Corrosion behavior and thermos-physical properties of a promising Yb2O3 and Y2O3 co-stabilized ZrO2 ceramic for thermal barrier coatings subject to calcium-magnesium-aluminum-silicate (CMAS) deposition: Experiments and first-principles calculation

•The Yb2O3 and Y2O3 co-stabilized ZrO2 towards enhanced CMAS resistance was proposed.•Improvement of CMAS resistance owing to a low diffusion rate of Yb3+.•The first-principles calculation was used to investigate the corrosion behavior.•YbYSZ shows better thermo-physical properties as compared with...

Full description

Saved in:
Bibliographic Details
Published inCorrosion science Vol. 182; p. 109230
Main Authors Fang, Huanjie, Wang, Weize, Huang, Jibo, Li, Yuanjun, Ye, Dongdong
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 15.04.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The Yb2O3 and Y2O3 co-stabilized ZrO2 towards enhanced CMAS resistance was proposed.•Improvement of CMAS resistance owing to a low diffusion rate of Yb3+.•The first-principles calculation was used to investigate the corrosion behavior.•YbYSZ shows better thermo-physical properties as compared with traditional YSZ. In this study, corrosion behavior of Yb2O3-Y2O3 co-stabilized ZrO2 (YbYSZ) was systematically investigated under CMAS melt attack. The result was found that YbYSZ exhibited a better CMAS resistance than yttria stabilized zirconia (YSZ), which was attributed to the excellent phase stability. The degradation of grain caused by CMAS attack was greatly related to the diffusion rate of element substantially. Yb3+ exhibited a low diffusion rate contributing to good phase stability during corrosion. A corresponding first-principles calculation further confirmed this conclusion. Besides, YbYSZ showed a higher thermal expansion coefficient and lower thermal conductivity as compared with YSZ counterpart.
AbstractList In this study, corrosion behavior of Yb2O3-Y2O3 co-stabilized ZrO2 (YbYSZ) was systematically investigated under CMAS melt attack. The result was found that YbYSZ exhibited a better CMAS resistance than yttria stabilized zirconia (YSZ), which was attributed to the excellent phase stability. The degradation of grain caused by CMAS attack was greatly related to the diffusion rate of element substantially. Yb3+ exhibited a low diffusion rate contributing to good phase stability during corrosion. A corresponding first-principles calculation further confirmed this conclusion. Besides, YbYSZ showed a higher thermal expansion coefficient and lower thermal conductivity as compared with YSZ counterpart.
•The Yb2O3 and Y2O3 co-stabilized ZrO2 towards enhanced CMAS resistance was proposed.•Improvement of CMAS resistance owing to a low diffusion rate of Yb3+.•The first-principles calculation was used to investigate the corrosion behavior.•YbYSZ shows better thermo-physical properties as compared with traditional YSZ. In this study, corrosion behavior of Yb2O3-Y2O3 co-stabilized ZrO2 (YbYSZ) was systematically investigated under CMAS melt attack. The result was found that YbYSZ exhibited a better CMAS resistance than yttria stabilized zirconia (YSZ), which was attributed to the excellent phase stability. The degradation of grain caused by CMAS attack was greatly related to the diffusion rate of element substantially. Yb3+ exhibited a low diffusion rate contributing to good phase stability during corrosion. A corresponding first-principles calculation further confirmed this conclusion. Besides, YbYSZ showed a higher thermal expansion coefficient and lower thermal conductivity as compared with YSZ counterpart.
ArticleNumber 109230
Author Li, Yuanjun
Huang, Jibo
Fang, Huanjie
Wang, Weize
Ye, Dongdong
Author_xml – sequence: 1
  givenname: Huanjie
  surname: Fang
  fullname: Fang, Huanjie
– sequence: 2
  givenname: Weize
  surname: Wang
  fullname: Wang, Weize
  email: wangwz@ecust.edu.cn
– sequence: 3
  givenname: Jibo
  surname: Huang
  fullname: Huang, Jibo
– sequence: 4
  givenname: Yuanjun
  surname: Li
  fullname: Li, Yuanjun
– sequence: 5
  givenname: Dongdong
  surname: Ye
  fullname: Ye, Dongdong
BookMark eNqFkc1u1DAUhS1UJKaFN2BhiQ0sMtjxjJN0gVSNyo9UNAtAomwsx3Y6d5TYwXYqyouz5WbCigWsfG2d8_nY55yc-eAdIc85W3PG5evj2oSYDKxLVs5HTSnYI7LiddUUbNPIM7JijLOiEfXXJ-Q8pSNjqORsRX7tQowhQfC0dQd9DyFS7S3NBxeHkIrx8JDA6J6OMYwuZnCJho7qeT9AAn9Hb9tyL06m23kwoUhZt9DDT2fpt7gvqXFRD2Boh_ATGHmtjhFcRLnOSEk0Te3RmUxzoHifgWkoBn3nXZon3U8DeBwSco3Ojr7cfbz69IpaN2L6jPkv6fUPTAiD8zmd4nQQUy7GCN7A2GPwmTv1elY_JY873Sf37M96Qb68vf68e1_c7N992F3dFEaITS6MtEZya6pWiKpqt1xIq5muG1nVrBTSdFXHnTW1rSRjjS07oTe27UQnRbPVUlyQFwsX_-v75FJWxzBFj1eqcsuZZKWstqi6XFQGu0jRdcpAPuXMUUOvOFNz0eqolqLVXLRaikbz5i8zPnnQ8eF_tjeLzeHz77EKhQrnjbMQsQdlA_wb8BuF2Mzv
CitedBy_id crossref_primary_10_1016_j_ceramint_2021_06_027
crossref_primary_10_1016_j_surfcoat_2021_127879
crossref_primary_10_1016_j_ceramint_2022_12_099
crossref_primary_10_1016_j_ceramint_2024_09_275
crossref_primary_10_1016_j_corsci_2021_109872
crossref_primary_10_1016_j_corsci_2022_110631
crossref_primary_10_3390_ceramics4030035
crossref_primary_10_1016_j_ceramint_2022_07_107
crossref_primary_10_1016_j_ceramint_2023_01_053
crossref_primary_10_1039_D2NJ05110A
crossref_primary_10_1016_j_corsci_2023_111526
crossref_primary_10_1016_j_matchar_2021_111418
crossref_primary_10_1016_j_jeurceramsoc_2023_09_025
crossref_primary_10_1016_j_ceramint_2023_03_068
crossref_primary_10_1016_j_ceramint_2022_11_040
crossref_primary_10_1111_jace_19988
crossref_primary_10_3390_coatings14091123
crossref_primary_10_3390_coatings14080928
crossref_primary_10_1002_maco_202313813
crossref_primary_10_1016_j_mtcomm_2023_107514
crossref_primary_10_1016_j_surfcoat_2024_130623
crossref_primary_10_3390_met12101687
crossref_primary_10_1016_j_ceramint_2022_10_285
crossref_primary_10_1016_j_ceramint_2024_05_245
crossref_primary_10_3390_coatings14121614
crossref_primary_10_1016_j_surfcoat_2024_130944
crossref_primary_10_1007_s11665_023_08091_1
crossref_primary_10_3390_coatings11121477
