Metal organic framework-derived CoMn2O4 catalyst for heterogeneous activation of peroxymonosulfate and sulfanilamide degradation
[Display omitted] •Plate-shaped CoMn2O4 was synthesized using MOFs as precursor.•The catalyst showed large specific surface area and abundant active sites.•It had much higher catalytic activity than previously-reported CoMn2O4 catalyst.•The Co-Mn synergy in heterogeneous catalysis were elucidated.•T...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 337; pp. 101 - 109 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Plate-shaped CoMn2O4 was synthesized using MOFs as precursor.•The catalyst showed large specific surface area and abundant active sites.•It had much higher catalytic activity than previously-reported CoMn2O4 catalyst.•The Co-Mn synergy in heterogeneous catalysis were elucidated.•The material showed good stability and reusability for SA removal.
Spinel-type CoMn2O4 materials are promising catalyst for heterogeneous activation of peroxymonosulfate (PMS), but the catalytic activity still need considerable improvements for practical environmental application and the underlying Co-Mn synergy is unclear. In this work, we synthesized CoMn2O4 microplates by using CoMn2-perylene-3,4,9,10-tetracarboxylic dianhydride (ptcda) metal organic frameworks (MOFs) as the precursor. The resulting material showed significantly higher catalytic activity for the PMS activation and sulfanilamide (SA) degradation than the CoMn2O4 obtained by conventional solvothermal synthesis methods, due to its much higher specific surface area and abundant surface hydroxyl groups as the active sites. In addition, the Co-Mn synergy in the synthesized material for the efficient heterogeneous catalysis was elucidated. The catalyst stability was also evaluated. Our work may lay the foundation for optimized design of highly-efficient heterogeneous catalyst for environmental application. |
---|---|
AbstractList | [Display omitted]
•Plate-shaped CoMn2O4 was synthesized using MOFs as precursor.•The catalyst showed large specific surface area and abundant active sites.•It had much higher catalytic activity than previously-reported CoMn2O4 catalyst.•The Co-Mn synergy in heterogeneous catalysis were elucidated.•The material showed good stability and reusability for SA removal.
Spinel-type CoMn2O4 materials are promising catalyst for heterogeneous activation of peroxymonosulfate (PMS), but the catalytic activity still need considerable improvements for practical environmental application and the underlying Co-Mn synergy is unclear. In this work, we synthesized CoMn2O4 microplates by using CoMn2-perylene-3,4,9,10-tetracarboxylic dianhydride (ptcda) metal organic frameworks (MOFs) as the precursor. The resulting material showed significantly higher catalytic activity for the PMS activation and sulfanilamide (SA) degradation than the CoMn2O4 obtained by conventional solvothermal synthesis methods, due to its much higher specific surface area and abundant surface hydroxyl groups as the active sites. In addition, the Co-Mn synergy in the synthesized material for the efficient heterogeneous catalysis was elucidated. The catalyst stability was also evaluated. Our work may lay the foundation for optimized design of highly-efficient heterogeneous catalyst for environmental application. |
Author | Chen, Chang-Bin Li, Wen-Wei Liu, Hou-Qi Li, Jie Li, Chen-Xuan Cui, Shuo Lu, Jia-Yuan Zhang, Feng |
Author_xml | – sequence: 1 givenname: Chen-Xuan surname: Li fullname: Li, Chen-Xuan organization: Department of Chemistry, University of Science & Technology of China, Hefei 230026, China – sequence: 2 givenname: Chang-Bin surname: Chen fullname: Chen, Chang-Bin organization: Department of Chemistry, University of Science & Technology of China, Hefei 230026, China – sequence: 3 givenname: Jia-Yuan surname: Lu fullname: Lu, Jia-Yuan organization: Department of Chemistry, University of Science & Technology of China, Hefei 230026, China – sequence: 4 givenname: Shuo surname: Cui fullname: Cui, Shuo organization: Department of Chemistry, University of Science & Technology of China, Hefei 230026, China – sequence: 5 givenname: Jie surname: Li fullname: Li, Jie organization: Department of Chemistry, University of Science & Technology of China, Hefei 230026, China – sequence: 6 givenname: Hou-Qi surname: Liu fullname: Liu, Hou-Qi organization: Department of Chemistry, University of Science & Technology of China, Hefei 230026, China – sequence: 7 givenname: Wen-Wei orcidid: 0000-0001-9280-0045 surname: Li fullname: Li, Wen-Wei email: wwli@ustc.edu.cn organization: Department of Chemistry, University of Science & Technology of China, Hefei 230026, China – sequence: 8 givenname: Feng surname: Zhang fullname: Zhang, Feng email: zfeng3@ustc.edu.cn organization: Department of Chemistry, University of Science & Technology of China, Hefei 230026, China |
BookMark | eNp9kE1PxCAQhonRxM8f4I0_0MqUttB4Mhu_Eo0XPRMWhpW1CwZwdW_-dOvqyYOneZOZZzLzHJLdEAMScgqsBgb92bI2uKwbBqKGpmb9sEMOQApe8Qaa3Slz2VVyaMU-Ocx5ydg0AsMB-bzHokca00IHb6hLeoXvMb1UFpNfo6WzeB-ah5YaPc1tcqEuJvqMBVNcYMD4lqk2xa918THQ6Ojr1PnYrGKI-W10uiDVwdJtDn7UK2-RWlwkbbfIMdlzesx48luPyNPV5ePsprp7uL6dXdxVhvO2VHMhOBOSy2YuXNfZAYA5cJK3vUXOBwltyzvkorWd7CW6preyRz4HK40Bw48I_Ow1Keac0KnX5Fc6bRQw9a1QLdWkUH0rVNCoyc_EiD-M8WV7dUnaj_-S5z8kTi-tPSaVjcdg0PqEpigb_T_0F9mTkKk |
