Deformation of inhomogeneous vector optical rogue waves in the variable coefficients coupled cubic–quintic nonlinear Schrödinger equations with self-steepening
In this study, we explore variable coefficients coupled cubic–quintic nonlinear Schrödinger (CQNLS) equations with self-steepening, modeling optical pulse propagation in inhomogeneous birefringent optical fibers. We employ a similarity transformation technique to transform the inhomogeneous optical...
Saved in:
Published in | European physical journal plus Vol. 139; no. 5; p. 405 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
10.05.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2190-5444 2190-5444 |
DOI | 10.1140/epjp/s13360-024-05205-z |
Cover
Abstract | In this study, we explore variable coefficients coupled cubic–quintic nonlinear Schrödinger (CQNLS) equations with self-steepening, modeling optical pulse propagation in inhomogeneous birefringent optical fibers. We employ a similarity transformation technique to transform the inhomogeneous optical model into a homogeneous system consisting of two coupled CQNLS equations that satisfy integrable constraints. By utilizing the vector first- and second-order rogue wave solutions of the later equations, we obtain various inhomogeneous optical rogue waves: bright-bright, dark-bright, bright-bright doublet, quartet, and sextet for the considered system. The dynamical characteristics of these solutions are controlled by appropriately configuring the structural parameters in the derived solutions. Our investigation delves into the intricate features of these inhomogeneous vector optical rogue waves, with a particular focus on the effects of three longitudinally varying distinct dispersion parameters, namely exponential, kink-like and periodic. Throughout our study, we observe a wide spectrum of notable nonlinear phenomena in the intensity profiles of vector inhomogeneous rogue waves. These phenomena encompass deformation, enhancement, compression, stretching, suppression, and breathing behavior. The insights gained from this research hold significant promise for advancing the field of nonlinear optics, particularly in the realm of experimental investigations involving vector optical rogue waves in inhomogeneous birefringent fibers. |
---|---|
AbstractList | In this study, we explore variable coefficients coupled cubic–quintic nonlinear Schrödinger (CQNLS) equations with self-steepening, modeling optical pulse propagation in inhomogeneous birefringent optical fibers. We employ a similarity transformation technique to transform the inhomogeneous optical model into a homogeneous system consisting of two coupled CQNLS equations that satisfy integrable constraints. By utilizing the vector first- and second-order rogue wave solutions of the later equations, we obtain various inhomogeneous optical rogue waves: bright-bright, dark-bright, bright-bright doublet, quartet, and sextet for the considered system. The dynamical characteristics of these solutions are controlled by appropriately configuring the structural parameters in the derived solutions. Our investigation delves into the intricate features of these inhomogeneous vector optical rogue waves, with a particular focus on the effects of three longitudinally varying distinct dispersion parameters, namely exponential, kink-like and periodic. Throughout our study, we observe a wide spectrum of notable nonlinear phenomena in the intensity profiles of vector inhomogeneous rogue waves. These phenomena encompass deformation, enhancement, compression, stretching, suppression, and breathing behavior. The insights gained from this research hold significant promise for advancing the field of nonlinear optics, particularly in the realm of experimental investigations involving vector optical rogue waves in inhomogeneous birefringent fibers. |
ArticleNumber | 405 |
Author | Manigandan, M. Manikandan, K. Sirisubtawee, S. Muniyappan, A. Jakeer, S. |
Author_xml | – sequence: 1 givenname: M. surname: Manigandan fullname: Manigandan, M. organization: Centre for Computational Modeling, Chennai Institute of Technology – sequence: 2 givenname: K. orcidid: 0000-0002-4392-7194 surname: Manikandan fullname: Manikandan, K. email: manikandank@citchennai.net organization: Centre for Computational Modeling, Chennai Institute of Technology – sequence: 3 givenname: A. surname: Muniyappan fullname: Muniyappan, A. organization: Centre for Computational Modeling, Chennai Institute of Technology – sequence: 4 givenname: S. surname: Jakeer fullname: Jakeer, S. organization: Department of Mathematics, The Apollo University – sequence: 5 givenname: S. surname: Sirisubtawee fullname: Sirisubtawee, S. organization: Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok |
BookMark | eNqNkU9OGzEUxi0EEn_PUEtdD9ixPZlZdFHRFiohdVFYW7bznDia2BPbE1RW3IEbcAguwE04SZ0ECdQN9ebZ0ve99_n9DtGuDx4Q-kTJKaWcnEE_788SZawmFRnxiogREdXdDjoY0ZZUgnO---6-j05SmpNyeEt5yw_Q4zewIS5UdsHjYLHzs7AIU_AQhoRXYHKIOPTZGdXhGKYD4Fu1glSEOM8Ar1R0SneATQBrnXHgcyqPoe9ggs2gnXm5f1gOzpcWuKTvnAcV8W8zi89PE-enEDEsh02AhG9dnuEEna1SBujBF8Ex2rOqS3DyWo_QzY_v1-eX1dWvi5_nX68qwxjPla4p1QIYNWpsLW01aGDKTiwToxpsa7Wta9EIRbQwgmtrhGCK23pChRBjwo7Q523fPoblACnLeRiiLyMlI4Ix0TRtU1TjrcrEkFIEK_voFir-kZTINRO5ZiK3TGRhIjdM5F1xfvnHaVze_DtH5br_8DdbfyoT13t7y_eR9S9CU7FP |
CitedBy_id | crossref_primary_10_1142_S0217984925500447 crossref_primary_10_1142_S0218863524500346 crossref_primary_10_3390_math13050693 crossref_primary_10_3390_math12193054 |
