Effects of residual stress induced by laser shock peening on mixed-mode crack propagation behavior in 7075-T6 aluminum alloy panel
•Residual stress was calculated by an efficient LSP simulation termed continuous explicit-dynamic impact strategy.•LSP-induced residual stress can change the crack path.•The compressive residual stresses extend the effective crack length and delay the crack propagation.•The obvious crack turning poi...
Saved in:
Published in | Theoretical and applied fracture mechanics Vol. 119; p. 103358 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
01.06.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Residual stress was calculated by an efficient LSP simulation termed continuous explicit-dynamic impact strategy.•LSP-induced residual stress can change the crack path.•The compressive residual stresses extend the effective crack length and delay the crack propagation.•The obvious crack turning point near the peened area is related to the significant change of KIIload andKIIres.•The wider LSP coverage area and the shorter distance from the treated area to the crack tip improve the fatigue performance.
The effects of residual stress on mixed-mode crack propagation behavior of 7075-T6 aluminum alloy panel subject to multiple laser shock peening (LSP) impacts were investigated. Residual stress was obtained by an efficient LSP simulation termed continuous explicit-dynamic impact strategy. A numerical method, combining finite element (FE) method and residual stress intensity factor (SIF) analysis, was used to predict the mixed-mode (I/II) crack propagation in peened compact tension shear (CTS) sample. The effects of residual stress on the mixed-mode crack behaviors in different coverage areas were analyzed. It was found that the LSP-induced residual stress can change the crack path. Compressive residual stresses increase the effective crack length, and delay the crack propagation. The increased LSP coverage area and the decreased distance from the treated area to the crack tip are beneficial to the fatigue performance. The obvious crack turning point near the peened area is related to the significant change of mode II SIF components (KIIload and KIIres). The proposed numerical method provides a new idea for the damage tolerance analysis with respect to the applications of LSP technology in aircraft structures. |
---|---|
AbstractList | •Residual stress was calculated by an efficient LSP simulation termed continuous explicit-dynamic impact strategy.•LSP-induced residual stress can change the crack path.•The compressive residual stresses extend the effective crack length and delay the crack propagation.•The obvious crack turning point near the peened area is related to the significant change of KIIload andKIIres.•The wider LSP coverage area and the shorter distance from the treated area to the crack tip improve the fatigue performance.
The effects of residual stress on mixed-mode crack propagation behavior of 7075-T6 aluminum alloy panel subject to multiple laser shock peening (LSP) impacts were investigated. Residual stress was obtained by an efficient LSP simulation termed continuous explicit-dynamic impact strategy. A numerical method, combining finite element (FE) method and residual stress intensity factor (SIF) analysis, was used to predict the mixed-mode (I/II) crack propagation in peened compact tension shear (CTS) sample. The effects of residual stress on the mixed-mode crack behaviors in different coverage areas were analyzed. It was found that the LSP-induced residual stress can change the crack path. Compressive residual stresses increase the effective crack length, and delay the crack propagation. The increased LSP coverage area and the decreased distance from the treated area to the crack tip are beneficial to the fatigue performance. The obvious crack turning point near the peened area is related to the significant change of mode II SIF components (KIIload and KIIres). The proposed numerical method provides a new idea for the damage tolerance analysis with respect to the applications of LSP technology in aircraft structures. The effects of residual stress on mixed-mode crack propagation behavior of 7075-T6 aluminum alloy panel subject to multiple laser shock peening (LSP) impacts were investigated. Residual stress was obtained by an efficient LSP simulation termed continuous explicit-dynamic impact strategy. A numerical method, combining finite element (FE) method and residual stress intensity factor (SIF) analysis, was used to predict the mixed-mode (I/II) crack propagation in peened compact tension shear (CTS) sample. The effects of residual stress on the mixed-mode crack behaviors in different coverage areas were analyzed. It was found that the LSP-induced residual stress can change the crack path. Compressive residual stresses increase the effective crack length, and delay the crack propagation. The increased LSP coverage area and the decreased distance from the treated area to the crack tip are beneficial to the fatigue performance. The obvious crack turning point near the peened area is related to the significant change of mode II SIF components (... and ...). The proposed numerical method provides a new idea for the damage tolerance analysis with respect to the applications of LSP technology in aircraft structures. (ProQuest: ... denotes formula omitted.) |
ArticleNumber | 103358 |
Author | Yang, Meng Peng, Yilin Ma, Yu'e Zhang, Xiushuo Wang, Zhenhai Du, Yong |