CitedBy_id | crossref_primary_10_1016_j_apcatb_2024_124280 crossref_primary_10_1016_j_ijhydene_2021_03_145 crossref_primary_10_1016_j_seppur_2022_120664 crossref_primary_10_1016_j_seppur_2022_120662 crossref_primary_10_1016_j_seppur_2025_132371 crossref_primary_10_1016_j_scitotenv_2021_145311 crossref_primary_10_18311_jmmf_2023_43601 crossref_primary_10_1016_j_scitotenv_2019_02_039 crossref_primary_10_1016_j_jhazmat_2022_129060 crossref_primary_10_1039_D2RA07102A crossref_primary_10_1016_j_jcis_2022_10_060 crossref_primary_10_1039_D3RA00852E crossref_primary_10_1039_D3TA05478K crossref_primary_10_1002_adma_202500090 crossref_primary_10_1007_s12274_023_5517_1 crossref_primary_10_1039_C9EN01163C crossref_primary_10_1016_j_cej_2018_09_134 crossref_primary_10_1016_j_jhazmat_2020_124623 crossref_primary_10_1039_D2QM00490A crossref_primary_10_1016_j_apsusc_2020_147787 crossref_primary_10_1016_j_cclet_2023_108475 crossref_primary_10_1016_j_jwpe_2024_105016 crossref_primary_10_2139_ssrn_4131280 crossref_primary_10_1002_aesr_202400271 crossref_primary_10_1016_j_cej_2021_132189 crossref_primary_10_1016_j_envres_2021_112148 crossref_primary_10_1016_j_scitotenv_2019_133963 crossref_primary_10_1016_j_physb_2019_411820 crossref_primary_10_1016_j_psep_2023_10_054 crossref_primary_10_1016_j_cej_2021_128497 crossref_primary_10_1016_j_seppur_2022_120898 crossref_primary_10_1016_j_envres_2021_111736 crossref_primary_10_1016_j_jenvman_2023_118905 crossref_primary_10_1016_j_jwpe_2024_105343 crossref_primary_10_1016_j_seppur_2022_122501 crossref_primary_10_1007_s11356_021_16399_5 crossref_primary_10_3390_catal10111299 crossref_primary_10_1016_j_scitotenv_2019_05_474 crossref_primary_10_1016_j_cej_2023_142897 crossref_primary_10_2139_ssrn_4063744 crossref_primary_10_1016_j_mcat_2022_112519 crossref_primary_10_1007_s10562_024_04827_3 crossref_primary_10_1016_j_apcatb_2020_119143 crossref_primary_10_1016_j_jece_2022_108059 crossref_primary_10_1016_j_cjche_2022_08_020 crossref_primary_10_1016_j_jwpe_2024_105910 crossref_primary_10_1016_j_envres_2022_114488 crossref_primary_10_1016_j_jhazmat_2021_126841 crossref_primary_10_1016_j_jorganchem_2021_122070 crossref_primary_10_1039_D0CE01131B crossref_primary_10_1016_j_jtice_2021_03_050 crossref_primary_10_2139_ssrn_4070131 crossref_primary_10_1002_adfm_202205569 crossref_primary_10_1016_j_apcata_2019_117170 crossref_primary_10_1016_j_cej_2019_123819 crossref_primary_10_1016_j_chemosphere_2018_11_077 crossref_primary_10_1016_j_apsusc_2023_157044 crossref_primary_10_1016_j_cej_2020_125731 crossref_primary_10_1016_j_molliq_2020_114838 crossref_primary_10_1016_j_seppur_2020_118268 crossref_primary_10_1016_j_chemosphere_2020_127672 crossref_primary_10_1016_j_cej_2022_139901 crossref_primary_10_1016_j_seppur_2021_119081 crossref_primary_10_1016_j_envpol_2022_119386 crossref_primary_10_1016_j_micromeso_2022_112133 crossref_primary_10_1016_j_seppur_2022_120576 crossref_primary_10_1016_j_cej_2020_128312 crossref_primary_10_1021_acs_langmuir_4c04040 crossref_primary_10_1016_j_jhazmat_2021_128204 crossref_primary_10_1016_j_psep_2024_05_001 crossref_primary_10_1016_j_apcatb_2020_119171 crossref_primary_10_1016_j_chemosphere_2019_125244 crossref_primary_10_1016_j_jwpe_2023_103807 crossref_primary_10_1016_j_est_2023_107672 crossref_primary_10_1016_j_apsusc_2022_155009 crossref_primary_10_1016_j_cej_2020_125993 crossref_primary_10_1016_j_ijhydene_2019_02_144 crossref_primary_10_1016_j_cclet_2022_01_029 crossref_primary_10_1016_j_jhazmat_2020_124559 crossref_primary_10_1016_j_seppur_2024_127360 crossref_primary_10_1016_j_jclepro_2021_128781 crossref_primary_10_1016_j_carbon_2021_12_031 crossref_primary_10_1016_j_cej_2019_122148 crossref_primary_10_1039_C9EN01250H crossref_primary_10_1016_j_chemosphere_2022_136255 crossref_primary_10_1002_slct_202204645 crossref_primary_10_1016_j_seppur_2021_120051 crossref_primary_10_1016_j_chemosphere_2021_132954 crossref_primary_10_3390_catal12091058 crossref_primary_10_3390_nano12050811 crossref_primary_10_1016_j_jece_2024_113634 crossref_primary_10_1016_j_scitotenv_2019_134715 crossref_primary_10_1016_j_chemosphere_2019_125140 crossref_primary_10_1016_j_clay_2022_106625 crossref_primary_10_1016_j_jcis_2025_01_099 crossref_primary_10_1016_j_jwpe_2024_105946 crossref_primary_10_1016_j_cej_2019_121980 crossref_primary_10_3390_molecules29163825 crossref_primary_10_1016_j_matchemphys_2022_127157 crossref_primary_10_1016_j_cej_2020_127158 crossref_primary_10_1016_j_cej_2019_122009 crossref_primary_10_1016_j_eng_2021_08_029 crossref_primary_10_1016_j_jece_2023_110156 crossref_primary_10_1149_1945_7111_ac51fa crossref_primary_10_1016_j_cej_2020_127957 crossref_primary_10_1016_j_cej_2023_141989 crossref_primary_10_1016_j_jece_2024_114239 crossref_primary_10_1016_j_psep_2023_07_033 crossref_primary_10_1016_j_jwpe_2023_104398 crossref_primary_10_1016_j_apcatb_2022_122266 crossref_primary_10_1016_j_jece_2021_106332 crossref_primary_10_3390_ijms26030940 crossref_primary_10_1016_j_jece_2023_109845 crossref_primary_10_1016_j_jclepro_2022_134953 crossref_primary_10_1016_j_jece_2021_105924 crossref_primary_10_1016_j_cej_2020_128121 crossref_primary_10_1016_j_seppur_2023_123945 crossref_primary_10_1016_j_cej_2018_09_093 crossref_primary_10_1016_j_seppur_2020_118179 crossref_primary_10_1016_j_jhazmat_2020_122966 crossref_primary_10_1016_j_jece_2024_112843 crossref_primary_10_1016_j_jece_2023_109856 