Positive solutions of three-point boundary value problems
In this paper, we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional p-Laplacian. We then study existence of solutions when the problems are in resonance cases. The proposed approach is based on the Krasnoselskii's fixed point...
Saved in:
Published in | Applied mathematics and mechanics Vol. 29; no. 6; pp. 817 - 823 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Shanghai University Press
01.06.2008
Fundamental Teaching Department, Chein-Shung Institute of Technology, Taicang 215400, Jiangsu Provine, P. R. China%School of Mathematics and Computer Sciences, Nanjing Normal University, Nanjing 210097, P. R. China |
Subjects | |
Online Access | Get full text |
ISSN | 0253-4827 1573-2754 |
DOI | 10.1007/s10483-008-0613-y |
Cover
Abstract | In this paper, we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional p-Laplacian. We then study existence of solutions when the problems are in resonance cases. The proposed approach is based on the Krasnoselskii's fixed point theorem and the coincidence degree. |
---|---|
AbstractList | In this paper, we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional p-Laplacian. We then study existence of solutions when the problems are in resonance cases. The proposed approach is based on the Krasnoselskii's fixed point theorem and the coincidence degree. In this paper, we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional p-Laplacian. We then study existence of solutions when the problems are in resonance cases. The proposed approach is based on the Krasnoselskii's fixed point theorem and the coincidence degree. In this paper, we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional p -Laplacian. We then study existence of solutions when the problems are in resonance cases. The proposed approach is based on the Krasnoselskii’s fixed point theorem and the coincidence degree. O175.8; In this paper,we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional p-Laplacian.We then study existence of solutions when the problems are in resonance cases.The proposed approach is based on the Krasnoselskii's fixed point theorem and the coincidence degree. |
Author | 缪烨红 张吉慧 |
AuthorAffiliation | Fundamental Teaching Department, Chein-Shung Institute of Technology Taicang 215400, Jiangsu Provine, P. R. China School of Mathematics and Computer Sciences, Nanjing Normal University Nanjing 210097, P. R. China |
AuthorAffiliation_xml | – name: Fundamental Teaching Department, Chein-Shung Institute of Technology, Taicang 215400, Jiangsu Provine, P. R. China%School of Mathematics and Computer Sciences, Nanjing Normal University, Nanjing 210097, P. R. China |
Author_xml | – sequence: 1 fullname: 缪烨红 张吉慧 |
BookMark | eNp9kMtO3DAUhq0KJAbKA7CL2FSqZDi-xHaWCPWChEQX7C07OZ4JzdhDnFDy9jUKEjtWZ_P9l_OfkqOYIhJyweCKAejrzEAaQQEMBcUEXb6QDau1oFzX8ohsgNeCSsP1CTnN-QkApJZyQ5o_KfdT_4JVTsM89SnmKoVq2o2I9JD6OFU-zbFz41K9uGHG6jAmP-A-fyXHwQ0Zz9_vGXn8-ePx9je9f_h1d3tzT1sh5EQ7Y7QySjXOQ2BBtx0PXnsuJOjQ1g3ypsPGda5cFaSolfSKBSg0eh_EGfm-2v5zMbi4tU9pHmMJtMuSX3fDq0VevgYFTBT42wqXks8z5snu-9ziMLiIac7W1LXStWl4IdlKtmPKecRgD2O_L19aBvZtUbsuaou3fVvULkXDV00ubNzi-NHlM9Hle9Auxe1z0Vnv2r-hH9ByLZUAZsR_9aOHbw |