Author_xml | – sequence: 1 givenname: Xiushuo surname: Zhang fullname: Zhang, Xiushuo organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China – sequence: 2 givenname: Yu'e surname: Ma fullname: Ma, Yu'e email: ma.yu.e@nwpu.edu.cn organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China – sequence: 3 givenname: Yilin surname: Peng fullname: Peng, Yilin organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China – sequence: 4 givenname: Meng surname: Yang fullname: Yang, Meng organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China – sequence: 5 givenname: Yong surname: Du fullname: Du, Yong organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China – sequence: 6 givenname: Zhenhai surname: Wang fullname: Wang, Zhenhai email: zhwang@nwpu.edu.cn organization: School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an 710072, China |
BookMark | eNqFkUtPxCAUhYnRxHH0H7ggcd2xPAodFybG-EpM3OiaUHpRxhZGaI2z9ZfLWFcudMUN95xzLx8HaNcHDwgdk3JBSiJOV4tB2x7MgpaU5ivGqnoHzUgtaSEFq3fRLMtkUXNO99FBSquyJJIs2Qx9XlkLZkg4WBwhuXbUHU5DLhN2vh0NtLjZ4E4niDi9BPOK1wDe-WccPO7dB7RFH1rAJuptL4a1ftaDy80GXvS7CzHnYFnKqngUWHdj7_zY56ILG7zWHrpDtGd1l-Do55yjp-urx8vb4v7h5u7y4r4wjPGhaHlFDK9NZfWSSE6I5ZwxI5uGNkaQmgEzoq4ILa2QhgrCgNpKsFZKVkEDbI5Opty85NsIaVCrMEafRyoqlqSmGZXIKj6pTAwpRbBqHV2v40aRUm1pq5WaaKstbTXRzrazXzbjhm8OQ9Su-898PpkhP__dQVTJOPCZvYv5c1Qb3N8BX9amn3w |
CitedBy_id | crossref_primary_10_1364_OE_489426 crossref_primary_10_1016_j_ijmecsci_2024_109785 crossref_primary_10_1016_j_tafmec_2022_103642 crossref_primary_10_1007_s11665_023_08947_6 crossref_primary_10_3788_CJL230923 crossref_primary_10_3390_coatings12101556 crossref_primary_10_1080_10408436_2022_2138828 crossref_primary_10_1002_srin_202300328 crossref_primary_10_1016_j_ijfatigue_2024_108429 crossref_primary_10_1016_j_engfailanal_2024_109150 crossref_primary_10_1016_j_ijfatigue_2022_107291 crossref_primary_10_1016_j_tafmec_2022_103726 crossref_primary_10_1016_j_engfracmech_2024_109956 crossref_primary_10_1016_j_tafmec_2022_103437 |
Cites_doi | 10.1016/j.msea.2011.12.010 10.1007/s11661-006-0159-y 10.1016/j.euromechsol.2014.09.012 10.1016/j.ijfatigue.2014.05.015 10.1016/j.ijfatigue.2007.01.033 10.1016/j.ijfatigue.2017.04.002 10.1115/1.3656897 10.1016/j.msea.2011.02.054 10.1016/j.euromechsol.2019.103898 10.1016/j.rinp.2019.02.059 10.1016/j.tws.2019.106196 10.1016/j.euromechsol.2018.04.019 10.1016/0045-7949(91)90359-T 10.1016/j.engfracmech.2010.03.033 10.1016/j.ijfatigue.2006.05.007 10.1016/j.ijfatigue.2005.07.047 10.1016/j.msea.2011.01.077 10.1016/S0020-7683(03)00176-8 10.1016/j.ijfatigue.2012.06.011 10.1016/j.msea.2012.01.125 10.1016/j.ijfatigue.2020.106081 10.1016/0013-7944(85)90063-3 10.1115/1.4033604 10.1016/j.optlastec.2018.09.017 10.1111/j.1460-2695.2007.01180.x 10.1016/j.ijfatigue.2017.01.042 10.1016/j.ijfatigue.2020.106025 10.1016/0921-5093(95)10084-9 10.1016/j.optlastec.2016.02.007 10.1016/j.ijfatigue.2018.04.005 10.1016/j.msea.2010.10.020 10.1016/j.matdes.2010.08.039 10.1016/j.ijfatigue.2013.06.019 10.1111/j.1460-2695.1983.tb00338.x 10.3390/ma8105367 10.1111/ffe.13093 10.1016/j.msea.2009.08.045 10.1016/j.msea.2004.07.025 10.1016/j.ast.2014.10.017 10.1016/S0142-1123(02)00022-1 10.1016/j.ijfatigue.2019.105335 10.3390/met9060655 10.1016/j.engfailanal.2019.104354 10.1016/j.tafmec.2019.102429 10.1007/s11837-012-0340-2 10.1016/j.ijfatigue.2016.08.005 10.1063/1.346783 10.1016/j.engfracmech.2020.107126 10.1016/j.ijfatigue.2019.105285 10.1016/j.msea.2010.01.076 10.1016/j.ijfatigue.2012.09.010 10.1016/j.engfracmech.2018.04.040 10.1115/1.3601206 10.1016/j.ijfatigue.2006.10.032 10.1063/1.3295300 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Jun 2022 |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Jun 2022 |
DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.tafmec.2022.103358 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-7638 |
ExternalDocumentID | 10_1016_j_tafmec_2022_103358 S0167844222001070 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K UHS WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 7TB 8BQ 8FD EFKBS FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c334t-d451c48c5fa917411f4433c7bb2bc6183e3c685120f67c2613e2f563d7735ebe3 |
IEDL.DBID | .~1 |
ISSN | 0167-8442 |
IngestDate | Sun Jul 13 04:31:18 EDT 2025 Sun Jul 06 05:07:25 EDT 2025 Thu Apr 24 23:11:11 EDT 2025 Fri Feb 23 02:40:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mixed-mode fatigue crack propagation Laser shock peening 7075-T6 aluminum alloy panel Residual stress |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-d451c48c5fa917411f4433c7bb2bc6183e3c685120f67c2613e2f563d7735ebe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2691827636 |
PQPubID | 2045390 |
ParticipantIDs | proquest_journals_2691827636 crossref_primary_10_1016_j_tafmec_2022_103358 crossref_citationtrail_10_1016_j_tafmec_2022_103358 elsevier_sciencedirect_doi_10_1016_j_tafmec_2022_103358 |
PublicationCentury | 2000 |
PublicationDate | June 2022 2022-06-00 20220601 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Theoretical and applied fracture mechanics |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Kashaev, Ventzke, Horstmann, Chupakhin, Riekehr, Falck, Maawad, Staron, Schell, Huber (b0145) 2017; 98 Zhang, Lu, Zhang, Luo, Zhong, Cui, Kong, Guan, Qian (b0305) 2011; 32 Larson, Ren, Adu-Gyamfi, Zhang, Ren (b0095) 2019; 13 Peyre, Fabbro, Merrien, Lieurade (b0110) 1996; 210 Pant, Pavan, Prakash, Kamaraj (b0025) 2016; 93 Chahardehi, Brennan, Steuwer (b0030) 2010; 77 Sajith, Murthy, Robi (b0175) 2020; 130 Rice (b0270) 1968; 35 Lados, Apelian (b0050) 2006; 37 Tavares, Reis, Freitas, Castro (b0195) 2019; 42 Bikdeloo, Farrahi, Mehmanparast, Mahdavi (b0085) 2020; 105 Wang, Wang, Zhang, Li (b0160) 2020; 235 Zhang, Luo, Lu, Zhang, Dai, Zhong (b0230) 2011; 528 Gao (b0040) 2011; 528 Rubio-González, Ocaña, Gomez-Rosas, Molpeceres, Paredes, Banderas, Porro, Morales (b0125) 2004; 386 Hasser, Malik, Langer, Spradlin, Hatamleh (b0220) 2016; 138 Montross, Wei, Ye, Clark, Mai (b0250) 2002; 24 Fabbro, Fournier, Ballard, Devaux, Virmont (b0240) 1990; 68 Anderson (b0280) 2005 Ali, An, Rodopoulos, Brown, O’Hara, Levers, Gardiner (b0120) 2007; 29 Huang, Zhou, Sheng, Luo, Lu, Xu, Meng, Dai, Zuo, Ruan, Chen (b0150) 2013; 