crossref_primary_10_1021_acsami_9b11322 crossref_primary_10_1016_j_seppur_2022_120812 crossref_primary_10_1016_j_jclepro_2022_132781 crossref_primary_10_1016_j_jece_2024_113288 crossref_primary_10_3390_catal12101232 crossref_primary_10_1016_j_seppur_2022_122585 crossref_primary_10_1016_j_cej_2020_125676 crossref_primary_10_1002_smll_201900744 crossref_primary_10_1016_j_optmat_2023_113592 crossref_primary_10_1039_D4TA01440E crossref_primary_10_1016_j_apcatb_2022_121276 crossref_primary_10_1016_j_cej_2022_135244 crossref_primary_10_1016_j_cej_2021_132377 crossref_primary_10_1016_j_jclepro_2019_04_217 crossref_primary_10_1016_j_cej_2022_137306 crossref_primary_10_1016_j_jece_2020_104451 crossref_primary_10_1016_j_cej_2018_11_207 crossref_primary_10_1016_j_seppur_2023_125336 crossref_primary_10_1016_j_cej_2019_122587 crossref_primary_10_2139_ssrn_3987645 crossref_primary_10_1016_j_est_2023_107303 crossref_primary_10_1016_j_jallcom_2019_153546 crossref_primary_10_1080_15435075_2024_2394839 crossref_primary_10_1016_j_apcatb_2019_02_034 crossref_primary_10_1016_j_envadv_2022_100283 crossref_primary_10_1016_j_jallcom_2022_164551 crossref_primary_10_1016_j_apcata_2023_119254 crossref_primary_10_1039_D2CE00932C crossref_primary_10_1016_j_chemosphere_2021_131433 crossref_primary_10_3390_nano9050774 crossref_primary_10_1016_j_cej_2021_129401 crossref_primary_10_1016_j_cej_2024_148885 crossref_primary_10_1021_acs_inorgchem_1c02583 crossref_primary_10_1016_j_colsurfa_2023_131728 crossref_primary_10_1039_D0NA00749H crossref_primary_10_1016_j_cej_2018_05_044 crossref_primary_10_1016_j_jhazmat_2021_127647 crossref_primary_10_1016_j_watres_2024_122666 crossref_primary_10_1021_acsami_0c03481 crossref_primary_10_1021_acs_iecr_2c03414 crossref_primary_10_1016_j_cej_2022_137326 crossref_primary_10_1016_j_cej_2021_131292 crossref_primary_10_1016_j_chemosphere_2018_12_030 crossref_primary_10_1016_j_apcatb_2019_117765 crossref_primary_10_1016_j_seppur_2024_130145 crossref_primary_10_1016_j_ijhydene_2024_10_142 crossref_primary_10_1016_j_seppur_2023_125239 crossref_primary_10_1021_acsnano_4c18864 crossref_primary_10_1039_C9RA10169A crossref_primary_10_1016_j_jclepro_2022_133420 crossref_primary_10_1073_pnas_2201607119 crossref_primary_10_1016_j_apcatb_2024_124520 crossref_primary_10_1016_j_cej_2020_127863 crossref_primary_10_1016_j_seppur_2021_119804 crossref_primary_10_1016_j_jenvman_2023_119089 crossref_primary_10_1016_j_biortech_2020_124035 crossref_primary_10_1016_j_cej_2019_01_145 crossref_primary_10_1016_j_cej_2021_132269 crossref_primary_10_1039_D0TA06469F crossref_primary_10_1016_j_cattod_2024_114707 crossref_primary_10_1016_j_cjsc_2023_100093 crossref_primary_10_1016_j_jece_2024_114699 crossref_primary_10_1016_j_jece_2024_111988 crossref_primary_10_1016_j_eti_2023_103117 crossref_primary_10_1016_j_apsusc_2021_151632 crossref_primary_10_1016_j_scitotenv_2022_158055 crossref_primary_10_1016_j_cej_2019_01_057 crossref_primary_10_1016_j_cej_2022_134877 crossref_primary_10_1016_j_cej_2018_07_103 crossref_primary_10_1016_j_cej_2021_132613 crossref_primary_10_1002_jctb_5820 crossref_primary_10_1002_ejic_202100281 crossref_primary_10_1016_j_watres_2022_119462 crossref_primary_10_1016_j_colsurfa_2021_126531 crossref_primary_10_1016_j_cej_2020_127887 crossref_primary_10_1021_acs_iecr_3c02789 crossref_primary_10_2166_wst_2021_147 crossref_primary_10_1016_j_cej_2019_122670 crossref_primary_10_1088_1361_6528_ad8929 crossref_primary_10_1016_j_cej_2021_132844 crossref_primary_10_1016_j_chemosphere_2023_138340 crossref_primary_10_1016_j_chemosphere_2023_139672 |
Cites_doi | 10.1016/j.cej.2016.09.075 10.1016/j.electacta.2013.11.165 10.1039/c2jm32261g 10.1016/j.jelechem.2012.11.013 10.1002/chem.201103415 10.1016/j.cej.2015.05.121 10.1016/j.apcatb.2015.08.050 10.1016/j.jhazmat.2015.06.058 10.1016/j.jhazmat.2015.04.014 10.1016/j.jhazmat.2017.01.029 10.1016/j.apcatb.2014.02.026 10.1021/es2017363 10.1016/j.watres.2004.11.020 10.1021/es0263792 10.1016/j.apcatb.2012.09.001 10.1016/j.cej.2016.10.064 10.1039/c2ee22290f 10.1016/j.jhazmat.2005.08.028 10.1016/j.jhazmat.2015.03.038 10.1021/jp052166y 10.1021/acs.est.7b03007 10.1016/j.cej.2017.04.018 10.1039/C6RA12424K 10.1021/acs.est.5b05974 10.1016/j.cej.2014.12.066 10.1021/es506362e 10.1016/j.apcatb.2016.04.003 10.1016/j.apcatb.2014.10.051 10.1021/acs.est.5b03595 10.1021/es035121o 10.1016/j.cej.2017.03.036 10.1016/j.watres.2013.06.023 10.1039/c1jm10946d 10.1016/j.cej.2013.08.080 10.1038/srep00986 10.1016/j.apcatb.2013.06.004 10.1016/j.jhazmat.2012.11.005 10.1016/j.jhazmat.2010.12.033 10.1016/j.cej.2012.11.007 10.1021/es505014z 10.1021/es304721g 10.1002/cssc.201402699 10.1016/j.apcatb.2012.09.015 10.1016/j.apcatb.2015.07.024 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. |
Copyright_xml | – notice: 2017 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2017.12.069 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
EndPage | 109 |
ExternalDocumentID | 10_1016_j_cej_2017_12_069 S1385894717321915 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION FEDTE FGOYB HVGLF HZ~ R2- SEW SSH ZY4 |
ID | FETCH-LOGICAL-c334t-b773078382b7f55d9110f1f8346de339814435e374d5868ef26d86e3b1d8cc1c3 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Tue Jul 01 03:51:51 EDT 2025 Thu Apr 24 23:09:34 EDT 2025 Fri Feb 23 02:33:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CoMn2O4 Metal–organic frameworks (MOFs) Synergy Peroxymonosulfate (PMS) Sulfanilamide |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-b773078382b7f55d9110f1f8346de339814435e374d5868ef26d86e3b1d8cc1c3 |
