Deformation of inhomogeneous vector optical rogue waves in the variable coefficients coupled cubic–quintic nonlinear Schrödinger equations with self-steepening

In this study, we explore variable coefficients coupled cubic–quintic nonlinear Schrödinger (CQNLS) equations with self-steepening, modeling optical pulse propagation in inhomogeneous birefringent optical fibers. We employ a similarity transformation technique to transform the inhomogeneous optical...

Full description

Saved in:
Bibliographic Details
Published inEuropean physical journal plus Vol. 139; no. 5; p. 405
Main Authors Manigandan, M., Manikandan, K., Muniyappan, A., Jakeer, S., Sirisubtawee, S.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 10.05.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2190-5444
2190-5444
DOI10.1140/epjp/s13360-024-05205-z

Cover

Abstract In this study, we explore variable coefficients coupled cubic–quintic nonlinear Schrödinger (CQNLS) equations with self-steepening, modeling optical pulse propagation in inhomogeneous birefringent optical fibers. We employ a similarity transformation technique to transform the inhomogeneous optical model into a homogeneous system consisting of two coupled CQNLS equations that satisfy integrable constraints. By utilizing the vector first- and second-order rogue wave solutions of the later equations, we obtain various inhomogeneous optical rogue waves: bright-bright, dark-bright, bright-bright doublet, quartet, and sextet for the considered system. The dynamical characteristics of these solutions are controlled by appropriately configuring the structural parameters in the derived solutions. Our investigation delves into the intricate features of these inhomogeneous vector optical rogue waves, with a particular focus on the effects of three longitudinally varying distinct dispersion parameters, namely exponential, kink-like and periodic. Throughout our study, we observe a wide spectrum of notable nonlinear phenomena in the intensity profiles of vector inhomogeneous rogue waves. These phenomena encompass deformation, enhancement, compression, stretching, suppression, and breathing behavior. The insights gained from this research hold significant promise for advancing the field of nonlinear optics, particularly in the realm of experimental investigations involving vector optical rogue waves in inhomogeneous birefringent fibers.
AbstractList In this study, we explore variable coefficients coupled cubic–quintic nonlinear Schrödinger (CQNLS) equations with self-steepening, modeling optical pulse propagation in inhomogeneous birefringent optical fibers. We employ a similarity transformation technique to transform the inhomogeneous optical model into a homogeneous system consisting of two coupled CQNLS equations that satisfy integrable constraints. By utilizing the vector first- and second-order rogue wave solutions of the later equations, we obtain various inhomogeneous optical rogue waves: bright-bright, dark-bright, bright-bright doublet, quartet, and sextet for the considered system. The dynamical characteristics of these solutions are controlled by appropriately configuring the structural parameters in the derived solutions. Our investigation delves into the intricate features of these inhomogeneous vector optical rogue waves, with a particular focus on the effects of three longitudinally varying distinct dispersion parameters, namely exponential, kink-like and periodic. Throughout our study, we observe a wide spectrum of notable nonlinear phenomena in the intensity profiles of vector inhomogeneous rogue waves. These phenomena encompass deformation, enhancement, compression, stretching, suppression, and breathing behavior. The insights gained from this research hold significant promise for advancing the field of nonlinear optics, particularly in the realm of experimental investigations involving vector optical rogue waves in inhomogeneous birefringent fibers.
ArticleNumber 405
Author Manigandan, M.
Manikandan, K.
Sirisubtawee, S.
Muniyappan, A.
Jakeer, S.
Author_xml – sequence: 1
  givenname: M.
  surname: Manigandan
  fullname: Manigandan, M.
  organization: Centre for Computational Modeling, Chennai Institute of Technology
– sequence: 2
  givenname: K.
  orcidid: 0000-0002-4392-7194
  surname: Manikandan
  fullname: Manikandan, K.
  email: manikandank@citchennai.net
  organization: Centre for Computational Modeling, Chennai Institute of Technology
– sequence: 3
  givenname: A.
  surname: Muniyappan
  fullname: Muniyappan, A.
  organization: Centre for Computational Modeling, Chennai Institute of Technology
– sequence: 4
  givenname: S.
  surname: Jakeer
  fullname: Jakeer, S.
  organization: Department of Mathematics, The Apollo University
– sequence: 5
  givenname: S.
  surname: Sirisubtawee
  fullname: Sirisubtawee, S.