Cites_doi | 10.1016/S0362-546X(97)00360-X 10.1016/j.camwa.2003.08.011 10.1016/j.jmaa.2003.11.014 10.1016/S0895-7177(01)00155-8 10.1016/S0096-3003(01)00240-5 10.1006/jmaa.2001.7742 10.1016/S0893-9659(98)00164-5 |
ClassificationCodes | O175.8 |
ContentType | Journal Article |
Copyright | Shanghai University and Springer-Verlag GmbH 2008 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Shanghai University and Springer-Verlag GmbH 2008 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W94 ~WA AAYXX CITATION 7TB 8FD FR3 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1007/s10483-008-0613-y |
DatabaseName | 中文科技期刊数据库 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-自然科学 中文科技期刊数据库- 镜像站点 CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
DocumentTitleAlternate | Positive solutions of three-point boundary value problems |
EISSN | 1573-2754 |
EndPage | 823 |
ExternalDocumentID | yysxhlx_e200806013 10_1007_s10483_008_0613_y 27463018 |
GrantInformation_xml | – fundername: Foundation of Major Project of Science and Technology of Chinese Education Ministy; NSF of Education Committee of Jiangsu Province |
GroupedDBID | -01 -0A -52 -5D -5G -BR -EM -SA -S~ -XX -Y2 -~C .86 .VR 06D 0R~ 0VY 188 1N0 1SB 2.D 23M 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VR 5VS 5XA 5XB 67Z 6NX 8RM 8TC 8UJ 92E 92I 92L 92M 92Q 93N 95- 95. 95~ 96X 9D9 9DA AAAVM AABHQ AACDK AAEOY AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEARS AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG CAJEA CCEZO CCVFK CHBEP COF CQIGP CS3 CSCUP CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG ESX FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 H13 HF~ HG6 HMJXF HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ IWAJR IXD IZIGR I~X I~Z J-C JBSCW JUIAU JZLTJ KOV LAK LLZTM M4Y MA- N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OVD P19 P9R PF0 PT4 PT5 Q-- Q-0 QOK QOS R-A R89 R9I REI RHV RNI ROL RPX RSV RT1 RZC RZE RZK S.. S16 S1Z S26 S27 S28 S3B SAP SCL SCLPG SDD SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 T8Q TCJ TEORI TGP TSG TSK TSV TUC TUS U1F U1G U2A U5A U5K UG4 UGNYK UOJIU UTJUX UY8 UZ4 UZXMN VC2 VFIZW W23 W48 W94 WK8 YLTOR Z5O Z7R Z7S Z7U Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W ZMTXR ZWQNP ~8M ~A9 ~L9 ~LB ~WA ABJNI ACPIV AAPKM AAYXX ABBRH ABDBE ADHKG AFDZB AFOHR AGQPQ AHPBZ AMVHM ATHPR AYFIA CITATION 7TB 8FD ABRTQ FR3 4A8 PSX |
ID | FETCH-LOGICAL-c334t-d88768669ab0f1f7cd2fb7b23407fc59e29de9ada29d6f43564b61f0b0febbf3 |
IEDL.DBID | AGYKE |
ISSN | 0253-4827 |
IngestDate | Thu May 29 03:56:05 EDT 2025 Fri Sep 05 12:29:22 EDT 2025 Tue Jul 01 02:11:01 EDT 2025 Fri Feb 21 02:26:46 EST 2025 Tue Jan 07 06:24:37 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | coincidence degree theorem O175.8 34B15 positive solution three-point boundary value problems fixed point theorem |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-d88768669ab0f1f7cd2fb7b23407fc59e29de9ada29d6f43564b61f0b0febbf3 |