crossref_primary_10_1016_j_hazadv_2024_100539
crossref_primary_10_1007_s44251_023_00005_6
crossref_primary_10_1016_j_corsci_2023_111542
crossref_primary_10_1016_j_mtcomm_2023_105409
crossref_primary_10_1016_j_surfcoat_2023_130270
crossref_primary_10_1007_s11666_022_01498_7
crossref_primary_10_1016_j_jeurceramsoc_2023_02_014
crossref_primary_10_1016_j_surfcoat_2023_130278
crossref_primary_10_3390_coatings12050648
crossref_primary_10_1016_j_ceramint_2024_09_250
crossref_primary_10_1016_j_surfcoat_2023_129679
crossref_primary_10_1016_j_corsci_2021_109899
crossref_primary_10_3390_coatings12060804
crossref_primary_10_1016_j_ceramint_2023_09_138
crossref_primary_10_1016_j_jeurceramsoc_2023_05_020
crossref_primary_10_1016_j_corsci_2023_111626
crossref_primary_10_1016_j_jmrt_2023_09_062
crossref_primary_10_1007_s11665_023_08164_1
crossref_primary_10_1016_j_surfcoat_2021_127864
crossref_primary_10_1007_s10853_021_06485_x
crossref_primary_10_1111_jace_19165
crossref_primary_10_1016_j_jmrt_2025_01_050
crossref_primary_10_1111_jace_20305
crossref_primary_10_1016_j_corsci_2023_111754
crossref_primary_10_1111_jace_20302
Cites_doi 10.1111/j.1151-2916.1997.tb02999.x
10.1016/S0921-4526(98)01202-2
10.1016/j.ceramint.2015.05.128
10.1038/180809a0
10.1016/j.ceramint.2019.05.301
10.1016/j.corsci.2019.108199
10.1111/jace.14854
10.1111/jace.13210
10.1016/j.apsusc.2019.04.009
10.1016/S0167-2738(99)00348-3
10.1134/1.1787679
10.1016/j.jallcom.2019.07.198
10.1016/j.actamat.2012.06.053
10.1016/j.corsci.2019.04.014
10.1016/j.ceramint.2019.06.223
10.1016/j.apsusc.2019.01.232
10.1016/j.actamat.2007.08.028
10.1016/j.msea.2006.11.027
10.1016/j.ceramint.2019.04.152
10.1016/j.ceramint.2019.01.114
10.1111/jace.14924
10.1016/j.surfcoat.2017.04.071
10.1111/j.1551-2916.2007.02175.x
10.1016/j.ceramint.2015.09.105
10.1016/S0257-8972(02)00593-5
10.1557/mrs.2012.230
10.1016/j.jallcom.2016.10.074
10.1016/j.ceramint.2016.05.062
10.1016/j.actamat.2011.03.008
10.1103/PhysRevB.72.144107
10.1002/adma.201004783
10.1016/j.actamat.2013.08.043
10.1007/s11666-015-0345-9
10.1007/BF00500791
10.1111/jace.16044
10.1016/S1369-7021(05)70934-2
10.1016/S0921-4526(02)00530-6
10.1557/S0883769400048223
10.1016/j.ceramint.2017.09.197
10.1016/j.jeurceramsoc.2019.06.036
10.1016/j.ceramint.2019.05.063
10.1016/j.jeurceramsoc.2018.02.019
10.1016/j.surfcoat.2018.05.089
10.1016/j.actamat.2004.11.028
10.1016/j.surfcoat.2006.10.022
10.1016/j.corsci.2017.07.010
10.1016/j.ceramint.2019.12.186
10.1016/0022-3093(76)90027-2
10.1016/j.apsusc.2020.145712
10.1016/j.corsci.2020.108764
10.1016/S1359-6454(00)00053-7
10.1016/j.surfcoat.2017.08.023
10.1016/j.jallcom.2013.08.046
10.1016/j.surfcoat.2010.09.008
10.1016/j.ceramint.2016.09.106
10.1016/j.jpowsour.2014.03.056
10.1016/S0079-6425(00)00020-7
10.1016/j.apsusc.2009.06.087
10.1016/j.jeurceramsoc.2018.03.010
10.1016/j.surfcoat.2010.02.026
10.1016/S1000-9361(11)60466-4
10.1016/j.ssi.2004.08.021
10.1016/j.ceramint.2018.03.021
ContentType Journal Article
Copyright 2020
Copyright Elsevier BV Apr 15, 2021
Copyright_xml – notice: 2020
– notice: Copyright Elsevier BV Apr 15, 2021
DBID AAYXX
CITATION
7SE
8BQ
8FD
F28
FR3
JG9
DOI 10.1016/j.corsci.2020.109230
DatabaseName CrossRef
Corrosion Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineering Research Database
Technology Research Database
Corrosion Abstracts
ANTE: Abstracts in New Technology & Engineering
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0496
ExternalDocumentID 10_1016_j_corsci_2020_109230
S0010938X20325117
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABJNI
ABMAC
ABXRA
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SSZ
T5K
XPP
XSW
ZMT
~G-
29F
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AELAQ
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
SMS
SSH
TAE
VH1
WUQ
7SE
8BQ
8FD
EFKBS
F28
FR3
JG9
ID FETCH-LOGICAL-c334t-c6dc61dc7b3377b5136da0a896780236cf7f1edc8d76009d2f3a4dbf3f6395a63
IEDL.DBID .~1
ISSN 0010-938X
IngestDate Fri Jul 25 04:14:43 EDT 2025
Tue Jul 01 01:02:14 EDT 2025
Thu Apr 24 22:53:52 EDT 2025
Fri Feb 23 02:47:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords First-principles calculation
Calcium-magnesium-alumina-silicate (CMAS)
Thermal barrier coatings (TBCs)
Rare earth doped
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-c6dc61dc7b3377b5136da0a896780236cf7f1edc8d76009d2f3a4dbf3f6395a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2510602675
PQPubID 2045264
ParticipantIDs proquest_journals_2510602675
crossref_citationtrail_10_1016_j_corsci_2020_109230
crossref_primary_10_1016_j_corsci_2020_109230
elsevier_sciencedirect_doi_10_1016_j_corsci_2020_109230
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-15
PublicationDateYYYYMMDD 2021-04-15
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-15
  day: 15
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Corrosion science
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References de Wet, Taylor, Stott (bib0025) 1993; 3
Yang, Ye, Yan, Guo (bib0260) 2020; 46
A.R. J (bib0235) 2005
Kang, Bai, Bao, Wang, Chen, Gao, Li (bib0245) 2017; 694
Liu, Cai, Zhu (bib0115) 2018; 44
Zacate, Minervini, Bradfield, Grimes, Sickafus (bib0190) 2000; 128
Li, Chen, Zheng, Li, Li, Peng (bib0265) 2019; 483
Drexler, Gledhill, Shinoda, Vasiliev, Reddy, Sampath, Padture (bib0125) 2011; 23
Khan, Song, Huang, Zhou, Xiong, Li, Lü, Chen, Lu (bib0240) 2019; 476
Wang, Guo, Li, Peng, Ma, Gong, Guo (bib0060) 2015; 41
Belomestnykh, Tesleva (bib0215) 2004; 49
Cai, Jiang, Wang, Liu, Cao (bib0050) 2019; 45
Duffy, Ingram (bib0150) 1976; 21
Zhang, Zhou, Liu, Deng, Deng, Deng (bib0080) 2016; 42
Perrudin, Vidal-Sétif, Rio, Petitjean, Panteix, Vilasi (bib0255) 2019; 39
Evans, Mumm, Hutchinson, Meier, Pettit (bib0010) 2001; 46
Steinke, Sebold, Mack, Vaßen, Stöver (bib0015) 2010; 205
Ratsifaritana, Klemens (bib0285) 1987; 8
Krämer, Yang, Levi (bib0105) 2008; 91
Yu, Lin, Wang, Chen, Huang (bib0200) 2009; 255
Zhou, Wang, Xu (bib0325) 2007; 452-453
Liu, Yao, Wang, Yang, Li, Li (bib0330) 2016; 25