  organization: Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok
BookMark eNqNkU9OGzEUxi0EEn_PUEtdD9ixPZlZdFHRFiohdVFYW7bznDia2BPbE1RW3IEbcAguwE04SZ0ECdQN9ebZ0ve99_n9DtGuDx4Q-kTJKaWcnEE_788SZawmFRnxiogREdXdDjoY0ZZUgnO---6-j05SmpNyeEt5yw_Q4zewIS5UdsHjYLHzs7AIU_AQhoRXYHKIOPTZGdXhGKYD4Fu1glSEOM8Ar1R0SneATQBrnXHgcyqPoe9ggs2gnXm5f1gOzpcWuKTvnAcV8W8zi89PE-enEDEsh02AhG9dnuEEna1SBujBF8Ex2rOqS3DyWo_QzY_v1-eX1dWvi5_nX68qwxjPla4p1QIYNWpsLW01aGDKTiwToxpsa7Wta9EIRbQwgmtrhGCK23pChRBjwo7Q523fPoblACnLeRiiLyMlI4Ix0TRtU1TjrcrEkFIEK_voFir-kZTINRO5ZiK3TGRhIjdM5F1xfvnHaVze_DtH5br_8DdbfyoT13t7y_eR9S9CU7FP
CitedBy_id crossref_primary_10_1142_S0217984925500447
crossref_primary_10_1142_S0218863524500346
crossref_primary_10_3390_math13050693
crossref_primary_10_3390_math12193054
Cites_doi 10.1103/PhysRevLett.98.074102
10.1016/S0030-4018(01)01267-6
10.1088/1751-8113/48/21/215202
10.1016/j.optcom.2011.10.087
10.1007/s11071-020-06029-z
10.1016/j.physleta.2013.11.010
10.1007/s11071-020-05790-5
10.1016/j.ijleo.2022.168703
10.1007/978-3-540-73591-5
10.1007/s11071-020-05694-4
10.1007/3-540-36141-3
10.1016/j.optcom.2004.10.001
10.1103/PhysRevE.89.062901
10.1016/j.optcom.2016.01.005
10.1103/PhysRevA.79.063802
10.1007/s11071-014-1382-5
10.1364/OE.460611
10.1016/j.physleta.2023.128836
10.1063/1.4981907
10.1016/j.cnsns.2021.106240
10.1016/j.cnsns.2023.107479
10.1364/OL.29.000265
10.1007/s11071-019-04991-x
10.1088/1402-4896/abbd6d
10.1016/S0030-4018(01)01365-7
10.1007/s11071-023-08640-2
10.3389/fphy.2020.596950
10.1038/nphys1740
10.1016/j.aml.2015.11.001
10.1016/j.physd.2022.133285
10.1088/0253-6102/71/12/1393
10.1364/OL.494619
10.1063/1.4922552
10.1007/s11071-021-06350-1
10.1016/j.physa.2015.03.014
10.1515/zna-2015-0319
10.1103/PhysRevA.107.053507
10.1103/PhysRevLett.109.044102
10.1364/AOP.438025
10.1002/lpor.201500227
10.1007/s11071-023-08755-6
10.1080/09205071.2017.1348994
10.1007/s11071-019-04821-0
10.1088/0031-8949/90/4/045206
10.1007/s11071-015-2227-6
10.1103/PhysRevE.93.032212
10.1364/OPN.34.5.000026
10.1080/17455030.2021.1986649
10.1016/j.yofte.2017.06.006
10.1080/09500341003624750
10.1364/OE.15.002963
10.1007/978-3-319-39214-1
10.1016/j.ijleo.2017.03.005
10.1103/PhysRevA.84.063830
10.1063/1.4947113
10.1364/JOSAB.19.000369
10.1103/PhysRevLett.85.4502
10.1016/j.ijleo.2022.168641
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AEUYN
AFKRA
ARAPS
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1140/epjp/s13360-024-05205-z
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2190-5444
ExternalDocumentID 10_1140_epjp_s13360_024_05205_z
GrantInformation_xml – fundername: Chennai Institute of Technology
  grantid: CIT/CCM/2024/RP-017
– fundername: Science and Engineering Research Board (IN)
  grantid: MTR/2023/000921
GroupedDBID -5F
-5G
-BR
-EM
-~C
06D
0R~
203
29~
2JN
2KG
30V
4.4
406
408
8UJ
95.
