Positive solutions of three-point boundary value problems

In this paper, we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional p-Laplacian. We then study existence of solutions when the problems are in resonance cases. The proposed approach is based on the Krasnoselskii's fixed point...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and mechanics Vol. 29; no. 6; pp. 817 - 823
Main Author 缪烨红 张吉慧
Format Journal Article
LanguageEnglish
Published Heidelberg Shanghai University Press 01.06.2008
Fundamental Teaching Department, Chein-Shung Institute of Technology, Taicang 215400, Jiangsu Provine, P. R. China%School of Mathematics and Computer Sciences, Nanjing Normal University, Nanjing 210097, P. R. China
Subjects
Online AccessGet full text
ISSN0253-4827
1573-2754
DOI10.1007/s10483-008-0613-y

Cover

Abstract In this paper, we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional p-Laplacian. We then study existence of solutions when the problems are in resonance cases. The proposed approach is based on the Krasnoselskii's fixed point theorem and the coincidence degree.
AbstractList In this paper, we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional p-Laplacian. We then study existence of solutions when the problems are in resonance cases. The proposed approach is based on the Krasnoselskii's fixed point theorem and the coincidence degree.
In this paper, we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional p-Laplacian. We then study existence of solutions when the problems are in resonance cases. The proposed approach is based on the Krasnoselskii's fixed point theorem and the coincidence degree.
In this paper, we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional p -Laplacian. We then study existence of solutions when the problems are in resonance cases. The proposed approach is based on the Krasnoselskii’s fixed point theorem and the coincidence degree.
O175.8; In this paper,we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional p-Laplacian.We then study existence of solutions when the problems are in resonance cases.The proposed approach is based on the Krasnoselskii's fixed point theorem and the coincidence degree.
Author 缪烨红 张吉慧
AuthorAffiliation Fundamental Teaching Department, Chein-Shung Institute of Technology Taicang 215400, Jiangsu Provine, P. R. China School of Mathematics and Computer Sciences, Nanjing Normal University Nanjing 210097, P. R. China
AuthorAffiliation_xml – name: Fundamental Teaching Department, Chein-Shung Institute of Technology, Taicang 215400, Jiangsu Provine, P. R. China%School of Mathematics and Computer Sciences, Nanjing Normal University, Nanjing 210097, P. R. China
Author_xml – sequence: 1
  fullname: 缪烨红 张吉慧
BookMark eNp9kMtO3DAUhq0KJAbKA7CL2FSqZDi-xHaWCPWChEQX7C07OZ4JzdhDnFDy9jUKEjtWZ_P9l_OfkqOYIhJyweCKAejrzEAaQQEMBcUEXb6QDau1oFzX8ohsgNeCSsP1CTnN-QkApJZyQ5o_KfdT_4JVTsM89SnmKoVq2o2I9JD6OFU-zbFz41K9uGHG6jAmP-A-fyXHwQ0Zz9_vGXn8-ePx9je9f_h1d3tzT1sh5EQ7Y7QySjXOQ2BBtx0PXnsuJOjQ1g3ypsPGda5cFaSolfSKBSg0eh_EGfm-2v5zMbi4tU9pHmMJtMuSX3fDq0VevgYFTBT42wqXks8z5snu-9ziMLiIac7W1LXStWl4IdlKtmPKecRgD2O_L19aBvZtUbsuaou3fVvULkXDV00ubNzi-NHlM9Hle9Auxe1z0Vnv2r-hH9ByLZUAZsR_9aOHbw
Cites_doi 10.1016/S0362-546X(97)00360-X
10.1016/j.camwa.2003.08.011
10.1016/j.jmaa.2003.11.014
10.1016/S0895-7177(01)00155-8
10.1016/S0096-3003(01)00240-5
10.1006/jmaa.2001.7742
10.1016/S0893-9659(98)00164-5
ClassificationCodes O175.8
ContentType Journal Article
Copyright Shanghai University and Springer-Verlag GmbH 2008
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Shanghai University and Springer-Verlag GmbH 2008
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W94
~WA
AAYXX
CITATION
7TB
8FD
FR3
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s10483-008-0613-y
DatabaseName 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-自然科学
中文科技期刊数据库- 镜像站点
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList
Technology Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate Positive solutions of three-point boundary value problems
EISSN 1573-2754
EndPage 823
ExternalDocumentID yysxhlx_e200806013
10_1007_s10483_008_0613_y
27463018
GrantInformation_xml – fundername: Foundation of Major Project of Science and Technology of Chinese Education Ministy; NSF of Education Committee of Jiangsu Province
GroupedDBID -01
-0A
-52
-5D
-5G
-BR
-EM
-SA
-S~
-XX
-Y2
-~C
.86
.VR
06D
0R~
0VY
188
1N0
1SB
2.D
23M
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VR
5VS
5XA
5XB
67Z
6NX
8RM
8TC
8UJ
92E
92I
92L
92M
92Q
93N
95-
95.