Jaffe, Bachorz, Gutowski (bib0180) 2005; 72
Mack, Wobst, Jarligo, Sebold, Vaßen (bib0020) 2017; 324
Sun, Xue, He, He, Li, Guo (bib0055) 2019; 45
Turcer, Krause, Garces, Zhang, Padture (bib0250) 2018; 38
Wang, Dong, Wang, Di, Li, Feng (bib0095) 2019; 45
Feng, Xiao, Zhou, Pan (bib0205) 2013; 61
Stott, de Wet, Taylor (bib0030) 1994; 19
Wang, Lai, Guo, Wang, Pan (bib0070) 2019; 102
Clarke (bib0220) 2003; 163-164
Drexler, Ortiz, Padture (bib0135) 2012; 60
Wang, Wei, Hong, Xuan, Shan (bib0170) 2014; 584
Zhang, Guo, Yang, Guo, Zhang, Gong (bib0295) 2012; 25
Kumar, Jordan, Gell, Roth, Jiang, Wang, Rommel (bib0075) 2017; 327
He, Evans, Hutchinson (bib0280) 2000; 48
Klemens (bib0305) 1999; 263-264
Hayashi, Saitou, Maruyama, Inaba, Kawamura, Mori (bib0320) 2005; 176
Fang, Wang, Huang, Ye (bib0165) 2020; 173
Qu, Li, Chen, Li, Pei, Gong (bib0100) 2020; 162
Zhang, Fu, Wang, Yang (bib0195) 2014; 261
Chen, Wang, Liu, Ning (bib0315) 2019; 806
Aygun, Vasiliev, Padture, Ma (bib0120) 2007; 55
Chong, Jiang, Zhou, Feng (bib0210) 2016; 42
Krause, Garces, Herrmann, Padture (bib0130) 2017; 100
Levi, Hutchinson, Vidal-Sétif, Johnson (bib0035) 2012; 37
Fan, Bai, Liu, Kang, Wang, Wang, Tao (bib0140) 2019; 45
Zheng, Chen, Li, Shu, Peng (bib0175) 2017; 126
Guo, Yan, Yu, Yang, Li (bib0090) 2019; 154
Khan, Lu (bib0005) 2007; 201
Duffy (bib0155) 1997; 80
Wu, Ma, Liu, Liu, Wang (bib0275) 2016; 42
Nieto, Walock, Ghoshal, Zhu, Gamble, Barnett, Murugan, Pepi, Rowe, Pegg (bib0065) 2018; 349
Klemens (bib0290) 2002; 316-317
Drexler, Aygun, Li, Vaßen, Steinke, Padture (bib0040) 2010; 204
Mercer, Faulhaber, Evans, Darolia (bib0045) 2005; 53
Yu, Wang, Guo, Yu, Ye, Li, Wang, Zheng Long (bib0110) 2018; 44
Wang, Sun, Jing, Liu, Zhang, Yu, Yuan, Dong, Zhou, Cao (bib0300) 2018; 38
Qu, Sparks, Pan, Clarke (bib0310) 2011; 59
Krause, Senturk, Garces, Dwivedi, Ortiz, Sampath, Padture (bib0145) 2014; 97
Morelli, Slack (bib0225) 2006
Adam (bib0270) 1957; 180
Zhou, Li, Zhang, Wang, Zheng, Li, Peng (bib0185) 2020; 513
Guo, Li, Cheng, Zhang, He, Zhang, Ye (bib0085) 2017; 100
Clarke, Phillpot (bib0230) 2005; 8
Fang, Wang, Huang, Ye (bib0160) 2019; 45
Clarke (10.1016/j.corsci.2020.109230_bib0220) 2003; 163-164
Qu (10.1016/j.corsci.2020.109230_bib0310) 2011; 59
Drexler (10.1016/j.corsci.2020.109230_bib0040) 2010; 204
Klemens (10.1016/j.corsci.2020.109230_bib0305) 1999; 263-264
Kang (10.1016/j.corsci.2020.109230_bib0245) 2017; 694
Mercer (10.1016/j.corsci.2020.109230_bib0045) 2005; 53
Cai (10.1016/j.corsci.2020.109230_bib0050) 2019; 45
Kumar (10.1016/j.corsci.2020.109230_bib0075) 2017; 327
Wang (10.1016/j.corsci.2020.109230_bib0095) 2019; 45
Wang (10.1016/j.corsci.2020.109230_bib0300) 2018; 38
de Wet (10.1016/j.corsci.2020.109230_bib0025) 1993; 3
Nieto (10.1016/j.corsci.2020.109230_bib0065) 2018; 349
Stott (10.1016/j.corsci.2020.109230_bib0030) 1994; 19
Klemens (10.1016/j.corsci.2020.109230_bib0290) 2002; 316-317
Steinke (10.1016/j.corsci.2020.109230_bib0015) 2010; 205
Drexler (10.1016/j.corsci.2020.109230_bib0135) 2012; 60
Zhang (10.1016/j.corsci.2020.109230_bib0080) 2016; 42
Duffy (10.1016/j.corsci.2020.109230_bib0155) 1997; 80
Turcer (10.1016/j.corsci.2020.109230_bib0250) 2018; 38
Levi (10.1016/j.corsci.2020.109230_bib0035) 2012; 37
Fang (10.1016/j.corsci.2020.109230_bib0165) 2020; 173
Morelli (10.1016/j.corsci.2020.109230_bib0225) 2006
Khan (10.1016/j.corsci.2020.109230_bib0240) 2019; 476
Ratsifaritana (10.1016/j.corsci.2020.109230_bib0285) 1987; 8
Belomestnykh (10.1016/j.corsci.2020.109230_bib0215) 2004; 49
Fan (10.1016/j.corsci.2020.109230_bib0140) 2019; 45
Zheng (10.1016/j.corsci.2020.109230_bib0175) 2017; 126
Qu (10.1016/j.corsci.2020.109230_bib0100) 2020; 162
Krause (10.1016/j.corsci.2020.109230_bib0145) 2014; 97
Zacate (10.1016/j.corsci.2020.109230_bib0190) 2000; 128
Wang (10.1016/j.corsci.2020.109230_bib0170) 2014; 584
Perrudin (10.1016/j.corsci.2020.109230_bib0255) 2019; 39
Aygun (10.1016/j.corsci.2020.109230_bib0120) 2007; 55
Clarke (10.1016/j.corsci.2020.109230_bib0230) 2005; 8
Drexler (10.1016/j.corsci.2020.109230_bib0125) 2011; 23
Khan (10.1016/j.corsci.2020.109230_bib0005) 2007; 201
Jaffe (10.1016/j.corsci.2020.109230_bib0180) 2005; 72
Chong (10.1016/j.corsci.2020.109230_bib0210) 2016; 42
Yu (10.1016/j.corsci.2020.109230_bib0110) 2018; 44
Duffy (10.1016/j.corsci.2020.109230_bib0150) 1976; 21
Adam (10.1016/j.corsci.2020.109230_bib0270) 1957; 180
Zhang (10.1016/j.corsci.2020.109230_bib0295) 2012; 25
Liu (10.1016/j.corsci.2020.109230_bib0330) 2016; 25
Evans (10.1016/j.corsci.2020.109230_bib0010) 2001; 46
Yu (10.1016/j.corsci.2020.109230_bib0200) 2009; 255
Zhang (10.1016/j.corsci.2020.109230_bib0195) 2014; 261
Wu (10.1016/j.corsci.2020.109230_bib0275) 2016; 42
He (10.1016/j.corsci.2020.109230_bib0280) 2000; 48
Yang (10.1016/j.corsci.2020.109230_bib0260) 2020; 46
Wang (10.1016/j.corsci.2020.109230_bib0070) 2019; 102
Feng (10.1016/j.corsci.2020.109230_bib0205) 2013; 61
Mack (10.1016/j.corsci.2020.109230_bib0020) 2017; 324
Hayashi (10.1016/j.corsci.2020.109230_bib0320) 2005; 176
Wang (10.1016/j.corsci.2020.109230_bib0060) 2015; 41
Zhou (10.1016/j.corsci.2020.109230_bib0185) 2020; 513
Krause (10.1016/j.corsci.2020.109230_bib0130) 2017; 100
Chen (10.1016/j.corsci.2020.109230_bib0315) 2019; 806
Krämer (10.1016/j.corsci.2020.109230_bib0105) 2008; 91
Liu (10.1016/j.corsci.2020.109230_bib0115) 2018; 44
Sun (10.1016/j.corsci.2020.109230_bib0055) 2019; 45
A.R. J (10.1016/j.corsci.2020.109230_bib0235) 2005
Guo (10.1016/j.corsci.2020.109230_bib0090) 2019; 154
Li (10.1016/j.corsci.2020.109230_bib0265) 2019; 483
Fang (10.1016/j.corsci.2020.109230_bib0160) 2019; 45
Zhou (10.1016/j.corsci.2020.109230_bib0325) 2007; 452-453
Guo (10.1016/j.corsci.2020.109230_bib0085) 2017; 100
References_xml – volume: 204
  start-page: 2683
  year: 2010
  end-page: 2688
  ident: bib0040
  article-title: Thermal-gradient testing of thermal barrier coatings under simultaneous attack by molten glassy deposits and its mitigation
  publication-title: Surf. Coat. Tech.