Cites_doi | 10.1103/PhysRevLett.98.074102 10.1016/S0030-4018(01)01267-6 10.1088/1751-8113/48/21/215202 10.1016/j.optcom.2011.10.087 10.1007/s11071-020-06029-z 10.1016/j.physleta.2013.11.010 10.1007/s11071-020-05790-5 10.1016/j.ijleo.2022.168703 10.1007/978-3-540-73591-5 10.1007/s11071-020-05694-4 10.1007/3-540-36141-3 10.1016/j.optcom.2004.10.001 10.1103/PhysRevE.89.062901 10.1016/j.optcom.2016.01.005 10.1103/PhysRevA.79.063802 10.1007/s11071-014-1382-5 10.1364/OE.460611 10.1016/j.physleta.2023.128836 10.1063/1.4981907 10.1016/j.cnsns.2021.106240 10.1016/j.cnsns.2023.107479 10.1364/OL.29.000265 10.1007/s11071-019-04991-x 10.1088/1402-4896/abbd6d 10.1016/S0030-4018(01)01365-7 10.1007/s11071-023-08640-2 10.3389/fphy.2020.596950 10.1038/nphys1740 10.1016/j.aml.2015.11.001 10.1016/j.physd.2022.133285 10.1088/0253-6102/71/12/1393 10.1364/OL.494619 10.1063/1.4922552 10.1007/s11071-021-06350-1 10.1016/j.physa.2015.03.014 10.1515/zna-2015-0319 10.1103/PhysRevA.107.053507 10.1103/PhysRevLett.109.044102 10.1364/AOP.438025 10.1002/lpor.201500227 10.1007/s11071-023-08755-6 10.1080/09205071.2017.1348994 10.1007/s11071-019-04821-0 10.1088/0031-8949/90/4/045206 10.1007/s11071-015-2227-6 10.1103/PhysRevE.93.032212 10.1364/OPN.34.5.000026 10.1080/17455030.2021.1986649 10.1016/j.yofte.2017.06.006 10.1080/09500341003624750 10.1364/OE.15.002963 10.1007/978-3-319-39214-1 10.1016/j.ijleo.2017.03.005 10.1103/PhysRevA.84.063830 10.1063/1.4947113 10.1364/JOSAB.19.000369 10.1103/PhysRevLett.85.4502 10.1016/j.ijleo.2022.168641 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 8FE 8FG AEUYN AFKRA ARAPS BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO HCIFZ P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1140/epjp/s13360-024-05205-z |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea ProQuest SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection Earth, Atmospheric & Aquatic Science Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2190-5444 |
ExternalDocumentID | 10_1140_epjp_s13360_024_05205_z |
GrantInformation_xml | – fundername: Chennai Institute of Technology grantid: CIT/CCM/2024/RP-017 – fundername: Science and Engineering Research Board (IN) grantid: MTR/2023/000921 |
GroupedDBID | -5F -5G -BR -EM -~C 06D 0R~ 203 29~ 2JN 2KG 30V 4.4 406 408 8UJ 95. 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABHLI ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACREN ACZOJ ADHHG ADINQ ADKNI ADKPE ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARMRJ AXYYD AYJHY BGNMA CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI ESBYG FERAY FFXSO FIGPU FNLPD FRRFC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O93 O9J P9T PT4 RID RLLFE ROL RSV S27 S3B SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z7S Z7Y ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEUYN AEZWR AFDZB AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ BHPHI BKSAR CCPQU CITATION HCIFZ PCBAR PHGZM PHGZT 8FE 8FG ABRTQ DWQXO P62 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c334t-b611b5e31ca7ff19bebe3afdf3526ef9fbf66585a0b5c54bfc553a4f6d1555703 |
IEDL.DBID | U2A |
ISSN | 2190-5444 |
IngestDate | Fri Jul 25 19:55:08 EDT 2025 Tue Jul 01 02:42:36 EDT 2025 Thu Apr 24 22:52:15 EDT 2025 Fri Feb 21 02:38:57 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-b611b5e31ca7ff19bebe3afdf3526ef9fbf66585a0b5c54bfc553a4f6d1555703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4392-7194 |
PQID | 3053358898 |
PQPubID | 2044220 |
ParticipantIDs | proquest_journals_3053358898 crossref_primary_10_1140_epjp_s13360_024_05205_z crossref_citationtrail_10_1140_epjp_s13360_024_05205_z springer_journals_10_1140_epjp_s13360_024_05205_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-10 |
PublicationDateYYYYMMDD | 2024-05-10 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | European physical journal plus |
PublicationTitleAbbrev | Eur. Phys. J. Plus |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | YangSXWangYFZhangXDynamics of localized waves for the higher-order nonlinear Schrödinger equation with self-steepening and cubic-quintic nonlinear terms in optical fibersNonlinear Dyn.2023111174391745410.1007/s11071-023-08755-6 MusammilNMPorsezianKNithyanandanKSubhaPATchofo DindaPUltrashort dark solitons interactions and nonlinear tunneling in the modified nonlinear Schrödinger equation with variable coefficientOpt. Fiber Technol.20173711202017OptFT..37...11M10.1016/j.yofte.2017.06.006 TrikiHBiswasAMilovićDBelicMChirped femtosecond pulses in the higher-order nonlinear Schrödinger equation with non-Kerr nonlinear terms and cubic-quintic-septic nonlinearitiesOpt. Commun.20163663623692016OptCo.366..362T10.1016/j.optcom.2016.01.005 HeJDZhangJFZhangMYDaiCQAnalytical nonautonomous soliton solutions for the cubic-quintic nonlinear Schrödinger equation with distributed coefficientsOpt. Commun.20122857557602012OptCo.285..755H10.1016/j.optcom.2011.10.087 SunWRWen-RongDYLXieXYVector semirational rogue waves and modulation instability for the coupled higher-order nonlinear Schrödinger equations in the birefringent optical fibersChaos2017270431142017Chaos..27d3114S10.1063/1.4981907 DasAKarmakarBBiswasAChirped periodic waves and solitary waves for a generalized derivative resonant nonlinear Schrödinger equation with cubic-quintic nonlinearityNonlinear Dyn.2023111153471537110.1007/s11071-023-08640-2 DudleyJMFinotCGentyGTaylorRFifty years of fiber solitonsOpt. Photon. News20233452610.1364/OPN.34.5.000026 ZhanCZhangDZhuDWangDLiYLiDLuZZhaoLNieYThird- and fifth-order optical nonlinearities in a new stilbazolium derivativeJ. Opt. Soc. Am. B2002193693752002OSAJB..19..369Z10.1364/JOSAB.19.000369 KharifCPelinovskyESlunyaevARogue Waves in the Ocean2009BerlinSpringer ManikandanKSudharsanJBManipulating two-dimensional solitons in inhomogeneous nonlinear Schrödinger equation with power-law nonlinearity under