95~
96X
9D9
9DA
AAAVM
AABHQ
AACDK
AAEOY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEARS
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
CAJEA
CCEZO
CCVFK
CHBEP
COF
CQIGP
CS3
CSCUP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
H13
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
IWAJR
IXD
IZIGR
I~X
I~Z
J-C
JBSCW
JUIAU
JZLTJ
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OVD
P19
P9R
PF0
PT4
PT5
Q--
Q-0
QOK
QOS
R-A
R89
R9I
REI
RHV
RNI
ROL
RPX
RSV
RT1
RZC
RZE
RZK
S..
S16
S1Z
S26
S27
S28
S3B
SAP
SCL
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
T8Q
TCJ
TEORI
TGP
TSG
TSK
TSV
TUC
TUS
U1F
U1G
U2A
U5A
U5K
UG4
UGNYK
UOJIU
UTJUX
UY8
UZ4
UZXMN
VC2
VFIZW
W23
W48
W94
WK8
YLTOR
Z5O
Z7R
Z7S
Z7U
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
ZMTXR
ZWQNP
~8M
~A9
~L9
~LB
~WA
ABJNI
ACPIV
AAPKM
AAYXX
ABBRH
ABDBE
ADHKG
AFDZB
AFOHR
AGQPQ
AHPBZ
AMVHM
ATHPR
AYFIA
CITATION
7TB
8FD
ABRTQ
FR3
4A8
PSX
ID FETCH-LOGICAL-c334t-d88768669ab0f1f7cd2fb7b23407fc59e29de9ada29d6f43564b61f0b0febbf3
IEDL.DBID AGYKE
ISSN 0253-4827
IngestDate Thu May 29 03:56:05 EDT 2025
Fri Sep 05 12:29:22 EDT 2025
Tue Jul 01 02:11:01 EDT 2025
Fri Feb 21 02:26:46 EST 2025
Tue Jan 07 06:24:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords coincidence degree theorem
O175.8
34B15
positive solution
three-point boundary value problems
fixed point theorem
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-d88768669ab0f1f7cd2fb7b23407fc59e29de9ada29d6f43564b61f0b0febbf3
Notes O175.8
31-1650/O1
three-point boundary value problems, positive solution, fixed point theorem,coincidence degree theorem
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 855675892
PQPubID 23500
PageCount 7
ParticipantIDs wanfang_journals_yysxhlx_e200806013
proquest_miscellaneous_855675892
crossref_primary_10_1007_s10483_008_0613_y
springer_journals_10_1007_s10483_008_0613_y
chongqing_backfile_27463018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-06-01
PublicationDateYYYYMMDD 2008-06-01
PublicationDate_xml – month: 06
  year: 2008
  text: 2008-06-01
  day: 01
PublicationDecade 2000
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Applied mathematics and mechanics
PublicationTitleAbbrev Appl. Math. Mech.-Engl. Ed
PublicationTitleAlternate Applied Mathematics and Mechanics(English Edition)
PublicationTitle_FL APPLIED MATHEMATICS AND MECHANICS(ENGLISH EDITION)
PublicationYear 2008
Publisher Shanghai University Press
Fundamental Teaching Department, Chein-Shung Institute of Technology, Taicang 215400, Jiangsu Provine, P. R. China%School of Mathematics and Computer Sciences, Nanjing Normal University, Nanjing 210097, P. R. China
Publisher_xml – name: Shanghai University Press