ORCID | 0000-0001-9280-0045 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1016_j_cej_2017_12_069 crossref_citationtrail_10_1016_j_cej_2017_12_069 elsevier_sciencedirect_doi_10_1016_j_cej_2017_12_069 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-01 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Saputra, Muhammad, Sun, Ang, Tadé, Wang (b0060) 2014; 154–155 Li, Wang, Zhang, Rykov, Ahmed, Wang (b0095) 2016; 181 Costa, Lelis, Oliveira, Fabris, Ardisson, Rios, Silva, Lago (b0195) 2006; 129 Khankhasaeva, Dambueva, Dashinamzhilova, Gil, Vicente, Timofeeva (b0220) 2015; 293 Yang, Jiang, Lu, Ma, Liu (b0035) 2015; 49 Su, Guo, Leng, Yi, Ma (b0115) 2013; 244 Jaafarzadeh, Ghanbari, Ahmadi (b0125) 2017; 320 Nassar, Abdallah (b0145) 2016; 6 Zhao, Li, Sun, Liu, Su, Yang, Li (b0105) 2012; 18 Ghanbari, Moradi (b0010) 2017; 310 Olmez-Hanci, Arslan-Alaton (b0020) 2013; 224 Zhao, Wang, Su, Li, Chen, Yang, Li (b0100) 2012; 22 Zhou, Jiang, Gao, Ma, Pang, Li, Lu, Yuan (b0205) 2015; 49 Huang, Wang, Yang, Guo, Yu (b0075) 2017 Wang, Indrawirawan, Duan, Sun, Ang, Tadé, Wang (b0065) 2015; 266 Yang, Dai, Yao, Chen, Liu, Luo (b0120) 2017; 322 Wang, Chu (b0165) 2011; 186 Yao, Cai, Wu, Wei, Li, Chen, Wang (b0085) 2015; 296 Khan, Liao, Liu, Jawad, Ifthikar, Chen (b0160) 2017; 329 Feng, Wu, Deng, Zhang, Shih (b0015) 2016; 50 Liang, Sun, Patel, Shukla, Zhu, Wang (b0080) 2012; 127 Fan, Ji, Kong, Lu, Zhou (b0030) 2015; 300 Feng, Liu, Wu, Zhou, Deng, Zhang, Shih (b0175) 2015; 280 Ma, Sui, Zhang, Guan (b0170) 2005; 39 Menezes, Indra, Sahraie, Bergmann, Strasser, Driess (b0155) 2015; 8 Anipsitakis, Dionysiou (b0185) 2004; 38 Chowdhury, Agnihotri, Sen, De (b0150) 2014; 118 El-Ghenymy, Oturan, Oturan, Antonio Garrido, Lluis Cabot, Centellas, Maria Rodriguez, Brillas (b0215) 2013; 234 Hu, Zhong, Zheng, Huang, Zhang, Chen (b0110) 2012; 2 Deng, Feng, Zhang, Li, Wang, Zhang, Ma (b0135) 2017; 308 Anipsitakis, Dionysiou (b0180) 2003; 37 Zeng, Zhang, Wang, Niu, Cai (b0050) 2015; 49 Ren, Lin, Ma, Yang, Feng, Fan (b0090) 2015; 165 El-Ghenymy, Antonio Garrido, Maria Rodriguez, Lluis Cabot, Centellas, Arias, Brillas (b0210) 2013; 689 Saputra, Muhammad, Sun, Ang, Tade, Wang (b0070) 2013; 142 Anipsitakis, Stathatos, Dionysiou (b0045) 2005; 109 Oh, Dong, Lim (b0200) 2016; 194 Zhang, Zhu, Croue (b0130) 2013; 47 Gao, Cao, Dai, Luo, Kanehira, Ding, Wang (b0190) 2012; 5 Guan, Ma, Li, Fang, Chen (b0025) 2011; 45 Xia, Tu, Mai, Wang, Gu, Zhao (b0140) 2011; 21 Guan, Ma, Ren, Liu, Xiao, Lin, Zhang (b0040) 2013; 47 Ding, Zhu, Wang, Tang (b0005) 2013; 129 Hu, Long (b0055) 2016; 181 Saputra (10.1016/j.cej.2017.12.069_b0060) 2014; 154–155 Liang (10.1016/j.cej.2017.12.069_b0080) 2012; 127 Wang (10.1016/j.cej.2017.12.069_b0065) 2015; 266 Deng (10.1016/j.cej.2017.12.069_b0135) 2017; 308 Jaafarzadeh (10.1016/j.cej.2017.12.069_b0125) 2017; 320 Nassar (10.1016/j.cej.2017.12.069_b0145) 2016; 6 Oh (10.1016/j.cej.2017.12.069_b0200) 2016; 194 Feng (10.1016/j.cej.2017.12.069_b0175) 2015; 280 Yao (10.1016/j.cej.2017.12.069_b0085) 2015; 296 Ma (10.1016/j.cej.2017.12.069_b0170) 2005; 39 Ding (10.1016/j.cej.2017.12.069_b0005) 2013; 129 Yang (10.1016/j.cej.2017.12.069_b0035) 2015; 49 Su (10.1016/j.cej.2017.12.069_b0115) 2013; 244 Hu (10.1016/j.cej.2017.12.069_b0110) 2012; 2 Chowdhury (10.1016/j.cej.2017.12.069_b0150) 2014; 118 Zhao (10.1016/j.cej.2017.12.069_b0105) 2012; 18 Saputra (10.1016/j.cej.2017.12.069_b0070) 2013; 142 Hu (10.1016/j.cej.2017.12.069_b0055) 2016; 181 Huang (10.1016/j.cej.2017.12.069_b0075) 2017 Ghanbari (10.1016/j.cej.2017.12.069_b0010) 2017; 310 Xia (10.1016/j.cej.2017.12.069_b0140) 2011; 21 El-Ghenymy (10.1016/j.cej.2017.12.069_b0215) 2013; 234 Ren (10.1016/j.cej.2017.12.069_b0090) 2015; 165 Costa (10.1016/j.cej.2017.12.069_b0195) 2006; 129 Guan (10.1016/j.cej.2017.12.069_b0025) 2011; 45 Fan (10.1016/j.cej.2017.12.069_b0030) 2015; 300 Anipsitakis (10.1016/j.cej.2017.12.069_b0185) 2004; 38 Anipsitakis (10.1016/j.cej.2017.12.069_b0180) 2003; 37 Khan (10.1016/j.cej.2017.12.069_b0160) 2017; 329 Gao (10.1016/j.cej.2017.12.069_b0190) 2012; 5 Li (10.1016/j.cej.2017.12.069_b0095) 2016; 181 Zhang (10.1016/j.cej.2017.12.069_b0130) 2013; 47 Olmez-Hanci (10.1016/j.cej.2017.12.069_b0020) 2013; 224 Wang (10.1016/j.cej.2017.12.069_b0165) 2011; 186 Zhao (10.1016/j.cej.2017.12.069_b0100) 2012; 22 El-Ghenymy (10.1016/j.cej.2017.12.069_b0210) 2013; 689 Guan (10.1016/j.cej.2017.12.069_b0040) 2013; 47 Anipsitakis (10.1016/j.cej.2017.12.069_b0045) 2005; 109 Feng (10.1016/j.cej.2017.12.069_b0015) 2016; 50 Zeng (10.1016/j.cej.2017.12.069_b0050) 2015; 49 Khankhasaeva (10.1016/j.cej.2017.12.069_b0220) 2015; 293 Yang (10.1016/j.cej.2017.12.069_b0120) 2017; 322 Menezes (10.1016/j.cej.2017.12.069_b0155) 2015; 8 Zhou (10.1016/j.cej.2017.12.069_b0205) 2015; 49 |