PT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{PT}$$\end{document}-symmetric Rosen–Morse and hyperbolic Scarff-II potentialsOptik20222561687032022Optik.256p8703M10.1016/j.ijleo.2022.168703 MaoBQGaoYTFengYJYuXNonautonomous solitons for the coupled variable-coefficient cubic-quintic nonlinear Schrödinger equations with external potentials in the non-Kerr fibreZeitschrift für Naturforschung A2015709859942015ZNatA..70..985M10.1515/zna-2015-0319 SerkinVNHasegawaABelyaevaTLSolitary waves in nonautonomous nonlinear and dispersive systems: nonautonomous solitonsJ. Mod. Opt.2010201057145614722010JMOp...57.1456S10.1080/09500341003624750 MuPHuangYZhouPZengYFangQLanRHePLiuXGuoGLiuXLiNExtreme events in two laterally-coupled semiconductor lasersOpt. Express20223029435294482022OExpr..3029435M10.1364/OE.460611 LuoHGZhaoDHeXGExactly controllable transmission of nonautonomous optical solitonsPhys. Rev. A2009790638022009PhRvA..79f3802L10.1103/PhysRevA.79.063802 PorsezianKKuriakoseVCOptical Solitons: Theoretical and Experimental Challenges2003New YorkSpringer10.1007/3-540-36141-3 JiTZhaiYSoliton, breather and rogue wave solutions of the coupled Gerdjikov–Ivanov equation via Darboux transformationNonlinear Dyn.202010161963110.1007/s11071-020-05790-5 TlidiMTakiMRogue waves in nonlinear opticsAdv. Opt. Photon.2022148714710.1364/AOP.438025 KengneELiuWMModulational instability and sister chirped femtosecond modulated waves in a nonlinear Schrödinger equation with self-steepening and self-frequency shiftCommun. Nonlinear Sci. Numer. Simul.202210810624010.1016/j.cnsns.2021.106240 SerkinVNHasegawaANovel soliton solutions of the nonlinear Schrödinger equation modelPhys. Rev. Lett.20008545022000PhRvL..85.4502S10.1103/PhysRevLett.85.4502 BaronioFDegasperisAConfortiMWabnitzSSolutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue wavesPhys. Rev. Lett.20121090441022012PhRvL.109d4102B10.1103/PhysRevLett.109.044102 HaoRLiLLiZYangRZhouGA new way to exact quasi-soliton solutions and soliton interaction for the cubic-quintic nonlinear Schrödinger equation with variable coefficientsOpt. Commun.20052453833902005OptCo.245..383H10.1016/j.optcom.2004.10.001 YeYLiuJBuLPanCChenSMihalacheDRogue waves and modulation instability in an extended Manakov systemNonlinear Dyn.20201021801181210.1007/s11071-020-06029-z SakkaravarthiKKannaTBabu MareeswaranRHigher-order optical rogue waves in spatially inhomogeneous multimode fiberPhysica D2022435133285441163210.1016/j.physd.2022.133285 OgusuKYamasakiJMaedaSKitaoMMinakataMLinear and nonlinear optical properties of Ag–As–Se chalcogenide glasses for all-optical switchingOpt. Lett.2004292652004OptL...29..265O10.1364/OL.29.000265 WangMTianBDarboux transformation, generalized Darboux transformation and vector breather solutions for the coupled variable-coefficient cubic-quintic nonlinear Schrödinger system in a non-Kerr medium, twin-core nonlinear optical fiber or waveguideWave. Random Complex202210.1080/17455030.2021.1986649 DjelahGNdzanaFIAbdoulkarySMohamadouARogue waves dynamics of cubic-quintic nonlinear Schrödinger equation with an external linear potential through a modified Noguchi electrical transmission networkCommun. Nonlin. Sci. Num. Simul.202312610747910.1016/j.cnsns.2023.107479 KengneELakhssassiALiuWMNon-autonomous solitons in inhomogeneous nonlinear media with distributed dispersionNonlinear Dyn.20199744946910.1007/s11071-019-04991-x ChaiJTianBZhenHLBright and dark solitons and Bäcklund transformations for the coupled cubic-quintic nonlinear Schrödinger equations with variable coefficients in an optical fiberPhys. Scr.2015900452062015PhyS...90d5206C10.1088/0031-8949/90/4/045206 YangDYTianBQuQXDarboux-dressing transformation, semi-rational solutions, breathers and modulation instability for the cubic-quintic nonlinear Schrödinger system with variable coefficients in a non-Kerr medium, twin-core nonlinear optical fiber or waveguidePhys. Scr.2021960452102021PhyS...96d5210Y10.1088/1402-4896/abbd6d SerkinVNHasegawaABelyaevaTLNonautonomous solitons in external potentialsPhys. Rev. Lett.2007980741022007PhRvL..98g4102S10.1103/PhysRevLett.98.074102 ArshadMSeadawyARLuDExact bright-dark solitary wave solutions of the higher-order cubic-quintic nonlinear Schrödinger equation and its stabilityOptik201713840492017Optik.138...40A10.1016/j.ijleo.2017.03.005 ChenSMihalacheDVector rogue waves in the Manakov system: diversity and compossibilityJ. Phys. A: Math. Theor.2015482152022015JPhA...48u5202C334285810.1088/1751-8113/48/21/215202 ZhangYNieXJRogue wave solutions for the coupled cubic-quintic nonlinear Schrödinger equations in nonlinear opticsPhys. Lett. A20143781911972014PhLA..378..191Z314640010.1016/j.physleta.2013.11.010 ChowduryAChangWBattiatoMHigher-order rogue-wave fission in the presence of self-steepening and Raman self-frequency shiftPhys. Rev. A20231070535072023PhRvA.107e3507C10.1103/PhysRevA.107.053507 HongWPOptical solitary wave solutions for the higher order nonlinear Schrödinger equation with cubic-quintic non-Kerr termsOpt. Commun.20011942172001OptCo.194..217H10.1016/S0030-4018(01)01267-6 KevrekidisPGFrantzeskakisDJCarretero-GonzálezREmergent Nonlinear Phenomena in Bose–Einstein Condensates: Theory and Experiment2008BerlinSpringer10.1007/978-3-540-73591-5 Vishnu PriyaNSenthilvelanMLakshmananMDark solitons, breathers and rogue wave solutions of the coupled generalized nonlinear Schröinger equationsPhys. Rev. E2014890629012014PhRvE..89f2901P10.1103/PhysRevE.89.062901 ZhaoLGuoBLingLHigh-order rogue wave solutions for the coupled nonlinear Schrödinger equations-IIJ. Math. Phys.2016570435082016JMP....57d3508Z349006010.1063/1.4947113 GoyalAGuptaRKumarCNRajuTSChirped femtosecond solitons and double-kink