– name: Fundamental Teaching Department, Chein-Shung Institute of Technology, Taicang 215400, Jiangsu Provine, P. R. China%School of Mathematics and Computer Sciences, Nanjing Normal University, Nanjing 210097, P. R. China
References Wong (CR4) 1999; 12
Ma (CR6) 1999; 34
Feng (CR5) 1997; 30
Agarwal, Lü, O’Regan (CR2) 2002; 266
Bai, Fang (CR9) 2004; 291
Lü, O’Regan, Zhong (CR3) 2002; 133
Liu (CR7) 2004; 48
Mawhin, Fitzpatrick, Martelli, Mawhin, Nussbaum (CR8) 1997
Yang (CR1) 2002; 35
F. H. Wong (613_CR4) 1999; 12
R. P. Agarwal (613_CR2) 2002; 266
W. Y. Feng (613_CR5) 1997; 30
X. J. Yang (613_CR1) 2002; 35
J. Mawhin (613_CR8) 1997
B. Liu (613_CR7) 2004; 48
C. Z. Bai (613_CR9) 2004; 291
R. Y. Ma (613_CR6) 1999; 34
H. S. Lü (613_CR3) 2002; 133
References_xml – volume: 30
  start-page: 5369
  issue: 8
  year: 1997
  end-page: 5374
  ident: CR5
  article-title: On an m-point boundary value problem[J]
  publication-title: Nonlinear Anal TMA
  doi: 10.1016/S0362-546X(97)00360-X
– volume: 48
  start-page: 913
  issue: 5–6
  year: 2004
  end-page: 925
  ident: CR7
  article-title: Positive solution of singular three-point boundary value problems for the one-dimensional p-Laplacian[J]
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2003.08.011
– volume: 291
  start-page: 538
  issue: 2
  year: 2004
  end-page: 549
  ident: CR9
  article-title: Existence of positive solutions for three-point boundary value problems at resonance[J]
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2003.11.014
– volume: 35
  start-page: 129
  issue: 1–2
  year: 2002
  end-page: 135
  ident: CR1
  article-title: Positive Solutions for the one dimensional -Laplacian[J]
  publication-title: Mathematical and Computer Modelling
  doi: 10.1016/S0895-7177(01)00155-8
– volume: 34
  start-page: 1
  issue: 1
  year: 1999
  end-page: 8
  ident: CR6
  article-title: Positive solutions of a nonlinear three-point boundary value problem[J]
  publication-title: Electronic J Differential Equations
– volume: 133
  start-page: 407
  issue: 2–3
  year: 2002
  end-page: 422
  ident: CR3
  article-title: Multiple positive solutions for the one-dimensional singular p-Laplacian[J]
  publication-title: Appl Math Compute
  doi: 10.1016/S0096-3003(01)00240-5
– year: 1997
  ident: CR8
  article-title: Topological degree and boundary value problems for nonlinear differential equations[M]
  publication-title: Topological Methods for Ordinary Differential Equations, Lecture Notes in Mathematics
– volume: 266
  start-page: 384
  issue: 2
  year: 2002
  end-page: 400
  ident: CR2
  article-title: Eigenvalues and the one-dimensional -Laplacian[J]
  publication-title: J Math Anal Appl
