Corrosion behavior and thermos-physical properties of a promising Yb2O3 and Y2O3 co-stabilized ZrO2 ceramic for thermal barrier coatings subject to calcium-magnesium-aluminum-silicate (CMAS) deposition: Experiments and first-principles calculation
•The Yb2O3 and Y2O3 co-stabilized ZrO2 towards enhanced CMAS resistance was proposed.•Improvement of CMAS resistance owing to a low diffusion rate of Yb3+.•The first-principles calculation was used to investigate the corrosion behavior.•YbYSZ shows better thermo-physical properties as compared with...
Saved in:
Published in | Corrosion science Vol. 182; p. 109230 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
15.04.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The Yb2O3 and Y2O3 co-stabilized ZrO2 towards enhanced CMAS resistance was proposed.•Improvement of CMAS resistance owing to a low diffusion rate of Yb3+.•The first-principles calculation was used to investigate the corrosion behavior.•YbYSZ shows better thermo-physical properties as compared with traditional YSZ.
In this study, corrosion behavior of Yb2O3-Y2O3 co-stabilized ZrO2 (YbYSZ) was systematically investigated under CMAS melt attack. The result was found that YbYSZ exhibited a better CMAS resistance than yttria stabilized zirconia (YSZ), which was attributed to the excellent phase stability. The degradation of grain caused by CMAS attack was greatly related to the diffusion rate of element substantially. Yb3+ exhibited a low diffusion rate contributing to good phase stability during corrosion. A corresponding first-principles calculation further confirmed this conclusion. Besides, YbYSZ showed a higher thermal expansion coefficient and lower thermal conductivity as compared with YSZ counterpart. |
---|---|
AbstractList | In this study, corrosion behavior of Yb2O3-Y2O3 co-stabilized ZrO2 (YbYSZ) was systematically investigated under CMAS melt attack. The result was found that YbYSZ exhibited a better CMAS resistance than yttria stabilized zirconia (YSZ), which was attributed to the excellent phase stability. The degradation of grain caused by CMAS attack was greatly related to the diffusion rate of element substantially. Yb3+ exhibited a low diffusion rate contributing to good phase stability during corrosion. A corresponding first-principles calculation further confirmed this conclusion. Besides, YbYSZ showed a higher thermal expansion coefficient and lower thermal conductivity as compared with YSZ counterpart. •The Yb2O3 and Y2O3 co-stabilized ZrO2 towards enhanced CMAS resistance was proposed.•Improvement of CMAS resistance owing to a low diffusion rate of Yb3+.•The first-principles calculation was used to investigate the corrosion behavior.•YbYSZ shows better thermo-physical properties as compared with traditional YSZ. In this study, corrosion behavior of Yb2O3-Y2O3 co-stabilized ZrO2 (YbYSZ) was systematically investigated under CMAS melt attack. The result was found that YbYSZ exhibited a better CMAS resistance than yttria stabilized zirconia (YSZ), which was attributed to the excellent phase stability. The degradation of grain caused by CMAS attack was greatly related to the diffusion rate of element substantially. Yb3+ exhibited a low diffusion rate contributing to good phase stability during corrosion. A corresponding first-principles calculation further confirmed this conclusion. Besides, YbYSZ showed a higher thermal expansion coefficient and lower thermal conductivity as compared with YSZ counterpart. |
ArticleNumber | 109230 |
Author | Li, Yuanjun Huang, Jibo Fang, Huanjie Wang, Weize Ye, Dongdong |
Author_xml | – sequence: 1 givenname: Huanjie surname: Fang fullname: Fang, Huanjie – sequence: 2 givenname: Weize surname: Wang fullname: Wang, Weize email: wangwz@ecust.edu.cn – sequence: 3 givenname: Jibo surname: Huang fullname: Huang, Jibo – sequence: 4 givenname: Yuanjun surname: Li fullname: Li, Yuanjun – sequence: 5 givenname: Dongdong surname: Ye fullname: Ye, Dongdong |
BookMark | eNqFkc1u1DAUhS1UJKaFN2BhiQ0sMtjxjJN0gVSNyo9UNAtAomwsx3Y6d5TYwXYqyouz5WbCigWsfG2d8_nY55yc-eAdIc85W3PG5evj2oSYDKxLVs5HTSnYI7LiddUUbNPIM7JijLOiEfXXJ-Q8pSNjqORsRX7tQowhQfC0dQd9DyFS7S3NBxeHkIrx8JDA6J6OMYwuZnCJho7qeT9AAn9Hb9tyL06m23kwoUhZt9DDT2fpt7gvqXFRD2Boh_ATGHmtjhFcRLnOSEk0Te3RmUxzoHifgWkoBn3nXZon3U8DeBwSco3Ojr7cfbz69IpaN2L6jPkv6fUPTAiD8zmd4nQQUy7GCN7A2GPwmTv1elY_JY873Sf37M96Qb68vf68e1_c7N992F3dFEaITS6MtEZya6pWiKpqt1xIq5muG1nVrBTSdFXHnTW1rSRjjS07oTe27UQnRbPVUlyQFwsX_-v75FJWxzBFj1eqcsuZZKWstqi6XFQGu0jRdcpAPuXMUUOvOFNz0eqolqLVXLRaikbz5i8zPnnQ8eF_tjeLzeHz77EKhQrnjbMQsQdlA_wb8BuF2Mzv |
CitedBy_id | crossref_primary_10_1016_j_ceramint_2021_06_027 crossref_primary_10_1016_j_surfcoat_2021_127879 crossref_primary_10_1016_j_ceramint_2022_12_099 crossref_primary_10_1016_j_ceramint_2024_09_275 crossref_primary_10_1016_j_corsci_2021_109872 crossref_primary_10_1016_j_corsci_2022_110631 crossref_primary_10_3390_ceramics4030035 crossref_primary_10_1016_j_ceramint_2022_07_107 crossref_primary_10_1016_j_ceramint_2023_01_053 crossref_primary_10_1039_D2NJ05110A crossref_primary_10_1016_j_corsci_2023_111526 crossref_primary_10_1016_j_matchar_2021_111418 crossref_primary_10_1016_j_jeurceramsoc_2023_09_025 crossref_primary_10_1016_j_ceramint_2023_03_068 crossref_primary_10_1016_j_ceramint_2022_11_040 crossref_primary_10_1111_jace_19988 crossref_primary_10_3390_coatings14091123 crossref_primary_10_3390_coatings14080928 crossref_primary_10_1002_maco_202313813 crossref_primary_10_1016_j_mtcomm_2023_107514 crossref_primary_10_1016_j_surfcoat_2024_130623 crossref_primary_10_3390_met12101687 crossref_primary_10_1016_j_ceramint_2022_10_285 crossref_primary_10_1016_j_ceramint_2024_05_245 crossref_primary_10_3390_coatings14121614 crossref_primary_10_1016_j_surfcoat_2024_130944 crossref_primary_10_1007_s11665_023_08091_1 crossref_primary_10_3390_coatings11121477 crossref_primary_10_1016_j_hazadv_2024_100539 crossref_primary_10_1007_s44251_023_00005_6 crossref_primary_10_1016_j_corsci_2023_111542 crossref_primary_10_1016_j_mtcomm_2023_105409 crossref_primary_10_1016_j_surfcoat_2023_130270 crossref_primary_10_1007_s11666_022_01498_7 crossref_primary_10_1016_j_jeurceramsoc_2023_02_014 crossref_primary_10_1016_j_surfcoat_2023_130278 crossref_primary_10_3390_coatings12050648 crossref_primary_10_1016_j_ceramint_2024_09_250 crossref_primary_10_1016_j_surfcoat_2023_129679 crossref_primary_10_1016_j_corsci_2021_109899 crossref_primary_10_3390_coatings12060804 crossref_primary_10_1016_j_ceramint_2023_09_138 crossref_primary_10_1016_j_jeurceramsoc_2023_05_020 crossref_primary_10_1016_j_corsci_2023_111626 crossref_primary_10_1016_j_jmrt_2023_09_062 crossref_primary_10_1007_s11665_023_08164_1 crossref_primary_10_1016_j_surfcoat_2021_127864 crossref_primary_10_1007_s10853_021_06485_x crossref_primary_10_1111_jace_19165 crossref_primary_10_1016_j_jmrt_2025_01_050 crossref_primary_10_1111_jace_20305 crossref_primary_10_1016_j_corsci_2023_111754 crossref_primary_10_1111_jace_20302 |