solitons in the cubic-quintic nonlinear Schrödinger equation with self-steepening and self-frequency shiftPhys. Rev. A2011840638302011PhRvA..84f3830A10.1103/PhysRevA.84.063830 KengneEChirped nonlinear waves in the cubic-quintic distributed nonlinear Schrödinger equation with external trap, self-steepening and self-frequency shiftPhys. Lett. A202347512883610.1016/j.physleta.2023.128836 PonomarenkoSAAgrawalGPInteractions of chirped and chirp-free similaritons in optical fiber amplifiersOpt. Express200715296329732007OExpr..15.2963P10.1364/OE.15.002963 YanXWZhangJCoupled cubic-quintic nonlinear Schrödinger equation: novel bright-dark rogue waves and dynamicsNonlinear Dyn.20201003733374310.1007/s11071-020-05694-4 ChuMXTian BBYuanYQBilinear forms and dark-dark solitons for the coupled cubic-quintic nonlinear Schrödinger equations with variable coefficients in a twin-core optical fiber or non-Kerr mediumCommun. Theor. Phys.20197113932019CoTPh..71.1393C405113510.1088/0253-6102/71/12/1393 MuniyappanASuruthiAMonishaBDromion-like structures in a cubic-quintic nonlinear Schrödinger equation using analytical methodsNonlinear Dyn.20211041533154410.1007/s11071-021-06350-1 SerkinVNMatsumotoMBelyaevaTLBright and dark solitary nonlinear Bloch waves in dispersion managed fiber systems and soliton lasersOpt. Commun.20011961592001OptCo.196..159S10.1016/S0030-4018(01)01365-7 SuchkovSVSukhorukovAAHuangJDmitrievSVLeeCKivsharYSNonlinear switching and solitons in PT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{PT}$$\end{document}-symmetric photonic systemsLaser Photon. Rev.2016101772132016LPRv...10..177S10.1002/lpor.201500227 YeYBuLWangWChenSBaronioFMihalacheDPeregrine solitons on a periodic background in the vector cubic-quintic nonlinear Schrödinger equationFront. Phys.2020859695010.3389/fphy.2020.596950 LiXZZhaoZYZhouXQGuYHanXZhaoMRogue wave generation using a chaotic semiconductor laser with energy redistributionOpt. Lett.202348352335262023OptL...48.3523L10.1364/OL.494619 ChaiJTianBWangYFMixed-type vec F Baronio (5205_CR28) 2012; 109 PG Kevrekidis (5205_CR53) 2008 E Kengne (5205_CR26) 2019; 97 XZ Li (5205_CR59) 2023; 48 C Kharif (5205_CR51) 2009 SA Ponomarenko (5205_CR22) 2007; 15 SX Yang (5205_CR32) 2023; 111 S Chen (5205_CR29) 2015; 48 X Lü (5205_CR6) 2015; 82 N Vishnu Priya (5205_CR31) 2014; 89 K Manikandan (5205_CR60) 2022; 256 YS Kivshar (5205_CR1) 2003 WP Hong (5205_CR12) 2001; 194 K Manikandan (5205_CR34) 2016; 93 J Chai (5205_CR45) 2015; 90 XW Yan (5205_CR33) 2020; 100 T Ji (5205_CR42) 2020; 101 E Kengne (5205_CR9) 2022; 108 SV Suchkov (5205_CR57) 2016; 10 M Onorato (5205_CR52) 2016 JM Dudley (5205_CR3) 2023; 34 VN Serkin (5205_CR23) 2010; 2010 Y Ye (5205_CR40) 2020; 102 J Chai (5205_CR46) 2015; 434 Y Ye (5205_CR39) 2020; 8 K Sakkaravarthi (5205_CR35) 2022; 435 M Tlidi (5205_CR56) 2022; 14 M Arshad (5205_CR18) 2017; 138 A Muniyappan (5205_CR15) 2021; 104 A Muniyappan (5205_CR16) 2021; 255 VN Serkin (5205_CR19) 2000; 85 J Chai (5205_CR36) 2017; 31 K Porsezian (5205_CR2) 2003 A Goyal (5205_CR10) 2011; 84 BQ Mao (5205_CR44) 2015; 70 B Kibler (5205_CR4) 2010; 6 K Ogusu (5205_CR14) 2004; 29 G Djelah (5205_CR17) 2023; 126 J Wu (5205_CR41) 2019; 96 P Mu (5205_CR58) 2022; 30 R Hao (5205_CR25) 2005; 245 Y Zhang (5205_CR37) 2014; 378 M Leonetti (5205_CR54) 2015; 106 JD He (5205_CR27) 2012; 285 HG Luo (5205_CR24) 2009; 79 NM Musammil (5205_CR5) 2017; 37 L Zhao (5205_CR30) 2016; 57 FH Qi (5205_CR47) 2016; 54 C Zhan (5205_CR13) 2002; 19 WR Sun (5205_CR38) 2017; 27 A Das (5205_CR7) 2023; 111 H Triki (5205_CR11) 2016; 366 M Wang (5205_CR50) 2022 E Kengne (5205_CR8) 2023; 475 MX Chu (5205_CR48) 2019; 71 VN Serkin (5205_CR21) 2007; 98 FH Qi (5205_CR43) 2014; 77 DY Yang (5205_CR49) 2021; 96 A Chowdury (5205_CR55) 2023; 107 VN Serkin (5205_CR20) 2001; 196 |
References_xml | – reference: HaoRLiLLiZYangRZhouGA new way to exact quasi-soliton solutions and soliton interaction for the cubic-quintic nonlinear Schrödinger equation with variable coefficientsOpt. Commun.20052453833902005OptCo.245..383H10.1016/j.optcom.2004.10.001 – reference: MuniyappanASuruthiAMonishaBDromion-like structures in a cubic-quintic nonlinear Schrödinger equation using analytical methodsNonlinear Dyn.20211041533154410.1007/s11071-021-06350-1 – reference: KengneEChirped nonlinear waves in the cubic-quintic distributed nonlinear Schrödinger equation with external trap, self-steepening and self-frequency shiftPhys. Lett. A202347512883610.1016/j.physleta.2023.128836 – reference: ChowduryAChangWBattiatoMHigher-order rogue-wave fission in the presence of self-steepening and Raman self-frequency shiftPhys. Rev. A20231070535072023PhRvA.107e3507C10.1103/PhysRevA.107.053507 – reference: SerkinVNHasegawaABelyaevaTLSolitary waves in nonautonomous nonlinear and dispersive systems: nonautonomous solitonsJ. Mod. Opt.2010201057145614722010JMOp...57.1456S10.1080/09500341003624750 – reference: KevrekidisPGFrantzeskakisDJCarretero-GonzálezREmergent Nonlinear Phenomena in Bose–Einstein Condensates: Theory and Experiment2008BerlinSpringer10.1007/978-3-540-73591-5 – reference: LeonettiMContiCObservation of three dimensional optical rogue waves through obstaclesAppl. Phys. Lett.20151062541032015ApPhL.106y4103L10.1063/1.4922552 – reference: OnoratoMResitoriSBaronioFRogue and Shock Waves in Nonlinear Dispersive Media2016New YorkSpringer10.1007/978-3-319-39214-1 – reference: SakkaravarthiKKannaTBabu MareeswaranRHigher-order optical rogue waves in spatially inhomogeneous multimode fiberPhysica D2022435133285441163210.1016/j.physd.2022.133285 – reference: DasAKarmakarBBiswasAChirped periodic waves and solitary waves for a generalized derivative resonant nonlinear