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARMRJ
AXYYD
AYJHY
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O93
O9J
P9T
PT4
RID
RLLFE
ROL
RSV
S27
S3B
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z7S
Z7Y
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEUYN
AEZWR
AFDZB
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
HCIFZ
PCBAR
PHGZM
PHGZT
8FE
8FG
ABRTQ
DWQXO
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c334t-b611b5e31ca7ff19bebe3afdf3526ef9fbf66585a0b5c54bfc553a4f6d1555703
IEDL.DBID U2A
ISSN 2190-5444
IngestDate Fri Jul 25 19:55:08 EDT 2025
Tue Jul 01 02:42:36 EDT 2025
Thu Apr 24 22:52:15 EDT 2025
Fri Feb 21 02:38:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-b611b5e31ca7ff19bebe3afdf3526ef9fbf66585a0b5c54bfc553a4f6d1555703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4392-7194
PQID 3053358898
PQPubID 2044220
ParticipantIDs proquest_journals_3053358898
crossref_primary_10_1140_epjp_s13360_024_05205_z
crossref_citationtrail_10_1140_epjp_s13360_024_05205_z
springer_journals_10_1140_epjp_s13360_024_05205_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-10
PublicationDateYYYYMMDD 2024-05-10
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-10
  day: 10
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle European physical journal plus
PublicationTitleAbbrev Eur. Phys. J. Plus
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References YangSXWangYFZhangXDynamics of localized waves for the higher-order nonlinear Schrödinger equation with self-steepening and cubic-quintic nonlinear terms in optical fibersNonlinear Dyn.2023111174391745410.1007/s11071-023-08755-6
MusammilNMPorsezianKNithyanandanKSubhaPATchofo DindaPUltrashort dark solitons interactions and nonlinear tunneling in the modified nonlinear Schrödinger equation with variable coefficientOpt. Fiber Technol.20173711202017OptFT..37...11M10.1016/j.yofte.2017.06.006
TrikiHBiswasAMilovićDBelicMChirped femtosecond pulses in the higher-order nonlinear Schrödinger equation with non-Kerr nonlinear terms and cubic-quintic-septic nonlinearitiesOpt. Commun.20163663623692016OptCo.366..362T10.1016/j.optcom.2016.01.005
HeJDZhangJFZhangMYDaiCQAnalytical nonautonomous soliton solutions for the cubic-quintic nonlinear Schrödinger equation with distributed coefficientsOpt. Commun.20122857557602012OptCo.285..755H10.1016/j.optcom.2011.10.087
SunWRWen-RongDYLXieXYVector semirational rogue waves and modulation instability for the coupled higher-order nonlinear Schrödinger equations in the birefringent optical fibersChaos2017270431142017Chaos..27d3114S10.1063/1.4981907
DasAKarmakarBBiswasAChirped periodic waves and solitary waves for a generalized derivative resonant nonlinear Schrödinger equation with cubic-quintic nonlinearityNonlinear Dyn.2023111153471537110.1007/s11071-023-08640-2
DudleyJMFinotCGentyGTaylorRFifty years of fiber solitonsOpt. Photon. News20233452610.1364/OPN.34.5.000026
ZhanCZhangDZhuDWangDLiYLiDLuZZhaoLNieYThird- and fifth-order optical nonlinearities in a new stilbazolium derivativeJ. Opt. Soc. Am. B2002193693752002OSAJB..19..369Z10.1364/JOSAB.19.000369
KharifCPelinovskyESlunyaevARogue Waves in the Ocean2009BerlinSpringer
ManikandanKSudharsanJBManipulating two-dimensional solitons in inhomogeneous nonlinear Schrödinger equation with power-law nonlinearity under PT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{PT}$$\end{document}-symmetric Rosen–Morse and hyperbolic Scarff-II potentialsOptik20222561687032022Optik.256p8703M10.1016/j.ijleo.2022.168703
