOTG1fd5pC4Pt9K-cfp1YFHw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Image-Defogging+Algorithm+Based+on+Bright-Field+Region+Detection&rft.jtitle=Photonics&rft.au=Wang%2C+Yue&rft.au=Yue%2C+Fengying&rft.au=Duan%2C+Jiaxin&rft.au=Zhang%2C+Haifeng&rft.date=2024-08-01&rft.pub=MDPI+AG&rft.eissn=2304-6732&rft.volume=11&rft.issue=8&rft.spage=718&rft_id=info:doi/10.3390%2Fphotonics11080718&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2304-6732&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2304-6732&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2304-6732&client=summon |