Cites_doi | 10.1111/j.1151-2916.1997.tb02999.x 10.1016/S0921-4526(98)01202-2 10.1016/j.ceramint.2015.05.128 10.1038/180809a0 10.1016/j.ceramint.2019.05.301 10.1016/j.corsci.2019.108199 10.1111/jace.14854 10.1111/jace.13210 10.1016/j.apsusc.2019.04.009 10.1016/S0167-2738(99)00348-3 10.1134/1.1787679 10.1016/j.jallcom.2019.07.198 10.1016/j.actamat.2012.06.053 10.1016/j.corsci.2019.04.014 10.1016/j.ceramint.2019.06.223 10.1016/j.apsusc.2019.01.232 10.1016/j.actamat.2007.08.028 10.1016/j.msea.2006.11.027 10.1016/j.ceramint.2019.04.152 10.1016/j.ceramint.2019.01.114 10.1111/jace.14924 10.1016/j.surfcoat.2017.04.071 10.1111/j.1551-2916.2007.02175.x 10.1016/j.ceramint.2015.09.105 10.1016/S0257-8972(02)00593-5 10.1557/mrs.2012.230 10.1016/j.jallcom.2016.10.074 10.1016/j.ceramint.2016.05.062 10.1016/j.actamat.2011.03.008 10.1103/PhysRevB.72.144107 10.1002/adma.201004783 10.1016/j.actamat.2013.08.043 10.1007/s11666-015-0345-9 10.1007/BF00500791 10.1111/jace.16044 10.1016/S1369-7021(05)70934-2 10.1016/S0921-4526(02)00530-6 10.1557/S0883769400048223 10.1016/j.ceramint.2017.09.197 10.1016/j.jeurceramsoc.2019.06.036 10.1016/j.ceramint.2019.05.063 10.1016/j.jeurceramsoc.2018.02.019 10.1016/j.surfcoat.2018.05.089 10.1016/j.actamat.2004.11.028 10.1016/j.surfcoat.2006.10.022 10.1016/j.corsci.2017.07.010 10.1016/j.ceramint.2019.12.186 10.1016/0022-3093(76)90027-2 10.1016/j.apsusc.2020.145712 10.1016/j.corsci.2020.108764 10.1016/S1359-6454(00)00053-7 10.1016/j.surfcoat.2017.08.023 10.1016/j.jallcom.2013.08.046 10.1016/j.surfcoat.2010.09.008 10.1016/j.ceramint.2016.09.106 10.1016/j.jpowsour.2014.03.056 10.1016/S0079-6425(00)00020-7 10.1016/j.apsusc.2009.06.087 10.1016/j.jeurceramsoc.2018.03.010 10.1016/j.surfcoat.2010.02.026 10.1016/S1000-9361(11)60466-4 10.1016/j.ssi.2004.08.021 10.1016/j.ceramint.2018.03.021 |
ContentType | Journal Article |
Copyright | 2020 Copyright Elsevier BV Apr 15, 2021 |
Copyright_xml | – notice: 2020 – notice: Copyright Elsevier BV Apr 15, 2021 |
DBID | AAYXX CITATION 7SE 8BQ 8FD F28 FR3 JG9 |
DOI | 10.1016/j.corsci.2020.109230 |
DatabaseName | CrossRef Corrosion Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineering Research Database Technology Research Database Corrosion Abstracts ANTE: Abstracts in New Technology & Engineering METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0496 |
ExternalDocumentID | 10_1016_j_corsci_2020_109230 S0010938X20325117 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFRF ABJNI ABMAC ABXRA ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSM SSZ T5K XPP XSW ZMT ~G- 29F 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AELAQ AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW SMS SSH TAE VH1 WUQ 7SE 8BQ 8FD EFKBS F28 FR3 JG9 |
ID | FETCH-LOGICAL-c334t-c6dc61dc7b3377b5136da0a896780236cf7f1edc8d76009d2f3a4dbf3f6395a63 |
IEDL.DBID | .~1 |
ISSN | 0010-938X |
IngestDate | Fri Jul 25 04:14:43 EDT 2025 Tue Jul 01 01:02:14 EDT 2025 Thu Apr 24 22:53:52 EDT 2025 Fri Feb 23 02:47:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | First-principles calculation Calcium-magnesium-alumina-silicate (CMAS) Thermal barrier coatings (TBCs) Rare earth doped |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-c6dc61dc7b3377b5136da0a896780236cf7f1edc8d76009d2f3a4dbf3f6395a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2510602675 |
PQPubID | 2045264 |
ParticipantIDs | proquest_journals_2510602675 crossref_citationtrail_10_1016_j_corsci_2020_109230 crossref_primary_10_1016_j_corsci_2020_109230 elsevier_sciencedirect_doi_10_1016_j_corsci_2020_109230 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-15 |
PublicationDateYYYYMMDD | 2021-04-15 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Corrosion science |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | de Wet, Taylor, Stott (bib0025) 1993; 3 Yang, Ye, Yan, Guo (bib0260) 2020; 46 A.R. J (bib0235) 2005 Kang, Bai, Bao, Wang, Chen, Gao, Li (bib0245) 2017; 694 Liu, Cai, Zhu (bib0115) 2018; 44 Zacate, Minervini, Bradfield, Grimes, Sickafus (bib0190) 2000; 128 Li, Chen, Zheng, Li, Li, Peng (bib0265) 2019; 483 Drexler, Gledhill, Shinoda, Vasiliev, Reddy, Sampath, Padture (bib0125) 2011; 23 Khan, Song, Huang, Zhou, Xiong, Li, Lü, Chen, Lu (bib0240) 2019; 476 Wang, Guo, Li, Peng, Ma, Gong, Guo (bib0060) 2015; 41 Belomestnykh, Tesleva (bib0215) 2004; 49 Cai, Jiang, Wang, Liu, Cao (bib0050) 2019; 45 Duffy, Ingram (bib0150) 1976; 21 Zhang, Zhou, Liu, Deng, Deng, Deng (bib0080) 2016; 42 Perrudin, Vidal-Sétif, Rio, Petitjean, Panteix, Vilasi (bib0255) 2019; 39 Evans, Mumm, Hutchinson, Meier, Pettit (bib0010) 2001; 46 Steinke, Sebold, Mack, Vaßen, Stöver (bib0015) 2010; 205 Ratsifaritana, Klemens (bib0285) 1987; 8 Krämer, Yang, Levi (bib0105) 2008; 91 Yu, Lin, Wang, Chen, Huang (bib0200) 2009; 255 Zhou, Wang, Xu (bib0325) 2007; 452-453 Liu, Yao, Wang, Yang, Li, Li (bib0330) 2016; 25 Jaffe, Bachorz, Gutowski (bib0180) 2005; 72 Mack, Wobst, Jarligo, Sebold, Vaßen (bib0020) 2017; 324 Sun, Xue, He, He, Li, Guo (bib0055) 2019; 45 Turcer, Krause, Garces, Zhang, Padture (bib0250) 2018; 38 Wang, Dong, Wang, Di, Li, Feng (bib0095) 2019; 45 Feng, Xiao, Zhou, Pan (bib0205) 2013; 61 Stott, de Wet, Taylor (bib0030) 1994; 19 Wang, Lai, Guo, Wang, Pan (bib0070) 2019; 102 Clarke (bib0220) 2003; 163-164 Drexler, Ortiz, Padture (bib0135) 2012; 60 Wang, Wei, Hong, Xuan, Shan (bib0170) 2014; 584 Zhang, Guo, Yang, Guo, Zhang, Gong (bib0295) 2012; 25 Kumar, Jordan, Gell, Roth, Jiang, Wang, Rommel (bib0075) 2017; 327 He, Evans, Hutchinson (bib0280) 2000; 48 Klemens (bib0305) 1999; 263-264 Hayashi, Saitou, Maruyama, Inaba, Kawamura, Mori (bib0320) 2005; 176 Fang, Wang, Huang, Ye (bib0165) 2020; 173 Qu, Li, Chen, Li, Pei, Gong (bib0100) 2020; 162 Zhang, Fu, Wang, Yang (bib0195) 2014; 261 Chen, Wang, Liu, Ning (bib0315) 2019; 806 Aygun, Vasiliev, Padture, Ma (bib0120) 2007; 