MaoBQGaoYTFengYJYuXNonautonomous solitons for the coupled variable-coefficient cubic-quintic nonlinear Schrödinger equations with external potentials in the non-Kerr fibreZeitschrift für Naturforschung A2015709859942015ZNatA..70..985M10.1515/zna-2015-0319
SerkinVNHasegawaABelyaevaTLSolitary waves in nonautonomous nonlinear and dispersive systems: nonautonomous solitonsJ. Mod. Opt.2010201057145614722010JMOp...57.1456S10.1080/09500341003624750
MuPHuangYZhouPZengYFangQLanRHePLiuXGuoGLiuXLiNExtreme events in two laterally-coupled semiconductor lasersOpt. Express20223029435294482022OExpr..3029435M10.1364/OE.460611
LuoHGZhaoDHeXGExactly controllable transmission of nonautonomous optical solitonsPhys. Rev. A2009790638022009PhRvA..79f3802L10.1103/PhysRevA.79.063802
PorsezianKKuriakoseVCOptical Solitons: Theoretical and Experimental Challenges2003New YorkSpringer10.1007/3-540-36141-3
JiTZhaiYSoliton, breather and rogue wave solutions of the coupled Gerdjikov–Ivanov equation via Darboux transformationNonlinear Dyn.202010161963110.1007/s11071-020-05790-5
TlidiMTakiMRogue waves in nonlinear opticsAdv. Opt. Photon.2022148714710.1364/AOP.438025
KengneELiuWMModulational instability and sister chirped femtosecond modulated waves in a nonlinear Schrödinger equation with self-steepening and self-frequency shiftCommun. Nonlinear Sci. Numer. Simul.202210810624010.1016/j.cnsns.2021.106240
SerkinVNHasegawaANovel soliton solutions of the nonlinear Schrödinger equation modelPhys. Rev. Lett.20008545022000PhRvL..85.4502S10.1103/PhysRevLett.85.4502
BaronioFDegasperisAConfortiMWabnitzSSolutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue wavesPhys. Rev. Lett.20121090441022012PhRvL.109d4102B10.1103/PhysRevLett.109.044102
HaoRLiLLiZYangRZhouGA new way to exact quasi-soliton solutions and soliton interaction for the cubic-quintic nonlinear Schrödinger equation with variable coefficientsOpt. Commun.20052453833902005OptCo.245..383H10.1016/j.optcom.2004.10.001
YeYLiuJBuLPanCChenSMihalacheDRogue waves and modulation instability in an extended Manakov systemNonlinear Dyn.20201021801181210.1007/s11071-020-06029-z
SakkaravarthiKKannaTBabu MareeswaranRHigher-order optical rogue waves in spatially inhomogeneous multimode fiberPhysica D2022435133285441163210.1016/j.physd.2022.133285
OgusuKYamasakiJMaedaSKitaoMMinakataMLinear and nonlinear optical properties of Ag–As–Se chalcogenide glasses for all-optical switchingOpt. Lett.2004292652004OptL...29..265O10.1364/OL.29.000265
WangMTianBDarboux transformation, generalized Darboux transformation and vector breather solutions for the coupled variable-coefficient cubic-quintic nonlinear Schrödinger system in a non-Kerr medium, twin-core nonlinear optical fiber or waveguideWave. Random Complex202210.1080/17455030.2021.1986649
DjelahGNdzanaFIAbdoulkarySMohamadouARogue waves dynamics of cubic-quintic nonlinear Schrödinger equation with an external linear potential through a modified Noguchi electrical transmission networkCommun. Nonlin. Sci. Num. Simul.202312610747910.1016/j.cnsns.2023.107479
KengneELakhssassiALiuWMNon-autonomous solitons in inhomogeneous nonlinear media with distributed dispersionNonlinear Dyn.20199744946910.1007/s11071-019-04991-x
ChaiJTianBZhenHLBright and dark solitons and Bäcklund transformations for the coupled cubic-quintic nonlinear Schrödinger equations with variable coefficients in an optical fiberPhys. Scr.2015900452062015PhyS...90d5206C10.1088/0031-8949/90/4/045206