Schrödinger equation with cubic-quintic nonlinearityNonlinear Dyn.2023111153471537110.1007/s11071-023-08640-2 – reference: HeJDZhangJFZhangMYDaiCQAnalytical nonautonomous soliton solutions for the cubic-quintic nonlinear Schrödinger equation with distributed coefficientsOpt. Commun.20122857557602012OptCo.285..755H10.1016/j.optcom.2011.10.087 – reference: YeYLiuJBuLPanCChenSMihalacheDRogue waves and modulation instability in an extended Manakov systemNonlinear Dyn.20201021801181210.1007/s11071-020-06029-z – reference: YangDYTianBQuQXDarboux-dressing transformation, semi-rational solutions, breathers and modulation instability for the cubic-quintic nonlinear Schrödinger system with variable coefficients in a non-Kerr medium, twin-core nonlinear optical fiber or waveguidePhys. Scr.2021960452102021PhyS...96d5210Y10.1088/1402-4896/abbd6d – reference: MaoBQGaoYTFengYJYuXNonautonomous solitons for the coupled variable-coefficient cubic-quintic nonlinear Schrödinger equations with external potentials in the non-Kerr fibreZeitschrift für Naturforschung A2015709859942015ZNatA..70..985M10.1515/zna-2015-0319 – reference: SunWRWen-RongDYLXieXYVector semirational rogue waves and modulation instability for the coupled higher-order nonlinear Schrödinger equations in the birefringent optical fibersChaos2017270431142017Chaos..27d3114S10.1063/1.4981907 – reference: OgusuKYamasakiJMaedaSKitaoMMinakataMLinear and nonlinear optical properties of Ag–As–Se chalcogenide glasses for all-optical switchingOpt. Lett.2004292652004OptL...29..265O10.1364/OL.29.000265 – reference: KharifCPelinovskyESlunyaevARogue Waves in the Ocean2009BerlinSpringer – reference: LüXMaWXYuJLinFHKhaliqueCMEnvelope bright- and dark-soliton solutions for the Gerdjikov–Ivanov modelNonlinear Dyn.2015821211341248210.1007/s11071-015-2227-6 – reference: DjelahGNdzanaFIAbdoulkarySMohamadouARogue waves dynamics of cubic-quintic nonlinear Schrödinger equation with an external linear potential through a modified Noguchi electrical transmission networkCommun. Nonlin. Sci. Num. Simul.202312610747910.1016/j.cnsns.2023.107479 – reference: SerkinVNMatsumotoMBelyaevaTLBright and dark solitary nonlinear Bloch waves in dispersion managed fiber systems and soliton lasersOpt. Commun.20011961592001OptCo.196..159S10.1016/S0030-4018(01)01365-7 – reference: ManikandanKSudharsanJBManipulating two-dimensional solitons in inhomogeneous nonlinear Schrödinger equation with power-law nonlinearity under PT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{PT}$$\end{document}-symmetric Rosen–Morse and hyperbolic Scarff-II potentialsOptik20222561687032022Optik.256p8703M10.1016/j.ijleo.2022.168703 – reference: ChenSMihalacheDVector rogue waves in the Manakov system: diversity and compossibilityJ. Phys. A: Math. Theor.2015482152022015JPhA...48u5202C334285810.1088/1751-8113/48/21/215202 – reference: KiblerBFatomeJFinotCMillotGDiasFGentyGAkhmedievNDudleyJMThe Peregrine soliton in nonlinear fibre opticsNat. Phys.2010679010.1038/nphys1740 – reference: SerkinVNHasegawaABelyaevaTLNonautonomous solitons in external potentialsPhys. Rev. Lett.2007980741022007PhRvL..98g4102S10.1103/PhysRevLett.98.074102 – reference: SuchkovSVSukhorukovAAHuangJDmitrievSVLeeCKivsharYSNonlinear switching and solitons in PT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{PT}$$\end{document}-symmetric photonic systemsLaser Photon. Rev.2016101772132016LPRv...10..177S10.1002/lpor.201500227 – reference: Vishnu PriyaNSenthilvelanMLakshmananMDark solitons, breathers and rogue wave solutions of the coupled generalized nonlinear Schröinger equationsPhys. Rev. E2014890629012014PhRvE..89f2901P10.1103/PhysRevE.89.062901 – reference: MuPHuangYZhouPZengYFangQLanRHePLiuXGuoGLiuXLiNExtreme events in two laterally-coupled semiconductor lasersOpt. Express20223029435294482022OExpr..3029435M10.1364/OE.460611 – reference: ChaiJTianBChaiHPYuanYQLax pair and vector solitons for a variable-coefficient coherently-coupled nonlinear Schrödinger system in the nonlinear birefringent optical fiberJ. Electromag. Waves Appl.201731136313752017JEWA...31.1363C10.1080/09205071.2017.1348994 – reference: KivsharYSAgrawalGPOptical Solitons: From Fibers to Photonic Crystals2003San DiegoAcademic Press – reference: ChaiJTianBZhenHLBright and dark solitons and Bäcklund transformations for the coupled cubic-quintic nonlinear Schrödinger equations with variable coefficients in an optical fiberPhys. Scr.2015900452062015PhyS...90d5206C10.1088/0031-8949/90/4/045206 – reference: HongWPOptical solitary wave solutions for the higher order nonlinear Schrödinger equation with cubic-quintic non-Kerr termsOpt. Commun.20011942172001OptCo.194..217H10.1016/S0030-4018(01)01267-6 – reference: QiFHJuHMMengXHLiJConservation laws and Darboux transformation for the coupled cubic-quintic nonlinear Schrödinger equations with variable coefficients in nonlinear opticsNonlinear Dyn.2014771331133710.1007/s11071-014-1382-5 – reference: KengneELiuWMModulational instability and sister chirped femtosecond modulated waves in a nonlinear Schrödinger equation with self-steepening and self-frequency shiftCommun. Nonlinear Sci. Numer. Simul.202210810624010.1016/j.cnsns.2021.106240 – reference: TlidiMTakiMRogue waves in nonlinear opticsAdv. Opt. Photon.2022148714710.1364/AOP.438025 – reference: ZhaoLGuoBLingLHigh-order rogue wave solutions for the coupled nonlinear Schrödinger equations-IIJ. Math. Phys.2016570435082016JMP....57d3508Z349006010.1063/1.4947113 – reference: JiTZhaiYSoliton, breather and rogue wave solutions of the coupled Gerdjikov–Ivanov equation via Darboux transformationNonlinear Dyn.202010161963110.1007/s11071-020-05790-5 – reference: QiFHXuXGWangPRogue wave