55 Chong, Jiang, Zhou, Feng (bib0210) 2016; 42 Krause, Garces, Herrmann, Padture (bib0130) 2017; 100 Levi, Hutchinson, Vidal-Sétif, Johnson (bib0035) 2012; 37 Fan, Bai, Liu, Kang, Wang, Wang, Tao (bib0140) 2019; 45 Zheng, Chen, Li, Shu, Peng (bib0175) 2017; 126 Guo, Yan, Yu, Yang, Li (bib0090) 2019; 154 Khan, Lu (bib0005) 2007; 201 Duffy (bib0155) 1997; 80 Wu, Ma, Liu, Liu, Wang (bib0275) 2016; 42 Nieto, Walock, Ghoshal, Zhu, Gamble, Barnett, Murugan, Pepi, Rowe, Pegg (bib0065) 2018; 349 Klemens (bib0290) 2002; 316-317 Drexler, Aygun, Li, Vaßen, Steinke, Padture (bib0040) 2010; 204 Mercer, Faulhaber, Evans, Darolia (bib0045) 2005; 53 Yu, Wang, Guo, Yu, Ye, Li, Wang, Zheng Long (bib0110) 2018; 44 Wang, Sun, Jing, Liu, Zhang, Yu, Yuan, Dong, Zhou, Cao (bib0300) 2018; 38 Qu, Sparks, Pan, Clarke (bib0310) 2011; 59 Krause, Senturk, Garces, Dwivedi, Ortiz, Sampath, Padture (bib0145) 2014; 97 Morelli, Slack (bib0225) 2006 Adam (bib0270) 1957; 180 Zhou, Li, Zhang, Wang, Zheng, Li, Peng (bib0185) 2020; 513 Guo, Li, Cheng, Zhang, He, Zhang, Ye (bib0085) 2017; 100 Clarke, Phillpot (bib0230) 2005; 8 Fang, Wang, Huang, Ye (bib0160) 2019; 45 Clarke (10.1016/j.corsci.2020.109230_bib0220) 2003; 163-164 Qu (10.1016/j.corsci.2020.109230_bib0310) 2011; 59 Drexler (10.1016/j.corsci.2020.109230_bib0040) 2010; 204 Klemens (10.1016/j.corsci.2020.109230_bib0305) 1999; 263-264 Kang (10.1016/j.corsci.2020.109230_bib0245) 2017; 694 Mercer (10.1016/j.corsci.2020.109230_bib0045) 2005; 53 Cai (10.1016/j.corsci.2020.109230_bib0050) 2019; 45 Kumar (10.1016/j.corsci.2020.109230_bib0075) 2017; 327 Wang (10.1016/j.corsci.2020.109230_bib0095) 2019; 45 Wang (10.1016/j.corsci.2020.109230_bib0300) 2018; 38 de Wet (10.1016/j.corsci.2020.109230_bib0025) 1993; 3 Nieto (10.1016/j.corsci.2020.109230_bib0065) 2018; 349 Stott (10.1016/j.corsci.2020.109230_bib0030) 1994; 19 Klemens (10.1016/j.corsci.2020.109230_bib0290) 2002; 316-317 Steinke (10.1016/j.corsci.2020.109230_bib0015) 2010; 205 Drexler (10.1016/j.corsci.2020.109230_bib0135) 2012; 60 Zhang (10.1016/j.corsci.2020.109230_bib0080) 2016; 42 Duffy (10.1016/j.corsci.2020.109230_bib0155) 1997; 80 Turcer (10.1016/j.corsci.2020.109230_bib0250) 2018; 38 Levi (10.1016/j.corsci.2020.109230_bib0035) 2012; 37 Fang (10.1016/j.corsci.2020.109230_bib0165) 2020; 173 Morelli (10.1016/j.corsci.2020.109230_bib0225) 2006 Khan (10.1016/j.corsci.2020.109230_bib0240) 2019; 476 Ratsifaritana (10.1016/j.corsci.2020.109230_bib0285) 1987; 8 Belomestnykh (10.1016/j.corsci.2020.109230_bib0215) 2004; 49 Fan (10.1016/j.corsci.2020.109230_bib0140) 2019; 45 Zheng (10.1016/j.corsci.2020.109230_bib0175) 2017; 126 Qu (10.1016/j.corsci.2020.109230_bib0100) 2020; 162 Krause (10.1016/j.corsci.2020.109230_bib0145) 2014; 97 Zacate (10.1016/j.corsci.2020.109230_bib0190) 2000; 128 Wang (10.1016/j.corsci.2020.109230_bib0170) 2014; 584 Perrudin (10.1016/j.corsci.2020.109230_bib0255) 2019; 39 Aygun (10.1016/j.corsci.2020.109230_bib0120) 2007; 55 Clarke (10.1016/j.corsci.2020.109230_bib0230) 2005; 8 Drexler (10.1016/j.corsci.2020.109230_bib0125) 2011; 23 Khan (10.1016/j.corsci.2020.109230_bib0005) 2007; 201 Jaffe (10.1016/j.corsci.2020.109230_bib0180) 2005; 72 Chong (10.1016/j.corsci.2020.109230_bib0210) 2016; 42 Yu (10.1016/j.corsci.2020.109230_bib0110) 2018; 44 Duffy (10.1016/j.corsci.2020.109230_bib0150) 1976; 21 Adam (10.1016/j.corsci.2020.109230_bib0270) 1957; 180 Zhang (10.1016/j.corsci.2020.109230_bib0295) 2012; 25 Liu (10.1016/j.corsci.2020.109230_bib0330) 2016; 25 Evans (10.1016/j.corsci.2020.109230_bib0010) 2001; 46 Yu (10.1016/j.corsci.2020.109230_bib0200) 2009; 255 Zhang (10.1016/j.corsci.2020.109230_bib0195) 2014; 261 Wu (10.1016/j.corsci.2020.109230_bib0275) 2016; 42 He (10.1016/j.corsci.2020.109230_bib0280) 2000; 48 Yang (10.1016/j.corsci.2020.109230_bib0260) 2020; 46 Wang (10.1016/j.corsci.2020.109230_bib0070) 2019; 102 Feng (10.1016/j.corsci.2020.109230_bib0205) 2013; 61 Mack (10.1016/j.corsci.2020.109230_bib0020) 2017; 324 Hayashi (10.1016/j.corsci.2020.109230_bib0320) 2005; 176 Wang (10.1016/j.corsci.2020.109230_bib0060) 2015; 41 Zhou (10.1016/j.corsci.2020.109230_bib0185) 2020; 513 Krause (10.1016/j.corsci.2020.109230_bib0130) 2017; 100 Chen (10.1016/j.corsci.2020.109230_bib0315) 2019; 806 Krämer (10.1016/j.corsci.2020.109230_bib0105) 2008; 91 Liu (10.1016/j.corsci.2020.109230_bib0115) 2018; 44 Sun (10.1016/j.corsci.2020.109230_bib0055) 2019; 45 A.R. J (10.1016/j.corsci.2020.109230_bib0235) 2005 Guo (10.1016/j.corsci.2020.109230_bib0090) 2019; 154 Li (10.1016/j.corsci.2020.109230_bib0265) 2019; 483 Fang (10.1016/j.corsci.2020.109230_bib0160) 2019; 45 Zhou (10.1016/j.corsci.2020.109230_bib0325) 2007; 452-453 Guo (10.1016/j.corsci.2020.109230_bib0085) 2017; 100 |
References_xml | – volume: 204 start-page: 2683 year: 2010 end-page: 2688 ident: bib0040 article-title: Thermal-gradient testing of thermal barrier coatings under simultaneous attack by molten glassy deposits and its mitigation publication-title: Surf. Coat. Tech. – volume: 476 start-page: 1096 year: 2019 end-page: 1107 ident: bib0240 article-title: Diffusion characteristics and structural stability of Pt modified β-NiAl/γ′- Ni publication-title: Appl. Surf. Sci. – volume: 126 start-page: 286 year: 2017 end-page: 294 ident: bib0175 article-title: High-temperature corrosion mechanism of YSZ coatings subject to calcium-magnesium-aluminosilicate (CMAS) deposits: first-principles calculations publication-title: Corros. Sci. – volume: 25 start-page: 948 year: 2012 end-page: 953 ident: bib0295 article-title: Influence of Gd publication-title: Chin. J. Aeronaut. – volume: 3 start-page: 655 year: 1993 end-page: 663 ident: bib0025 article-title: Corrosion mechanisms of ZrO publication-title: J. Phys. Iv – volume: 49 start-page: 1098 year: 2004 end-page: 1100 ident: bib0215 article-title: Interrelation between anharmonicity and lateral strain in quasi-isotropic polycrystalline solids publication-title: Tech. Phys+. – volume: 37 start-page: 932 year: 2012 end-page: 941 ident: bib0035 article-title: Environmental degradation of thermal barrier coatings by molten deposits publication-title: MRS Bull. – volume: 44 start-page: 452 year: 2018 end-page: 458 ident: bib0115 article-title: CMAS (CaO-MgO-Al publication-title: Ceram. Int. – volume: 44 start-page: 10220 year: 2018 end-page: 10228 ident: bib0110 article-title: Hot corrosion behavior of BaLa publication-title: Ceram. Int. – volume: 48 start-page: 2593 year: 2000 end-page: 2601 ident: bib0280 article-title: The ratcheting of compressed thermally grown thin films on ductile substrates publication-title: Acta Mater. – volume: 176 start-page: 613 year: 2005 end-page: 619 ident: bib0320 article-title: Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents publication-title: Solid State Ion. – volume: 46 start-page: 9311 year: 2020 end-page: 9318 ident: bib0260 article-title: The corrosion behaviors of thermal barrier material of M-YTaO publication-title: Ceram. Int. – volume: 584 start-page: 136 year: 2014 end-page: 141 ident: bib0170 article-title: Effect of processing and service conditions on the luminescence intensity of plasma sprayed (Tm publication-title: J. Alloys Compd. – volume: 61 start-page: 7364 year: 2013 end-page: 7383 ident: bib0205 article-title: Anisotropy in elasticity and thermal conductivity of monazite-type REPO publication-title: Acta Mater. – year: 2005 ident: bib0235 article-title: Relation of elastic modulus to thermal expansion coefficient in elastic and viscoelastic materials publication-title: SEM Annual Conference and Exposition on Experimental and Applied Mechanics – volume: 483 start-page: 811 year: 2019 end-page: 818 ident: bib0265 article-title: Wetting mechanism of CMAS melt on YSZ surface at high temperature: first-principles calculation publication-title: Appl. Surf. Sci. – volume: 806 start-page: 580 year: 2019 end-page: 586 ident: bib0315 article-title: Investigation of ternary rare earth oxide-doped YSZ and its high temperature stability publication-title: J. Alloys Compd. – volume: 45 start-page: 17409 year: 2019 end-page: 17419 ident: bib0095 article-title: CMAS corrosion resistance in high temperature and rainwater environment of double-layer thermal barrier coatings odified by rare earth publication-title: Ceram. Int. – volume: 45 start-page: 15763 year: 2019 end-page: 15767 ident: bib0140 article-title: Corrosion behavior of Sc publication-title: Ceram. Int. – volume: 349 start-page: 1107 year: 2018 end-page: 1116 ident: bib0065 article-title: Layered, composite, and doped thermal barrier coatings exposed to sand laden flows within a gas turbine engine: microstructural evolution, mechanical properties, and CMAS deposition publication-title: Surf. Coat. Tech. – volume: 45 start-page: 19710 year: 2019 end-page: 19719 ident: bib0160 article-title: Corrosion resistance and thermal-mechanical properties of ceramic pellets to molten calcium-magnesium-alumina-silicate (CMAS) publication-title: Ceram. Int. – volume: 263-264 start-page: 102 year: 1999 end-page: 104 ident: bib0305 article-title: Phonon scattering by oxygen vacancies in ceramics publication-title: Physica B Condens. Matter – volume: 19 start-page: 46 year: 1994 end-page: 49 ident: bib0030 article-title: Degradation of thermal-barrier coatings at very high temperatures publication-title: MRS Bull. – volume: 45 start-page: 8138 year: 2019 end-page: 8144 ident: bib0055 article-title: Corrosion resistant plasma sprayed (Y publication-title: Ceram. Int. – volume: 97 start-page: 3943 year: 2014 end-page: 3949 ident: bib0145 article-title: 2ZrO publication-title: J. Am. Ceram. Soc. – volume: 42 start-page: 19349 year: 2016 end-page: 19356 ident: bib0080 article-title: Adsorbability and spreadability of calcium-magnesium-alumino-silicate (CMAS) on Al-modified 7YSZ thermal barrier coating publication-title: Ceram. Int. – volume: 201 start-page: 4653 year: 2007 end-page: 4658 ident: bib0005 article-title: Thermal cyclic behavior of air plasma sprayed thermal barrier coatings sprayed on stainless steel substrates publication-title: Surf. Coat. Tech. – volume: 53 start-page: 1029 year: 2005 end-page: 1039 ident: bib0045 article-title: A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate (CMAS) infiltration publication-title: Acta Mater. – volume: 41 start-page: 11662 year: 2015 end-page: 11669 ident: bib0060 article-title: Protectiveness of Pt and Gd publication-title: Ceram. Int. – volume: 694 start-page: 1320 year: 2017 end-page: 1330 ident: bib0245 article-title: Defects/CMAS corrosion resistance relationship in plasma sprayed YPSZ coating publication-title: J. Alloys Compd. – volume: 60 start-page: 5437 year: 2012 end-page: 5447 ident: bib0135 article-title: Composition effects of thermal barrier coating ceramics on their interaction with molten Ca-Mg-Al-silicate (CMAS) glass publication-title: Acta Mater. – volume: 72 year: 2005 ident: bib0180 article-title: Low-temperature polymorphs of ZrO publication-title: Phys. Rev. B – volume: 316-317 start-page: 413 year: 2002 end-page: 416 ident: bib0290 article-title: Effect of point defects on the decay of the longitudinal optical mode publication-title: Physica B. – volume: 38 start-page: 2841 year: 2018 end-page: 2850 ident: bib0300 article-title: Phase stability and thermo-physical properties of ZrO publication-title: J. Eur. Ceram. Soc. – volume: 100 start-page: 4209 year: 2017 end-page: 4218 ident: bib0085 article-title: Plasma sprayed nanostructured GdPO publication-title: J. Am. Ceram. Soc. – year: 2006 ident: bib0225 article-title: High lattice thermal conductivity solids publication-title: High Temperature Conductivity Materials – volume: 91 start-page: 576 year: 2008 end-page: 583 ident: bib0105 article-title: Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts publication-title: J. Am. Ceram. Soc. – volume: 42 start-page: 2117 year: 2016 end-page: 2132 ident: bib0210 article-title: Stability, chemical bonding behavior, elastic properties and lattice thermal conductivity of molybdenum and tungsten borides under hydrostatic pressure publication-title: Ceram. Int. – volume: 255 start-page: 9032 year: 2009 end-page: 9039 ident: bib0200 article-title: First-principles study of the relaxation and energy of bcc-Fe, fcc-Fe and AISI-304 stainless steel surfaces publication-title: Appl. Surf. Sci. – volume: 59 start-page: 3841 year: 2011 end-page: 3850 ident: bib0310 article-title: Thermal conductivity of the gadolinium calcium silicate apatites: effect of different point defect types publication-title: Acta Mater. – volume: 23 start-page: 2419 year: 2011 end-page: 2424 ident: bib0125 article-title: Jet engine coatings for resisting volcanic ash damage publication-title: Adv. Mater. – volume: 100 start-page: 3175 year: 2017 end-page: 3187 ident: bib0130 article-title: Resistance of 2ZrO publication-title: J. Am. Ceram. Soc. – volume: 128 start-page: 243 year: 2000 end-page: 254 ident: bib0190 article-title: Defect cluster formation in M publication-title: Solid State Ion. – volume: 452-453 start-page: 569 year: 2007 end-page: 574 ident: bib0325 article-title: Comparison of thermal cycling behavior of plasma-sprayed nanostructured and traditional thermal barrier coatings publication-title: Mater. Sci. Eng. A – volume: 45 start-page: 14366 year: 2019 end-page: 14375 ident: bib0050 article-title: CMAS penetration-induced cracking behavior in the ceramic top coat of APS TBCs publication-title: Ceram. Int. – volume: 102 start-page: 2029 year: 2019 end-page: 2040 ident: bib0070 article-title: CaO-MgO-Al publication-title: J. Am. Ceram. Soc. – volume: 25 start-page: 213 year: 2016 end-page: 221 ident: bib0330 article-title: Plasma-sprayed thermal barrier coatings with enhanced splat bonding for CMAS and corrosion protection publication-title: J. Therm. Spray. Techn. – volume: 21 start-page: 373 year: 1976 end-page: 410 ident: bib0150 article-title: An interpretation of glass chemistry in terms of the optical basicity concept publication-title: J. Non-Cryst. Solids – volume: 154 start-page: 111 year: 2019 end-page: 122 ident: bib0090 article-title: CMAS resistance characteristics of LaPO publication-title: Corros. Sci. – volume: 8 start-page: 22 year: 2005 end-page: 29 ident: bib0230 article-title: Thermal barrier coating materials publication-title: Mater. Today – volume: 324 start-page: 36 year: 2017 end-page: 47 ident: bib0020 article-title: Lifetime and failure modes of plasma sprayed thermal barrier coatings in thermal gradient rig tests with simultaneous CMAS injection publication-title: Surf. Coat. Tech. – volume: 55 start-page: 6734 year: 2007 end-page: 6745 ident: bib0120 article-title: Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits publication-title: Acta Mater. – volume: 42 start-page: 12922 year: 2016 end-page: 12927 ident: bib0275 article-title: Thermal cycling behavior and bonding strength of single-ceramic-layer Sm publication-title: Ceram. Int. – volume: 513 start-page: 145712 year: 2020 end-page: 145719 ident: bib0185 article-title: Infiltration mechanism of Ca-Mg-Al-silicate (CMAS) melt on yttria stabilized zirconia (YSZ) columnar crystal at high temperature: first-principles research publication-title: Appl. Surf. Sci. – volume: 163-164 start-page: 67 year: 2003 end-page: 74 ident: bib0220 article-title: Materials selection guidelines for low thermal conductivity thermal barrier coatings publication-title: Surf. Coat. Tech. – volume: 162 year: 2020 ident: bib0100 article-title: Hot corrosion behavior and wettability of calcium-magnesium-alumina-silicate (CMAS) on LaTi publication-title: Corros. Sci. – volume: 80 start-page: 1416 year: 1997 end-page: 1420 ident: bib0155 article-title: Acid-base reactions of transition metal oxides in the solid state publication-title: J. Am. Ceram. Soc. – volume: 261 start-page: 136 year: 2014 end-page: 140 ident: bib0195 article-title: Oxygen vacancy induced carbon deposition at the triple phase boundary of the nickel/yttrium-stabilized zirconia (YSZ) interface publication-title: J. Power Sources – volume: 39 start-page: 4223 year: 2019 end-page: 4232 ident: bib0255 article-title: Influence of rare earth oxides on kinetics and reaction mechanisms in CMAS silicate melts publication-title: J. Eur. Ceram. Soc. – volume: 173 year: 2020 ident: bib0165 article-title: Investigation of CMAS resistance of sacrificial plasma-sprayed mullite-YSZ protective layer on 8YSZ thermal barrier coating publication-title: Corros. Sci. – volume: 205 start-page: 2287 year: 2010 end-page: 2295 ident: bib0015 article-title: A noval test approach for plasma-sprayed coatings tested simultaneously under CMAS and thermal gradient cycling conditions publication-title: Surf. Coat. Tech. – volume: 327 start-page: 126 year: 2017 end-page: 138 ident: bib0075 article-title: CMAS behavior of yttrium aluminum garnet (YAG) and yttria-stabilized zirconia (YSZ) thermal barrier coatings publication-title: Surf. Coat. Tech. – volume: 38 start-page: 3914 year: 2018 end-page: 3924 ident: bib0250 article-title: Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: part II, β-Yb publication-title: J. Eur. Ceram. Soc. – volume: 46 start-page: 505 year: 2001 end-page: 553 ident: bib0010 article-title: Mechanisms controlling the durability of thermal barrier coatings publication-title: Prog. Mater. Sci. – volume: 180 start-page: 809 year: 1957 end-page: 810 ident: bib0270 article-title: Use of the term’ young’s equation’ for contact publication-title: Nature – volume: 8 start-page: 737 year: 1987 end-page: 750 ident: bib0285 article-title: Scattering of phonons by vacancies publication-title: Int. J. Thermophys. – volume: 3 start-page: 655 year: 1993 ident: 10.1016/j.corsci.2020.109230_bib0025 article-title: Corrosion mechanisms of ZrO2-Y2O3 thermal barrier coatings in the presence of molten middle-east sand publication-title: J. Phys. Iv – year: 2005 ident: 10.1016/j.corsci.2020.109230_bib0235 article-title: Relation of elastic modulus to thermal expansion coefficient in elastic and viscoelastic materials – volume: 80 start-page: 1416 year: 1997 ident: 10.1016/j.corsci.2020.109230_bib0155 article-title: Acid-base reactions of transition metal oxides in the solid state publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1997.tb02999.x – volume: 263-264 start-page: 102 year: 1999 ident: 10.1016/j.corsci.2020.109230_bib0305 article-title: Phonon scattering by oxygen vacancies in ceramics publication-title: Physica B Condens. Matter doi: 10.1016/S0921-4526(98)01202-2 – volume: 41 start-page: 11662 year: 2015 ident: 10.1016/j.corsci.2020.109230_bib0060 article-title: Protectiveness of Pt and Gd2Zr2O7 layers on EB-PVD YSZ thermal barrier coatings against calcium-magnesium-alumina-silicate (CMAS) attack publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.05.128 – volume: 180 start-page: 809 year: 1957 ident: 10.1016/j.corsci.2020.109230_bib0270 article-title: Use of the term’ young’s equation’ for contact publication-title: Nature doi: 10.1038/180809a0 – volume: 45 start-page: 17409 year: 2019 ident: 10.1016/j.corsci.2020.109230_bib0095 article-title: CMAS corrosion resistance in high temperature and rainwater environment of double-layer thermal