References_xml | – volume: 109 start-page: 13052 year: 2005 end-page: 13055 ident: b0045 article-title: Heterogeneous activation of oxone using Co publication-title: J. Phys. Chem. B – volume: 165 start-page: 572 year: 2015 end-page: 578 ident: b0090 article-title: Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe publication-title: Appl. Catal. B – volume: 296 start-page: 128 year: 2015 end-page: 137 ident: b0085 article-title: Sulfate radicals induced from peroxymonosulfate by cobalt manganese oxides (Co publication-title: J. Hazard. Mater. – volume: 45 start-page: 9308 year: 2011 end-page: 9314 ident: b0025 article-title: Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system publication-title: Environ. Sci. Technol. – volume: 689 start-page: 149 year: 2013 end-page: 157 ident: b0210 article-title: Degradation of sulfanilamide in acidic medium by anodic oxidation with a boron-doped diamond anode publication-title: J. Electroanal. Chem. – volume: 308 start-page: 505 year: 2017 end-page: 515 ident: b0135 article-title: Heterogeneous activation of peroxymonosulfate using ordered mesoporous Co publication-title: Chem. Eng. J. – volume: 234 start-page: 115 year: 2013 end-page: 123 ident: b0215 article-title: Comparative electro-Fenton and UVA photoelectro-Fenton degradation of the antibiotic sulfanilamide using a stirred BDD/air-diffusion tank reactor publication-title: Chem. Eng. J. – volume: 320 start-page: 436 year: 2017 end-page: 447 ident: b0125 article-title: Efficient degradation of 2,4-dichlorophenoxyacetic acid by peroxymonosulfate/magnetic copper ferrite nanoparticles/ozone: a novel combination of advanced oxidation processes publication-title: Chem. Eng. J. – volume: 6 start-page: 84050 year: 2016 end-page: 84067 ident: b0145 article-title: Facile controllable hydrothermal route for a porous CoMn publication-title: RSC Adv. – volume: 5 start-page: 8708 year: 2012 end-page: 8715 ident: b0190 article-title: Phase and shape controlled VO publication-title: Energy Environ. Sci. – volume: 322 start-page: 546 year: 2017 end-page: 555 ident: b0120 article-title: Extremely enhanced generation of reactive oxygen species for oxidation of pollutants from peroxymonosulfate induced by a supported copper oxide catalyst publication-title: Chem. Eng. J. – volume: 142 start-page: 729 year: 2013 end-page: 735 ident: b0070 article-title: Manganese oxides at different oxidation states for heterogeneous activation of peroxymonosulfate for phenol degradation in aqueous solutions publication-title: Appl. Catal. B Environ. – volume: 39 start-page: 779 year: 2005 end-page: 786 ident: b0170 article-title: Effect of pH on MnO publication-title: Water Res. – volume: 129 start-page: 171 year: 2006 end-page: 178 ident: b0195 article-title: Novel active heterogeneous Fenton system based on Fe publication-title: J. Hazard. Mater. – volume: 38 start-page: 3705 year: 2004 end-page: 3712 ident: b0185 article-title: Radical generation by the interaction of transition metals with common oxidants publication-title: Environ. Sci. Technol. – volume: 194 start-page: 169 year: 2016 end-page: 201 ident: b0200 article-title: Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects publication-title: Appl. Catal. B Environ. – volume: 47 start-page: 2784 year: 2013 end-page: 2791 ident: b0130 article-title: Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe publication-title: Environ. Sci. Technol. – volume: 129 start-page: 153 year: 2013 end-page: 162 ident: b0005 article-title: Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe publication-title: Appl. Catal. B – volume: 47 start-page: 5431 year: 2013 end-page: 5438 ident: b0040 article-title: Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals publication-title: Water Res. – volume: 280 start-page: 514 year: 2015 end-page: 524 ident: b0175 article-title: Efficient degradation of sulfamethazine with CuCo publication-title: Chem. Eng. J. – volume: 49 start-page: 12941 year: 2015 end-page: 12950 ident: b0205 article-title: Activation of peroxymonosulfate by benzoquinone: a novel nonradical oxidation process publication-title: Environ. Sci. Technol. – volume: 49 start-page: 7330 year: 2015 end-page: 7339 ident: b0035 article-title: Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: a novel advanced oxidation process publication-title: Environ. Sci. Technol. – volume: 21 start-page: 9319 year: 2011 end-page: 9325 ident: b0140 article-title: Self-supported hydrothermal synthesized hollow Co publication-title: J. Mater. Chem. – volume: 8 start-page: 164 year: 2015 end-page: 171 ident: b0155 article-title: Cobalt-manganese-based spinels as multifunctional materials that unify catalytic water oxidation and oxygen reduction reactions publication-title: ChemSusChem – volume: 310 start-page: 41 year: 2017 end-page: 62 ident: b0010 article-title: Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review publication-title: Chem. Eng. J. – volume: 154–155 start-page: 246 year: 2014 end-page: 251 ident: b0060 article-title: Shape-controlled activation of peroxymonosulfate by single crystal α-Mn publication-title: Appl. Catal. B – volume: 37 start-page: 4790 year: 2003 end-page: 4797 ident: b0180 article-title: Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt publication-title: Environ. Sci. Technol. – volume: 293 start-page: 21 year: 2015 end-page: 29 ident: b0220 article-title: Fenton degradation of sulfanilamide in the presence of Al Fe-pillared clay: catalytic behavior and identification of the intermediates publication-title: J. Hazard. Mater. – volume: 266 start-page: 12 year: 2015 end-page: 20 ident: b0065 article-title: New insights into heterogeneous generation and evolution processes of sulfate radicals for phenol degradation over one-dimensional