  doi: 10.1006/jmaa.2001.7742
– volume: 12
  start-page: 11
  issue: 3
  year: 1999
  end-page: 17
  ident: CR4
  article-title: Existence of positive solutions for -Laplacian boundary value problems[J]
  publication-title: Appl Math Letters
  doi: 10.1016/S0893-9659(98)00164-5
– volume: 34
  start-page: 1
  issue: 1
  year: 1999
  ident: 613_CR6
  publication-title: Electronic J Differential Equations
– volume: 35
  start-page: 129
  issue: 1–2
  year: 2002
  ident: 613_CR1
  publication-title: Mathematical and Computer Modelling
  doi: 10.1016/S0895-7177(01)00155-8
– volume: 266
  start-page: 384
  issue: 2
  year: 2002
  ident: 613_CR2
  publication-title: J Math Anal Appl
  doi: 10.1006/jmaa.2001.7742
– volume: 30
  start-page: 5369
  issue: 8
  year: 1997
  ident: 613_CR5
  publication-title: Nonlinear Anal TMA
  doi: 10.1016/S0362-546X(97)00360-X
– volume: 12
  start-page: 11
  issue: 3
  year: 1999
  ident: 613_CR4
  publication-title: Appl Math Letters
  doi: 10.1016/S0893-9659(98)00164-5
– volume: 133
  start-page: 407
  issue: 2–3
  year: 2002
  ident: 613_CR3
  publication-title: Appl Math Compute
– volume: 48
  start-page: 913
  issue: 5–6
  year: 2004
  ident: 613_CR7
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2003.08.011
– volume-title: Topological Methods for Ordinary Differential Equations, Lecture Notes in Mathematics
  year: 1997
  ident: 613_CR8
– volume: 291
  start-page: 538
  issue: 2
  year: 2004
  ident: 613_CR9
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2003.11.014
SSID ssj0004744
Score 1.735189
Snippet In this paper, we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional p-Laplacian. We...
In this paper, we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional p -Laplacian. We...
O175.8; In this paper,we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional...
SourceID wanfang
proquest
crossref
springer
chongqing
SourceType Aggregation Database
Index Database
Publisher
StartPage 817
SubjectTerms Applications of Mathematics
Boundary value problems
Classical Mechanics
Fluid- and Aerodynamics
Mathematical analysis
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Partial Differential Equations
Theorems
实验研究
求解问题
边值问题
阳极
Title Positive solutions of three-point boundary value problems
URI http://lib.cqvip.com/qk/86647X/20086/27463018.html
https://link.springer.com/article/10.1007/s10483-008-0613-y
https://www.proquest.com/docview/855675892
https://d.wanfangdata.com.cn/periodical/yysxhlx-e200806013
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_R7gUeYAzQyrbKEnticpXGiRM_dtBSgYp46KTyFMWO3U5FSWlSRPjrd06TtkwIqU95sezk7nwfubvfAVwbHxU_d_tUobmmXhw7VAZaU9R8TGjH1Y6xzcmTr3x8532e-bO6jztvqt2blGSlqQ-a3byQ0SpdjzaIli048fuhCNtwMvj0_ctw3w4ZVDNc0ZozalEum2TmvzaxkAqLLJ3_xAP_Nk17f3OXIq0ae1ITp_MDGzR6AdPm7belJ8veppA99ecRsOORn3cKz2uflAy2QvQSnuj0DJ5NdoCu-SsQ36rirl-a7GSVZIYUKAmarrL7tCCyGtC0LonFD9eknlSTv4bpaDj9MKb11AWqGPMKmqDa4SHnIpaO6ZtAJa6RgXQZhn5G-UK7ItEiTmJ8coPeFvck7xsHV2spDXsD7TRL9TmQUAXInkRKzpTHpSOFCo3WjHsmYG6sOnCxoz0abbW0UFQRhskctU7YgfcNN6LVFnkj2mMsW2JF1QRNJFZUdoA0_IrwftikR5zqbJNHoe_bmEi4HbhpCB_V9zT_34bvalbvF5dl_nvxA_WJrRmxODbs7VF7XsDTbbWJ_YdzCe1ivdFX6NIUsosifPvxdtStRbkLrTt38ABEjvDD
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7BcigcCm1BbHnUUjlRGWXjxImPCAFLYRGHRYKTFTs2IFBCSbYi_HrG2WQXEELilItlJzPjeWRmvgHYsiEqfu73qEZzTYMk8aiKjKGo-Zgwnm8865qTB6e8fx78vQgvmj7uoq12b1OStaZ-0ewWxIzW6Xq0QbSahbkAQ3CvA3O7h5fH-9N2yKie4YrWnFGHctkmM9_bxEEqXOfZ1T888LVpmvqbkxRp3diT2SS7emGDDhZh2L79uPTkdmdUqh399AbY8ZOftwRfG5-U7I6F6BvMmOw7LAwmgK7FDxBndXHXf0MmskpyS0qUBEPv85usJKoe0PRQEYcfbkgzqaZYhuHB_nCvT5upC1QzFpQ0RbXDY85Fojzbs5FOfasi5TMM_awOhfFFakSSJvjkFr0tHijesx6uNkpZtgKdLM_MKpBYR7GIU6U40wFXnhI6tsYwHtiI-YnuwtqE9mi09a2DopIYJnPUOnEXtltuyPsx8oacYiw7Ysl6giYSS1ZdIC2_JN4Pl_RIMpOPChmHoYuJhN-FPy3hZXNPi482_N2werq4qorH6zvUJ65mxOHYsJ-f2vMXfOkPByfy5Oj0eA3mx5Un7n_OOnTKh5HZQPemVJuNOD8DUzbxRQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB_8ANGH4_zC1TsN6JMS7DZt2jzK3S1-44OCb6FJk1WUdLVV7H9_k267qyCCT30JKcxMfzPTmfkNwJ6NEfh52Kca3TWNsiygKjGGIvIxYYLQBNYPJ19c8uOb6PQ2vm33nJZdt3tXkhzPNHiWJlcdjnJ7-G7wLUoZbUr36I9oPQvziMZ9b-g34dF0MDJptrmiX2fU8112Zc3PrvDkCneFGz7hqz86qWnkOSmWNiM-zmZu-M4bDX7CjzaMJEdjvS_DjHErsHQx4WAtV0FcNf1Yr4ZMzIsUllSoPENHxb2riGp2Kj3XxFN-G9IulynX4Hrw7_rPMW0XJVDNWFTRHJGCp5yLTAW2bxOdh1YlKmSYrVkdCxOK3Igsz_DJLQZIPFK8bwM8bZSybB3mXOHMBpBUJ6lIc6U40xFXgRI6tcYwHtmEhZnuwdZESOhn9YNnj5KY2XIEirQH-53Y5GhMliGntMhe3rJZeonylnUPSCdYiSbt6xSZM8VLKdM49mmMCHtw0Alctp9W-dWFu61Opofruny7e0QI8G0ennqGbX7rzh1YuPo7kOcnl2dbsDjuFfF_YH7BXPX8Yn5jQFKp7cbo_gPUvdh_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Positive+solutions+of+three-point+boundary+value+problems&rft.jtitle=%E5%BA%94%E7%94%A8%E6%95%B0%E5%AD%A6%E5%92%8C%E5%8A%9B%E5%AD%A6%28%E8%8B%B1%E6%96%87%E7%89%88%29&rft.au=MIAO+Ye-hong&rft.au=ZHANG+Ji-hui&rft.date=2008-06-01&rft.pub=Fundamental+Teaching+Department%2C+Chein-Shung+Institute+of+Technology%2C+Taicang+215400%2C+Jiangsu+Provine%2C+P.+R.+China%25School+of+Mathematics+and+Computer+Sciences%2C+Nanjing+Normal+University%2C+Nanjing+210097%2C+P.+R.+China&rft.issn=0253-4827&rft.volume=29&rft.issue=6&rft.spage=817&rft.epage=823&rft_id=info:doi/10.1007%2Fs10483-008-0613-y&rft.externalDocID=yysxhlx_e200806013
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86647X%2F86647X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fyysxhlx-e%2Fyysxhlx-e.jpg