47 . Reimers (b0290) 1991; 40 G.R. Johnson, W.H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, in: Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, 1983, pp. 541–547. Smith, Pascoe (b0155) 1983; 6 Yang (b0300) 2015 Wang, Zhang, Jiang (b0210) 2015; 8 Ayatollahi, Saboori (b0265) 2015; 51 Jiménez, Strubbia, Rosas, González, Hereñú (b0090) 2018; 111 Rozumek, Marciniak, Lesiuk, Correia, de Jesus (b0165) 2018; 113 Zhao, Dong, Ye (b0225) 2017; 100 Hu, Lou, Sheng, Wu, Chen, Huang, Ye, Liu, Shi, Yin (b0020) 2012; 347–353 Brar, Joshi, Harris (b0215) 2009; 1195 Lesiuk, Smolnicki, Mech, Zięty, Fragassa (b0190) 2020; 109 Kalainathan, Prabhakaran (b0140) 2016; 81 Chen, Yao, Hu, Huang, Li (b0185) 2019; 143 Luong, Hill (b0035) 2010; 527 Warren, Guo, Chen (b0065) 2008; 30 Rubio-González, Felix-Martinez, Gomez-Rosas, Ocaña, Morales, Porro (b0045) 2011; 528 Sanchez, You, Leering, Glaser, Furfari, Fitzpatrick, Wharton, Reed (b0010) 2021; 143 Zhou, Huang, Sheng, Lu, Wang, Chen, Ruan, Chen (b0075) 2012; 539 Liu, Yang, Ding, Barter, Ye (b0105) 2007; 30 Zhang, Zhang, Lu, Xuan, Wang, Tu (b0080) 2010; 527 Singh, Harimkar (b0015) 2012; 64 Fleck, Shin, Smith (b0130) 1985; 21 Sajith, Shukla, Murthy, Robi (b0180) 2020; 80 Ivetic, Meneghin, Troiani, Molinari, Ocaña, Morales, Porro, Lanciotti, Ristori, Polese, Plaisier, Lausi (b0235) 2012; 534 Cuellar, Hill, DeWald, Rankin (b0070) 2012; 44 Erdogan, Sih (b0285) 1963; 85 Hatamleh, Lyons, Forman (b0135) 2007; 29 Kim, Paulino (b0275) 2003; 40 Miao, Yu, Zhou, Li, Wang, He (b0170) 2018; 72 Li, Huang, Xu, Li, Hou, Wang, Fu, Fang (b0060) 2015; 40 Hfaiedh, Peyre, Song, Popa, Ji, Vignal (b0005) 2015; 70 G.R. Irwin, Fracture mechanics in structural mechanics, in: Proceedings of the 1st Symposium on Naval Structural Mechanics, Stanford University, California, 1958, pp. 557–591. Sun, Keller, Zhu, Guo, Kashaev, Klusemann (b0115) 2021; 145 Kallien, Keller, Ventzke, Kashaev, Klusemann (b0100) 2019; 9 Gadallah, Osawa, Tanaka, Tsutsumi (b0260) 2018; 197 Richard, Schramm, Schirmeisen (b0295) 2014; 62 Huang, Zhao, Sheng, Meng, Agyenim-Boateng, Ma, Li, Zhou (b0055) 2020; 131 Borrego, Antunes, Costa, Ferreira (b0200) 2006; 28 Zhao (10.1016/j.tafmec.2022.103358_b0225) 2017; 100 Wang (10.1016/j.tafmec.2022.103358_b0160) 2020; 235 Huang (10.1016/j.tafmec.2022.103358_b0055) 2020; 131 Chen (10.1016/j.tafmec.2022.103358_b0185) 2019; 143 Richard (10.1016/j.tafmec.2022.103358_b0295) 2014; 62 Singh (10.1016/j.tafmec.2022.103358_b0015) 2012; 64 Huang (10.1016/j.tafmec.2022.103358_b0150) 2013; 47 Hu (10.1016/j.tafmec.2022.103358_b0020) 2012; 347–353 Liu (10.1016/j.tafmec.2022.103358_b0105) 2007; 30 Fleck (10.1016/j.tafmec.2022.103358_b0130) 1985; 21 Kim (10.1016/j.tafmec.2022.103358_b0275) 2003; 40 Luong (10.1016/j.tafmec.2022.103358_b0035) 2010; 527 Smith (10.1016/j.tafmec.2022.103358_b0155) 1983; 6 Gadallah (10.1016/j.tafmec.2022.103358_b0260) 2018; 197 Peyre (10.1016/j.tafmec.2022.103358_b0110) 1996; 210 Ivetic (10.1016/j.tafmec.2022.103358_b0235) 2012; 534 Rubio-González (10.1016/j.tafmec.2022.103358_b0125) 2004; 386 Larson (10.1016/j.tafmec.2022.103358_b0095) 2019; 13 Lesiuk (10.1016/j.tafmec.2022.103358_b0190) 2020; 109 Fabbro (10.1016/j.tafmec.2022.103358_b0240) 1990; 68 Sajith (10.1016/j.tafmec.2022.103358_b0175) 2020; 130 10.1016/j.tafmec.2022.103358_b0205 Sanchez (10.1016/j.tafmec.2022.103358_b0010) 2021; 143 Cuellar (10.1016/j.tafmec.2022.103358_b0070) 2012; 44 Ayatollahi (10.1016/j.tafmec.2022.103358_b0265) 2015; 51 Gao (10.1016/j.tafmec.2022.103358_b0040) 2011; 528 Anderson (10.1016/j.tafmec.2022.103358_b0280) 2005 Warren (10.1016/j.tafmec.2022.103358_b0065) 2008; 30 Li (10.1016/j.tafmec.2022.103358_b0060) 2015; 40 Hatamleh (10.1016/j.tafmec.2022.103358_b0135) 2007; 29 10.1016/j.tafmec.2022.103358_b0255 Erdogan (10.1016/j.tafmec.2022.103358_b0285) 1963; 85 Pant (10.1016/j.tafmec.2022.103358_b0025) 2016; 93 Zhou (10.1016/j.tafmec.2022.103358_b0075) 2012; 539 Hasser (10.1016/j.tafmec.2022.103358_b0220) 2016; 138 Tavares (10.1016/j.tafmec.2022.103358_b0195) 2019; 42 Zhang (10.1016/j.tafmec.2022.103358_b0305) 2011; 32 Lados (10.1016/j.tafmec.2022.103358_b0050) 2006; 37 Zhang (10.1016/j.tafmec.2022.103358_b0230) 2011; 528 Kallien (10.1016/j.tafmec.2022.103358_b0100) 2019; 9 10.1016/j.tafmec.2022.103358_b0245 Chahardehi (10.1016/j.tafmec.2022.103358_b0030) 2010; 77 Rubio-González (10.1016/j.tafmec.2022.103358_b0045) 2011; 528 Kalainathan (10.1016/j.tafmec.2022.103358_b0140) 2016; 81 Zhang (10.1016/j.tafmec.2022.103358_b0080) 2010; 527 Rice (10.1016/j.tafmec.2022.103358_b0270) 1968; 35 Reimers (10.1016/j.tafmec.2022.103358_b0290) 1991; 40 Jiménez (10.1016/j.tafmec.2022.103358_b0090) 2018; 111 Borrego (10.1016/j.tafmec.2022.103358_b0200) 2006; 28 Miao (10.1016/j.tafmec.2022.103358_b0170) 2018; 72 Hfaiedh (10.1016/j.tafmec.2022.103358_b0005) 2015; 70 Yang (10.1016/j.tafmec.2022.103358_b0300) 2015 Wang (10.1016/j.tafmec.2022.103358_b0210) 2015; 8 Rozumek (10.1016/j.tafmec.2022.103358_b0165) 2018; 113 Ali (10.1016/j.tafmec.2022.103358_b0120) 2007; 29 Bikdeloo (10.1016/j.tafmec.2022.103358_b0085) 2020; 105 Montross (10.1016/j.tafmec.2022.103358_b0250) 2002; 24 Brar (10.1016/j.tafmec.2022.103358_b0215) 2009; 1195 Sajith (10.1016/j.tafmec.2022.103358_b0180) 2020; 80 Kashaev (10.1016/j.tafmec.2022.103358_b0145) 2017; 98 Sun (10.1016/j.tafmec.2022.103358_b0115) 2021; 145 |