YangDYTianBQuQXDarboux-dressing transformation, semi-rational solutions, breathers and modulation instability for the cubic-quintic nonlinear Schrödinger system with variable coefficients in a non-Kerr medium, twin-core nonlinear optical fiber or waveguidePhys. Scr.2021960452102021PhyS...96d5210Y10.1088/1402-4896/abbd6d
SerkinVNHasegawaABelyaevaTLNonautonomous solitons in external potentialsPhys. Rev. Lett.2007980741022007PhRvL..98g4102S10.1103/PhysRevLett.98.074102
ArshadMSeadawyARLuDExact bright-dark solitary wave solutions of the higher-order cubic-quintic nonlinear Schrödinger equation and its stabilityOptik201713840492017Optik.138...40A10.1016/j.ijleo.2017.03.005
ChenSMihalacheDVector rogue waves in the Manakov system: diversity and compossibilityJ. Phys. A: Math. Theor.2015482152022015JPhA...48u5202C334285810.1088/1751-8113/48/21/215202
ZhangYNieXJRogue wave solutions for the coupled cubic-quintic nonlinear Schrödinger equations in nonlinear opticsPhys. Lett. A20143781911972014PhLA..378..191Z314640010.1016/j.physleta.2013.11.010
ChowduryAChangWBattiatoMHigher-order rogue-wave fission in the presence of self-steepening and Raman self-frequency shiftPhys. Rev. A20231070535072023PhRvA.107e3507C10.1103/PhysRevA.107.053507
HongWPOptical solitary wave solutions for the higher order nonlinear Schrödinger equation with cubic-quintic non-Kerr termsOpt. Commun.20011942172001OptCo.194..217H10.1016/S0030-4018(01)01267-6
KevrekidisPGFrantzeskakisDJCarretero-GonzálezREmergent Nonlinear Phenomena in Bose–Einstein Condensates: Theory and Experiment2008BerlinSpringer10.1007/978-3-540-73591-5
Vishnu PriyaNSenthilvelanMLakshmananMDark solitons, breathers and rogue wave solutions of the coupled generalized nonlinear Schröinger equationsPhys. Rev. E2014890629012014PhRvE..89f2901P10.1103/PhysRevE.89.062901
ZhaoLGuoBLingLHigh-order rogue wave solutions for the coupled nonlinear Schrödinger equations-IIJ. Math. Phys.2016570435082016JMP....57d3508Z349006010.1063/1.4947113
GoyalAGuptaRKumarCNRajuTSChirped femtosecond solitons and double-kink solitons in the cubic-quintic nonlinear Schrödinger equation with self-steepening and self-frequency shiftPhys. Rev. A2011840638302011PhRvA..84f3830A10.1103/PhysRevA.84.063830
KengneEChirped nonlinear waves in the cubic-quintic distributed nonlinear Schrödinger equation with external trap, self-steepening and self-frequency shiftPhys. Lett. A202347512883610.1016/j.physleta.2023.128836
PonomarenkoSAAgrawalGPInteractions of chirped and chirp-free similaritons in optical fiber amplifiersOpt. Express200715296329732007OExpr..15.2963P10.1364/OE.15.002963
YanXWZhangJCoupled cubic-quintic nonlinear Schrödinger equation: novel bright-dark rogue waves and dynamicsNonlinear Dyn.20201003733374310.1007/s11071-020-05694-4
ChuMXTian BBYuanYQBilinear forms and dark-dark solitons for the coupled cubic-quintic nonlinear Schrödinger equations with variable coefficients in a twin-core optical fiber or non-Kerr mediumCommun. Theor. Phys.20197113932019CoTPh..71.1393C405113510.1088/0253-6102/71/12/1393
MuniyappanASuruthiAMonishaBDromion-like structures in a cubic-quintic nonlinear Schrödinger equation using analytical methodsNonlinear Dyn.20211041533154410.1007/s11071-021-06350-1
SerkinVNMatsumotoMBelyaevaTLBright and dark solitary nonlinear Bloch waves in dispersion managed fiber systems and soliton lasersOpt. Commun.20011961592001OptCo.196..159S10.1016/S0030-4018(01)01365-7
SuchkovSVSukhorukovAAHuangJDmitrievSVLeeCKivsharYSNonlinear switching and solitons in PT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{PT}$$\end{document}-symmetric photonic systemsLaser Photon. Rev.2016101772132016LPRv...10..177S10.1002/lpor.201500227