α-MnO publication-title: Chem. Eng. J. – volume: 224 start-page: 10 year: 2013 end-page: 16 ident: b0020 article-title: Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol publication-title: Chem. Eng. J. – volume: 186 start-page: 1455 year: 2011 end-page: 1461 ident: b0165 article-title: Degradation of a xanthene dye by Fe(II)-mediated activation of oxone process publication-title: J. Hazard. Mater. – volume: 50 start-page: 3119 year: 2016 end-page: 3127 ident: b0015 article-title: Sulfate radical-mediated degradation of sulfadiazine by CuFeO publication-title: Environ. Sci. Technol. – volume: 2 year: 2012 ident: b0110 article-title: CoMn publication-title: Sci. Rep. – year: 2017 ident: b0075 article-title: Degradation of bisphenol A by peroxymonosulfate catalytically activated with Mn publication-title: Environ. Sci. Technol. – volume: 181 start-page: 103 year: 2016 end-page: 117 ident: b0055 article-title: Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications publication-title: Appl. Catal. B Environ. – volume: 181 start-page: 788 year: 2016 end-page: 799 ident: b0095 article-title: Fe publication-title: Appl. Catal. B Environ. – volume: 127 start-page: 330 year: 2012 end-page: 335 ident: b0080 article-title: Excellent performance of mesoporous Co publication-title: Appl. Catal. B Environ. – volume: 118 start-page: 81 year: 2014 end-page: 87 ident: b0150 article-title: Conducting CoMn publication-title: Electrochim. Acta – volume: 49 start-page: 2350 year: 2015 end-page: 2357 ident: b0050 article-title: Spatial confinement of a Co publication-title: Environ. Sci. Technol. – volume: 244 start-page: 736 year: 2013 end-page: 742 ident: b0115 article-title: Heterogeneous activation of Oxone by Co publication-title: J. Hazard. Mater. – volume: 329 start-page: 262 year: 2017 end-page: 271 ident: b0160 article-title: Synergistic degradation of phenols using peroxymonosulfate activated by CuO-Co publication-title: J. Hazard. Mater. – volume: 300 start-page: 39 year: 2015 end-page: 47 ident: b0030 article-title: Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process publication-title: J. Hazard. Mater. – volume: 18 start-page: 3163 year: 2012 end-page: 3168 ident: b0105 article-title: Metal-oxide nanoparticles with desired morphology inherited from coordination-polymer precursors publication-title: Chem. A Eur. J. – volume: 22 start-page: 13328 year: 2012 ident: b0100 article-title: Spinel ZnMn publication-title: J. Mater. Chem. – volume: 308 start-page: 505 year: 2017 ident: 10.1016/j.cej.2017.12.069_b0135 article-title: Heterogeneous activation of peroxymonosulfate using ordered mesoporous Co3O4 for the degradation of chloramphenicol at neutral pH publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.09.075 – volume: 118 start-page: 81 year: 2014 ident: 10.1016/j.cej.2017.12.069_b0150 article-title: Conducting CoMn2O4-PEDOT nanocomposites as catalyst in oxygen reduction reaction publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.11.165 – volume: 22 start-page: 13328 year: 2012 ident: 10.1016/j.cej.2017.12.069_b0100 article-title: Spinel ZnMn2O4 nanoplate assemblies fabricated via “escape-by-crafty-scheme” strategy publication-title: J. Mater. Chem. doi: 10.1039/c2jm32261g – volume: 689 start-page: 149 year: 2013 ident: 10.1016/j.cej.2017.12.069_b0210 article-title: Degradation of sulfanilamide in acidic medium by anodic oxidation with a boron-doped diamond anode publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2012.11.013 – volume: 18 start-page: 3163 year: 2012 ident: 10.1016/j.cej.2017.12.069_b0105 article-title: Metal-oxide nanoparticles with desired morphology inherited from coordination-polymer precursors publication-title: Chem. A Eur. J. doi: 10.1002/chem.201103415 – volume: 280 start-page: 514 year: 2015 ident: 10.1016/j.cej.2017.12.069_b0175 article-title: Efficient degradation of sulfamethazine with CuCo2O4 spinel nanocatalysts for peroxymonosulfate activation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.05.121 – volume: 181 start-page: 788 year: 2016 ident: 10.1016/j.cej.2017.12.069_b0095 article-title: FexCo3−xO4 nanocages derived from nanoscale metal-organic frameworks for removal of bisphenol A by activation of peroxymonosulfate publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.08.050 – volume: 300 start-page: 39 year: 2015 ident: 10.1016/j.cej.2017.12.069_b0030 article-title: Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.06.058 – volume: 296 start-page: 128 year: 2015 ident: 10.1016/j.cej.2017.12.069_b0085 article-title: Sulfate radicals induced from peroxymonosulfate by cobalt manganese oxides (CoxMn3−xO4) for Fenton-Like reaction in water publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.04.014 – volume: 329 start-page: 262 year: 2017 ident: 10.1016/j.cej.2017.12.069_b0160 article-title: Synergistic degradation of phenols using peroxymonosulfate activated by CuO-Co3O4@MnO2 nanocatalyst publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.01.029 – volume: 154–155 start-page: 246 year: 2014 ident: 10.1016/j.cej.2017.12.069_b0060 article-title: Shape-controlled activation of peroxymonosulfate by single crystal α-Mn2O3 for catalytic phenol degradation in aqueous solution publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2014.02.026 – volume: 45 start-page: 9308 year: 2011 ident: 