– volume: 476
  start-page: 1096
  year: 2019
  end-page: 1107
  ident: bib0240
  article-title: Diffusion characteristics and structural stability of Pt modified β-NiAl/γ′- Ni
  publication-title: Appl. Surf. Sci.
– volume: 126
  start-page: 286
  year: 2017
  end-page: 294
  ident: bib0175
  article-title: High-temperature corrosion mechanism of YSZ coatings subject to calcium-magnesium-aluminosilicate (CMAS) deposits: first-principles calculations
  publication-title: Corros. Sci.
– volume: 25
  start-page: 948
  year: 2012
  end-page: 953
  ident: bib0295
  article-title: Influence of Gd
  publication-title: Chin. J. Aeronaut.
– volume: 3
  start-page: 655
  year: 1993
  end-page: 663
  ident: bib0025
  article-title: Corrosion mechanisms of ZrO
  publication-title: J. Phys. Iv
– volume: 49
  start-page: 1098
  year: 2004
  end-page: 1100
  ident: bib0215
  article-title: Interrelation between anharmonicity and lateral strain in quasi-isotropic polycrystalline solids
  publication-title: Tech. Phys+.
– volume: 37
  start-page: 932
  year: 2012
  end-page: 941
  ident: bib0035
  article-title: Environmental degradation of thermal barrier coatings by molten deposits
  publication-title: MRS Bull.
– volume: 44
  start-page: 452
  year: 2018
  end-page: 458
  ident: bib0115
  article-title: CMAS (CaO-MgO-Al
  publication-title: Ceram. Int.
– volume: 44
  start-page: 10220
  year: 2018
  end-page: 10228
  ident: bib0110
  article-title: Hot corrosion behavior of BaLa
  publication-title: Ceram. Int.
– volume: 48
  start-page: 2593
  year: 2000
  end-page: 2601
  ident: bib0280
  article-title: The ratcheting of compressed thermally grown thin films on ductile substrates
  publication-title: Acta Mater.
– volume: 176
  start-page: 613
  year: 2005
  end-page: 619
  ident: bib0320
  article-title: Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents
  publication-title: Solid State Ion.
– volume: 46
  start-page: 9311
  year: 2020
  end-page: 9318
  ident: bib0260
  article-title: The corrosion behaviors of thermal barrier material of M-YTaO
  publication-title: Ceram. Int.
– volume: 584
  start-page: 136
  year: 2014
  end-page: 141
  ident: bib0170
  article-title: Effect of processing and service conditions on the luminescence intensity of plasma sprayed (Tm
  publication-title: J. Alloys Compd.
– volume: 61
  start-page: 7364
  year: 2013
  end-page: 7383
  ident: bib0205
  article-title: Anisotropy in elasticity and thermal conductivity of monazite-type REPO
  publication-title: Acta Mater.
– year: 2005
  ident: bib0235
  article-title: Relation of elastic modulus to thermal expansion coefficient in elastic and viscoelastic materials
  publication-title: SEM Annual Conference and Exposition on Experimental and Applied Mechanics
– volume: 483
  start-page: 811
  year: 2019
  end-page: 818
  ident: bib0265
  article-title: Wetting mechanism of CMAS melt on YSZ surface at high temperature: first-principles calculation
  publication-title: Appl. Surf. Sci.
– volume: 806
  start-page: 580
  year: 2019
  end-page: 586
  ident: bib0315
  article-title: Investigation of ternary rare earth oxide-doped YSZ and its high temperature stability
  publication-title: J. Alloys Compd.
– volume: 45
  start-page: 17409
  year: 2019
  end-page: 17419
  ident: bib0095
  article-title: CMAS corrosion resistance in high temperature and rainwater environment of double-layer thermal barrier coatings odified by rare earth
  publication-title: Ceram. Int.
– volume: 45
  start-page: 15763
  year: 2019
  end-page: 15767
  ident: bib0140
  article-title: Corrosion behavior of Sc
  publication-title: Ceram. Int.
– volume: 349
  start-page: 1107
  year: 2018
  end-page: 1116
  ident: bib0065
  article-title: Layered, composite, and doped thermal barrier coatings exposed to sand laden flows within a gas turbine engine: microstructural evolution, mechanical properties, and CMAS deposition
  publication-title: Surf. Coat. Tech.
– volume: 45
  start-page: 19710
  year: 2019
  end-page: 19719
  ident: bib0160
  article-title: Corrosion resistance and thermal-mechanical properties of ceramic pellets to molten calcium-magnesium-alumina-silicate (CMAS)
  publication-title: Ceram. Int.
– volume: 263-264
  start-page: 102
  year: 1999
  end-page: 104
  ident: bib0305
  article-title: Phonon scattering by oxygen vacancies in ceramics
  publication-title: Physica B Condens. Matter
– volume: 19
  start-page: 46
  year: 1994
  end-page: 49
  ident: bib0030
  article-title: Degradation of thermal-barrier coatings at very high temperatures
  publication-title: MRS Bull.
– volume: 45
  start-page: 8138
  year: 2019
  end-page: 8144
  ident: bib0055
  article-title: Corrosion resistant plasma sprayed (Y
  publication-title: Ceram. Int.
– volume: 97
  start-page: 3943
  year: 2014
  end-page: 3949
  ident: bib0145
  article-title: 2ZrO
  publication-title: J. Am. Ceram. Soc.
– volume: 42
  start-page: 19349
  year: 2016
  end-page: 19356
  ident: bib0080
  article-title: Adsorbability and spreadability of calcium-magnesium-alumino-silicate (CMAS) on Al-modified 7YSZ thermal barrier coating
  publication-title: Ceram. Int.
– volume: 201
  start-page: 4653
  year: 2007
  end-page: 4658
  ident: bib0005
  article-title: Thermal cyclic behavior of air plasma sprayed thermal barrier coatings sprayed on stainless steel substrates
  publication-title: Surf. Coat. Tech.
– volume: 53
  start-page: 1029
  year: 2005
  end-page: 1039
  ident: bib0045
  article-title: A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate (CMAS) infiltration
  publication-title: Acta Mater.
– volume: 41
  start-page: 11662
  year: 2015
  end-page: 11669
  ident: bib0060
  article-title: Protectiveness of Pt and Gd
  publication-title: Ceram. Int.
– volume: 694
  start-page: 1320
  year: 2017
  end-page: 1330
  ident: bib0245
  article-title: Defects/CMAS corrosion resistance relationship in plasma sprayed YPSZ coating
  publication-title: J. Alloys Compd.