References_xml | – volume: 80 year: 2020 ident: b0180 article-title: Mixed mode fatigue crack growth studies in AISI 316 stainless steel publication-title: Eur. J. Mech. A. Solids – volume: 21 start-page: 173 year: 1985 end-page: 185 ident: b0130 article-title: Fatigue crack growth under compressive loading publication-title: Eng. Fract. Mech. – volume: 100 start-page: 407 year: 2017 end-page: 417 ident: b0225 article-title: Laser shock peening induced residual stresses and the effect on crack propagation behavior publication-title: Int. J. Fatigue – volume: 210 start-page: 102 year: 1996 end-page: 113 ident: b0110 article-title: Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour publication-title: Mater. Sci. Eng., A – volume: 85 start-page: 519 year: 1963 end-page: 525 ident: b0285 article-title: On the crack extension in plates under plane loading and transverse shear publication-title: J. Basic Eng. – volume: 70 start-page: 480 year: 2015 end-page: 489 ident: b0005 article-title: Finite element analysis of laser shock peening of 2050–T8 aluminum alloy publication-title: Int. J. Fatigue – volume: 386 start-page: 291 year: 2004 end-page: 295 ident: b0125 article-title: Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061–T6 aluminum alloy publication-title: Mater. Sci. Eng., A – volume: 1195 start-page: 945 year: 2009 end-page: 948 ident: b0215 article-title: Constitutive model constants for Al7075-T651 and Al7075-T6 publication-title: Aip Conf. Proc. – volume: 105 year: 2020 ident: b0085 article-title: Multiple laser shock peening effects on residual stress distribution and fatigue crack growth behaviour of 316L stainless steel publication-title: Theor. Appl. Fract. Mech. – volume: 64 start-page: 716 year: 2012 end-page: 733 ident: b0015 article-title: Laser surface engineering of magnesium alloys: a review publication-title: JOM – volume: 347–353 start-page: 1596 year: 2012 end-page: 1604 ident: b0020 article-title: The effects of laser shock peening on microstructure and properties of metals and alloys: a review publication-title: Adv. Mater. Res. – volume: 528 start-page: 4652 year: 2011 end-page: 4657 ident: b0230 article-title: Effects of laser shock processing with different shocked paths on mechanical properties of laser welded ANSI 304 stainless steel joint publication-title: Mater. Sci. Eng., A – volume: 131 year: 2020 ident: b0055 article-title: Effect of laser peening with different power densities on vibration fatigue resistance of hydrogenated TC4 titanium alloy publication-title: Int. J. Fatigue – volume: 9 start-page: 655 year: 2019 ident: b0100 article-title: Effect of laser peening process parameters and sequences on residual stress profiles publication-title: Metals – volume: 145 year: 2021 ident: b0115 article-title: Experimental-numerical study of laser-shock-peening-induced retardation of fatigue crack propagation in Ti-17 titanium alloy publication-title: Int. J. Fatigue – volume: 534 start-page: 573 year: 2012 end-page: 579 ident: b0235 article-title: Fatigue in laser shock peened open-hole thin aluminium specimens publication-title: Mater. Sci. Eng., A – volume: 30 start-page: 1110 year: 2007 end-page: 1124 ident: b0105 article-title: The effect of laser power density on the fatigue life of laser-shock-peened 7050 aluminium alloy publication-title: Fatigue Fract. Eng. Mater. Struct. – volume: 72 start-page: 235 year: 2018 end-page: 244 ident: b0170 article-title: Experimental and numerical investigation on fracture behavior of CTS specimen under I-II mixed mode loading publication-title: Eur. J. Mech. A. Solids – volume: 77 start-page: 2033 year: 2010 end-page: 2039 ident: b0030 article-title: The effect of residual stresses arising from laser shock peening on fatigue crack growth publication-title: Eng. Fract. Mech. – volume: 130 year: 2020 ident: b0175 article-title: Experimental and numerical investigation of mixed mode fatigue crack growth models in aluminum 6061–T6 publication-title: Int. J. Fatigue – volume: 42 start-page: 2441 year: 2019 end-page: 2456 ident: b0195 article-title: Mixed mode fatigue and fracture in planar geometries: Observations on Keq and crack path modelling publication-title: Fatigue Fract. Eng. Mater. Struct. – volume: 539 start-page: 360 year: 2012 end-page: 368 ident: b0075 article-title: Effect of repeated impacts on mechanical properties and fatigue fracture morphologies of 6061–T6 aluminum subject to laser peening publication-title: Mater. Sci. Eng., A – volume: 6 start-page: 201 year: 1983 end-page: 224 ident: b0155 article-title: The behaviour of fatigue cracks subject to applied biaxial stress: a review of experimental evidence publication-title: Fatigue Fract. Eng. Mater. Struct. – volume: 29 start-page: 1531 year: 2007 end-page: 1545 ident: b0120 article-title: The effect of controlled shot peening on the fatigue behaviour of 2024–T3 aluminium friction stir welds publication-title: Int. J. Fatigue – volume: 8 start-page: 7145 year: 2015 end-page: 7160 ident: b0210 article-title: Fatigue life prediction based on crack closure and equivalent initial flaw size publication-title: Materials – volume: 40 start-page: 164 year: 2015 end-page: 170 ident: b0060 article-title: Numerical simulation and experiments of titanium alloy engine blades based on laser shock processing publication-title: Aerosp. Sci. Technol. – volume: 68 start-page: 775 year: 1990 end-page: 784 ident: b0240 article-title: Physical study of laser-produced plasma in confined geometry publication-title: J. Appl. Phys. – volume: 24 start-page: 1021 year: 2002 end-page: 1036 ident: b0250 article-title: Laser shock processing and its effects on microstructure and properties of metal alloys: a review publication-title: Int. J. Fatigue – volume: 40 start-page: 339 year: 1991 end-page: 346 ident: b0290 article-title: Simulation of mixed mode fatigue crack growth publication-title: Comput. Struct. – volume: 138 year: 2016 ident: b0220 article-title: An efficient reliability-based simulation method for optimum laser peening treatment publication-title: J. Manuf. Sci. Eng. – volume: 35 start-page: 379 year: 1968 end-page: 386 ident: b0270 article-title: A path integral and the approximate analysis of strain concentration by notches and cracks publication-title: J. Appl. Mech. – volume: 143 year: 2019 ident: b0185 article-title: Numerical