YeYBuLWangWChenSBaronioFMihalacheDPeregrine solitons on a periodic background in the vector cubic-quintic nonlinear Schrödinger equationFront. Phys.2020859695010.3389/fphy.2020.596950
LiXZZhaoZYZhouXQGuYHanXZhaoMRogue wave generation using a chaotic semiconductor laser with energy redistributionOpt. Lett.202348352335262023OptL...48.3523L10.1364/OL.494619
ChaiJTianBWangYFMixed-type vec
F Baronio (5205_CR28) 2012; 109
PG Kevrekidis (5205_CR53) 2008
E Kengne (5205_CR26) 2019; 97
XZ Li (5205_CR59) 2023; 48
C Kharif (5205_CR51) 2009
SA Ponomarenko (5205_CR22) 2007; 15
SX Yang (5205_CR32) 2023; 111
S Chen (5205_CR29) 2015; 48
X Lü (5205_CR6) 2015; 82
N Vishnu Priya (5205_CR31) 2014; 89
K Manikandan (5205_CR60) 2022; 256
YS Kivshar (5205_CR1) 2003
WP Hong (5205_CR12) 2001; 194
K Manikandan (5205_CR34) 2016; 93
J Chai (5205_CR45) 2015; 90
XW Yan (5205_CR33) 2020; 100
T Ji (5205_CR42) 2020; 101
E Kengne (5205_CR9) 2022; 108
SV Suchkov (5205_CR57) 2016; 10
M Onorato (5205_CR52) 2016
JM Dudley (5205_CR3) 2023; 34
VN Serkin (5205_CR23) 2010; 2010
Y Ye (5205_CR40) 2020; 102
J Chai (5205_CR46) 2015; 434
Y Ye (5205_CR39) 2020; 8
K Sakkaravarthi (5205_CR35) 2022; 435
M Tlidi (5205_CR56) 2022; 14
M Arshad (5205_CR18) 2017; 138
A Muniyappan (5205_CR15) 2021; 104
A Muniyappan (5205_CR16) 2021; 255
VN Serkin (5205_CR19) 2000; 85
J Chai (5205_CR36) 2017; 31
K Porsezian (5205_CR2) 2003
A Goyal (5205_CR10) 2011; 84
BQ Mao (5205_CR44) 2015; 70
B Kibler (5205_CR4) 2010; 6
K Ogusu (5205_CR14) 2004; 29
G Djelah (5205_CR17) 2023; 126
J Wu (5205_CR41) 2019; 96
P Mu (5205_CR58) 2022; 30
R Hao (5205_CR25) 2005; 245
Y Zhang (5205_CR37) 2014; 378
M Leonetti (5205_CR54) 2015; 106
JD He (5205_CR27) 2012; 285
HG Luo (5205_CR24) 2009; 79
NM Musammil (5205_CR5) 2017; 37
L Zhao (5205_CR30) 2016; 57
FH Qi (5205_CR47) 2016; 54
C Zhan (5205_CR13) 2002; 19
WR Sun (5205_CR38) 2017; 27
A Das (5205_CR7) 2023; 111
H Triki (5205_CR11) 2016; 366
M Wang (5205_CR50) 2022
E Kengne (5205_CR8) 2023; 475
MX Chu (5205_CR48) 2019; 71
VN Serkin (5205_CR21) 2007; 98
FH Qi (5205_CR43) 2014; 77
DY Yang (5205_CR49) 2021; 96
A Chowdury (5205_CR55) 2023; 107
VN Serkin (5205_CR20) 2001; 196
References_xml – reference: HaoRLiLLiZYangRZhouGA new way to exact quasi-soliton solutions and soliton interaction for the cubic-quintic nonlinear Schrödinger equation with variable coefficientsOpt. Commun.20052453833902005OptCo.245..383H10.1016/j.optcom.2004.10.001
– reference: MuniyappanASuruthiAMonishaBDromion-like structures in a cubic-quintic nonlinear Schrödinger equation using analytical methodsNonlinear Dyn.20211041533154410.1007/s11071-021-06350-1
– reference: KengneEChirped nonlinear waves in the cubic-quintic distributed nonlinear Schrödinger equation with external trap, self-steepening and self-frequency shiftPhys. Lett. A202347512883610.1016/j.physleta.2023.128836
– reference: ChowduryAChangWBattiatoMHigher-order rogue-wave fission in the presence of self-steepening and Raman self-frequency shiftPhys. Rev. A20231070535072023PhRvA.107e3507C10.1103/PhysRevA.107.053507
– reference: SerkinVNHasegawaABelyaevaTLSolitary waves in nonautonomous nonlinear and dispersive systems: nonautonomous solitonsJ. Mod. Opt.2010201057145614722010JMOp...57.1456S10.1080/09500341003624750
– reference: KevrekidisPGFrantzeskakisDJCarretero-GonzálezREmergent Nonlinear Phenomena in Bose–Einstein Condensates: Theory and Experiment2008BerlinSpringer10.1007/978-3-540-73591-5