solutions for the coupled cubic-quintic nonlinear Schrödinger equations with variable coefficientsAppl. Math. Lett.2016546065343445610.1016/j.aml.2015.11.001 – reference: GoyalAGuptaRKumarCNRajuTSChirped femtosecond solitons and double-kink solitons in the cubic-quintic nonlinear Schrödinger equation with self-steepening and self-frequency shiftPhys. Rev. A2011840638302011PhRvA..84f3830A10.1103/PhysRevA.84.063830 – reference: KengneELakhssassiALiuWMNon-autonomous solitons in inhomogeneous nonlinear media with distributed dispersionNonlinear Dyn.20199744946910.1007/s11071-019-04991-x – reference: PorsezianKKuriakoseVCOptical Solitons: Theoretical and Experimental Challenges2003New YorkSpringer10.1007/3-540-36141-3 – reference: ArshadMSeadawyARLuDExact bright-dark solitary wave solutions of the higher-order cubic-quintic nonlinear Schrödinger equation and its stabilityOptik201713840492017Optik.138...40A10.1016/j.ijleo.2017.03.005 – reference: DudleyJMFinotCGentyGTaylorRFifty years of fiber solitonsOpt. Photon. News20233452610.1364/OPN.34.5.000026 – reference: ChaiJTianBWangYFMixed-type vector solitons for the coupled cubic-quintic nonlinear Schrödinger equations with variable coefficients in an optical fiberPhysica A20154342963042015PhyA..434..296C334973210.1016/j.physa.2015.03.014 – reference: YangSXWangYFZhangXDynamics of localized waves for the higher-order nonlinear Schrödinger equation with self-steepening and cubic-quintic nonlinear terms in optical fibersNonlinear Dyn.2023111174391745410.1007/s11071-023-08755-6 – reference: MuniyappanAAmirthaniSChandrikaPBiswasAYıldırımYAlshehriHMMaturiDAAAl-BogamiDHDark solitons with anti-cubic and generalized anti-cubic nonlinearities in an optical fiberOptik20212551686412022Optik.255p8641M10.1016/j.ijleo.2022.168641 – reference: YeYBuLWangWChenSBaronioFMihalacheDPeregrine solitons on a periodic background in the vector cubic-quintic nonlinear Schrödinger equationFront. Phys.2020859695010.3389/fphy.2020.596950 – reference: ZhanCZhangDZhuDWangDLiYLiDLuZZhaoLNieYThird- and fifth-order optical nonlinearities in a new stilbazolium derivativeJ. Opt. Soc. Am. B2002193693752002OSAJB..19..369Z10.1364/JOSAB.19.000369 – reference: SerkinVNHasegawaANovel soliton solutions of the nonlinear Schrödinger equation modelPhys. Rev. Lett.20008545022000PhRvL..85.4502S10.1103/PhysRevLett.85.4502 – reference: PonomarenkoSAAgrawalGPInteractions of chirped and chirp-free similaritons in optical fiber amplifiersOpt. Express200715296329732007OExpr..15.2963P10.1364/OE.15.002963 – reference: LuoHGZhaoDHeXGExactly controllable transmission of nonautonomous optical solitonsPhys. Rev. A2009790638022009PhRvA..79f3802L10.1103/PhysRevA.79.063802 – reference: WangMTianBDarboux transformation, generalized Darboux transformation and vector breather solutions for the coupled variable-coefficient cubic-quintic nonlinear Schrödinger system in a non-Kerr medium, twin-core nonlinear optical fiber or waveguideWave. Random Complex202210.1080/17455030.2021.1986649 – reference: MusammilNMPorsezianKNithyanandanKSubhaPATchofo DindaPUltrashort dark solitons interactions and nonlinear tunneling in the modified nonlinear Schrödinger equation with variable coefficientOpt. Fiber Technol.20173711202017OptFT..37...11M10.1016/j.yofte.2017.06.006 – reference: BaronioFDegasperisAConfortiMWabnitzSSolutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue wavesPhys. Rev. Lett.20121090441022012PhRvL.109d4102B10.1103/PhysRevLett.109.044102 – reference: ChuMXTian BBYuanYQBilinear forms and dark-dark solitons for the coupled cubic-quintic nonlinear Schrödinger equations with variable coefficients in a twin-core optical fiber or non-Kerr mediumCommun. Theor. Phys.20197113932019CoTPh..71.1393C405113510.1088/0253-6102/71/12/1393 – reference: ManikandanKMuruganandamPSenthilvelanMLakshmananMManipulating localized matter waves in multicomponent Bose–Einstein condensatesPhys. Rev. E2016930322122016PhRvE..93c2212M365444110.1103/PhysRevE.93.032212 – reference: ZhangYNieXJRogue wave solutions for the coupled cubic-quintic nonlinear Schrödinger equations in nonlinear opticsPhys. Lett. A20143781911972014PhLA..378..191Z314640010.1016/j.physleta.2013.11.010 – reference: YanXWZhangJCoupled cubic-quintic nonlinear Schrödinger equation: novel bright-dark rogue waves and dynamicsNonlinear Dyn.20201003733374310.1007/s11071-020-05694-4 – reference: TrikiHBiswasAMilovićDBelicMChirped femtosecond pulses in the higher-order nonlinear Schrödinger equation with non-Kerr nonlinear terms and cubic-quintic-septic nonlinearitiesOpt. Commun.20163663623692016OptCo.366..362T10.1016/j.optcom.2016.01.005 – reference: LiXZZhaoZYZhouXQGuYHanXZhaoMRogue wave generation using a chaotic semiconductor laser with energy redistributionOpt. Lett.202348352335262023OptL...48.3523L10.1364/OL.494619 – reference: WuJIntegrability aspects and multi-soliton solutions of a new coupled Gerdjikov–Ivanov derivative nonlinear Schrödinger equationNonlinear Dyn.20199678980010.1007/s11071-019-04821-0 – volume: 98 start-page: 074102 year: 2007 ident: 5205_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.074102 – volume: 194 start-page: 217 year: 2001 ident: 5205_CR12 publication-title: Opt. Commun. doi: 10.1016/S0030-4018(01)01267-6 – volume: 48 start-page: 215202 year: 2015 ident: 5205_CR29 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8113/48/21/215202 – volume: 285 start-page: 755 year: 2012 ident: 5205_CR27 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2011.10.087 – volume: 102 start-page: 1801 year: 2020 ident: 5205_CR40 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-020-06029-z – volume: 378 start-page: 191 year: 2014 ident: 5205_CR37 