Notes | O175.8 31-1650/O1 three-point boundary value problems, positive solution, fixed point theorem,coincidence degree theorem ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 855675892 |
PQPubID | 23500 |
PageCount | 7 |
ParticipantIDs | wanfang_journals_yysxhlx_e200806013 proquest_miscellaneous_855675892 crossref_primary_10_1007_s10483_008_0613_y springer_journals_10_1007_s10483_008_0613_y chongqing_backfile_27463018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-06-01 |
PublicationDateYYYYMMDD | 2008-06-01 |
PublicationDate_xml | – month: 06 year: 2008 text: 2008-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Applied mathematics and mechanics |
PublicationTitleAbbrev | Appl. Math. Mech.-Engl. Ed |
PublicationTitleAlternate | Applied Mathematics and Mechanics(English Edition) |
PublicationTitle_FL | APPLIED MATHEMATICS AND MECHANICS(ENGLISH EDITION) |
PublicationYear | 2008 |
Publisher | Shanghai University Press Fundamental Teaching Department, Chein-Shung Institute of Technology, Taicang 215400, Jiangsu Provine, P. R. China%School of Mathematics and Computer Sciences, Nanjing Normal University, Nanjing 210097, P. R. China |
Publisher_xml | – name: Shanghai University Press – name: Fundamental Teaching Department, Chein-Shung Institute of Technology, Taicang 215400, Jiangsu Provine, P. R. China%School of Mathematics and Computer Sciences, Nanjing Normal University, Nanjing 210097, P. R. China |
References | Wong (CR4) 1999; 12 Ma (CR6) 1999; 34 Feng (CR5) 1997; 30 Agarwal, Lü, O’Regan (CR2) 2002; 266 Bai, Fang (CR9) 2004; 291 Lü, O’Regan, Zhong (CR3) 2002; 133 Liu (CR7) 2004; 48 Mawhin, Fitzpatrick, Martelli, Mawhin, Nussbaum (CR8) 1997 Yang (CR1) 2002; 35 F. H. Wong (613_CR4) 1999; 12 R. P. Agarwal (613_CR2) 2002; 266 W. Y. Feng (613_CR5) 1997; 30 X. J. Yang (613_CR1) 2002; 35 J. Mawhin (613_CR8) 1997 B. Liu (613_CR7) 2004; 48 C. Z. Bai (613_CR9) 2004; 291 R. Y. Ma (613_CR6) 1999; 34 H. S. Lü (613_CR3) 2002; 133 |
References_xml | – volume: 30 start-page: 5369 issue: 8 year: 1997 end-page: 5374 ident: CR5 article-title: On an m-point boundary value problem[J] publication-title: Nonlinear Anal TMA doi: 10.1016/S0362-546X(97)00360-X – volume: 48 start-page: 913 issue: 5–6 year: 2004 end-page: 925 ident: CR7 article-title: Positive solution of singular three-point boundary value problems for the one-dimensional p-Laplacian[J] publication-title: Comput Math Appl doi: 10.1016/j.camwa.2003.08.011 – volume: 291 start-page: 538 issue: 2 year: 2004 end-page: 549 ident: CR9 article-title: Existence of positive solutions for three-point boundary value problems at resonance[J] publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2003.11.014 – volume: 35 start-page: 129 issue: 1–2 year: 2002 end-page: 135 ident: CR1 article-title: Positive Solutions for the one dimensional -Laplacian[J] publication-title: Mathematical and Computer Modelling doi: 10.1016/S0895-7177(01)00155-8 – volume: 34 start-page: 