– volume: 60
  start-page: 5437
  year: 2012
  end-page: 5447
  ident: bib0135
  article-title: Composition effects of thermal barrier coating ceramics on their interaction with molten Ca-Mg-Al-silicate (CMAS) glass
  publication-title: Acta Mater.
– volume: 72
  year: 2005
  ident: bib0180
  article-title: Low-temperature polymorphs of ZrO
  publication-title: Phys. Rev. B
– volume: 316-317
  start-page: 413
  year: 2002
  end-page: 416
  ident: bib0290
  article-title: Effect of point defects on the decay of the longitudinal optical mode
  publication-title: Physica B.
– volume: 38
  start-page: 2841
  year: 2018
  end-page: 2850
  ident: bib0300
  article-title: Phase stability and thermo-physical properties of ZrO
  publication-title: J. Eur. Ceram. Soc.
– volume: 100
  start-page: 4209
  year: 2017
  end-page: 4218
  ident: bib0085
  article-title: Plasma sprayed nanostructured GdPO
  publication-title: J. Am. Ceram. Soc.
– year: 2006
  ident: bib0225
  article-title: High lattice thermal conductivity solids
  publication-title: High Temperature Conductivity Materials
– volume: 91
  start-page: 576
  year: 2008
  end-page: 583
  ident: bib0105
  article-title: Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts
  publication-title: J. Am. Ceram. Soc.
– volume: 42
  start-page: 2117
  year: 2016
  end-page: 2132
  ident: bib0210
  article-title: Stability, chemical bonding behavior, elastic properties and lattice thermal conductivity of molybdenum and tungsten borides under hydrostatic pressure
  publication-title: Ceram. Int.
– volume: 255
  start-page: 9032
  year: 2009
  end-page: 9039
  ident: bib0200
  article-title: First-principles study of the relaxation and energy of bcc-Fe, fcc-Fe and AISI-304 stainless steel surfaces
  publication-title: Appl. Surf. Sci.
– volume: 59
  start-page: 3841
  year: 2011
  end-page: 3850
  ident: bib0310
  article-title: Thermal conductivity of the gadolinium calcium silicate apatites: effect of different point defect types
  publication-title: Acta Mater.
– volume: 23
  start-page: 2419
  year: 2011
  end-page: 2424
  ident: bib0125
  article-title: Jet engine coatings for resisting volcanic ash damage
  publication-title: Adv. Mater.
– volume: 100
  start-page: 3175
  year: 2017
  end-page: 3187
  ident: bib0130
  article-title: Resistance of 2ZrO
  publication-title: J. Am. Ceram. Soc.
– volume: 128
  start-page: 243
  year: 2000
  end-page: 254
  ident: bib0190
  article-title: Defect cluster formation in M
  publication-title: Solid State Ion.
– volume: 452-453
  start-page: 569
  year: 2007
  end-page: 574
  ident: bib0325
  article-title: Comparison of thermal cycling behavior of plasma-sprayed nanostructured and traditional thermal barrier coatings
  publication-title: Mater. Sci. Eng. A
– volume: 45
  start-page: 14366
  year: 2019
  end-page: 14375
  ident: bib0050
  article-title: CMAS penetration-induced cracking behavior in the ceramic top coat of APS TBCs
  publication-title: Ceram. Int.
– volume: 102
  start-page: 2029
  year: 2019
  end-page: 2040
  ident: bib0070
  article-title: CaO-MgO-Al
  publication-title: J. Am. Ceram. Soc.
– volume: 25
  start-page: 213
  year: 2016
  end-page: 221
  ident: bib0330
  article-title: Plasma-sprayed thermal barrier coatings with enhanced splat bonding for CMAS and corrosion protection
  publication-title: J. Therm. Spray. Techn.
– volume: 21
  start-page: 373
  year: 1976
  end-page: 410
  ident: bib0150
  article-title: An interpretation of glass chemistry in terms of the optical basicity concept
  publication-title: J. Non-Cryst. Solids
– volume: 154
  start-page: 111
  year: 2019
  end-page: 122
  ident: bib0090
  article-title: CMAS resistance characteristics of LaPO
  publication-title: Corros. Sci.
– volume: 8
  start-page: 22
  year: 2005
  end-page: 29
  ident: bib0230
  article-title: Thermal barrier coating materials
  publication-title: Mater. Today
– volume: 324
  start-page: 36
  year: 2017
  end-page: 47
  ident: bib0020
  article-title: Lifetime and failure modes of plasma sprayed thermal barrier coatings in thermal gradient rig tests with simultaneous CMAS injection
  publication-title: Surf. Coat. Tech.
– volume: 55
  start-page: 6734
  year: 2007
  end-page: 6745
  ident: bib0120
  article-title: Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits
  publication-title: Acta Mater.
– volume: 42
  start-page: 12922
  year: 2016
  end-page: 12927
  ident: bib0275
  article-title: Thermal cycling behavior and bonding strength of single-ceramic-layer Sm
  publication-title: Ceram. Int.
– volume: 513
  start-page: 145712
  year: 2020
  end-page: 145719
  ident: bib0185
  article-title: Infiltration mechanism of Ca-Mg-Al-silicate (CMAS) melt on yttria stabilized zirconia (YSZ) columnar crystal at high temperature: first-principles research
  publication-title: Appl. Surf. Sci.
– volume: 163-164
  start-page: 67
  year: 2003
  end-page: 74
  ident: bib0220
  article-title: Materials selection guidelines for low thermal conductivity thermal barrier coatings
  publication-title: Surf. Coat. Tech.
– volume: 162
  year: 2020
  ident: bib0100
  article-title: Hot corrosion behavior and wettability of calcium-magnesium-alumina-silicate (CMAS) on LaTi
  publication-title: Corros. Sci.
– volume: 80
  start-page: 1416
  year: 1997
  end-page: 1420
  ident: bib0155
  article-title: Acid-base reactions of transition metal oxides in the solid state
  publication-title: J. Am. Ceram. Soc.
– volume: 261
  start-page: 136
  year: 2014
  end-page: 140
  ident: bib0195
  article-title: Oxygen vacancy induced carbon deposition at the triple phase boundary of the nickel/yttrium-stabilized zirconia (YSZ) interface
  publication-title: J. Power Sources
– volume: 39
  start-page: 4223
  year: 2019
  end-page: 4232
  ident: bib0255
  article-title: Influence of rare earth oxides on kinetics and reaction mechanisms in CMAS silicate melts
  publication-title: J. Eur. Ceram. Soc.
– volume: 173
  year: 2020
  ident: bib0165
  article-title: Investigation of CMAS resistance of sacrificial plasma-sprayed mullite-YSZ protective layer on 8YSZ thermal barrier coating
  publication-title: Corros. Sci.
– volume: 205
  start-page: 2287
  year: 2010
  end-page: 2295
  ident: bib0015
  article-title: A noval test approach for plasma-sprayed coatings tested simultaneously under CMAS and thermal gradient cycling conditions
  publication-title: Surf. Coat. Tech.
– volume: 327
  start-page: 126
  year: 2017
  end-page: 138
  ident: bib0075
  article-title: CMAS behavior of yttrium aluminum garnet (YAG) and yttria-stabilized zirconia (YSZ) thermal barrier coatings
  publication-title: Surf. Coat. Tech.
– volume: 38
  start-page: 3914
  year: 2018
  end-page: 3924
  ident: bib0250
  article-title: Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: part II, β-Yb
  publication-title: J. Eur. Ceram. Soc.
– volume: 46
  start-page: 505
  year: 2001
  end-page: 553
  ident: bib0010
  article-title: Mechanisms controlling the durability of thermal barrier coatings
  publication-title: Prog. Mater. Sci.
– volume: 180
  start-page: 809
  year: 1957
  end-page: 810
  ident: bib0270
  article-title: Use of the term’ young’s equation’ for contact
  publication-title: Nature
– volume: 8
  start-page: 737
  year: 1987
  end-page: 750
  ident: bib0285
  article-title: Scattering of phonons by vacancies
  publication-title: Int. J. Thermophys.