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2013.11.010 – volume: 101 start-page: 619 year: 2020 ident: 5205_CR42 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-020-05790-5 – volume: 256 start-page: 168703 year: 2022 ident: 5205_CR60 publication-title: Optik doi: 10.1016/j.ijleo.2022.168703 – volume-title: Emergent Nonlinear Phenomena in Bose–Einstein Condensates: Theory and Experiment year: 2008 ident: 5205_CR53 doi: 10.1007/978-3-540-73591-5 – volume: 100 start-page: 3733 year: 2020 ident: 5205_CR33 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-020-05694-4 – volume-title: Optical Solitons: Theoretical and Experimental Challenges year: 2003 ident: 5205_CR2 doi: 10.1007/3-540-36141-3 – volume: 245 start-page: 383 year: 2005 ident: 5205_CR25 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2004.10.001 – volume: 89 start-page: 062901 year: 2014 ident: 5205_CR31 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.89.062901 – volume: 366 start-page: 362 year: 2016 ident: 5205_CR11 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2016.01.005 – volume: 79 start-page: 063802 year: 2009 ident: 5205_CR24 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.79.063802 – volume: 77 start-page: 1331 year: 2014 ident: 5205_CR43 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-014-1382-5 – volume: 30 start-page: 29435 year: 2022 ident: 5205_CR58 publication-title: Opt. Express doi: 10.1364/OE.460611 – volume: 475 start-page: 128836 year: 2023 ident: 5205_CR8 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2023.128836 – volume-title: Optical Solitons: From Fibers to Photonic Crystals year: 2003 ident: 5205_CR1 – volume: 27 start-page: 043114 year: 2017 ident: 5205_CR38 publication-title: Chaos doi: 10.1063/1.4981907 – volume: 108 start-page: 106240 year: 2022 ident: 5205_CR9 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2021.106240 – volume: 126 start-page: 107479 year: 2023 ident: 5205_CR17 publication-title: Commun. Nonlin. Sci. Num. Simul. doi: 10.1016/j.cnsns.2023.107479 – volume: 29 start-page: 265 year: 2004 ident: 5205_CR14 publication-title: Opt. Lett. doi: 10.1364/OL.29.000265 – volume: 97 start-page: 449 year: 2019 ident: 5205_CR26 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-019-04991-x – volume: 96 start-page: 045210 year: 2021 ident: 5205_CR49 publication-title: Phys. Scr. doi: 10.1088/1402-4896/abbd6d – volume: 196 start-page: 159 year: 2001 ident: 5205_CR20 publication-title: Opt. Commun. doi: 10.1016/S0030-4018(01)01365-7 – volume: 111 start-page: 15347 year: 2023 ident: 5205_CR7 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-023-08640-2 – volume: 8 start-page: 596950 year: 2020 ident: 5205_CR39 publication-title: Front. Phys. doi: 10.3389/fphy.2020.596950 – volume: 6 start-page: 790 year: 2010 ident: 5205_CR4 publication-title: Nat. Phys. doi: 10.1038/nphys1740 – volume: 54 start-page: 60 year: 2016 ident: 5205_CR47 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2015.11.001 – volume: 435 start-page: 133285 year: 2022 ident: 5205_CR35 publication-title: Physica D doi: 10.1016/j.physd.2022.133285 – volume: 71 start-page: 1393 year: 2019 ident: 5205_CR48 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/71/12/1393 – volume: 48 start-page: 3523 year: 2023 ident: 5205_CR59 publication-title: Opt. Lett. doi: 10.1364/OL.494619 – volume: 106 start-page: 254103 year: 2015 ident: 5205_CR54 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4922552 – volume: 104 start-page: 1533 year: 2021 ident: 5205_CR15 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-021-06350-1 – volume: 434 start-page: 296 year: 2015 ident: 5205_CR46 publication-title: Physica A doi: 10.1016/j.physa.2015.03.014 – volume-title: Rogue Waves in the Ocean year: 2009 ident: 5205_CR51 – volume: 70 start-page: 985 year: 2015 ident: 5205_CR44 publication-title: Zeitschrift für Naturforschung A doi: 10.1515/zna-2015-0319 – volume: 107 start-page: 053507 year: 2023 ident: 5205_CR55 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.107.053507 – volume: 109 start-page: 044102 year: 2012 ident: 5205_CR28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.044102 – volume: 14 start-page: 87 year: 2022 ident: 5205_CR56 publication-title: Adv. Opt. Photon. doi: 10.1364/AOP.438025 – volume: 10 start-page: 177 year: 2016 ident: 5205_CR57 publication-title: Laser Photon. Rev. doi: 10.1002/lpor.201500227 – volume: 111 start-page: 17439 year: 2023 ident: 5205_CR32 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-023-08755-6 – volume: 31 start-page: 1363 year: 2017 ident: 5205_CR36 publication-title: J. Electromag. Waves Appl. doi: 10.1080/09205071.2017.1348994 – volume: 96 start-page: 789 year: 2019 ident: 5205_CR41 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-019-04821-0 – volume: 90 start-page: 045206 year: 2015 ident: 5205_CR45 publication-title: Phys. Scr. doi: 10.1088/0031-8949/90/4/045206 – volume: 82 start-page: 1211 year: 2015 ident: 5205_CR6 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-015-2227-6 – volume: 93 start-page: 032212 year: 2016 ident: 5205_CR34 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.93.032212 – volume: 34 start-page: 26 issue: 5 year: 2023 ident: 5205_CR3 publication-title: Opt. Photon. News doi: 10.1364/OPN.34.5.000026 – year: 2022 ident: 5205_CR50 publication-title: Wave. Random Complex doi: 10.1080/17455030.2021.1986649 – volume: 37 start-page: 11 year: 2017 ident: 5205_CR5 publication-title: Opt. Fiber Technol. doi: 10.1016/j.yofte.2017.06.006 – volume: 2010 start-page: 1456 issue: 57 year: 2010 ident: 5205_CR23 publication-title: J. Mod. Opt. doi: 10.1080/09500341003624750 – volume: 15 start-page: 