barrier coatings odified by rare earth publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.05.301 – volume: 162 year: 2020 ident: 10.1016/j.corsci.2020.109230_bib0100 article-title: Hot corrosion behavior and wettability of calcium-magnesium-alumina-silicate (CMAS) on LaTi2Al9O19 ceramic publication-title: Corros. Sci. doi: 10.1016/j.corsci.2019.108199 – volume: 100 start-page: 3175 year: 2017 ident: 10.1016/j.corsci.2020.109230_bib0130 article-title: Resistance of 2ZrO2·Y2O3 top coat in thermal/environmental barrier coatings to calcia-magnesia-aluminosilicate attack at 1500 °C publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.14854 – volume: 97 start-page: 3943 year: 2014 ident: 10.1016/j.corsci.2020.109230_bib0145 article-title: 2ZrO2·Y2O3 thermal barrier coatings resistant to degradation by molten CMAS: part I, optical basicity considerations and processing publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.13210 – volume: 483 start-page: 811 year: 2019 ident: 10.1016/j.corsci.2020.109230_bib0265 article-title: Wetting mechanism of CMAS melt on YSZ surface at high temperature: first-principles calculation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.04.009 – volume: 128 start-page: 243 year: 2000 ident: 10.1016/j.corsci.2020.109230_bib0190 article-title: Defect cluster formation in M2O3-doped cubic ZrO2 publication-title: Solid State Ion. doi: 10.1016/S0167-2738(99)00348-3 – volume: 49 start-page: 1098 year: 2004 ident: 10.1016/j.corsci.2020.109230_bib0215 article-title: Interrelation between anharmonicity and lateral strain in quasi-isotropic polycrystalline solids publication-title: Tech. Phys+. doi: 10.1134/1.1787679 – volume: 806 start-page: 580 year: 2019 ident: 10.1016/j.corsci.2020.109230_bib0315 article-title: Investigation of ternary rare earth oxide-doped YSZ and its high temperature stability publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.07.198 – volume: 60 start-page: 5437 year: 2012 ident: 10.1016/j.corsci.2020.109230_bib0135 article-title: Composition effects of thermal barrier coating ceramics on their interaction with molten Ca-Mg-Al-silicate (CMAS) glass publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.06.053 – volume: 154 start-page: 111 year: 2019 ident: 10.1016/j.corsci.2020.109230_bib0090 article-title: CMAS resistance characteristics of LaPO4/YSZ thermal barrier coatings at 1250 °C-1350 °C publication-title: Corros. Sci. doi: 10.1016/j.corsci.2019.04.014 – volume: 45 start-page: 19710 year: 2019 ident: 10.1016/j.corsci.2020.109230_bib0160 article-title: Corrosion resistance and thermal-mechanical properties of ceramic pellets to molten calcium-magnesium-alumina-silicate (CMAS) publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.06.223 – volume: 476 start-page: 1096 year: 2019 ident: 10.1016/j.corsci.2020.109230_bib0240 article-title: Diffusion characteristics and structural stability of Pt modified β-NiAl/γ′- Ni3Al within NiCoCrAl alloy at high temperature publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.01.232 – volume: 55 start-page: 6734 year: 2007 ident: 10.1016/j.corsci.2020.109230_bib0120 article-title: Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits publication-title: Acta Mater. doi: 10.1016/j.actamat.2007.08.028 – volume: 452-453 start-page: 569 year: 2007 ident: 10.1016/j.corsci.2020.109230_bib0325 article-title: Comparison of thermal cycling behavior of plasma-sprayed nanostructured and traditional thermal barrier coatings publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2006.11.027 – volume: 45 start-page: 14366 year: 2019 ident: 10.1016/j.corsci.2020.109230_bib0050 article-title: CMAS penetration-induced cracking behavior in the ceramic top coat of APS TBCs publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.04.152 – volume: 45 start-page: 8138 year: 2019 ident: 10.1016/j.corsci.2020.109230_bib0055 article-title: Corrosion resistant plasma sprayed (Y0.8Gd0.2)3Al5O12/YSZ thermal barrier coatings towards molten calcium-magnesium-alumina-silicate publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.01.114 – volume: 100 start-page: 4209 year: 2017 ident: 10.1016/j.corsci.2020.109230_bib0085 article-title: Plasma sprayed nanostructured GdPO4 thermal barrier coatings: preparation microstructure and CMAS corrosion resistance publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.14924 – volume: 324 start-page: 36 year: 2017 ident: 10.1016/j.corsci.2020.109230_bib0020 article-title: Lifetime and failure modes of plasma sprayed thermal barrier coatings in thermal gradient rig tests with simultaneous CMAS injection publication-title: Surf. Coat. Tech. doi: 10.1016/j.surfcoat.2017.04.071 – volume: 91 start-page: 576 year: 2008 ident: 10.1016/j.corsci.2020.109230_bib0105 article-title: Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2007.02175.x – volume: 42 start-page: 2117 year: 2016 ident: 10.1016/j.corsci.2020.109230_bib0210 article-title: Stability, chemical bonding behavior, elastic properties and lattice thermal conductivity of molybdenum and tungsten borides under hydrostatic pressure publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.09.105 – volume: 163-164 start-page: 67 year: 2003 ident: 10.1016/j.corsci.2020.109230_bib0220 article-title: Materials selection guidelines for low thermal conductivity thermal barrier coatings publication-title: Surf. Coat. Tech. doi: 10.1016/S0257-8972(02)00593-5 – volume: 37 start-page: 932 year: 2012 ident: 10.1016/j.corsci.2020.109230_bib0035 article-title: Environmental degradation of thermal barrier coatings by molten deposits publication-title: MRS Bull. doi: 10.1557/mrs.2012.230 – volume: 694 start-page: 1320 year: 2017 ident: 10.1016/j.corsci.2020.109230_bib0245 article-title: Defects/CMAS corrosion resistance relationship in plasma sprayed YPSZ coating publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.10.074 – volume: 42 start-page: 12922 year: 2016 ident: 10.1016/j.corsci.2020.109230_bib0275 article-title: Thermal cycling behavior and bonding strength of single-ceramic-layer Sm2Zr2O7 and double-ceramic-layer Sm2Zr2O7/8YSZ thermal barrier coatings deposited by atmospheric plasma spraying publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.05.062 – volume: 59 start-page: 3841 year: 2011 ident: 10.1016/j.corsci.2020.109230_bib0310 article-title: Thermal conductivity of the gadolinium calcium silicate apatites: effect of different point defect types publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.03.008 – volume: 72 year: 2005 ident: 10.1016/j.corsci.2020.109230_bib0180 article-title: Low-temperature polymorphs of ZrO2 and HfO2: a density-functional theory study publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.144107 – volume: 23 start-page: 2419 year: 2011 ident: 10.1016/j.corsci.2020.109230_bib0125 article-title: Jet engine coatings for resisting volcanic ash damage publication-title: Adv. Mater. doi: 10.1002/adma.201004783 – volume: 61 start-page: 7364 year: 2013 ident: 10.1016/j.corsci.2020.109230_bib0205 article-title: Anisotropy in elasticity and thermal conductivity of monazite-type REPO4 (RE = La, Ce, Nd, Sm, Eu and Gd) from first-principles calculations publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.08.043 – volume: 25 start-page: 213 year: 2016 ident: 10.1016/j.corsci.2020.109230_bib0330 article-title: Plasma-sprayed thermal barrier coatings with enhanced splat bonding for CMAS and corrosion protection publication-title: J. Therm. Spray. Techn. doi: 10.1007/s11666-015-0345-9 – volume: 8 start-page: 737 year: 1987 ident: 10.1016/j.corsci.2020.109230_bib0285 article-title: Scattering of phonons by vacancies publication-title: Int. J. Thermophys. doi: 10.1007/BF00500791 – volume: 102 start-page: 2029 year: 2019 ident: 10.1016/j.corsci.2020.109230_bib0070 article-title: CaO-MgO-Al2O3-SiO2 corrosion behavior of air-plasma-sprayed (LaxYb1-x)2Zr2O7 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.16044 – volume: 8 start-page: 22 year: 2005 ident: 10.1016/j.corsci.2020.109230_bib0230 article-title: Thermal barrier coating materials publication-title: Mater. Today doi: 10.1016/S1369-7021(05)70934-2 – volume: 316-317 start-page: 413 year: 2002 ident: 10.1016/j.corsci.2020.109230_bib0290 article-title: Effect of point defects on the decay of the longitudinal optical mode publication-title: Physica B. doi: 10.1016/S0921-4526(02)00530-6 – volume: 19 start-page: 46 year: 1994 ident: 10.1016/j.corsci.2020.109230_bib0030 article-title: Degradation of thermal-barrier coatings at very high temperatures publication-title: MRS Bull. doi: 10.1557/S0883769400048223 – year: 2006 ident: 10.1016/j.corsci.2020.109230_bib0225 article-title: High lattice thermal conductivity solids – volume: 44 start-page: 452 year: 2018 ident: 10.1016/j.corsci.2020.109230_bib0115 article-title: CMAS (CaO-MgO-Al2O3-SiO2) resistance of Y2O3-stabilized ZrO2 thermal barrier coatings with Pt layers publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.09.197 – volume: 39 start-page: 4223 year: 2019 ident: 10.1016/j.corsci.2020.109230_bib0255 article-title: Influence of rare earth oxides on kinetics and reaction mechanisms in CMAS silicate melts publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2019.06.036 – volume: 45 start-page: 15763 year: 2019 ident: 10.1016/j.corsci.2020.109230_bib0140 article-title: Corrosion behavior of Sc2O3-Y2O3 co-stabilized ZrO2 thermal barrier coatings with CMAS attack publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.05.063 – volume: 38 start-page: 2841 year: 2018 ident: 10.1016/j.corsci.2020.109230_bib0300 article-title: Phase stability and thermo-physical properties of ZrO2-CeO2-TiO2 ceramics for thermal barrier coatings publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2018.02.019 – volume: 349 start-page: 1107 year: 2018 ident: 10.1016/j.corsci.2020.109230_bib0065 article-title: Layered, composite, and doped thermal barrier coatings exposed to sand laden flows within a gas turbine engine: microstructural evolution, mechanical properties, and CMAS deposition publication-title: Surf. Coat. Tech. doi: 10.1016/j.surfcoat.2018.05.089 – volume: 53 start-page: 1029 year: 2005 ident: 10.1016/j.corsci.2020.109230_bib0045 article-title: A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate (CMAS) infiltration publication-title: Acta Mater. doi: 10.1016/j.actamat.2004.11.028 – volume: 201 start-page: 4653 year: 2007 ident: 10.1016/j.corsci.2020.109230_bib0005 article-title: Thermal cyclic behavior of air plasma sprayed thermal barrier coatings sprayed on stainless steel substrates publication-title: Surf. Coat. Tech. doi: 10.1016/j.surfcoat.2006.10.022 – volume: 126 start-page: 286 year: 2017 ident: 10.1016/j.corsci.2020.109230_bib0175 article-title: High-temperature corrosion mechanism of YSZ coatings subject to calcium-magnesium-aluminosilicate (CMAS) deposits: first-principles calculations publication-title: Corros. Sci. doi: 10.1016/j.corsci.2017.07.010 – volume: 46 start-page: 9311 year: 2020 ident: 10.1016/j.corsci.2020.109230_bib0260 article-title: The corrosion behaviors of thermal barrier material of M-YTaO4 attacked by CMAS at 1250 °C publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.12.186 – volume: 21 start-page: 373 year: 1976 ident: 10.1016/j.corsci.2020.109230_bib0150 article-title: An interpretation of glass chemistry in terms of the optical basicity concept publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(76)90027-2 – volume: 513 start-page: 145712 year: 2020 ident: 10.1016/j.corsci.2020.109230_bib0185 article-title: Infiltration mechanism of Ca-Mg-Al-silicate (CMAS) melt on yttria stabilized zirconia (YSZ) columnar crystal at high temperature: first-principles research publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.145712 – volume: 173 year: 2020 ident: 10.1016/j.corsci.2020.109230_bib0165 article-title: Investigation of CMAS resistance of sacrificial plasma-sprayed mullite-YSZ protective layer on 8YSZ thermal barrier coating publication-title: Corros. Sci. doi: 10.1016/j.corsci.2020.108764 – volume: 48 start-page: 2593 year: 2000 ident: 10.1016/j.corsci.2020.109230_bib0280 article-title: The ratcheting of compressed thermally grown thin films on ductile substrates publication-title: Acta Mater. doi: 10.1016/S1359-6454(00)00053-7 – volume: 327 start-page: 126 year: 2017 ident: 10.1016/j.corsci.2020.109230_bib0075 article-title: CMAS behavior of yttrium aluminum garnet (YAG) and yttria-stabilized zirconia (YSZ) thermal barrier coatings publication-title: Surf. Coat. Tech. doi: 10.1016/j.surfcoat.2017.08.023 – volume: 584 start-page: 136 year: 2014 ident: 10.1016/j.corsci.2020.109230_bib0170 article-title: Effect of processing and service conditions on the luminescence intensity of plasma sprayed (Tm3+ + Dy3+) co-doped