10.1016/j.cej.2017.12.069_b0025 article-title: Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system publication-title: Environ. Sci. Technol. doi: 10.1021/es2017363 – volume: 39 start-page: 779 year: 2005 ident: 10.1016/j.cej.2017.12.069_b0170 article-title: Effect of pH on MnOx/GAC catalyzed ozonation for degradation of nitrobenzene publication-title: Water Res. doi: 10.1016/j.watres.2004.11.020 – volume: 37 start-page: 4790 year: 2003 ident: 10.1016/j.cej.2017.12.069_b0180 article-title: Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt publication-title: Environ. Sci. Technol. doi: 10.1021/es0263792 – volume: 127 start-page: 330 year: 2012 ident: 10.1016/j.cej.2017.12.069_b0080 article-title: Excellent performance of mesoporous Co3O4/MnO2 nanoparticles in heterogeneous activation of peroxymonosulfate for phenol degradation in aqueous solutions publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2012.09.001 – volume: 310 start-page: 41 year: 2017 ident: 10.1016/j.cej.2017.12.069_b0010 article-title: Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.10.064 – volume: 5 start-page: 8708 year: 2012 ident: 10.1016/j.cej.2017.12.069_b0190 article-title: Phase and shape controlled VO2 nanostructures by antimony doping publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22290f – volume: 129 start-page: 171 year: 2006 ident: 10.1016/j.cej.2017.12.069_b0195 article-title: Novel active heterogeneous Fenton system based on Fe3-xMxO4 (Fe Co, Mn, Ni): the role of M2+ species on the reactivity towards H2O2 reactions publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2005.08.028 – volume: 293 start-page: 21 year: 2015 ident: 10.1016/j.cej.2017.12.069_b0220 article-title: Fenton degradation of sulfanilamide in the presence of Al Fe-pillared clay: catalytic behavior and identification of the intermediates publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.03.038 – volume: 109 start-page: 13052 year: 2005 ident: 10.1016/j.cej.2017.12.069_b0045 article-title: Heterogeneous activation of oxone using Co3O4 publication-title: J. Phys. Chem. B doi: 10.1021/jp052166y – year: 2017 ident: 10.1016/j.cej.2017.12.069_b0075 article-title: Degradation of bisphenol A by peroxymonosulfate catalytically activated with Mn1.8Fe1.2O4 nanospheres: synergism between Mn and Fe publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b03007 – volume: 322 start-page: 546 year: 2017 ident: 10.1016/j.cej.2017.12.069_b0120 article-title: Extremely enhanced generation of reactive oxygen species for oxidation of pollutants from peroxymonosulfate induced by a supported copper oxide catalyst publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.04.018 – volume: 6 start-page: 84050 year: 2016 ident: 10.1016/j.cej.2017.12.069_b0145 article-title: Facile controllable hydrothermal route for a porous CoMn2O4 nanostructure: synthesis, characterization, and textile dye removal from aqueous media publication-title: RSC Adv. doi: 10.1039/C6RA12424K – volume: 50 start-page: 3119 year: 2016 ident: 10.1016/j.cej.2017.12.069_b0015 article-title: Sulfate radical-mediated degradation of sulfadiazine by CuFeO2 rhombohedral crystal-catalyzed peroxymonosulfate: synergistic effects and mechanisms publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b05974 – volume: 266 start-page: 12 year: 2015 ident: 10.1016/j.cej.2017.12.069_b0065 article-title: New insights into heterogeneous generation and evolution processes of sulfate radicals for phenol degradation over one-dimensional α-MnO2 nanostructures publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.12.066 – volume: 49 start-page: 7330 year: 2015 ident: 10.1016/j.cej.2017.12.069_b0035 article-title: Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: a novel advanced oxidation process publication-title: Environ. Sci. Technol. doi: 10.1021/es506362e – volume: 194 start-page: 169 year: 2016 ident: 10.1016/j.cej.2017.12.069_b0200 article-title: Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.04.003 – volume: 165 start-page: 572 year: 2015 ident: 10.1016/j.cej.2017.12.069_b0090 article-title: Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4 (M=Co, Cu, Mn, and Zn) as heterogeneous catalysts in the water publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2014.10.051 – volume: 49 start-page: 12941 year: 2015 ident: 10.1016/j.cej.2017.12.069_b0205 article-title: Activation of peroxymonosulfate by benzoquinone: a novel nonradical oxidation process publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b03595 – volume: 38 start-page: 3705 year: 2004 ident: 10.1016/j.cej.2017.12.069_b0185 article-title: Radical generation by the interaction of transition metals with common oxidants publication-title: Environ. Sci. Technol. doi: 10.1021/es035121o – volume: 320 start-page: 436 year: 2017 ident: 10.1016/j.cej.2017.12.069_b0125 article-title: Efficient degradation of 2,4-dichlorophenoxyacetic acid by peroxymonosulfate/magnetic copper ferrite nanoparticles/ozone: a novel combination of advanced oxidation processes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.03.036 – volume: 47 start-page: 5431 year: 2013 ident: 10.1016/j.cej.2017.12.069_b0040 article-title: Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals publication-title: Water Res. doi: 10.1016/j.watres.2013.06.023 – volume: 21 start-page: 9319 year: 2011 ident: 10.1016/j.cej.2017.12.069_b0140 