analysis of central mixed-mode cracking in steel plates repaired with CFRP materials publication-title: Thin-Walled Struct. – volume: 527 start-page: 699 year: 2010 end-page: 707 ident: b0035 article-title: The effects of laser peening and shot peening on high cycle fatigue in 7050–T7451 aluminum alloy publication-title: Mater. Sci. Eng., A – volume: 13 year: 2019 ident: b0095 article-title: Effects of scanning path gradient on the residual stress distribution and fatigue life of AA2024-T351 aluminium alloy induced by LSP publication-title: Results Phys. – volume: 235 start-page: 107126 year: 2020 ident: b0160 article-title: A review on mixed mode fracture of metals publication-title: Eng. Fract. Mech. – volume: 51 start-page: 67 year: 2015 end-page: 76 ident: b0265 article-title: A new fixture for fracture tests under mixed mode I/III loading publication-title: Eur. J. Mech. A. Solids – reference: G.R. Johnson, W.H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, in: Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, 1983, pp. 541–547. – year: 2005 ident: b0280 article-title: Fracture Mechanics – Fundamentals and Applications – volume: 81 start-page: 137 year: 2016 end-page: 144 ident: b0140 article-title: Recent development and future perspectives of low energy laser shock peening publication-title: Opt. Laser Technol. – year: 2015 ident: b0300 article-title: Fatigue Crack Propagation Behavior of High Strength Steel Welded Joint under I-II Mixed-mode Loading – volume: 28 start-page: 618 year: 2006 end-page: 626 ident: b0200 article-title: Mixed-mode fatigue crack growth behaviour in aluminium alloy publication-title: Int. J. Fatigue – reference: G.R. Irwin, Fracture mechanics in structural mechanics, in: Proceedings of the 1st Symposium on Naval Structural Mechanics, Stanford University, California, 1958, pp. 557–591. – volume: 111 start-page: 789 year: 2018 end-page: 796 ident: b0090 article-title: Fatigue life rationalization of laser shock peened SAF 2205 with different swept direction publication-title: Opt. Laser Technol. – volume: 62 start-page: 93 year: 2014 end-page: 103 ident: b0295 article-title: Cracks on mixed mode loading – Theories, experiments, simulations publication-title: Int. J. Fatigue – volume: 44 start-page: 8 year: 2012 end-page: 13 ident: b0070 article-title: Residual stress and fatigue life in laser shock peened open hole samples publication-title: Int. J. Fatigue – volume: 37 start-page: 133 year: 2006 end-page: 145 ident: b0050 article-title: The effect of residual stress on the fatigue crack growth behavior of Al-Si-Mg cast alloys—Mechanisms and corrective mathematical models publication-title: Metall. Mater. Trans. A – volume: 528 start-page: 3823 year: 2011 end-page: 3828 ident: b0040 article-title: Improvement of fatigue property in 7050–T7451 aluminum alloy by laser peening and shot peening publication-title: Mater. Sci. Eng., A – volume: 98 start-page: 223 year: 2017 end-page: 233 ident: b0145 article-title: Effects of laser shock peening on the microstructure and fatigue crack propagation behaviour of thin AA2024 specimens publication-title: Int. J. Fatigue – volume: 47 start-page: 292 year: 2013 end-page: 299 ident: b0150 article-title: Effects of laser peening with different coverage areas on fatigue crack growth properties of 6061–T6 aluminum alloy publication-title: Int. J. Fatigue – volume: 143 year: 2021 ident: b0010 article-title: Effects of laser shock peening on the mechanisms of fatigue short crack initiation and propagation of AA7075-T651 publication-title: Int. J. Fatigue – volume: 40 start-page: 3967 year: 2003 end-page: 4001 ident: b0275 article-title: The interaction integral for fracture of orthotropic functionally graded materials: evaluation of stress intensity factors publication-title: Int. J. Solids Struct. – volume: 32 start-page: 480 year: 2011 end-page: 486 ident: b0305 article-title: Effects of different shocked paths on fatigue property of 7050–T7451 aluminum alloy during two-sided laser shock processing publication-title: Mater. Des. – volume: 29 start-page: 421 year: 2007 end-page: 434 ident: b0135 article-title: Laser and shot peening effects on fatigue crack growth in friction stir welded 7075–T7351 aluminum alloy joints publication-title: Int. J. Fatigue – reference: . – volume: 93 start-page: 38 year: 2016 end-page: 50 ident: b0025 article-title: Effect of laser peening and shot peening on fatigue striations during FCGR study of Ti6Al4V publication-title: Int. J. Fatigue – volume: 109 year: 2020 ident: b0190 article-title: Analysis of fatigue crack growth under mixed mode (I + II) loading conditions in rail steel using CTS specimen publication-title: Eng. Fail. Anal. – volume: 528 start-page: 914 year: 2011 end-page: 919 ident: b0045 article-title: Effect of laser shock processing on fatigue crack growth of duplex stainless steel publication-title: Mater. Sci. Eng., A – volume: 30 start-page: 188 year: 2008 end-page: 197 ident: b0065 article-title: Massive parallel laser shock peening: Simulation, analysis, and validation publication-title: Int. J. Fatigue – volume: 527 start-page: 3411 year: 2010 end-page: 3415 ident: b0080 article-title: Improvement of fatigue life of Ti–6Al–4V alloy by laser shock peening publication-title: Mater. Sci. Eng., A – volume: 113 start-page: 160 year: 2018 end-page: 170 ident: b0165 article-title: Experimental and numerical investigation of mixed mode I + II and I + III fatigue crack growth in S355J0 steel publication-title: Int. J. Fatigue – volume: 197 start-page: 48 year: 2018 end-page: 65 ident: b0260 article-title: A novel approach to evaluate mixed-mode SIFs for a through-thickness crack in a welding residual stress field using an effective welding simulation method publication-title: Eng. Fract. Mech. – volume: 534 start-page: 573 year: 2012 ident: 