1 issue: 1 year: 1999 end-page: 8 ident: CR6 article-title: Positive solutions of a nonlinear three-point boundary value problem[J] publication-title: Electronic J Differential Equations – volume: 133 start-page: 407 issue: 2–3 year: 2002 end-page: 422 ident: CR3 article-title: Multiple positive solutions for the one-dimensional singular p-Laplacian[J] publication-title: Appl Math Compute doi: 10.1016/S0096-3003(01)00240-5 – year: 1997 ident: CR8 article-title: Topological degree and boundary value problems for nonlinear differential equations[M] publication-title: Topological Methods for Ordinary Differential Equations, Lecture Notes in Mathematics – volume: 266 start-page: 384 issue: 2 year: 2002 end-page: 400 ident: CR2 article-title: Eigenvalues and the one-dimensional -Laplacian[J] publication-title: J Math Anal Appl doi: 10.1006/jmaa.2001.7742 – volume: 12 start-page: 11 issue: 3 year: 1999 end-page: 17 ident: CR4 article-title: Existence of positive solutions for -Laplacian boundary value problems[J] publication-title: Appl Math Letters doi: 10.1016/S0893-9659(98)00164-5 – volume: 34 start-page: 1 issue: 1 year: 1999 ident: 613_CR6 publication-title: Electronic J Differential Equations – volume: 35 start-page: 129 issue: 1–2 year: 2002 ident: 613_CR1 publication-title: Mathematical and Computer Modelling doi: 10.1016/S0895-7177(01)00155-8 – volume: 266 start-page: 384 issue: 2 year: 2002 ident: 613_CR2 publication-title: J Math Anal Appl doi: 10.1006/jmaa.2001.7742 – volume: 30 start-page: 5369 issue: 8 year: 1997 ident: 613_CR5 publication-title: Nonlinear Anal TMA doi: 10.1016/S0362-546X(97)00360-X – volume: 12 start-page: 11 issue: 3 year: 1999 ident: 613_CR4 publication-title: Appl Math Letters doi: 10.1016/S0893-9659(98)00164-5 – volume: 133 start-page: 407 issue: 2–3 year: 2002 ident: 613_CR3 publication-title: Appl Math Compute – volume: 48 start-page: 913 issue: 5–6 year: 2004 ident: 613_CR7 publication-title: Comput Math Appl doi: 10.1016/j.camwa.2003.08.011 – volume-title: Topological Methods for Ordinary Differential Equations, Lecture Notes in Mathematics year: 1997 ident: 613_CR8 – volume: 291 start-page: 538 issue: 2 year: 2004 ident: 613_CR9 publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2003.11.014 |
SSID | ssj0004744 |
Score | 1.735189 |
Snippet | In this paper, we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional p-Laplacian. We... In this paper, we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional p -Laplacian. We... O175.8; In this paper,we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional... |
SourceID | wanfang proquest crossref springer chongqing |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 817 |
SubjectTerms | Applications of Mathematics Boundary value problems Classical Mechanics Fluid- and Aerodynamics Mathematical analysis Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Partial Differential Equations Theorems 实验研究 求解问题 边值问题 阳极 |
Title | Positive solutions of three-point boundary value problems |