2963 year: 2007 ident: 5205_CR22 publication-title: Opt. Express doi: 10.1364/OE.15.002963 – volume-title: Rogue and Shock Waves in Nonlinear Dispersive Media year: 2016 ident: 5205_CR52 doi: 10.1007/978-3-319-39214-1 – volume: 138 start-page: 40 year: 2017 ident: 5205_CR18 publication-title: Optik doi: 10.1016/j.ijleo.2017.03.005 – volume: 84 start-page: 063830 year: 2011 ident: 5205_CR10 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.84.063830 – volume: 57 start-page: 043508 year: 2016 ident: 5205_CR30 publication-title: J. Math. Phys. doi: 10.1063/1.4947113 – volume: 19 start-page: 369 year: 2002 ident: 5205_CR13 publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.19.000369 – volume: 85 start-page: 4502 year: 2000 ident: 5205_CR19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.4502 – volume: 255 start-page: 168641 year: 2021 ident: 5205_CR16 publication-title: Optik doi: 10.1016/j.ijleo.2022.168641 |
SSID | ssj0000491494 |
Score | 2.3553815 |
Snippet | In this study, we explore variable coefficients coupled cubic–quintic nonlinear Schrödinger (CQNLS) equations with self-steepening, modeling optical pulse... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 405 |
SubjectTerms | Applied and Technical Physics Atomic Behavior Complex Systems Condensed Matter Physics Conservation laws Deformation Longitudinal waves Mathematical and Computational Physics Mathematical models Molecular Nonlinear optics Nonlinear phenomena Optical and Plasma Physics Optical fibers Optics Parameters Physics Physics and Astronomy Propagation Pulse propagation Regular Article Schrodinger equation Theoretical |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwELZKKyQuiF-xUJAPXK3Nn9P4gBA_rSokVgio1Jtlj8fqou0mu9ldpJ54B96Ah-AFeBOehLGT7AoO9Bgltix_E8-PZ75h7LnCMjvKilw4hFwU0iihrEFhSFcBJJXJ4g3--0l5ela8O5fne2wy1MKEtMrhTIwHtashxMjHeSgalVWlqpfNQoSuUeF2dWihYfrWCu5FpBi7wQ7oSK5I7g9eH08-fNxGXcgeJpeg6BO9yLkYY_OlGbfkqZWJIH0lQl6IFFd_q6md7fnPdWnUQid32O3efOSvOrzvsj2c32M3YxontPfZj7e4rUbktefT-UV9WZOMIDn4fBMj9LxuYvyaL0PUhn81G2zpQ06WIN-Q5xxqqTjUGLklQpoFPaybGToOazuF39--L9ZT2gTg845mwyz5J7hY_vrp4pI5Ljr68JaHIC9vceYFyVLotksfPGBnJ8ef35yKvguDgDwvVsKWaWol5imYI-9TZQn23HjnA7M-euWtL8mMkSaxEmRhPUiZm8KXjqAI_F4P2T6tBx8xjpkDqEqVeZrZWjTkWyqal0RCQq7ciJXDpmvoKcpDp4yZ7sqnEx3Q0h1amtDSES19NWLJdmDTsXRcP-RwQFX3v22rd0I2YumA9O71NVM-_v-UT9itrJMw0n2HbH-1XONTsmhW9lkvpn8AqlP8lg priority: 102 providerName: ProQuest |
Title | Deformation of inhomogeneous vector optical rogue waves in the variable coefficients coupled cubic–quintic nonlinear Schrödinger equations with self-steepening |
URI | https://link.springer.com/article/10.1140/epjp/s13360-024-05205-z https://www.proquest.com/docview/3053358898 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbYJiRu0GAgCqPyxW6tJXGcxZcttJtAqxBQabuybOdYKypN1rRF2hXvwBvsIXgB3oQn4dhJO7YLJnGVRPGxrHzHOT8-P4QcSMiSoyTlrADLWSq0ZNJoYBpllbVRrpNwgn86yk7G6bszcfZ3qy8f7b4-kgx_6qaebXQI1ZfqsEaTKosYChbmAzgEu9oiO3iT-D05Tnob9woqvqj7p21E1z_ob8ujGyXzzrloEDfDXfK41RNprwH2CXkAs6fkYYjXtPUeuX4Lm7RDWjo6mV2UX0tkBkBLnq6CK56WVXBU07l3z9BvegU1DqSo8tEVmsg-aYraEkIRCR9PgQ_LagoFtUszsb-__7hcTmY4BZ019TT0nH6yF_NfP4uwZAqXTZ3wmnpvLq1h6hgyjW-riwOekfFw8PnNCWvbLTDLebpgJotjI4DHVh85F0uD-HLtCudL6IOTzrgM9RWhIyOsSI2zQnCduqxAncQX8npOtnE98IJQSApr80wmDmc2BjQakRLnReyF5bLokGz90ZVta5H7lhhT1eRJR8qjpRq0FKKlAlrqqkOiDWHVlOO4n2R_japq92etuE9BFnku8w6J10jfvL5nypf_QfOKPEoatkPJt0-2F_MlvEZ9ZmG6ZCsfHnfJTm_Y74_89fj8_QCv_cHow8du4Os_2KX8zg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbKVgguFb9i2wI-wNHa_DlNDlUFtNWWtisErdSbsZ2xumjZZDebreiJd-gb9CE4cuFNeBLGTrIrONBTj1HsSeJv4vnx_BDyKoU42AqikGWgQxZxmbJUSWASZZXWXiIDd4J_PIj7p9H7M362Qn62uTA2rLLdE91GneXa-sh7oU0a5UmSJjvFhNmuUfZ0tW2hIZvWCtm2KzHWJHYcwrcLNOHK7YNdxPt1EOzvnbzrs6bLANNhGM2Yin1fcQh9LbeM8VOFnxVKkxlbOR5MapSJUUxz6SmueaSM5jyUkYkzfJStX4V075DVyGa4dsjq273Bh48LLw_q32iCRE1gGRozPSi-FL0SLcPYYygfmY1D4ezyb7G41HX_OZ51Um__AVlr1FX6puavh2QFxo_IXRc2qsvH5HoXFtmPNDd0OD7Pv-bIk5BXJZ27EwGaF85fTqfWS0Qv5BxKHEhR86RztNRt7hbVObhaFjasAy-qYgQZ1ZUa6t_frybVEBdd03Fd1kNO6Sd9Pv31I3OvTGFSlysvqXUq0xJGhiHv2u6-OOAJOb0VPJ6SDr4PPCMUgkzrJE4Dg5SVAom2bIp0kQW5DtOsS-J20YVuSqLbzhwjUadre8KiJWq0BKIlHFrisku8xcSirgpy85TNFlXRbBOlWDJ1l_gt0svbN5Bc_z_Jl-Re_-T4SBwdDA43yP2g5jaUu5ukM5tW8By1qZl60bAsJZ9v-y_5A6MoOzQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKK1AvqC2gLrTUB67WJnGcxseKdlWgVEiwUm-W7YzVRUuSbnYXqSfegTfgIXgB3oQnYewkW5VDK_UYJTOy8k0yP575TMgbCVlymKScFWA5S4WWTBoNTKOvsjbKdRJ28D-eZ6fj9P2FuFgjJ_0sTOh277ck25kGz9JUzod14Tpu22gI9dd62GB6lUUMnQzzzRyCXT8iG_hPjr25j5OjVakFg2DMA9Kuu-sO-du-6Sbg_G-PNLie0RZ52sWM9KgFeZusQblDHofeTds8I7-OYTWCSCtHJ-Vl9a1CwwDM6ukylOVpVYeiNZ35Ug39rpfQ4IMUwz-6xHTZD1BRW0EglPC9FXixqKdQULswE_v3x8-rxaREFbRsuTX0jH62l7M_v4uwZApXLWd4Q31llzYwdQwNyB-xiw88J-PRyZe3p6w7eoFZztM5M1kcGwE8tvrQuVgaxJprVzhPpw9OOuMyjF2EjoywIjXOCsF16rIC4xNP6vWCrON6YJdQSApr80wmDjUbAxoTSol60Q6E5bIYkKx_6cp2vOT-eIypamemI-XRUi1aCtFSAS11PSDRSrBuqTnuF9nrUVXdt9oo7seRRZ7LfEDiHumb2_eofPkAmQPy5NPxSJ29O__wimwmrQWiQ9wj6_PZAvYxzJmb18GI_wEV5f5t |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deformation+of+inhomogeneous+vector+optical+rogue+waves+in+the+variable+coefficients+coupled+cubic%E2%80%93quintic+nonlinear+Schr%C3%B6dinger+equations+with+self-steepening&rft.jtitle=European+physical+journal+plus&rft.au=Manigandan%2C+M.&rft.au=Manikandan%2C+K.&rft.au=Muniyappan%2C+A.&rft.au=Jakeer%2C+S.&rft.date=2024-05-10&rft.issn=2190-5444&rft.eissn=2190-5444&rft.volume=139&rft.issue=5&rft_id=info:doi/10.1140%2Fepjp%2Fs13360-024-05205-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1140_epjp_s13360_024_05205_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-5444&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-5444&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-5444&client=summon |