– volume: 3
  start-page: 655
  year: 1993
  ident: 10.1016/j.corsci.2020.109230_bib0025
  article-title: Corrosion mechanisms of ZrO2-Y2O3 thermal barrier coatings in the presence of molten middle-east sand
  publication-title: J. Phys. Iv
– year: 2005
  ident: 10.1016/j.corsci.2020.109230_bib0235
  article-title: Relation of elastic modulus to thermal expansion coefficient in elastic and viscoelastic materials
– volume: 80
  start-page: 1416
  year: 1997
  ident: 10.1016/j.corsci.2020.109230_bib0155
  article-title: Acid-base reactions of transition metal oxides in the solid state
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1997.tb02999.x
– volume: 263-264
  start-page: 102
  year: 1999
  ident: 10.1016/j.corsci.2020.109230_bib0305
  article-title: Phonon scattering by oxygen vacancies in ceramics
  publication-title: Physica B Condens. Matter
  doi: 10.1016/S0921-4526(98)01202-2
– volume: 41
  start-page: 11662
  year: 2015
  ident: 10.1016/j.corsci.2020.109230_bib0060
  article-title: Protectiveness of Pt and Gd2Zr2O7 layers on EB-PVD YSZ thermal barrier coatings against calcium-magnesium-alumina-silicate (CMAS) attack
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2015.05.128
– volume: 180
  start-page: 809
  year: 1957
  ident: 10.1016/j.corsci.2020.109230_bib0270
  article-title: Use of the term’ young’s equation’ for contact
  publication-title: Nature
  doi: 10.1038/180809a0
– volume: 45
  start-page: 17409
  year: 2019
  ident: 10.1016/j.corsci.2020.109230_bib0095
  article-title: CMAS corrosion resistance in high temperature and rainwater environment of double-layer thermal barrier coatings odified by rare earth
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.05.301
– volume: 162
  year: 2020
  ident: 10.1016/j.corsci.2020.109230_bib0100
  article-title: Hot corrosion behavior and wettability of calcium-magnesium-alumina-silicate (CMAS) on LaTi2Al9O19 ceramic
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2019.108199
– volume: 100
  start-page: 3175
  year: 2017
  ident: 10.1016/j.corsci.2020.109230_bib0130
  article-title: Resistance of 2ZrO2·Y2O3 top coat in thermal/environmental barrier coatings to calcia-magnesia-aluminosilicate attack at 1500 °C
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.14854
– volume: 97
  start-page: 3943
  year: 2014
  ident: 10.1016/j.corsci.2020.109230_bib0145
  article-title: 2ZrO2·Y2O3 thermal barrier coatings resistant to degradation by molten CMAS: part I, optical basicity considerations and processing
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.13210
– volume: 483
  start-page: 811
  year: 2019
  ident: 10.1016/j.corsci.2020.109230_bib0265
  article-title: Wetting mechanism of CMAS melt on YSZ surface at high temperature: first-principles calculation
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.04.009
– volume: 128
  start-page: 243
  year: 2000
  ident: 10.1016/j.corsci.2020.109230_bib0190
  article-title: Defect cluster formation in M2O3-doped cubic ZrO2
  publication-title: Solid State Ion.
  doi: 10.1016/S0167-2738(99)00348-3
– volume: 49
  start-page: 1098
  year: 2004
  ident: 10.1016/j.corsci.2020.109230_bib0215
  article-title: Interrelation between anharmonicity and lateral strain in quasi-isotropic polycrystalline solids
  publication-title: Tech. Phys+.
  doi: 10.1134/1.1787679
– volume: 806
  start-page: 580
  year: 2019
  ident: 10.1016/j.corsci.2020.109230_bib0315
  article-title: Investigation of ternary rare earth oxide-doped YSZ and its high temperature stability
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.07.198
– volume: 60
  start-page: 5437
  year: 2012
  ident: 10.1016/j.corsci.2020.109230_bib0135
  article-title: Composition effects of thermal barrier coating ceramics on their interaction with molten Ca-Mg-Al-silicate (CMAS) glass
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2012.06.053
– volume: 154
  start-page: 111
  year: 2019
  ident: 10.1016/j.corsci.2020.109230_bib0090
  article-title: CMAS resistance characteristics of LaPO4/YSZ thermal barrier coatings at 1250 °C-1350 °C
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2019.04.014
– volume: 45
  start-page: 19710
  year: 2019
  ident: 10.1016/j.corsci.2020.109230_bib0160
  article-title: Corrosion resistance and thermal-mechanical properties of ceramic pellets to molten calcium-magnesium-alumina-silicate (CMAS)
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.06.223
– volume: 476
  start-page: 1096
  year: 2019
  ident: 10.1016/j.corsci.2020.109230_bib0240
  article-title: Diffusion characteristics and structural stability of Pt modified β-NiAl/γ′- Ni3Al within NiCoCrAl alloy at high temperature
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.01.232
– volume: 55
  start-page: 6734
  year: 2007
  ident: 10.1016/j.corsci.2020.109230_bib0120
  article-title: Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2007.08.028
– volume: 452-453
  start-page: 569
  year: 2007
  ident: 10.1016/j.corsci.2020.109230_bib0325
  article-title: Comparison of thermal cycling behavior of plasma-sprayed nanostructured and traditional thermal barrier coatings
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2006.11.027
– volume: 45
  start-page: 14366
  year: 2019
  ident: 10.1016/j.corsci.2020.109230_bib0050
  article-title: CMAS penetration-induced cracking behavior in the ceramic top coat of APS TBCs
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.04.152
– volume: 45
  start-page: 8138
  year: 2019
  ident: 10.1016/j.corsci.2020.109230_bib0055
  article-title: Corrosion resistant plasma sprayed (Y0.8Gd0.2)3Al5O12/YSZ thermal barrier coatings towards molten calcium-magnesium-alumina-silicate
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.01.114
– volume: 100
  start-page: 4209
  year: 2017
  ident: 10.1016/j.corsci.2020.109230_bib0085
  article-title: Plasma sprayed nanostructured GdPO4 thermal barrier coatings: preparation microstructure and CMAS corrosion resistance
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.14924
– volume: 324
  start-page: 36
  year: 2017
  ident: 10.1016/j.corsci.2020.109230_bib0020
  article-title: Lifetime and failure modes of plasma sprayed thermal barrier coatings in thermal gradient rig tests with simultaneous CMAS injection
  publication-title: Surf. Coat. Tech.
  doi: 10.1016/j.surfcoat.2017.04.071
– volume: 91
  start-page: 576
  year: 2008
  ident: 10.1016/j.corsci.2020.109230_bib0105
  article-title: Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2007.02175.x
– volume: 42
  start-page: 2117
  year: 2016
  ident: 10.1016/j.corsci.2020.109230_bib0210
  article-title: Stability, chemical bonding behavior, elastic properties and lattice thermal conductivity of molybdenum and tungsten borides under hydrostatic pressure
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2015.09.105
– volume: 163-164
  start-page: 67
  year: 2003
  ident: 10.1016/j.corsci.2020.109230_bib0220
  article-title: Materials selection guidelines for low thermal conductivity thermal barrier coatings
  publication-title: Surf. Coat. Tech.
  doi: 10.1016/S0257-8972(02)00593-5
– volume: 37
  start-page: 932
  year: 2012
  ident: 10.1016/j.corsci.2020.109230_bib0035
  article-title: Environmental degradation of thermal barrier coatings by molten deposits
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2012.230
– volume: 694
  start-page: 1320
  year: 2017
  ident: 10.1016/j.corsci.2020.109230_bib0245
  article-title: Defects/CMAS corrosion resistance relationship in plasma sprayed YPSZ coating
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.10.074
– volume: 42
  start-page: 12922
  year: 2016
  ident: 10.1016/j.corsci.2020.109230_bib0275
  article-title: Thermal cycling behavior and bonding strength of single-ceramic-layer Sm2Zr2O7 and double-ceramic-layer Sm2Zr2O7/8YSZ thermal barrier coatings deposited by atmospheric plasma spraying
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.05.062
– volume: 59
  start-page: 3841
  year: 2011
  ident: 10.1016/j.corsci.2020.109230_bib0310
  article-title: Thermal conductivity of the gadolinium calcium silicate apatites: effect of different point defect types
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2011.03.008
– volume: 72
  year: 2005
  ident: 10.1016/j.corsci.2020.109230_bib0180
  article-title: Low-temperature polymorphs of ZrO2 and HfO2: a density-functional theory study
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.144107
– volume: 23
  start-page: 2419
  year: 2011
  ident: 10.1016/j.corsci.2020.109230_bib0125
  article-title: Jet engine coatings for resisting volcanic ash damage
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201004783
– volume: 61
  start-page: 7364
  year: 2013
  ident: 10.1016/j.corsci.2020.109230_bib0205
  article-title: Anisotropy in elasticity and thermal conductivity of monazite-type REPO4 (RE = La, Ce, Nd, Sm, Eu and Gd) from first-principles calculations
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.08.043
– volume: 25
  start-page: 213
  year: 2016
  ident: 10.1016/j.corsci.2020.109230_bib0330
  article-title: Plasma-sprayed thermal barrier coatings with enhanced splat bonding for CMAS and corrosion protection
  publication-title: J. Therm. Spray. Techn.
  doi: 10.1007/s11666-015-0345-9
– volume: 8
  start-page: 737
  year: 1987
  ident: 10.1016/j.corsci.2020.109230_bib0285
  article-title: Scattering of phonons by vacancies
  publication-title: Int. J. Thermophys.
  doi: 10.1007/BF00500791
– volume: 102
  start-page: 2029
  year: 2019
  ident: 10.1016/j.corsci.2020.109230_bib0070
  article-title: CaO-MgO-Al2O3-SiO2 corrosion behavior of air-plasma-sprayed (LaxYb1-x)2Zr2O7
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.16044
– volume: 8
  start-page: 22
  year: 2005
  ident: 10.1016/j.corsci.2020.109230_bib0230
  article-title: Thermal barrier coating materials
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(05)70934-2
– volume: 316-317
  start-page: 413
  year: 2002
  ident: 10.1016/j.corsci.2020.109230_bib0290
  article-title: Effect of point defects on the decay of the longitudinal optical mode
  publication-title: Physica B.
  doi: 10.1016/S0921-4526(02)00530-6
– volume: 19
  start-page: 46
  year: 1994
  ident: 10.1016/j.corsci.2020.109230_bib0030
  article-title: Degradation of thermal-barrier coatings at very high temperatures
  publication-title: MRS Bull.
  doi: 10.1557/S0883769400048223
– year: 2006
  ident: 10.1016/j.corsci.2020.109230_bib0225
  article-title: High lattice thermal conductivity solids
– volume: 44
  start-page: 452
  year: 2018
  ident: 10.1016/j.corsci.2020.109230_bib0115
  article-title: CMAS (CaO-MgO-Al2O3-SiO2) resistance of Y2O3-stabilized ZrO2 thermal barrier coatings with Pt layers
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.09.197
– volume: 39
  start-page: 4223
  year: 2019
  ident: 10.1016/j.corsci.2020.109230_bib0255
  article-title: Influence of rare earth oxides on kinetics and reaction mechanisms in CMAS silicate melts
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2019.06.036
– volume: 45
  start-page: 15763
  year: 2019
  ident: 10.1016/j.corsci.2020.109230_bib0140
  article-title: Corrosion behavior of Sc2O3-Y2O3 co-stabilized ZrO2 thermal barrier coatings with CMAS attack
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.05.063
– volume: 38
  start-page: 2841
  year: 2018
  ident: 10.1016/j.corsci.2020.109230_bib0300
  article-title: Phase stability and thermo-physical properties of ZrO2-CeO2-TiO2 ceramics for thermal barrier coatings
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2018.02.019
– volume: 349
  start-page: 1107
  year: 2018
  ident: 10.1016/j.corsci.2020.109230_bib0065
  article-title: Layered, composite, and doped thermal barrier coatings exposed to sand laden flows within a gas turbine engine: microstructural evolution, mechanical properties, and CMAS deposition
  publication-title: Surf. Coat. Tech.
  doi: 10.1016/j.surfcoat.2018.05.089
– volume: 53
  start-page: 1029
  year: 2005
  ident: 10.1016/j.corsci.2020.109230_bib0045
  article-title: A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate (CMAS) infiltration
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2004.11.028
– volume: 201
  start-page: 4653
  year: 2007
  ident: 10.1016/j.corsci.2020.109230_bib0005
  article-title: Thermal cyclic behavior of air plasma sprayed thermal barrier coatings sprayed on stainless steel substrates
  publication-title: Surf. Coat. Tech.
  doi: 10.1016/j.surfcoat.2006.10.022
– volume: 126
  start-page: 286
  year: 2017
  ident: 10.1016/j.corsci.2020.109230_bib0175
  article-title: High-temperature corrosion mechanism of YSZ coatings subject to calcium-magnesium-aluminosilicate (CMAS) deposits: first-principles calculations
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2017.07.010
– volume: 46
  start-page: 9311
  year: 2020
  ident: 10.1016/j.corsci.2020.109230_bib0260
  article-title: The corrosion behaviors of thermal barrier material of M-YTaO4 attacked by CMAS at 1250 °C
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.12.186
– volume: 21
  start-page: 373
  year: 1976
  ident: 10.1016/j.corsci.2020.109230_bib0150
  article-title: An interpretation of glass chemistry in terms of the optical basicity concept
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(76)90027-2
– volume: 513
  start-page: 145712
  year: 2020
  ident: 10.1016/j.corsci.2020.109230_bib0185
  article-title: Infiltration mechanism of Ca-Mg-Al-silicate (CMAS) melt on yttria stabilized zirconia (YSZ) columnar crystal at high temperature: first-principles research
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.145712
– volume: 173
  year: 2020
  ident: 10.1016/j.corsci.2020.109230_bib0165
  article-title: Investigation of CMAS resistance of sacrificial plasma-sprayed mullite-YSZ protective layer on 8YSZ thermal barrier coating
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2020.108764
– volume: 48
  start-page: 2593
  year: 2000
  ident: 10.1016/j.corsci.2020.109230_bib0280
  article-title: The ratcheting of compressed thermally grown thin films on ductile substrates
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(00)00053-7
– volume: 327
  start-page: 126
  year: 2017
  ident: 10.1016/j.corsci.2020.109230_bib0075
  article-title: CMAS behavior of yttrium aluminum garnet (YAG) and yttria-stabilized zirconia (YSZ) thermal barrier coatings
  publication-title: Surf. Coat. Tech.
  doi: 10.1016/j.surfcoat.2017.08.023
– volume: 584
  start-page: 136
  year: 2014
  ident: 10.1016/j.corsci.2020.109230_bib0170
  article-title: Effect of processing and service conditions on the luminescence intensity of plasma sprayed (Tm3+ + Dy3+) co-doped YSZ coatings
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2013.08.046
– volume: 205
  start-page: 2287
  year: 2010
  ident: 10.1016/j.corsci.2020.109230_bib0015
  article-title: A noval test approach for plasma-sprayed coatings tested simultaneously under CMAS and thermal gradient cycling conditions
  publication-title: Surf. Coat. Tech.
  doi: 10.1016/j.surfcoat.2010.09.008
– volume: 42
  start-page: 19349
  year: 2016
  ident: 10.1016/j.corsci.2020.109230_bib0080
  article-title: Adsorbability and spreadability of calcium-magnesium-alumino-silicate (CMAS) on Al-modified 7YSZ thermal barrier coating
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.09.106
– volume: 261
  start-page: 136
  year: 2014
  ident: 10.1016/j.corsci.2020.109230_bib0195
  article-title: Oxygen vacancy induced carbon deposition at the triple phase boundary of the nickel/yttrium-stabilized zirconia (YSZ) interface
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.03.056
– volume: 46
  start-page: 505
  year: 2001
  ident: 10.1016/j.corsci.2020.109230_bib0010
  article-title: Mechanisms controlling the durability of thermal barrier coatings
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/S0079-6425(00)00020-7
– volume: 255
  start-page: 9032
  year: 2009
  ident: 10.1016/j.corsci.2020.109230_bib0200
  article-title: First-principles study of the relaxation and energy of bcc-Fe, fcc-Fe and AISI-304 stainless steel surfaces
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2009.06.087
– volume: 38
  start-page: 3914
  year: 2018
  ident: 10.1016/j.corsci.2020.109230_bib0250
  article-title: Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: part II, β-Yb2Si2O7 and β-Sc2Si2O7
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2018.03.010
– volume: 204
  start-page: 2683
  year: 2010
  ident: 10.1016/j.corsci.2020.109230_bib0040
  article-title: Thermal-gradient testing of thermal barrier coatings under simultaneous attack by molten glassy deposits and its mitigation
  publication-title: Surf. Coat. Tech.
  doi: 10.1016/j.surfcoat.2010.02.026
– volume: 25
  start-page: 948
  year: 2012
  ident: 10.1016/j.corsci.2020.109230_bib0295
  article-title: Influence of Gd2O3 and Yb2O3 co-doping on phase stability, thermo-physical properties and sintering of 8YSZ
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/S1000-9361(11)60466-4
– volume: 176
  start-page: 613
  year: 2005
  ident: 10.1016/j.corsci.2020.109230_bib0320
  article-title: Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2004.08.021
– volume: 44
  start-page: 10220
  year: 2018
  ident: 10.1016/j.corsci.2020.109230_bib0110
  article-title: Hot corrosion behavior of BaLa2Ti3O10 exposed to calcium-magnesium-alumina-silicate at elevated temperatures
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.03.021
SSID ssj0002010
Score 2.5504787
Snippet •The Yb2O3 and Y2O3 co-stabilized ZrO2 towards enhanced CMAS resistance was proposed.•Improvement of CMAS resistance owing to a low diffusion rate of Yb3+.•The...
In this study, corrosion behavior of Yb2O3-Y2O3 co-stabilized ZrO2 (YbYSZ) was systematically investigated under CMAS melt attack. The result was found that...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109230
SubjectTerms Aluminum
Calcium magnesium silicates
Calcium-magnesium-alumina-silicate (CMAS)
Ceramic coatings
Corrosion
Corrosion tests
Diffusion rate
First principles
First-principles calculation
Magnesium aluminum silicates
Mathematical analysis
Phase stability
Physical properties
Rare earth doped
Thermal barrier coatings
Thermal barrier coatings (TBCs)
Thermal conductivity
Thermal expansion
Yttria-stabilized zirconia
Yttrium oxide
Zirconium dioxide
Title Corrosion behavior and thermos-physical properties of a promising Yb2O3 and Y2O3 co-stabilized ZrO2 ceramic for thermal barrier coatings subject to calcium-magnesium-aluminum-silicate (CMAS) deposition: Experiments and first-principles calculation
URI https://dx.doi.org/10.1016/j.corsci.2020.109230
https://www.proquest.com/docview/2510602675
Volume 182
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoED4ikKpfKBAxxMEzuJd7mtVq0WUNsDVNpyifxEQWwSJbsXDvxtrsw4dnkIqRI378qejeLZbybxN98Q8gLSeoX6kqyca84K6UqmCyzjctgNKfcQQbF2-Oy8Wl0W79bleo8sUy0M0ioj9k-YHtA6fnMc7-Zx3zRY44tSSLM19gCHtAEryotCope__v6L5oGnvRMaZwxnp_K5wPGCBzwwDU-JPOgqceRC_zs8_QXUIfqc3iN3Y9pIF9OV3Sd7rn1A7vwmJviQ_Fh2A9iE-0xT7T1VraWY4W26kfVxR2iP798HFFKlnacKP8Nmgw16pfmFCIuucGA6Brkjsme_OUs_DRecGjdgA3sKqe5kGOxpNWDbO5iukEM90nGn8e0O3XYUfs80uw3bqM-AqThSgIZNC4Oxmerv6Mvl2eLDK2pdIpC9oSfXfQfGcDm-gSSV9elgYAx2Y-OxR-Ty9OTjcsViWwdmhCi2zFTWVLk1UgshpS5zUVmVqdkc4ibq2Rsvfe6smVk8NJxb7oUqrPbCQzZVqko8Jvtt17onhFpfKeO4zIrcQWAFwHSuMpIbZ9Q84-qAiLSbtYma59h642udyG1f6skHavSBevKBA8KuV_WT5scN82VylPoP360hLN2w8jD5VR2xY6zBmbPQGKx8-t-Gn5HbHMk3KEpZHpL97bBzzyF72uqj8Pc4IrcWb9-vzn8CYowfJw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZGdwAOiJ9iY4APHOBgLbGTuOVWVZs6tnYHNqnjYjm2MwXRJEray_5xrryX2BUgpEncnCp-jeKX732J3_seIR-A1mvUl2TpJOcskS5leYJlXA67IcUFRFCsHV4ss_l18mWVrvbILNTCYFqlx_4B03u09r8c-7t53JQl1viiFNJ4hT3AgTbIB2Qf1anSEdmfnp3PlztAxg3fAZAjhhNCBV2f5gXveGAdXhR5L63EMR363xHqL6zuA9DpU_LEM0c6HS7uGdlz1XPy-Dc9wRfk56xuwSbcahrK76muLEWSt6471vhFoQ1-gm9RS5XWBdV4DOsNNuhNzi9FP-kGB6ZmQB8xgfbOWfqtveTUuBZ72FNgu4NhsJfrFjvfweka06g72m1z_MBDNzWF_zPlds3W-hZgFUcaALGsYNCVQwke_ThbTL9-otaFHLLP9GTXeqDrL6cogaeyJuwNdL1d33vsJbk-PbmazZnv7MCMEMmGmcyaLLZG5kJImaexyKyO9HgCoRMl7U0hi9hZM7a4bzixvBA6sXkhCiBUqc7EKzKq6sq9JtQWmTaOyyiJHcRWwEznMiO5cUZPIq4PiAirqYyXPcfuGz9UyG_7rgYfUOgDavCBA8J2s5pB9uOe82VwFPWH-yqITPfMPAp-pTx8dAr8Oep7g6WH_234PXk4v1pcqIuz5fkb8ohjLg5qVKZHZLRpt-4tkKlN_s4_LL8AFfch2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Corrosion+behavior+and+thermos-physical+properties+of+a+promising+Yb2O3+and+Y2O3+co-stabilized+ZrO2+ceramic+for+thermal+barrier+coatings+subject+to+calcium-magnesium-aluminum-silicate+%28CMAS%29+deposition%3A+Experiments+and+first-principles+calculation&rft.jtitle=Corrosion+science&rft.au=Fang%2C+Huanjie&rft.au=Wang%2C+Weize&rft.au=Huang%2C+Jibo&rft.au=Li%2C+Yuanjun&rft.date=2021-04-15&rft.issn=0010-938X&rft.volume=182&rft.spage=109230&rft_id=info:doi/10.1016%2Fj.corsci.2020.109230&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_corsci_2020_109230
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-938X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-938X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-938X&client=summon