URI | http://lib.cqvip.com/qk/86647X/20086/27463018.html https://link.springer.com/article/10.1007/s10483-008-0613-y https://www.proquest.com/docview/855675892 https://d.wanfangdata.com.cn/periodical/yysxhlx-e200806013 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_R7gUeYAzQyrbKEnticpXGiRM_dtBSgYp46KTyFMWO3U5FSWlSRPjrd06TtkwIqU95sezk7nwfubvfAVwbHxU_d_tUobmmXhw7VAZaU9R8TGjH1Y6xzcmTr3x8532e-bO6jztvqt2blGSlqQ-a3byQ0SpdjzaIli048fuhCNtwMvj0_ctw3w4ZVDNc0ZozalEum2TmvzaxkAqLLJ3_xAP_Nk17f3OXIq0ae1ITp_MDGzR6AdPm7belJ8veppA99ecRsOORn3cKz2uflAy2QvQSnuj0DJ5NdoCu-SsQ36rirl-a7GSVZIYUKAmarrL7tCCyGtC0LonFD9eknlSTv4bpaDj9MKb11AWqGPMKmqDa4SHnIpaO6ZtAJa6RgXQZhn5G-UK7ItEiTmJ8coPeFvck7xsHV2spDXsD7TRL9TmQUAXInkRKzpTHpSOFCo3WjHsmYG6sOnCxoz0abbW0UFQRhskctU7YgfcNN6LVFnkj2mMsW2JF1QRNJFZUdoA0_IrwftikR5zqbJNHoe_bmEi4HbhpCB_V9zT_34bvalbvF5dl_nvxA_WJrRmxODbs7VF7XsDTbbWJ_YdzCe1ivdFX6NIUsosifPvxdtStRbkLrTt38ABEjvDD |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7BcigcCm1BbHnUUjlRGWXjxImPCAFLYRGHRYKTFTs2IFBCSbYi_HrG2WQXEELilItlJzPjeWRmvgHYsiEqfu73qEZzTYMk8aiKjKGo-Zgwnm8865qTB6e8fx78vQgvmj7uoq12b1OStaZ-0ewWxIzW6Xq0QbSahbkAQ3CvA3O7h5fH-9N2yKie4YrWnFGHctkmM9_bxEEqXOfZ1T888LVpmvqbkxRp3diT2SS7emGDDhZh2L79uPTkdmdUqh399AbY8ZOftwRfG5-U7I6F6BvMmOw7LAwmgK7FDxBndXHXf0MmskpyS0qUBEPv85usJKoe0PRQEYcfbkgzqaZYhuHB_nCvT5upC1QzFpQ0RbXDY85Fojzbs5FOfasi5TMM_awOhfFFakSSJvjkFr0tHijesx6uNkpZtgKdLM_MKpBYR7GIU6U40wFXnhI6tsYwHtiI-YnuwtqE9mi09a2DopIYJnPUOnEXtltuyPsx8oacYiw7Ysl6giYSS1ZdIC2_JN4Pl_RIMpOPChmHoYuJhN-FPy3hZXNPi482_N2werq4qorH6zvUJ65mxOHYsJ-f2vMXfOkPByfy5Oj0eA3mx5Un7n_OOnTKh5HZQPemVJuNOD8DUzbxRQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB_8ANGH4_zC1TsN6JMS7DZt2jzK3S1-44OCb6FJk1WUdLVV7H9_k267qyCCT30JKcxMfzPTmfkNwJ6NEfh52Kca3TWNsiygKjGGIvIxYYLQBNYPJ19c8uOb6PQ2vm33nJZdt3tXkhzPNHiWJlcdjnJ7-G7wLUoZbUr36I9oPQvziMZ9b-g34dF0MDJptrmiX2fU8112Zc3PrvDkCneFGz7hqz86qWnkOSmWNiM-zmZu-M4bDX7CjzaMJEdjvS_DjHErsHQx4WAtV0FcNf1Yr4ZMzIsUllSoPENHxb2riGp2Kj3XxFN-G9IulynX4Hrw7_rPMW0XJVDNWFTRHJGCp5yLTAW2bxOdh1YlKmSYrVkdCxOK3Igsz_DJLQZIPFK8bwM8bZSybB3mXOHMBpBUJ6lIc6U40xFXgRI6tcYwHtmEhZnuwdZESOhn9YNnj5KY2XIEirQH-53Y5GhMliGntMhe3rJZeonylnUPSCdYiSbt6xSZM8VLKdM49mmMCHtw0Alctp9W-dWFu61Opofruny7e0QI8G0ennqGbX7rzh1YuPo7kOcnl2dbsDjuFfF_YH7BXPX8Yn5jQFKp7cbo_gPUvdh_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Positive+solutions+of+three-point+boundary+value+problems&rft.jtitle=%E5%BA%94%E7%94%A8%E6%95%B0%E5%AD%A6%E5%92%8C%E5%8A%9B%E5%AD%A6%28%E8%8B%B1%E6%96%87%E7%89%88%29&rft.au=MIAO+Ye-hong&rft.au=ZHANG+Ji-hui&rft.date=2008-06-01&rft.pub=Fundamental+Teaching+Department%2C+Chein-Shung+Institute+of+Technology%2C+Taicang+215400%2C+Jiangsu+Provine%2C+P.+R.+China%25School+of+Mathematics+and+Computer+Sciences%2C+Nanjing+Normal+University%2C+Nanjing+210097%2C+P.+R.+China&rft.issn=0253-4827&rft.volume=29&rft.issue=6&rft.spage=817&rft.epage=823&rft_id=info:doi/10.1007%2Fs10483-008-0613-y&rft.externalDocID=yysxhlx_e200806013 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86647X%2F86647X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fyysxhlx-e%2Fyysxhlx-e.jpg |