10.1016/j.tafmec.2022.103358_b0235 article-title: Fatigue in laser shock peened open-hole thin aluminium specimens publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2011.12.010 – volume: 37 start-page: 133 year: 2006 ident: 10.1016/j.tafmec.2022.103358_b0050 article-title: The effect of residual stress on the fatigue crack growth behavior of Al-Si-Mg cast alloys—Mechanisms and corrective mathematical models publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-006-0159-y – volume: 51 start-page: 67 year: 2015 ident: 10.1016/j.tafmec.2022.103358_b0265 article-title: A new fixture for fracture tests under mixed mode I/III loading publication-title: Eur. J. Mech. A. Solids doi: 10.1016/j.euromechsol.2014.09.012 – volume: 70 start-page: 480 year: 2015 ident: 10.1016/j.tafmec.2022.103358_b0005 article-title: Finite element analysis of laser shock peening of 2050–T8 aluminum alloy publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2014.05.015 – year: 2005 ident: 10.1016/j.tafmec.2022.103358_b0280 – volume: 30 start-page: 188 issue: 1 year: 2008 ident: 10.1016/j.tafmec.2022.103358_b0065 article-title: Massive parallel laser shock peening: Simulation, analysis, and validation publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2007.01.033 – volume: 100 start-page: 407 year: 2017 ident: 10.1016/j.tafmec.2022.103358_b0225 article-title: Laser shock peening induced residual stresses and the effect on crack propagation behavior publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2017.04.002 – volume: 85 start-page: 519 year: 1963 ident: 10.1016/j.tafmec.2022.103358_b0285 article-title: On the crack extension in plates under plane loading and transverse shear publication-title: J. Basic Eng. doi: 10.1115/1.3656897 – volume: 528 start-page: 4652 year: 2011 ident: 10.1016/j.tafmec.2022.103358_b0230 article-title: Effects of laser shock processing with different shocked paths on mechanical properties of laser welded ANSI 304 stainless steel joint publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2011.02.054 – volume: 80 year: 2020 ident: 10.1016/j.tafmec.2022.103358_b0180 article-title: Mixed mode fatigue crack growth studies in AISI 316 stainless steel publication-title: Eur. J. Mech. A. Solids doi: 10.1016/j.euromechsol.2019.103898 – ident: 10.1016/j.tafmec.2022.103358_b0205 – volume: 13 year: 2019 ident: 10.1016/j.tafmec.2022.103358_b0095 article-title: Effects of scanning path gradient on the residual stress distribution and fatigue life of AA2024-T351 aluminium alloy induced by LSP publication-title: Results Phys. doi: 10.1016/j.rinp.2019.02.059 – volume: 143 year: 2019 ident: 10.1016/j.tafmec.2022.103358_b0185 article-title: Numerical analysis of central mixed-mode cracking in steel plates repaired with CFRP materials publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2019.106196 – volume: 72 start-page: 235 year: 2018 ident: 10.1016/j.tafmec.2022.103358_b0170 article-title: Experimental and numerical investigation on fracture behavior of CTS specimen under I-II mixed mode loading publication-title: Eur. J. Mech. A. Solids doi: 10.1016/j.euromechsol.2018.04.019 – volume: 40 start-page: 339 year: 1991 ident: 10.1016/j.tafmec.2022.103358_b0290 article-title: Simulation of mixed mode fatigue crack growth publication-title: Comput. Struct. doi: 10.1016/0045-7949(91)90359-T – volume: 77 start-page: 2033 year: 2010 ident: 10.1016/j.tafmec.2022.103358_b0030 article-title: The effect of residual stresses arising from laser shock peening on fatigue crack growth publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2010.03.033 – volume: 29 start-page: 421 year: 2007 ident: 10.1016/j.tafmec.2022.103358_b0135 article-title: Laser and shot peening effects on fatigue crack growth in friction stir welded 7075–T7351 aluminum alloy joints publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2006.05.007 – volume: 28 start-page: 618 year: 2006 ident: 10.1016/j.tafmec.2022.103358_b0200 article-title: Mixed-mode fatigue crack growth behaviour in aluminium alloy publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2005.07.047 – volume: 528 start-page: 3823 year: 2011 ident: 10.1016/j.tafmec.2022.103358_b0040 article-title: Improvement of fatigue property in 7050–T7451 aluminum alloy by laser peening and shot peening publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2011.01.077 – volume: 40 start-page: 3967 issue: 15 year: 2003 ident: 10.1016/j.tafmec.2022.103358_b0275 article-title: The interaction integral for fracture of orthotropic functionally graded materials: evaluation of stress intensity factors publication-title: Int. J. Solids Struct. doi: 10.1016/S0020-7683(03)00176-8 – volume: 44 start-page: 8 year: 2012 ident: 10.1016/j.tafmec.2022.103358_b0070 article-title: Residual stress and fatigue life in laser shock peened open hole samples publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2012.06.011 – volume: 539 start-page: 360 year: 2012 ident: 10.1016/j.tafmec.2022.103358_b0075 article-title: Effect of repeated impacts on mechanical properties and fatigue fracture morphologies of 6061–T6 aluminum subject to laser peening publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2012.01.125 – volume: 145 year: 2021 ident: 10.1016/j.tafmec.2022.103358_b0115 article-title: Experimental-numerical study of laser-shock-peening-induced retardation of fatigue crack propagation in Ti-17 titanium alloy publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2020.106081 – volume: 21 start-page: 173 year: 1985 ident: 10.1016/j.tafmec.2022.103358_b0130 article-title: Fatigue crack growth under compressive loading publication-title: Eng. Fract. Mech. doi: 10.1016/0013-7944(85)90063-3 – volume: 138 year: 2016 ident: 10.1016/j.tafmec.2022.103358_b0220 article-title: An efficient reliability-based simulation method for optimum laser peening treatment publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4033604 – volume: 111 start-page: 789 year: 2018 ident: 10.1016/j.tafmec.2022.103358_b0090 article-title: Fatigue life rationalization of laser shock peened SAF 2205 with different swept direction publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2018.09.017 – volume: 30 start-page: 1110 year: 2007 ident: 10.1016/j.tafmec.2022.103358_b0105 article-title: The effect of laser power density on the fatigue life of laser-shock-peened 7050 aluminium alloy publication-title: Fatigue Fract. Eng. Mater. Struct. doi: 10.1111/j.1460-2695.2007.01180.x – volume: 98 start-page: 223 year: 2017 ident: 10.1016/j.tafmec.2022.103358_b0145 article-title: Effects of laser shock peening on the microstructure and fatigue crack propagation behaviour of thin AA2024 specimens publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2017.01.042 – volume: 143 year: 2021 ident: 10.1016/j.tafmec.2022.103358_b0010 article-title: Effects of laser shock peening on the mechanisms of fatigue short crack initiation and propagation of AA7075-T651 publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2020.106025 – volume: 210 start-page: 102 year: 1996 ident: 10.1016/j.tafmec.2022.103358_b0110 article-title: Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour publication-title: Mater. Sci. Eng., A doi: 10.1016/0921-5093(95)10084-9 – volume: 81 start-page: 137 year: 2016 ident: 10.1016/j.tafmec.2022.103358_b0140 article-title: Recent development and future perspectives of low energy laser shock peening publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2016.02.007 – volume: 113 start-page: 160 year: 2018 ident: 10.1016/j.tafmec.2022.103358_b0165 article-title: Experimental and numerical investigation of mixed mode I + II and I + III fatigue crack growth in S355J0 steel publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2018.04.005 – ident: 10.1016/j.tafmec.2022.103358_b0255 – volume: 528 start-page: 914 year: 2011 ident: 10.1016/j.tafmec.2022.103358_b0045 article-title: Effect of laser shock processing on fatigue crack growth of duplex stainless steel publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2010.10.020 – volume: 32 start-page: 480 year: 2011 ident: 10.1016/j.tafmec.2022.103358_b0305 article-title: Effects of different shocked paths on fatigue property of 7050–T7451 aluminum alloy during two-sided laser shock processing publication-title: Mater. Des. doi: 10.1016/j.matdes.2010.08.039 – volume: 62 start-page: 93 year: 2014 ident: 10.1016/j.tafmec.2022.103358_b0295 article-title: Cracks on mixed mode loading – Theories, experiments, simulations publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2013.06.019 – volume: 6 start-page: 201 issue: 3 year: 1983 ident: 10.1016/j.tafmec.2022.103358_b0155 article-title: The behaviour of fatigue cracks subject to applied biaxial stress: a review of experimental evidence publication-title: Fatigue Fract. Eng. Mater. Struct. doi: 10.1111/j.1460-2695.1983.tb00338.x – volume: 347–353 start-page: 1596 year: 2012 ident: 10.1016/j.tafmec.2022.103358_b0020 article-title: The effects of laser shock peening on microstructure and properties of metals and alloys: a review publication-title: Adv. Mater. Res. – volume: 8 start-page: 7145 issue: 10 year: 2015 ident: 10.1016/j.tafmec.2022.103358_b0210 article-title: Fatigue life prediction based on crack closure and equivalent initial flaw size publication-title: Materials doi: 10.3390/ma8105367 – ident: 10.1016/j.tafmec.2022.103358_b0245 – volume: 42 start-page: 2441 issue: 11 year: 2019 ident: 10.1016/j.tafmec.2022.103358_b0195 article-title: Mixed mode fatigue and fracture in planar geometries: Observations on Keq and crack path modelling publication-title: Fatigue Fract. Eng. Mater. Struct. doi: 10.1111/ffe.13093 – volume: 527 start-page: 699 year: 2010 ident: 10.1016/j.tafmec.2022.103358_b0035 article-title: The effects of laser peening and shot peening on high cycle fatigue in 7050–T7451 aluminum alloy publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2009.08.045 – volume: 386 start-page: 291 year: 2004 ident: 10.1016/j.tafmec.2022.103358_b0125 article-title: Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061–T6 aluminum alloy publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2004.07.025 – volume: 40 start-page: 164 year: 2015 ident: 10.1016/j.tafmec.2022.103358_b0060 article-title: Numerical simulation and experiments of titanium alloy engine blades based on laser shock processing publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2014.10.017 – volume: 24 start-page: 1021 year: 2002 ident: 10.1016/j.tafmec.2022.103358_b0250 article-title: Laser shock processing and its effects on microstructure and properties of metal alloys: a review publication-title: Int. J. Fatigue doi: 10.1016/S0142-1123(02)00022-1 – volume: 131 year: 2020 ident: 10.1016/j.tafmec.2022.103358_b0055 article-title: Effect of laser peening with different power densities on vibration fatigue resistance of hydrogenated TC4 titanium alloy publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2019.105335 – volume: 9 start-page: 655 issue: 6 year: 2019 ident: 10.1016/j.tafmec.2022.103358_b0100 article-title: Effect of laser peening process parameters and sequences on residual stress profiles publication-title: Metals doi: 10.3390/met9060655 – volume: 109 year: 2020 ident: 10.1016/j.tafmec.2022.103358_b0190 article-title: Analysis of fatigue crack growth under mixed mode (I + II) loading conditions in rail steel using CTS specimen publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2019.104354 – volume: 105 year: 2020 ident: 10.1016/j.tafmec.2022.103358_b0085 article-title: Multiple laser shock peening effects on residual stress distribution and fatigue crack growth behaviour of 316L stainless steel publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2019.102429 – volume: 64 start-page: 716 issue: 6 year: 2012 ident: 10.1016/j.tafmec.2022.103358_b0015 article-title: Laser surface engineering of magnesium alloys: a review publication-title: JOM doi: 10.1007/s11837-012-0340-2 – year: 2015 ident: 10.1016/j.tafmec.2022.103358_b0300 – volume: 93 start-page: 38 year: 2016 ident: 10.1016/j.tafmec.2022.103358_b0025 article-title: Effect of laser peening and shot peening on fatigue striations during FCGR study of Ti6Al4V publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2016.08.005 – volume: 68 start-page: 775 year: 1990 ident: 10.1016/j.tafmec.2022.103358_b0240 article-title: Physical study of laser-produced plasma in confined geometry publication-title: J. Appl. Phys. doi: 10.1063/1.346783 – volume: 235 start-page: 107126 year: 2020 ident: 10.1016/j.tafmec.2022.103358_b0160 article-title: A review on mixed mode fracture of metals publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2020.107126 – volume: 130 year: 2020 ident: 10.1016/j.tafmec.2022.103358_b0175 article-title: Experimental and numerical investigation of mixed mode fatigue crack growth models in aluminum 6061–T6 publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2019.105285 – volume: 527 start-page: 3411 year: 2010 ident: 10.1016/j.tafmec.2022.103358_b0080 article-title: Improvement of fatigue life of Ti–6Al–4V alloy by laser shock peening publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2010.01.076 – volume: 47 start-page: 292 year: 2013 ident: 10.1016/j.tafmec.2022.103358_b0150 article-title: Effects of laser peening with different coverage areas on fatigue crack growth properties of 6061–T6 aluminum alloy publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2012.09.010 – volume: 197 start-page: 48 year: 2018 ident: 10.1016/j.tafmec.2022.103358_b0260 article-title: A novel approach to evaluate mixed-mode SIFs for a through-thickness crack in a welding residual stress field using an effective welding simulation method publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2018.04.040 – volume: 35 start-page: 379 year: 1968 ident: 10.1016/j.tafmec.2022.103358_b0270 article-title: A path integral and the approximate analysis of strain concentration by notches and cracks publication-title: J. Appl. Mech. doi: 10.1115/1.3601206 – volume: 29 start-page: 1531 year: 2007 ident: 10.1016/j.tafmec.2022.103358_b0120 article-title: The effect of controlled shot peening on the fatigue behaviour of 2024–T3 aluminium friction stir welds publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2006.10.032 – volume: 1195 start-page: 945 year: 2009 ident: 10.1016/j.tafmec.2022.103358_b0215 article-title: Constitutive model constants for Al7075-T651 and Al7075-T6 publication-title: Aip Conf. Proc. doi: 10.1063/1.3295300 |
SSID | ssj0017193 |
Score | 2.370067 |
Snippet | •Residual stress was calculated by an efficient LSP simulation termed continuous explicit-dynamic impact strategy.•LSP-induced residual stress can change the... The effects of residual stress on mixed-mode crack propagation behavior of 7075-T6 aluminum alloy panel subject to multiple laser shock peening (LSP) impacts... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 103358 |
SubjectTerms | 7075-T6 aluminum alloy panel Aircraft structures Aluminum alloys Aluminum base alloys Compact tension Compressive properties Crack propagation Crack tips Damage tolerance Fatigue failure Finite element method Laser shock peening Laser shock processing Mixed-mode fatigue crack propagation Numerical analysis Numerical methods Peening Propagation Propagation modes Residual stress Stress intensity factors Stress propagation |
Title | Effects of residual stress induced by laser shock peening on mixed-mode crack propagation behavior in 7075-T6 aluminum alloy panel |
URI | https://dx.doi.org/10.1016/j.tafmec.2022.103358 https://www.proquest.com/docview/2691827636 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYQXLbDNBgTMEDvwNVrYzt2c0QIVKjgwEDjZjmOzTrRtGqLBBcO_OW8FydoTJOQdoqS2Fbkz37vffH7wdiBDM6EAZ0PVv0-V6gAuYui4MKXhaqEdrGponB-oYfX6uwmv1lhR10sDLlVtrI_yfRGWrdPeu1s9mbjce8HOdAPFP3CIGJjiLcrZWiVf396dfPITJYS71J-b2rdhc81Pl5LFyeBEhkKQdHnkgq__1s9_SWoG-1z8pl9as1GOExfts5WQr3BPv6RTPALe06JiBcwjYAcugmyghQKAki8EcIKykdAaznMYfEL5SDMkMRiX5jWMBk_hIpTXRzwc0fv5kinbxvcoIvlx3HAoPbnVxocSrVxfT8BOrl_BBQq4W6TXZ8cXx0NeVthgXsp1ZJXKs-8Gvg8OqRtKsuiUlJ6U5ai9Bp3e5Beo00m-lEbj2RLBhFzLStjZI7wy69stZ7WYYtBRGPDS9z9Be7wIEzp0VAKqhDOD2RfuW0mu4m1vk0_TlUw7mznZ_bbJjgswWETHNuMv_aapfQb77Q3HWb2zTKyqCHe6bnbQWzbbbywQhfIv1AE653_Hvgb-0B3yb1sl60u5_dhDw2ZZbnfrNR9tnZ4Ohpe0HV0-XP0Agh08vU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELZQOEAPqFCq8ijMoVcrie21s0eEQOGVC0HiZnm9Nk1FNlESJLj2l3dmvYtKVQmJ63rHWnnsb-Zbz4OxHzI4EwZ0P1j2elyhAeQuipwLX-SqFNrFuovCzUgP79TlfXa_xk7bXBgKq2ywP2F6jdbNk26zmt35ZNK9pQD6gaJfGERsDPL2dapOlXXY-snF1XD0eplg-qn2LpX4JoE2g64O81q5OA1Uy1AISkCX1Pv9_xbqH6yuDdD5Z7bVeI5wkj5um62Faod9-que4Bf2O9UiXsIsAtLoOs8KUjYIIPdGLZZQvAA6zGEBy58IhTBHHouyMKtgOnkOJafWOOAXjsYWyKgfatVBm86P84BBB4CPNTgEtkn1NAW6vH8BxJXwuMvuzs_Gp0PeNFngXkq14qXK-l4NfBYdMjfV70elpPSmKEThNR74IL1Gt0z0ojYe-ZYMImZalsbIDHeA_Mo61awK3xhE9De8RADI8ZAHYQqPvlJQuXB-IHvK7THZLqz1TQVyaoTxaNtQs182qcOSOmxSxx7jr1LzVIHjnfdNqzP7ZidZNBLvSB62KrbNSV5aoXOkYIjCev_DEx-zjeH45tpeX4yuDtgmjaRos0PWWS2ewnf0a1bFUbNv_wDAqPQD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+residual+stress+induced+by+laser+shock+peening+on+mixed-mode+crack+propagation+behavior+in+7075-T6+aluminum+alloy+panel&rft.jtitle=Theoretical+and+applied+fracture+mechanics&rft.au=Zhang%2C+Xiushuo&rft.au=Ma%2C+Yu%27e&rft.au=Peng%2C+Yilin&rft.au=Yang%2C+Meng&rft.date=2022-06-01&rft.pub=Elsevier+Ltd&rft.issn=0167-8442&rft.eissn=1872-7638&rft.volume=119&rft_id=info:doi/10.1016%2Fj.tafmec.2022.103358&rft.externalDocID=S0167844222001070 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8442&client=summon |