YSZ coatings publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2013.08.046 – volume: 205 start-page: 2287 year: 2010 ident: 10.1016/j.corsci.2020.109230_bib0015 article-title: A noval test approach for plasma-sprayed coatings tested simultaneously under CMAS and thermal gradient cycling conditions publication-title: Surf. Coat. Tech. doi: 10.1016/j.surfcoat.2010.09.008 – volume: 42 start-page: 19349 year: 2016 ident: 10.1016/j.corsci.2020.109230_bib0080 article-title: Adsorbability and spreadability of calcium-magnesium-alumino-silicate (CMAS) on Al-modified 7YSZ thermal barrier coating publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.09.106 – volume: 261 start-page: 136 year: 2014 ident: 10.1016/j.corsci.2020.109230_bib0195 article-title: Oxygen vacancy induced carbon deposition at the triple phase boundary of the nickel/yttrium-stabilized zirconia (YSZ) interface publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.03.056 – volume: 46 start-page: 505 year: 2001 ident: 10.1016/j.corsci.2020.109230_bib0010 article-title: Mechanisms controlling the durability of thermal barrier coatings publication-title: Prog. Mater. Sci. doi: 10.1016/S0079-6425(00)00020-7 – volume: 255 start-page: 9032 year: 2009 ident: 10.1016/j.corsci.2020.109230_bib0200 article-title: First-principles study of the relaxation and energy of bcc-Fe, fcc-Fe and AISI-304 stainless steel surfaces publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2009.06.087 – volume: 38 start-page: 3914 year: 2018 ident: 10.1016/j.corsci.2020.109230_bib0250 article-title: Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: part II, β-Yb2Si2O7 and β-Sc2Si2O7 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2018.03.010 – volume: 204 start-page: 2683 year: 2010 ident: 10.1016/j.corsci.2020.109230_bib0040 article-title: Thermal-gradient testing of thermal barrier coatings under simultaneous attack by molten glassy deposits and its mitigation publication-title: Surf. Coat. Tech. doi: 10.1016/j.surfcoat.2010.02.026 – volume: 25 start-page: 948 year: 2012 ident: 10.1016/j.corsci.2020.109230_bib0295 article-title: Influence of Gd2O3 and Yb2O3 co-doping on phase stability, thermo-physical properties and sintering of 8YSZ publication-title: Chin. J. Aeronaut. doi: 10.1016/S1000-9361(11)60466-4 – volume: 176 start-page: 613 year: 2005 ident: 10.1016/j.corsci.2020.109230_bib0320 article-title: Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents publication-title: Solid State Ion. doi: 10.1016/j.ssi.2004.08.021 – volume: 44 start-page: 10220 year: 2018 ident: 10.1016/j.corsci.2020.109230_bib0110 article-title: Hot corrosion behavior of BaLa2Ti3O10 exposed to calcium-magnesium-alumina-silicate at elevated temperatures publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.03.021 |
SSID | ssj0002010 |
Score | 2.5504787 |
Snippet | •The Yb2O3 and Y2O3 co-stabilized ZrO2 towards enhanced CMAS resistance was proposed.•Improvement of CMAS resistance owing to a low diffusion rate of Yb3+.•The... In this study, corrosion behavior of Yb2O3-Y2O3 co-stabilized ZrO2 (YbYSZ) was systematically investigated under CMAS melt attack. The result was found that... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 109230 |
SubjectTerms | Aluminum Calcium magnesium silicates Calcium-magnesium-alumina-silicate (CMAS) Ceramic coatings Corrosion Corrosion tests Diffusion rate First principles First-principles calculation Magnesium aluminum silicates Mathematical analysis Phase stability Physical properties Rare earth doped Thermal barrier coatings Thermal barrier coatings (TBCs) Thermal conductivity Thermal expansion Yttria-stabilized zirconia Yttrium oxide Zirconium dioxide |
Title | Corrosion behavior and thermos-physical properties of a promising Yb2O3 and Y2O3 co-stabilized ZrO2 ceramic for thermal barrier coatings subject to calcium-magnesium-aluminum-silicate (CMAS) deposition: Experiments and first-principles calculation |
URI | https://dx.doi.org/10.1016/j.corsci.2020.109230 https://www.proquest.com/docview/2510602675 |
Volume | 182 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoED4ikKpfKBAxxMEzuJd7mtVq0WUNsDVNpyifxEQWwSJbsXDvxtrsw4dnkIqRI378qejeLZbybxN98Q8gLSeoX6kqyca84K6UqmCyzjctgNKfcQQbF2-Oy8Wl0W79bleo8sUy0M0ioj9k-YHtA6fnMc7-Zx3zRY44tSSLM19gCHtAEryotCope__v6L5oGnvRMaZwxnp_K5wPGCBzwwDU-JPOgqceRC_zs8_QXUIfqc3iN3Y9pIF9OV3Sd7rn1A7vwmJviQ_Fh2A9iE-0xT7T1VraWY4W26kfVxR2iP798HFFKlnacKP8Nmgw16pfmFCIuucGA6Brkjsme_OUs_DRecGjdgA3sKqe5kGOxpNWDbO5iukEM90nGn8e0O3XYUfs80uw3bqM-AqThSgIZNC4Oxmerv6Mvl2eLDK2pdIpC9oSfXfQfGcDm-gSSV9elgYAx2Y-OxR-Ty9OTjcsViWwdmhCi2zFTWVLk1UgshpS5zUVmVqdkc4ibq2Rsvfe6smVk8NJxb7oUqrPbCQzZVqko8Jvtt17onhFpfKeO4zIrcQWAFwHSuMpIbZ9Q84-qAiLSbtYma59h642udyG1f6skHavSBevKBA8KuV_WT5scN82VylPoP360hLN2w8jD5VR2xY6zBmbPQGKx8-t-Gn5HbHMk3KEpZHpL97bBzzyF72uqj8Pc4IrcWb9-vzn8CYowfJw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZGdwAOiJ9iY4APHOBgLbGTuOVWVZs6tnYHNqnjYjm2MwXRJEray_5xrryX2BUgpEncnCp-jeKX732J3_seIR-A1mvUl2TpJOcskS5leYJlXA67IcUFRFCsHV4ss_l18mWVrvbILNTCYFqlx_4B03u09r8c-7t53JQl1viiFNJ4hT3AgTbIB2Qf1anSEdmfnp3PlztAxg3fAZAjhhNCBV2f5gXveGAdXhR5L63EMR363xHqL6zuA9DpU_LEM0c6HS7uGdlz1XPy-Dc9wRfk56xuwSbcahrK76muLEWSt6471vhFoQ1-gm9RS5XWBdV4DOsNNuhNzi9FP-kGB6ZmQB8xgfbOWfqtveTUuBZ72FNgu4NhsJfrFjvfweka06g72m1z_MBDNzWF_zPlds3W-hZgFUcaALGsYNCVQwke_ThbTL9-otaFHLLP9GTXeqDrL6cogaeyJuwNdL1d33vsJbk-PbmazZnv7MCMEMmGmcyaLLZG5kJImaexyKyO9HgCoRMl7U0hi9hZM7a4bzixvBA6sXkhCiBUqc7EKzKq6sq9JtQWmTaOyyiJHcRWwEznMiO5cUZPIq4PiAirqYyXPcfuGz9UyG_7rgYfUOgDavCBA8J2s5pB9uOe82VwFPWH-yqITPfMPAp-pTx8dAr8Oep7g6WH_234PXk4v1pcqIuz5fkb8ohjLg5qVKZHZLRpt-4tkKlN_s4_LL8AFfch2A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Corrosion+behavior+and+thermos-physical+properties+of+a+promising+Yb2O3+and+Y2O3+co-stabilized+ZrO2+ceramic+for+thermal+barrier+coatings+subject+to+calcium-magnesium-aluminum-silicate+%28CMAS%29+deposition%3A+Experiments+and+first-principles+calculation&rft.jtitle=Corrosion+science&rft.au=Fang%2C+Huanjie&rft.au=Wang%2C+Weize&rft.au=Huang%2C+Jibo&rft.au=Li%2C+Yuanjun&rft.date=2021-04-15&rft.issn=0010-938X&rft.volume=182&rft.spage=109230&rft_id=info:doi/10.1016%2Fj.corsci.2020.109230&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_corsci_2020_109230 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-938X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-938X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-938X&client=summon |