article-title: Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance publication-title: J. Mater. Chem. doi: 10.1039/c1jm10946d – volume: 234 start-page: 115 year: 2013 ident: 10.1016/j.cej.2017.12.069_b0215 article-title: Comparative electro-Fenton and UVA photoelectro-Fenton degradation of the antibiotic sulfanilamide using a stirred BDD/air-diffusion tank reactor publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.08.080 – volume: 2 year: 2012 ident: 10.1016/j.cej.2017.12.069_b0110 article-title: CoMn2O4 spinel hierarchical microspheres assembled with porous nanosheets as stable anodes for lithium-ion batteries publication-title: Sci. Rep. doi: 10.1038/srep00986 – volume: 142 start-page: 729 year: 2013 ident: 10.1016/j.cej.2017.12.069_b0070 article-title: Manganese oxides at different oxidation states for heterogeneous activation of peroxymonosulfate for phenol degradation in aqueous solutions publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2013.06.004 – volume: 244 start-page: 736 year: 2013 ident: 10.1016/j.cej.2017.12.069_b0115 article-title: Heterogeneous activation of Oxone by CoxFe3−xO4 nanocatalysts for degradation of rhodamine B publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.11.005 – volume: 186 start-page: 1455 year: 2011 ident: 10.1016/j.cej.2017.12.069_b0165 article-title: Degradation of a xanthene dye by Fe(II)-mediated activation of oxone process publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.12.033 – volume: 224 start-page: 10 year: 2013 ident: 10.1016/j.cej.2017.12.069_b0020 article-title: Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.11.007 – volume: 49 start-page: 2350 year: 2015 ident: 10.1016/j.cej.2017.12.069_b0050 article-title: Spatial confinement of a Co3O4 catalyst in hollow metal-organic frameworks as a nanoreactor for improved degradation of organic pollutants publication-title: Environ. Sci. Technol. doi: 10.1021/es505014z – volume: 47 start-page: 2784 year: 2013 ident: 10.1016/j.cej.2017.12.069_b0130 article-title: Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: efficiency stability, and mechanism publication-title: Environ. Sci. Technol. doi: 10.1021/es304721g – volume: 8 start-page: 164 year: 2015 ident: 10.1016/j.cej.2017.12.069_b0155 article-title: Cobalt-manganese-based spinels as multifunctional materials that unify catalytic water oxidation and oxygen reduction reactions publication-title: ChemSusChem doi: 10.1002/cssc.201402699 – volume: 129 start-page: 153 year: 2013 ident: 10.1016/j.cej.2017.12.069_b0005 article-title: Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe2O4 as a heterogeneous catalyst of peroxymonosulfate publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2012.09.015 – volume: 181 start-page: 103 year: 2016 ident: 10.1016/j.cej.2017.12.069_b0055 article-title: Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.07.024 |
SSID | ssj0006919 |
Score | 2.6227207 |
Snippet | [Display omitted]
•Plate-shaped CoMn2O4 was synthesized using MOFs as precursor.•The catalyst showed large specific surface area and abundant active sites.•It... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 101 |
SubjectTerms | CoMn2O4 Metal–organic frameworks (MOFs) Peroxymonosulfate (PMS) Sulfanilamide Synergy |
Title | Metal organic framework-derived CoMn2O4 catalyst for heterogeneous activation of peroxymonosulfate and sulfanilamide degradation |
URI | https://dx.doi.org/10.1016/j.cej.2017.12.069 |
Volume | 337 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL3oQn_gse_AkxDbd3WRzLMVSLVXwgd5CNjuLFUnEtmIv4k93Jg8foB485cEMhMns7MzONzOMHYAPfmQh8aJAYoBihPCixIReiuEHBE5J66h2eHgW9K_l6a26nWPduhaGYJWV7S9temGtqzfNSprNx9GoeelTTiuSlEbGZVcUmksZkpYfvX7CPIKoGO5BxB5R15nNAuOVwj2hu8LiRJAwzz_tTV_2m94KW64cRd4pv2WVzUG2xpa-tA9cZ29DQNeZl4OZUu5qnJVnkeAZLO_mw6x9LnlxRjMbTzh6qPyOADA56g1g0M-prqE8leW549Q1_GWGmpmPpw8O3VCeZJYX99kIdWdkgVtqL1FOYtpg173jq27fqyYqeKkQcuKZEBd0qIVum9ApZdHStZzvtJCBBSEijeGVUCBCaZUONLh2YHUAwvhWp6mfik02n-UZbDGulPZBg0mkQZ6WS0AnGkRinNKUyt1mrVqWcVq1G6epFw9xjSu7j1H8MYk_9tsxin-bHX6wPJa9Nv4ilvUPir8pTIx7we9sO_9j22WL-KRLyM4em588TWEfvZGJaRTq1mALnZNB_4yug4ubwTuG-eK9 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1PTxUxEJ_g86AeDKJGVLQHuJCs73Xb7nYPHMwD8hAeHICEW91up-ERskt874HvYvhOfkGn-0cxUQ8m3Da7nU07nU5nOr_OAKwjR545zKMskeSgWCGiLLdpVJD7gYlX0vlwd3h8mIxO5aczdbYE37u7MAFW2er-RqfX2rp902-52b-aTPrHPMS0MhnCyLTseIes3MfFDflt0629bZrkjTje3TkZjqK2tEBUCCFnkU1JslMtdGxTr5SjJT_w3GshE4dCZJr8DKFQpNIpnWj0ceJ0gsJyp4uCF4L--wAeSlIXoWzCh2-_cCVJVlcTCb2LQve6UGoNKivwIsDJ0voIMoCs_7QZ3tngdpfhaWuZso_N4J_BEpYr8OROvsLncDtGstVZUwmqYL4DdkWOGlyjY8NqXMZHktWHQovpjJFJzM4D4qYiQcVqPmXhIkVzDMwqz0Ka8q8LWgrVdH7pye5leelY_VxOSFgnDpkL-Sya0k8v4PRe-PwSemVV4itgSmmOGm0uLdEMfI461yhy65UOseNVGHS8NEWb3zyU2bg0HZDtwhD7TWC_4bEh9q_C5k-Sqya5x78ay26CzG8Samjz-TvZ6_8jew-PRifjA3Owd7j_Bh7TF93ghd5Cb_ZljmtkCs3su1r0GHy-b1n_AVTCGuU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+organic+framework-derived+CoMn2O4+catalyst+for+heterogeneous+activation+of+peroxymonosulfate+and+sulfanilamide+degradation&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Li%2C+Chen-Xuan&rft.au=Chen%2C+Chang-Bin&rft.au=Lu%2C+Jia-Yuan&rft.au=Cui%2C+Shuo&rft.date=2018-04-01&rft.issn=1385-8947&rft.volume=337&rft.spage=101&rft.epage=109&rft_id=info:doi/10.1016%2Fj.cej.2017.12.069&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2017_12_069 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |