Effects of residual stress induced by laser shock peening on mixed-mode crack propagation behavior in 7075-T6 aluminum alloy panel

•Residual stress was calculated by an efficient LSP simulation termed continuous explicit-dynamic impact strategy.•LSP-induced residual stress can change the crack path.•The compressive residual stresses extend the effective crack length and delay the crack propagation.•The obvious crack turning poi...

Full description

Saved in:
Bibliographic Details
Published inTheoretical and applied fracture mechanics Vol. 119; p. 103358
Main Authors Zhang, Xiushuo, Ma, Yu'e, Peng, Yilin, Yang, Meng, Du, Yong, Wang, Zhenhai
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.06.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Residual stress was calculated by an efficient LSP simulation termed continuous explicit-dynamic impact strategy.•LSP-induced residual stress can change the crack path.•The compressive residual stresses extend the effective crack length and delay the crack propagation.•The obvious crack turning point near the peened area is related to the significant change of KIIload andKIIres.•The wider LSP coverage area and the shorter distance from the treated area to the crack tip improve the fatigue performance. The effects of residual stress on mixed-mode crack propagation behavior of 7075-T6 aluminum alloy panel subject to multiple laser shock peening (LSP) impacts were investigated. Residual stress was obtained by an efficient LSP simulation termed continuous explicit-dynamic impact strategy. A numerical method, combining finite element (FE) method and residual stress intensity factor (SIF) analysis, was used to predict the mixed-mode (I/II) crack propagation in peened compact tension shear (CTS) sample. The effects of residual stress on the mixed-mode crack behaviors in different coverage areas were analyzed. It was found that the LSP-induced residual stress can change the crack path. Compressive residual stresses increase the effective crack length, and delay the crack propagation. The increased LSP coverage area and the decreased distance from the treated area to the crack tip are beneficial to the fatigue performance. The obvious crack turning point near the peened area is related to the significant change of mode II SIF components (KIIload and KIIres). The proposed numerical method provides a new idea for the damage tolerance analysis with respect to the applications of LSP technology in aircraft structures.
AbstractList •Residual stress was calculated by an efficient LSP simulation termed continuous explicit-dynamic impact strategy.•LSP-induced residual stress can change the crack path.•The compressive residual stresses extend the effective crack length and delay the crack propagation.•The obvious crack turning point near the peened area is related to the significant change of KIIload andKIIres.•The wider LSP coverage area and the shorter distance from the treated area to the crack tip improve the fatigue performance. The effects of residual stress on mixed-mode crack propagation behavior of 7075-T6 aluminum alloy panel subject to multiple laser shock peening (LSP) impacts were investigated. Residual stress was obtained by an efficient LSP simulation termed continuous explicit-dynamic impact strategy. A numerical method, combining finite element (FE) method and residual stress intensity factor (SIF) analysis, was used to predict the mixed-mode (I/II) crack propagation in peened compact tension shear (CTS) sample. The effects of residual stress on the mixed-mode crack behaviors in different coverage areas were analyzed. It was found that the LSP-induced residual stress can change the crack path. Compressive residual stresses increase the effective crack length, and delay the crack propagation. The increased LSP coverage area and the decreased distance from the treated area to the crack tip are beneficial to the fatigue performance. The obvious crack turning point near the peened area is related to the significant change of mode II SIF components (KIIload and KIIres). The proposed numerical method provides a new idea for the damage tolerance analysis with respect to the applications of LSP technology in aircraft structures.
The effects of residual stress on mixed-mode crack propagation behavior of 7075-T6 aluminum alloy panel subject to multiple laser shock peening (LSP) impacts were investigated. Residual stress was obtained by an efficient LSP simulation termed continuous explicit-dynamic impact strategy. A numerical method, combining finite element (FE) method and residual stress intensity factor (SIF) analysis, was used to predict the mixed-mode (I/II) crack propagation in peened compact tension shear (CTS) sample. The effects of residual stress on the mixed-mode crack behaviors in different coverage areas were analyzed. It was found that the LSP-induced residual stress can change the crack path. Compressive residual stresses increase the effective crack length, and delay the crack propagation. The increased LSP coverage area and the decreased distance from the treated area to the crack tip are beneficial to the fatigue performance. The obvious crack turning point near the peened area is related to the significant change of mode II SIF components (... and ...). The proposed numerical method provides a new idea for the damage tolerance analysis with respect to the applications of LSP technology in aircraft structures. (ProQuest: ... denotes formula omitted.)
ArticleNumber 103358
Author Yang, Meng
Peng, Yilin
Ma, Yu'e
Zhang, Xiushuo
Wang, Zhenhai
Du, Yong
Author_xml – sequence: 1
  givenname: Xiushuo
  surname: Zhang
  fullname: Zhang, Xiushuo
  organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
– sequence: 2
  givenname: Yu'e
  surname: Ma
  fullname: Ma, Yu'e
  email: ma.yu.e@nwpu.edu.cn
  organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
– sequence: 3
  givenname: Yilin
  surname: Peng
  fullname: Peng, Yilin
  organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
– sequence: 4
  givenname: Meng
  surname: Yang
  fullname: Yang, Meng
  organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
– sequence: 5
  givenname: Yong
  surname: Du
  fullname: Du, Yong
  organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
– sequence: 6
  givenname: Zhenhai
  surname: Wang
  fullname: Wang, Zhenhai
  email: zhwang@nwpu.edu.cn
  organization: School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an 710072, China
BookMark eNqFkUtPxCAUhYnRxHH0H7ggcd2xPAodFybG-EpM3OiaUHpRxhZGaI2z9ZfLWFcudMUN95xzLx8HaNcHDwgdk3JBSiJOV4tB2x7MgpaU5ivGqnoHzUgtaSEFq3fRLMtkUXNO99FBSquyJJIs2Qx9XlkLZkg4WBwhuXbUHU5DLhN2vh0NtLjZ4E4niDi9BPOK1wDe-WccPO7dB7RFH1rAJuptL4a1ftaDy80GXvS7CzHnYFnKqngUWHdj7_zY56ILG7zWHrpDtGd1l-Do55yjp-urx8vb4v7h5u7y4r4wjPGhaHlFDK9NZfWSSE6I5ZwxI5uGNkaQmgEzoq4ILa2QhgrCgNpKsFZKVkEDbI5Opty85NsIaVCrMEafRyoqlqSmGZXIKj6pTAwpRbBqHV2v40aRUm1pq5WaaKstbTXRzrazXzbjhm8OQ9Su-898PpkhP__dQVTJOPCZvYv5c1Qb3N8BX9amn3w
CitedBy_id crossref_primary_10_1364_OE_489426
crossref_primary_10_1016_j_ijmecsci_2024_109785
crossref_primary_10_1016_j_tafmec_2022_103642
crossref_primary_10_1007_s11665_023_08947_6
crossref_primary_10_3788_CJL230923
crossref_primary_10_3390_coatings12101556
crossref_primary_10_1080_10408436_2022_2138828
crossref_primary_10_1002_srin_202300328
crossref_primary_10_1016_j_ijfatigue_2024_108429
crossref_primary_10_1016_j_engfailanal_2024_109150
crossref_primary_10_1016_j_ijfatigue_2022_107291
crossref_primary_10_1016_j_tafmec_2022_103726
crossref_primary_10_1016_j_engfracmech_2024_109956
crossref_primary_10_1016_j_tafmec_2022_103437
Cites_doi 10.1016/j.msea.2011.12.010
10.1007/s11661-006-0159-y
10.1016/j.euromechsol.2014.09.012
10.1016/j.ijfatigue.2014.05.015
10.1016/j.ijfatigue.2007.01.033
10.1016/j.ijfatigue.2017.04.002
10.1115/1.3656897
10.1016/j.msea.2011.02.054
10.1016/j.euromechsol.2019.103898
10.1016/j.rinp.2019.02.059
10.1016/j.tws.2019.106196
10.1016/j.euromechsol.2018.04.019
10.1016/0045-7949(91)90359-T
10.1016/j.engfracmech.2010.03.033
10.1016/j.ijfatigue.2006.05.007
10.1016/j.ijfatigue.2005.07.047
10.1016/j.msea.2011.01.077
10.1016/S0020-7683(03)00176-8
10.1016/j.ijfatigue.2012.06.011
10.1016/j.msea.2012.01.125
10.1016/j.ijfatigue.2020.106081
10.1016/0013-7944(85)90063-3
10.1115/1.4033604
10.1016/j.optlastec.2018.09.017
10.1111/j.1460-2695.2007.01180.x
10.1016/j.ijfatigue.2017.01.042
10.1016/j.ijfatigue.2020.106025
10.1016/0921-5093(95)10084-9
10.1016/j.optlastec.2016.02.007
10.1016/j.ijfatigue.2018.04.005
10.1016/j.msea.2010.10.020
10.1016/j.matdes.2010.08.039
10.1016/j.ijfatigue.2013.06.019
10.1111/j.1460-2695.1983.tb00338.x
10.3390/ma8105367
10.1111/ffe.13093
10.1016/j.msea.2009.08.045
10.1016/j.msea.2004.07.025
10.1016/j.ast.2014.10.017
10.1016/S0142-1123(02)00022-1
10.1016/j.ijfatigue.2019.105335
10.3390/met9060655
10.1016/j.engfailanal.2019.104354
10.1016/j.tafmec.2019.102429
10.1007/s11837-012-0340-2
10.1016/j.ijfatigue.2016.08.005
10.1063/1.346783
10.1016/j.engfracmech.2020.107126
10.1016/j.ijfatigue.2019.105285
10.1016/j.msea.2010.01.076
10.1016/j.ijfatigue.2012.09.010
10.1016/j.engfracmech.2018.04.040
10.1115/1.3601206
10.1016/j.ijfatigue.2006.10.032
10.1063/1.3295300
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Jun 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Jun 2022
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1016/j.tafmec.2022.103358
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7638
ExternalDocumentID 10_1016_j_tafmec_2022_103358
S0167844222001070
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
UHS
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
7TB
8BQ
8FD
EFKBS
FR3
JG9
KR7
ID FETCH-LOGICAL-c334t-d451c48c5fa917411f4433c7bb2bc6183e3c685120f67c2613e2f563d7735ebe3
IEDL.DBID .~1
ISSN 0167-8442
IngestDate Sun Jul 13 04:31:18 EDT 2025
Sun Jul 06 05:07:25 EDT 2025
Thu Apr 24 23:11:11 EDT 2025
Fri Feb 23 02:40:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Mixed-mode fatigue crack propagation
Laser shock peening
7075-T6 aluminum alloy panel
Residual stress
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-d451c48c5fa917411f4433c7bb2bc6183e3c685120f67c2613e2f563d7735ebe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2691827636
PQPubID 2045390
ParticipantIDs proquest_journals_2691827636
crossref_primary_10_1016_j_tafmec_2022_103358
crossref_citationtrail_10_1016_j_tafmec_2022_103358
elsevier_sciencedirect_doi_10_1016_j_tafmec_2022_103358
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Theoretical and applied fracture mechanics
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Kashaev, Ventzke, Horstmann, Chupakhin, Riekehr, Falck, Maawad, Staron, Schell, Huber (b0145) 2017; 98
Zhang, Lu, Zhang, Luo, Zhong, Cui, Kong, Guan, Qian (b0305) 2011; 32
Larson, Ren, Adu-Gyamfi, Zhang, Ren (b0095) 2019; 13
Peyre, Fabbro, Merrien, Lieurade (b0110) 1996; 210
Pant, Pavan, Prakash, Kamaraj (b0025) 2016; 93
Chahardehi, Brennan, Steuwer (b0030) 2010; 77
Sajith, Murthy, Robi (b0175) 2020; 130
Rice (b0270) 1968; 35
Lados, Apelian (b0050) 2006; 37
Tavares, Reis, Freitas, Castro (b0195) 2019; 42
Bikdeloo, Farrahi, Mehmanparast, Mahdavi (b0085) 2020; 105
Wang, Wang, Zhang, Li (b0160) 2020; 235
Zhang, Luo, Lu, Zhang, Dai, Zhong (b0230) 2011; 528
Gao (b0040) 2011; 528
Rubio-González, Ocaña, Gomez-Rosas, Molpeceres, Paredes, Banderas, Porro, Morales (b0125) 2004; 386
Hasser, Malik, Langer, Spradlin, Hatamleh (b0220) 2016; 138
Montross, Wei, Ye, Clark, Mai (b0250) 2002; 24
Fabbro, Fournier, Ballard, Devaux, Virmont (b0240) 1990; 68
Anderson (b0280) 2005
Ali, An, Rodopoulos, Brown, O’Hara, Levers, Gardiner (b0120) 2007; 29
Huang, Zhou, Sheng, Luo, Lu, Xu, Meng, Dai, Zuo, Ruan, Chen (b0150) 2013; 47
.
Reimers (b0290) 1991; 40
G.R. Johnson, W.H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, in: Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, 1983, pp. 541–547.
Smith, Pascoe (b0155) 1983; 6
Yang (b0300) 2015
Wang, Zhang, Jiang (b0210) 2015; 8
Ayatollahi, Saboori (b0265) 2015; 51
Jiménez, Strubbia, Rosas, González, Hereñú (b0090) 2018; 111
Rozumek, Marciniak, Lesiuk, Correia, de Jesus (b0165) 2018; 113
Zhao, Dong, Ye (b0225) 2017; 100
Hu, Lou, Sheng, Wu, Chen, Huang, Ye, Liu, Shi, Yin (b0020) 2012; 347–353
Brar, Joshi, Harris (b0215) 2009; 1195
Lesiuk, Smolnicki, Mech, Zięty, Fragassa (b0190) 2020; 109
Kalainathan, Prabhakaran (b0140) 2016; 81
Chen, Yao, Hu, Huang, Li (b0185) 2019; 143
Luong, Hill (b0035) 2010; 527
Warren, Guo, Chen (b0065) 2008; 30
Rubio-González, Felix-Martinez, Gomez-Rosas, Ocaña, Morales, Porro (b0045) 2011; 528
Sanchez, You, Leering, Glaser, Furfari, Fitzpatrick, Wharton, Reed (b0010) 2021; 143
Zhou, Huang, Sheng, Lu, Wang, Chen, Ruan, Chen (b0075) 2012; 539
Liu, Yang, Ding, Barter, Ye (b0105) 2007; 30
Zhang, Zhang, Lu, Xuan, Wang, Tu (b0080) 2010; 527
Singh, Harimkar (b0015) 2012; 64
Fleck, Shin, Smith (b0130) 1985; 21
Sajith, Shukla, Murthy, Robi (b0180) 2020; 80
Ivetic, Meneghin, Troiani, Molinari, Ocaña, Morales, Porro, Lanciotti, Ristori, Polese, Plaisier, Lausi (b0235) 2012; 534
Cuellar, Hill, DeWald, Rankin (b0070) 2012; 44
Erdogan, Sih (b0285) 1963; 85
Hatamleh, Lyons, Forman (b0135) 2007; 29
Kim, Paulino (b0275) 2003; 40
Miao, Yu, Zhou, Li, Wang, He (b0170) 2018; 72
Li, Huang, Xu, Li, Hou, Wang, Fu, Fang (b0060) 2015; 40
Hfaiedh, Peyre, Song, Popa, Ji, Vignal (b0005) 2015; 70
G.R. Irwin, Fracture mechanics in structural mechanics, in: Proceedings of the 1st Symposium on Naval Structural Mechanics, Stanford University, California, 1958, pp. 557–591.
Sun, Keller, Zhu, Guo, Kashaev, Klusemann (b0115) 2021; 145
Kallien, Keller, Ventzke, Kashaev, Klusemann (b0100) 2019; 9
Gadallah, Osawa, Tanaka, Tsutsumi (b0260) 2018; 197
Richard, Schramm, Schirmeisen (b0295) 2014; 62
Huang, Zhao, Sheng, Meng, Agyenim-Boateng, Ma, Li, Zhou (b0055) 2020; 131
Borrego, Antunes, Costa, Ferreira (b0200) 2006; 28
Zhao (10.1016/j.tafmec.2022.103358_b0225) 2017; 100
Wang (10.1016/j.tafmec.2022.103358_b0160) 2020; 235
Huang (10.1016/j.tafmec.2022.103358_b0055) 2020; 131
Chen (10.1016/j.tafmec.2022.103358_b0185) 2019; 143
Richard (10.1016/j.tafmec.2022.103358_b0295) 2014; 62
Singh (10.1016/j.tafmec.2022.103358_b0015) 2012; 64
Huang (10.1016/j.tafmec.2022.103358_b0150) 2013; 47
Hu (10.1016/j.tafmec.2022.103358_b0020) 2012; 347–353
Liu (10.1016/j.tafmec.2022.103358_b0105) 2007; 30
Fleck (10.1016/j.tafmec.2022.103358_b0130) 1985; 21
Kim (10.1016/j.tafmec.2022.103358_b0275) 2003; 40
Luong (10.1016/j.tafmec.2022.103358_b0035) 2010; 527
Smith (10.1016/j.tafmec.2022.103358_b0155) 1983; 6
Gadallah (10.1016/j.tafmec.2022.103358_b0260) 2018; 197
Peyre (10.1016/j.tafmec.2022.103358_b0110) 1996; 210
Ivetic (10.1016/j.tafmec.2022.103358_b0235) 2012; 534
Rubio-González (10.1016/j.tafmec.2022.103358_b0125) 2004; 386
Larson (10.1016/j.tafmec.2022.103358_b0095) 2019; 13
Lesiuk (10.1016/j.tafmec.2022.103358_b0190) 2020; 109
Fabbro (10.1016/j.tafmec.2022.103358_b0240) 1990; 68
Sajith (10.1016/j.tafmec.2022.103358_b0175) 2020; 130
10.1016/j.tafmec.2022.103358_b0205
Sanchez (10.1016/j.tafmec.2022.103358_b0010) 2021; 143
Cuellar (10.1016/j.tafmec.2022.103358_b0070) 2012; 44
Ayatollahi (10.1016/j.tafmec.2022.103358_b0265) 2015; 51
Gao (10.1016/j.tafmec.2022.103358_b0040) 2011; 528
Anderson (10.1016/j.tafmec.2022.103358_b0280) 2005
Warren (10.1016/j.tafmec.2022.103358_b0065) 2008; 30
Li (10.1016/j.tafmec.2022.103358_b0060) 2015; 40
Hatamleh (10.1016/j.tafmec.2022.103358_b0135) 2007; 29
10.1016/j.tafmec.2022.103358_b0255
Erdogan (10.1016/j.tafmec.2022.103358_b0285) 1963; 85
Pant (10.1016/j.tafmec.2022.103358_b0025) 2016; 93
Zhou (10.1016/j.tafmec.2022.103358_b0075) 2012; 539
Hasser (10.1016/j.tafmec.2022.103358_b0220) 2016; 138
Tavares (10.1016/j.tafmec.2022.103358_b0195) 2019; 42
Zhang (10.1016/j.tafmec.2022.103358_b0305) 2011; 32
Lados (10.1016/j.tafmec.2022.103358_b0050) 2006; 37
Zhang (10.1016/j.tafmec.2022.103358_b0230) 2011; 528
Kallien (10.1016/j.tafmec.2022.103358_b0100) 2019; 9
10.1016/j.tafmec.2022.103358_b0245
Chahardehi (10.1016/j.tafmec.2022.103358_b0030) 2010; 77
Rubio-González (10.1016/j.tafmec.2022.103358_b0045) 2011; 528
Kalainathan (10.1016/j.tafmec.2022.103358_b0140) 2016; 81
Zhang (10.1016/j.tafmec.2022.103358_b0080) 2010; 527
Rice (10.1016/j.tafmec.2022.103358_b0270) 1968; 35
Reimers (10.1016/j.tafmec.2022.103358_b0290) 1991; 40
Jiménez (10.1016/j.tafmec.2022.103358_b0090) 2018; 111
Borrego (10.1016/j.tafmec.2022.103358_b0200) 2006; 28
Miao (10.1016/j.tafmec.2022.103358_b0170) 2018; 72
Hfaiedh (10.1016/j.tafmec.2022.103358_b0005) 2015; 70
Yang (10.1016/j.tafmec.2022.103358_b0300) 2015
Wang (10.1016/j.tafmec.2022.103358_b0210) 2015; 8
Rozumek (10.1016/j.tafmec.2022.103358_b0165) 2018; 113
Ali (10.1016/j.tafmec.2022.103358_b0120) 2007; 29
Bikdeloo (10.1016/j.tafmec.2022.103358_b0085) 2020; 105
Montross (10.1016/j.tafmec.2022.103358_b0250) 2002; 24
Brar (10.1016/j.tafmec.2022.103358_b0215) 2009; 1195
Sajith (10.1016/j.tafmec.2022.103358_b0180) 2020; 80
Kashaev (10.1016/j.tafmec.2022.103358_b0145) 2017; 98
Sun (10.1016/j.tafmec.2022.103358_b0115) 2021; 145
References_xml – volume: 80
  year: 2020
  ident: b0180
  article-title: Mixed mode fatigue crack growth studies in AISI 316 stainless steel
  publication-title: Eur. J. Mech. A. Solids
– volume: 21
  start-page: 173
  year: 1985
  end-page: 185
  ident: b0130
  article-title: Fatigue crack growth under compressive loading
  publication-title: Eng. Fract. Mech.
– volume: 100
  start-page: 407
  year: 2017
  end-page: 417
  ident: b0225
  article-title: Laser shock peening induced residual stresses and the effect on crack propagation behavior
  publication-title: Int. J. Fatigue
– volume: 210
  start-page: 102
  year: 1996
  end-page: 113
  ident: b0110
  article-title: Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour
  publication-title: Mater. Sci. Eng., A
– volume: 85
  start-page: 519
  year: 1963
  end-page: 525
  ident: b0285
  article-title: On the crack extension in plates under plane loading and transverse shear
  publication-title: J. Basic Eng.
– volume: 70
  start-page: 480
  year: 2015
  end-page: 489
  ident: b0005
  article-title: Finite element analysis of laser shock peening of 2050–T8 aluminum alloy
  publication-title: Int. J. Fatigue
– volume: 386
  start-page: 291
  year: 2004
  end-page: 295
  ident: b0125
  article-title: Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061–T6 aluminum alloy
  publication-title: Mater. Sci. Eng., A
– volume: 1195
  start-page: 945
  year: 2009
  end-page: 948
  ident: b0215
  article-title: Constitutive model constants for Al7075-T651 and Al7075-T6
  publication-title: Aip Conf. Proc.
– volume: 105
  year: 2020
  ident: b0085
  article-title: Multiple laser shock peening effects on residual stress distribution and fatigue crack growth behaviour of 316L stainless steel
  publication-title: Theor. Appl. Fract. Mech.
– volume: 64
  start-page: 716
  year: 2012
  end-page: 733
  ident: b0015
  article-title: Laser surface engineering of magnesium alloys: a review
  publication-title: JOM
– volume: 347–353
  start-page: 1596
  year: 2012
  end-page: 1604
  ident: b0020
  article-title: The effects of laser shock peening on microstructure and properties of metals and alloys: a review
  publication-title: Adv. Mater. Res.
– volume: 528
  start-page: 4652
  year: 2011
  end-page: 4657
  ident: b0230
  article-title: Effects of laser shock processing with different shocked paths on mechanical properties of laser welded ANSI 304 stainless steel joint
  publication-title: Mater. Sci. Eng., A
– volume: 131
  year: 2020
  ident: b0055
  article-title: Effect of laser peening with different power densities on vibration fatigue resistance of hydrogenated TC4 titanium alloy
  publication-title: Int. J. Fatigue
– volume: 9
  start-page: 655
  year: 2019
  ident: b0100
  article-title: Effect of laser peening process parameters and sequences on residual stress profiles
  publication-title: Metals
– volume: 145
  year: 2021
  ident: b0115
  article-title: Experimental-numerical study of laser-shock-peening-induced retardation of fatigue crack propagation in Ti-17 titanium alloy
  publication-title: Int. J. Fatigue
– volume: 534
  start-page: 573
  year: 2012
  end-page: 579
  ident: b0235
  article-title: Fatigue in laser shock peened open-hole thin aluminium specimens
  publication-title: Mater. Sci. Eng., A
– volume: 30
  start-page: 1110
  year: 2007
  end-page: 1124
  ident: b0105
  article-title: The effect of laser power density on the fatigue life of laser-shock-peened 7050 aluminium alloy
  publication-title: Fatigue Fract. Eng. Mater. Struct.
– volume: 72
  start-page: 235
  year: 2018
  end-page: 244
  ident: b0170
  article-title: Experimental and numerical investigation on fracture behavior of CTS specimen under I-II mixed mode loading
  publication-title: Eur. J. Mech. A. Solids
– volume: 77
  start-page: 2033
  year: 2010
  end-page: 2039
  ident: b0030
  article-title: The effect of residual stresses arising from laser shock peening on fatigue crack growth
  publication-title: Eng. Fract. Mech.
– volume: 130
  year: 2020
  ident: b0175
  article-title: Experimental and numerical investigation of mixed mode fatigue crack growth models in aluminum 6061–T6
  publication-title: Int. J. Fatigue
– volume: 42
  start-page: 2441
  year: 2019
  end-page: 2456
  ident: b0195
  article-title: Mixed mode fatigue and fracture in planar geometries: Observations on Keq and crack path modelling
  publication-title: Fatigue Fract. Eng. Mater. Struct.
– volume: 539
  start-page: 360
  year: 2012
  end-page: 368
  ident: b0075
  article-title: Effect of repeated impacts on mechanical properties and fatigue fracture morphologies of 6061–T6 aluminum subject to laser peening
  publication-title: Mater. Sci. Eng., A
– volume: 6
  start-page: 201
  year: 1983
  end-page: 224
  ident: b0155
  article-title: The behaviour of fatigue cracks subject to applied biaxial stress: a review of experimental evidence
  publication-title: Fatigue Fract. Eng. Mater. Struct.
– volume: 29
  start-page: 1531
  year: 2007
  end-page: 1545
  ident: b0120
  article-title: The effect of controlled shot peening on the fatigue behaviour of 2024–T3 aluminium friction stir welds
  publication-title: Int. J. Fatigue
– volume: 8
  start-page: 7145
  year: 2015
  end-page: 7160
  ident: b0210
  article-title: Fatigue life prediction based on crack closure and equivalent initial flaw size
  publication-title: Materials
– volume: 40
  start-page: 164
  year: 2015
  end-page: 170
  ident: b0060
  article-title: Numerical simulation and experiments of titanium alloy engine blades based on laser shock processing
  publication-title: Aerosp. Sci. Technol.
– volume: 68
  start-page: 775
  year: 1990
  end-page: 784
  ident: b0240
  article-title: Physical study of laser-produced plasma in confined geometry
  publication-title: J. Appl. Phys.
– volume: 24
  start-page: 1021
  year: 2002
  end-page: 1036
  ident: b0250
  article-title: Laser shock processing and its effects on microstructure and properties of metal alloys: a review
  publication-title: Int. J. Fatigue
– volume: 40
  start-page: 339
  year: 1991
  end-page: 346
  ident: b0290
  article-title: Simulation of mixed mode fatigue crack growth
  publication-title: Comput. Struct.
– volume: 138
  year: 2016
  ident: b0220
  article-title: An efficient reliability-based simulation method for optimum laser peening treatment
  publication-title: J. Manuf. Sci. Eng.
– volume: 35
  start-page: 379
  year: 1968
  end-page: 386
  ident: b0270
  article-title: A path integral and the approximate analysis of strain concentration by notches and cracks
  publication-title: J. Appl. Mech.
– volume: 143
  year: 2019
  ident: b0185
  article-title: Numerical analysis of central mixed-mode cracking in steel plates repaired with CFRP materials
  publication-title: Thin-Walled Struct.
– volume: 527
  start-page: 699
  year: 2010
  end-page: 707
  ident: b0035
  article-title: The effects of laser peening and shot peening on high cycle fatigue in 7050–T7451 aluminum alloy
  publication-title: Mater. Sci. Eng., A
– volume: 13
  year: 2019
  ident: b0095
  article-title: Effects of scanning path gradient on the residual stress distribution and fatigue life of AA2024-T351 aluminium alloy induced by LSP
  publication-title: Results Phys.
– volume: 235
  start-page: 107126
  year: 2020
  ident: b0160
  article-title: A review on mixed mode fracture of metals
  publication-title: Eng. Fract. Mech.
– volume: 51
  start-page: 67
  year: 2015
  end-page: 76
  ident: b0265
  article-title: A new fixture for fracture tests under mixed mode I/III loading
  publication-title: Eur. J. Mech. A. Solids
– reference: G.R. Johnson, W.H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, in: Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, 1983, pp. 541–547.
– year: 2005
  ident: b0280
  article-title: Fracture Mechanics – Fundamentals and Applications
– volume: 81
  start-page: 137
  year: 2016
  end-page: 144
  ident: b0140
  article-title: Recent development and future perspectives of low energy laser shock peening
  publication-title: Opt. Laser Technol.
– year: 2015
  ident: b0300
  article-title: Fatigue Crack Propagation Behavior of High Strength Steel Welded Joint under I-II Mixed-mode Loading
– volume: 28
  start-page: 618
  year: 2006
  end-page: 626
  ident: b0200
  article-title: Mixed-mode fatigue crack growth behaviour in aluminium alloy
  publication-title: Int. J. Fatigue
– reference: G.R. Irwin, Fracture mechanics in structural mechanics, in: Proceedings of the 1st Symposium on Naval Structural Mechanics, Stanford University, California, 1958, pp. 557–591.
– volume: 111
  start-page: 789
  year: 2018
  end-page: 796
  ident: b0090
  article-title: Fatigue life rationalization of laser shock peened SAF 2205 with different swept direction
  publication-title: Opt. Laser Technol.
– volume: 62
  start-page: 93
  year: 2014
  end-page: 103
  ident: b0295
  article-title: Cracks on mixed mode loading – Theories, experiments, simulations
  publication-title: Int. J. Fatigue
– volume: 44
  start-page: 8
  year: 2012
  end-page: 13
  ident: b0070
  article-title: Residual stress and fatigue life in laser shock peened open hole samples
  publication-title: Int. J. Fatigue
– volume: 37
  start-page: 133
  year: 2006
  end-page: 145
  ident: b0050
  article-title: The effect of residual stress on the fatigue crack growth behavior of Al-Si-Mg cast alloys—Mechanisms and corrective mathematical models
  publication-title: Metall. Mater. Trans. A
– volume: 528
  start-page: 3823
  year: 2011
  end-page: 3828
  ident: b0040
  article-title: Improvement of fatigue property in 7050–T7451 aluminum alloy by laser peening and shot peening
  publication-title: Mater. Sci. Eng., A
– volume: 98
  start-page: 223
  year: 2017
  end-page: 233
  ident: b0145
  article-title: Effects of laser shock peening on the microstructure and fatigue crack propagation behaviour of thin AA2024 specimens
  publication-title: Int. J. Fatigue
– volume: 47
  start-page: 292
  year: 2013
  end-page: 299
  ident: b0150
  article-title: Effects of laser peening with different coverage areas on fatigue crack growth properties of 6061–T6 aluminum alloy
  publication-title: Int. J. Fatigue
– volume: 143
  year: 2021
  ident: b0010
  article-title: Effects of laser shock peening on the mechanisms of fatigue short crack initiation and propagation of AA7075-T651
  publication-title: Int. J. Fatigue
– volume: 40
  start-page: 3967
  year: 2003
  end-page: 4001
  ident: b0275
  article-title: The interaction integral for fracture of orthotropic functionally graded materials: evaluation of stress intensity factors
  publication-title: Int. J. Solids Struct.
– volume: 32
  start-page: 480
  year: 2011
  end-page: 486
  ident: b0305
  article-title: Effects of different shocked paths on fatigue property of 7050–T7451 aluminum alloy during two-sided laser shock processing
  publication-title: Mater. Des.
– volume: 29
  start-page: 421
  year: 2007
  end-page: 434
  ident: b0135
  article-title: Laser and shot peening effects on fatigue crack growth in friction stir welded 7075–T7351 aluminum alloy joints
  publication-title: Int. J. Fatigue
– reference: .
– volume: 93
  start-page: 38
  year: 2016
  end-page: 50
  ident: b0025
  article-title: Effect of laser peening and shot peening on fatigue striations during FCGR study of Ti6Al4V
  publication-title: Int. J. Fatigue
– volume: 109
  year: 2020
  ident: b0190
  article-title: Analysis of fatigue crack growth under mixed mode (I + II) loading conditions in rail steel using CTS specimen
  publication-title: Eng. Fail. Anal.
– volume: 528
  start-page: 914
  year: 2011
  end-page: 919
  ident: b0045
  article-title: Effect of laser shock processing on fatigue crack growth of duplex stainless steel
  publication-title: Mater. Sci. Eng., A
– volume: 30
  start-page: 188
  year: 2008
  end-page: 197
  ident: b0065
  article-title: Massive parallel laser shock peening: Simulation, analysis, and validation
  publication-title: Int. J. Fatigue
– volume: 527
  start-page: 3411
  year: 2010
  end-page: 3415
  ident: b0080
  article-title: Improvement of fatigue life of Ti–6Al–4V alloy by laser shock peening
  publication-title: Mater. Sci. Eng., A
– volume: 113
  start-page: 160
  year: 2018
  end-page: 170
  ident: b0165
  article-title: Experimental and numerical investigation of mixed mode I + II and I + III fatigue crack growth in S355J0 steel
  publication-title: Int. J. Fatigue
– volume: 197
  start-page: 48
  year: 2018
  end-page: 65
  ident: b0260
  article-title: A novel approach to evaluate mixed-mode SIFs for a through-thickness crack in a welding residual stress field using an effective welding simulation method
  publication-title: Eng. Fract. Mech.
– volume: 534
  start-page: 573
  year: 2012
  ident: 10.1016/j.tafmec.2022.103358_b0235
  article-title: Fatigue in laser shock peened open-hole thin aluminium specimens
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2011.12.010
– volume: 37
  start-page: 133
  year: 2006
  ident: 10.1016/j.tafmec.2022.103358_b0050
  article-title: The effect of residual stress on the fatigue crack growth behavior of Al-Si-Mg cast alloys—Mechanisms and corrective mathematical models
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-006-0159-y
– volume: 51
  start-page: 67
  year: 2015
  ident: 10.1016/j.tafmec.2022.103358_b0265
  article-title: A new fixture for fracture tests under mixed mode I/III loading
  publication-title: Eur. J. Mech. A. Solids
  doi: 10.1016/j.euromechsol.2014.09.012
– volume: 70
  start-page: 480
  year: 2015
  ident: 10.1016/j.tafmec.2022.103358_b0005
  article-title: Finite element analysis of laser shock peening of 2050–T8 aluminum alloy
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2014.05.015
– year: 2005
  ident: 10.1016/j.tafmec.2022.103358_b0280
– volume: 30
  start-page: 188
  issue: 1
  year: 2008
  ident: 10.1016/j.tafmec.2022.103358_b0065
  article-title: Massive parallel laser shock peening: Simulation, analysis, and validation
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2007.01.033
– volume: 100
  start-page: 407
  year: 2017
  ident: 10.1016/j.tafmec.2022.103358_b0225
  article-title: Laser shock peening induced residual stresses and the effect on crack propagation behavior
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2017.04.002
– volume: 85
  start-page: 519
  year: 1963
  ident: 10.1016/j.tafmec.2022.103358_b0285
  article-title: On the crack extension in plates under plane loading and transverse shear
  publication-title: J. Basic Eng.
  doi: 10.1115/1.3656897
– volume: 528
  start-page: 4652
  year: 2011
  ident: 10.1016/j.tafmec.2022.103358_b0230
  article-title: Effects of laser shock processing with different shocked paths on mechanical properties of laser welded ANSI 304 stainless steel joint
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2011.02.054
– volume: 80
  year: 2020
  ident: 10.1016/j.tafmec.2022.103358_b0180
  article-title: Mixed mode fatigue crack growth studies in AISI 316 stainless steel
  publication-title: Eur. J. Mech. A. Solids
  doi: 10.1016/j.euromechsol.2019.103898
– ident: 10.1016/j.tafmec.2022.103358_b0205
– volume: 13
  year: 2019
  ident: 10.1016/j.tafmec.2022.103358_b0095
  article-title: Effects of scanning path gradient on the residual stress distribution and fatigue life of AA2024-T351 aluminium alloy induced by LSP
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2019.02.059
– volume: 143
  year: 2019
  ident: 10.1016/j.tafmec.2022.103358_b0185
  article-title: Numerical analysis of central mixed-mode cracking in steel plates repaired with CFRP materials
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2019.106196
– volume: 72
  start-page: 235
  year: 2018
  ident: 10.1016/j.tafmec.2022.103358_b0170
  article-title: Experimental and numerical investigation on fracture behavior of CTS specimen under I-II mixed mode loading
  publication-title: Eur. J. Mech. A. Solids
  doi: 10.1016/j.euromechsol.2018.04.019
– volume: 40
  start-page: 339
  year: 1991
  ident: 10.1016/j.tafmec.2022.103358_b0290
  article-title: Simulation of mixed mode fatigue crack growth
  publication-title: Comput. Struct.
  doi: 10.1016/0045-7949(91)90359-T
– volume: 77
  start-page: 2033
  year: 2010
  ident: 10.1016/j.tafmec.2022.103358_b0030
  article-title: The effect of residual stresses arising from laser shock peening on fatigue crack growth
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2010.03.033
– volume: 29
  start-page: 421
  year: 2007
  ident: 10.1016/j.tafmec.2022.103358_b0135
  article-title: Laser and shot peening effects on fatigue crack growth in friction stir welded 7075–T7351 aluminum alloy joints
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2006.05.007
– volume: 28
  start-page: 618
  year: 2006
  ident: 10.1016/j.tafmec.2022.103358_b0200
  article-title: Mixed-mode fatigue crack growth behaviour in aluminium alloy
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2005.07.047
– volume: 528
  start-page: 3823
  year: 2011
  ident: 10.1016/j.tafmec.2022.103358_b0040
  article-title: Improvement of fatigue property in 7050–T7451 aluminum alloy by laser peening and shot peening
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2011.01.077
– volume: 40
  start-page: 3967
  issue: 15
  year: 2003
  ident: 10.1016/j.tafmec.2022.103358_b0275
  article-title: The interaction integral for fracture of orthotropic functionally graded materials: evaluation of stress intensity factors
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/S0020-7683(03)00176-8
– volume: 44
  start-page: 8
  year: 2012
  ident: 10.1016/j.tafmec.2022.103358_b0070
  article-title: Residual stress and fatigue life in laser shock peened open hole samples
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2012.06.011
– volume: 539
  start-page: 360
  year: 2012
  ident: 10.1016/j.tafmec.2022.103358_b0075
  article-title: Effect of repeated impacts on mechanical properties and fatigue fracture morphologies of 6061–T6 aluminum subject to laser peening
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2012.01.125
– volume: 145
  year: 2021
  ident: 10.1016/j.tafmec.2022.103358_b0115
  article-title: Experimental-numerical study of laser-shock-peening-induced retardation of fatigue crack propagation in Ti-17 titanium alloy
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2020.106081
– volume: 21
  start-page: 173
  year: 1985
  ident: 10.1016/j.tafmec.2022.103358_b0130
  article-title: Fatigue crack growth under compressive loading
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/0013-7944(85)90063-3
– volume: 138
  year: 2016
  ident: 10.1016/j.tafmec.2022.103358_b0220
  article-title: An efficient reliability-based simulation method for optimum laser peening treatment
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4033604
– volume: 111
  start-page: 789
  year: 2018
  ident: 10.1016/j.tafmec.2022.103358_b0090
  article-title: Fatigue life rationalization of laser shock peened SAF 2205 with different swept direction
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2018.09.017
– volume: 30
  start-page: 1110
  year: 2007
  ident: 10.1016/j.tafmec.2022.103358_b0105
  article-title: The effect of laser power density on the fatigue life of laser-shock-peened 7050 aluminium alloy
  publication-title: Fatigue Fract. Eng. Mater. Struct.
  doi: 10.1111/j.1460-2695.2007.01180.x
– volume: 98
  start-page: 223
  year: 2017
  ident: 10.1016/j.tafmec.2022.103358_b0145
  article-title: Effects of laser shock peening on the microstructure and fatigue crack propagation behaviour of thin AA2024 specimens
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2017.01.042
– volume: 143
  year: 2021
  ident: 10.1016/j.tafmec.2022.103358_b0010
  article-title: Effects of laser shock peening on the mechanisms of fatigue short crack initiation and propagation of AA7075-T651
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2020.106025
– volume: 210
  start-page: 102
  year: 1996
  ident: 10.1016/j.tafmec.2022.103358_b0110
  article-title: Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/0921-5093(95)10084-9
– volume: 81
  start-page: 137
  year: 2016
  ident: 10.1016/j.tafmec.2022.103358_b0140
  article-title: Recent development and future perspectives of low energy laser shock peening
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2016.02.007
– volume: 113
  start-page: 160
  year: 2018
  ident: 10.1016/j.tafmec.2022.103358_b0165
  article-title: Experimental and numerical investigation of mixed mode I + II and I + III fatigue crack growth in S355J0 steel
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2018.04.005
– ident: 10.1016/j.tafmec.2022.103358_b0255
– volume: 528
  start-page: 914
  year: 2011
  ident: 10.1016/j.tafmec.2022.103358_b0045
  article-title: Effect of laser shock processing on fatigue crack growth of duplex stainless steel
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2010.10.020
– volume: 32
  start-page: 480
  year: 2011
  ident: 10.1016/j.tafmec.2022.103358_b0305
  article-title: Effects of different shocked paths on fatigue property of 7050–T7451 aluminum alloy during two-sided laser shock processing
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2010.08.039
– volume: 62
  start-page: 93
  year: 2014
  ident: 10.1016/j.tafmec.2022.103358_b0295
  article-title: Cracks on mixed mode loading – Theories, experiments, simulations
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2013.06.019
– volume: 6
  start-page: 201
  issue: 3
  year: 1983
  ident: 10.1016/j.tafmec.2022.103358_b0155
  article-title: The behaviour of fatigue cracks subject to applied biaxial stress: a review of experimental evidence
  publication-title: Fatigue Fract. Eng. Mater. Struct.
  doi: 10.1111/j.1460-2695.1983.tb00338.x
– volume: 347–353
  start-page: 1596
  year: 2012
  ident: 10.1016/j.tafmec.2022.103358_b0020
  article-title: The effects of laser shock peening on microstructure and properties of metals and alloys: a review
  publication-title: Adv. Mater. Res.
– volume: 8
  start-page: 7145
  issue: 10
  year: 2015
  ident: 10.1016/j.tafmec.2022.103358_b0210
  article-title: Fatigue life prediction based on crack closure and equivalent initial flaw size
  publication-title: Materials
  doi: 10.3390/ma8105367
– ident: 10.1016/j.tafmec.2022.103358_b0245
– volume: 42
  start-page: 2441
  issue: 11
  year: 2019
  ident: 10.1016/j.tafmec.2022.103358_b0195
  article-title: Mixed mode fatigue and fracture in planar geometries: Observations on Keq and crack path modelling
  publication-title: Fatigue Fract. Eng. Mater. Struct.
  doi: 10.1111/ffe.13093
– volume: 527
  start-page: 699
  year: 2010
  ident: 10.1016/j.tafmec.2022.103358_b0035
  article-title: The effects of laser peening and shot peening on high cycle fatigue in 7050–T7451 aluminum alloy
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2009.08.045
– volume: 386
  start-page: 291
  year: 2004
  ident: 10.1016/j.tafmec.2022.103358_b0125
  article-title: Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061–T6 aluminum alloy
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2004.07.025
– volume: 40
  start-page: 164
  year: 2015
  ident: 10.1016/j.tafmec.2022.103358_b0060
  article-title: Numerical simulation and experiments of titanium alloy engine blades based on laser shock processing
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2014.10.017
– volume: 24
  start-page: 1021
  year: 2002
  ident: 10.1016/j.tafmec.2022.103358_b0250
  article-title: Laser shock processing and its effects on microstructure and properties of metal alloys: a review
  publication-title: Int. J. Fatigue
  doi: 10.1016/S0142-1123(02)00022-1
– volume: 131
  year: 2020
  ident: 10.1016/j.tafmec.2022.103358_b0055
  article-title: Effect of laser peening with different power densities on vibration fatigue resistance of hydrogenated TC4 titanium alloy
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2019.105335
– volume: 9
  start-page: 655
  issue: 6
  year: 2019
  ident: 10.1016/j.tafmec.2022.103358_b0100
  article-title: Effect of laser peening process parameters and sequences on residual stress profiles
  publication-title: Metals
  doi: 10.3390/met9060655
– volume: 109
  year: 2020
  ident: 10.1016/j.tafmec.2022.103358_b0190
  article-title: Analysis of fatigue crack growth under mixed mode (I + II) loading conditions in rail steel using CTS specimen
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2019.104354
– volume: 105
  year: 2020
  ident: 10.1016/j.tafmec.2022.103358_b0085
  article-title: Multiple laser shock peening effects on residual stress distribution and fatigue crack growth behaviour of 316L stainless steel
  publication-title: Theor. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2019.102429
– volume: 64
  start-page: 716
  issue: 6
  year: 2012
  ident: 10.1016/j.tafmec.2022.103358_b0015
  article-title: Laser surface engineering of magnesium alloys: a review
  publication-title: JOM
  doi: 10.1007/s11837-012-0340-2
– year: 2015
  ident: 10.1016/j.tafmec.2022.103358_b0300
– volume: 93
  start-page: 38
  year: 2016
  ident: 10.1016/j.tafmec.2022.103358_b0025
  article-title: Effect of laser peening and shot peening on fatigue striations during FCGR study of Ti6Al4V
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2016.08.005
– volume: 68
  start-page: 775
  year: 1990
  ident: 10.1016/j.tafmec.2022.103358_b0240
  article-title: Physical study of laser-produced plasma in confined geometry
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.346783
– volume: 235
  start-page: 107126
  year: 2020
  ident: 10.1016/j.tafmec.2022.103358_b0160
  article-title: A review on mixed mode fracture of metals
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2020.107126
– volume: 130
  year: 2020
  ident: 10.1016/j.tafmec.2022.103358_b0175
  article-title: Experimental and numerical investigation of mixed mode fatigue crack growth models in aluminum 6061–T6
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2019.105285
– volume: 527
  start-page: 3411
  year: 2010
  ident: 10.1016/j.tafmec.2022.103358_b0080
  article-title: Improvement of fatigue life of Ti–6Al–4V alloy by laser shock peening
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2010.01.076
– volume: 47
  start-page: 292
  year: 2013
  ident: 10.1016/j.tafmec.2022.103358_b0150
  article-title: Effects of laser peening with different coverage areas on fatigue crack growth properties of 6061–T6 aluminum alloy
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2012.09.010
– volume: 197
  start-page: 48
  year: 2018
  ident: 10.1016/j.tafmec.2022.103358_b0260
  article-title: A novel approach to evaluate mixed-mode SIFs for a through-thickness crack in a welding residual stress field using an effective welding simulation method
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2018.04.040
– volume: 35
  start-page: 379
  year: 1968
  ident: 10.1016/j.tafmec.2022.103358_b0270
  article-title: A path integral and the approximate analysis of strain concentration by notches and cracks
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3601206
– volume: 29
  start-page: 1531
  year: 2007
  ident: 10.1016/j.tafmec.2022.103358_b0120
  article-title: The effect of controlled shot peening on the fatigue behaviour of 2024–T3 aluminium friction stir welds
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2006.10.032
– volume: 1195
  start-page: 945
  year: 2009
  ident: 10.1016/j.tafmec.2022.103358_b0215
  article-title: Constitutive model constants for Al7075-T651 and Al7075-T6
  publication-title: Aip Conf. Proc.
  doi: 10.1063/1.3295300
SSID ssj0017193
Score 2.370067
Snippet •Residual stress was calculated by an efficient LSP simulation termed continuous explicit-dynamic impact strategy.•LSP-induced residual stress can change the...
The effects of residual stress on mixed-mode crack propagation behavior of 7075-T6 aluminum alloy panel subject to multiple laser shock peening (LSP) impacts...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103358
SubjectTerms 7075-T6 aluminum alloy panel
Aircraft structures
Aluminum alloys
Aluminum base alloys
Compact tension
Compressive properties
Crack propagation
Crack tips
Damage tolerance
Fatigue failure
Finite element method
Laser shock peening
Laser shock processing
Mixed-mode fatigue crack propagation
Numerical analysis
Numerical methods
Peening
Propagation
Propagation modes
Residual stress
Stress intensity factors
Stress propagation
Title Effects of residual stress induced by laser shock peening on mixed-mode crack propagation behavior in 7075-T6 aluminum alloy panel
URI https://dx.doi.org/10.1016/j.tafmec.2022.103358
https://www.proquest.com/docview/2691827636
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYQXLbDNBgTMEDvwNVrYzt2c0QIVKjgwEDjZjmOzTrRtGqLBBcO_OW8FydoTJOQdoqS2Fbkz37vffH7wdiBDM6EAZ0PVv0-V6gAuYui4MKXhaqEdrGponB-oYfX6uwmv1lhR10sDLlVtrI_yfRGWrdPeu1s9mbjce8HOdAPFP3CIGJjiLcrZWiVf396dfPITJYS71J-b2rdhc81Pl5LFyeBEhkKQdHnkgq__1s9_SWoG-1z8pl9as1GOExfts5WQr3BPv6RTPALe06JiBcwjYAcugmyghQKAki8EcIKykdAaznMYfEL5SDMkMRiX5jWMBk_hIpTXRzwc0fv5kinbxvcoIvlx3HAoPbnVxocSrVxfT8BOrl_BBQq4W6TXZ8cXx0NeVthgXsp1ZJXKs-8Gvg8OqRtKsuiUlJ6U5ai9Bp3e5Beo00m-lEbj2RLBhFzLStjZI7wy69stZ7WYYtBRGPDS9z9Be7wIEzp0VAKqhDOD2RfuW0mu4m1vk0_TlUw7mznZ_bbJjgswWETHNuMv_aapfQb77Q3HWb2zTKyqCHe6bnbQWzbbbywQhfIv1AE653_Hvgb-0B3yb1sl60u5_dhDw2ZZbnfrNR9tnZ4Ohpe0HV0-XP0Agh08vU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELZQOEAPqFCq8ijMoVcrie21s0eEQOGVC0HiZnm9Nk1FNlESJLj2l3dmvYtKVQmJ63rHWnnsb-Zbz4OxHzI4EwZ0P1j2elyhAeQuipwLX-SqFNrFuovCzUgP79TlfXa_xk7bXBgKq2ywP2F6jdbNk26zmt35ZNK9pQD6gaJfGERsDPL2dapOlXXY-snF1XD0eplg-qn2LpX4JoE2g64O81q5OA1Uy1AISkCX1Pv9_xbqH6yuDdD5Z7bVeI5wkj5um62Faod9-que4Bf2O9UiXsIsAtLoOs8KUjYIIPdGLZZQvAA6zGEBy58IhTBHHouyMKtgOnkOJafWOOAXjsYWyKgfatVBm86P84BBB4CPNTgEtkn1NAW6vH8BxJXwuMvuzs_Gp0PeNFngXkq14qXK-l4NfBYdMjfV70elpPSmKEThNR74IL1Gt0z0ojYe-ZYMImZalsbIDHeA_Mo61awK3xhE9De8RADI8ZAHYQqPvlJQuXB-IHvK7THZLqz1TQVyaoTxaNtQs182qcOSOmxSxx7jr1LzVIHjnfdNqzP7ZidZNBLvSB62KrbNSV5aoXOkYIjCev_DEx-zjeH45tpeX4yuDtgmjaRos0PWWS2ewnf0a1bFUbNv_wDAqPQD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+residual+stress+induced+by+laser+shock+peening+on+mixed-mode+crack+propagation+behavior+in+7075-T6+aluminum+alloy+panel&rft.jtitle=Theoretical+and+applied+fracture+mechanics&rft.au=Zhang%2C+Xiushuo&rft.au=Ma%2C+Yu%27e&rft.au=Peng%2C+Yilin&rft.au=Yang%2C+Meng&rft.date=2022-06-01&rft.pub=Elsevier+Ltd&rft.issn=0167-8442&rft.eissn=1872-7638&rft.volume=119&rft_id=info:doi/10.1016%2Fj.tafmec.2022.103358&rft.externalDocID=S0167844222001070
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8442&client=summon