– reference: LeonettiMContiCObservation of three dimensional optical rogue waves through obstaclesAppl. Phys. Lett.20151062541032015ApPhL.106y4103L10.1063/1.4922552
– reference: OnoratoMResitoriSBaronioFRogue and Shock Waves in Nonlinear Dispersive Media2016New YorkSpringer10.1007/978-3-319-39214-1
– reference: SakkaravarthiKKannaTBabu MareeswaranRHigher-order optical rogue waves in spatially inhomogeneous multimode fiberPhysica D2022435133285441163210.1016/j.physd.2022.133285
– reference: DasAKarmakarBBiswasAChirped periodic waves and solitary waves for a generalized derivative resonant nonlinear Schrödinger equation with cubic-quintic nonlinearityNonlinear Dyn.2023111153471537110.1007/s11071-023-08640-2
– reference: HeJDZhangJFZhangMYDaiCQAnalytical nonautonomous soliton solutions for the cubic-quintic nonlinear Schrödinger equation with distributed coefficientsOpt. Commun.20122857557602012OptCo.285..755H10.1016/j.optcom.2011.10.087
– reference: YeYLiuJBuLPanCChenSMihalacheDRogue waves and modulation instability in an extended Manakov systemNonlinear Dyn.20201021801181210.1007/s11071-020-06029-z
– reference: YangDYTianBQuQXDarboux-dressing transformation, semi-rational solutions, breathers and modulation instability for the cubic-quintic nonlinear Schrödinger system with variable coefficients in a non-Kerr medium, twin-core nonlinear optical fiber or waveguidePhys. Scr.2021960452102021PhyS...96d5210Y10.1088/1402-4896/abbd6d
– reference: MaoBQGaoYTFengYJYuXNonautonomous solitons for the coupled variable-coefficient cubic-quintic nonlinear Schrödinger equations with external potentials in the non-Kerr fibreZeitschrift für Naturforschung A2015709859942015ZNatA..70..985M10.1515/zna-2015-0319
– reference: SunWRWen-RongDYLXieXYVector semirational rogue waves and modulation instability for the coupled higher-order nonlinear Schrödinger equations in the birefringent optical fibersChaos2017270431142017Chaos..27d3114S10.1063/1.4981907
– reference: OgusuKYamasakiJMaedaSKitaoMMinakataMLinear and nonlinear optical properties of Ag–As–Se chalcogenide glasses for all-optical switchingOpt. Lett.2004292652004OptL...29..265O10.1364/OL.29.000265
– reference: KharifCPelinovskyESlunyaevARogue Waves in the Ocean2009BerlinSpringer
– reference: LüXMaWXYuJLinFHKhaliqueCMEnvelope bright- and dark-soliton solutions for the Gerdjikov–Ivanov modelNonlinear Dyn.2015821211341248210.1007/s11071-015-2227-6
– reference: DjelahGNdzanaFIAbdoulkarySMohamadouARogue waves dynamics of cubic-quintic nonlinear Schrödinger equation with an external linear potential through a modified Noguchi electrical transmission networkCommun. Nonlin. Sci. Num. Simul.202312610747910.1016/j.cnsns.2023.107479
– reference: SerkinVNMatsumotoMBelyaevaTLBright and dark solitary nonlinear Bloch waves in dispersion managed fiber systems and soliton lasersOpt. Commun.20011961592001OptCo.196..159S10.1016/S0030-4018(01)01365-7
– reference: ManikandanKSudharsanJBManipulating two-dimensional solitons in inhomogeneous nonlinear Schrödinger equation with power-law nonlinearity under PT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{PT}$$\end{document}-symmetric Rosen–Morse and hyperbolic Scarff-II potentialsOptik20222561687032022Optik.256p8703M10.1016/j.ijleo.2022.168703
– reference: ChenSMihalacheDVector rogue waves in the Manakov system: diversity and compossibilityJ. Phys. A: Math. Theor.2015482152022015JPhA...48u5202C334285810.1088/1751-8113/48/21/215202
– reference: KiblerBFatomeJFinotCMillotGDiasFGentyGAkhmedievNDudleyJMThe Peregrine soliton in nonlinear fibre opticsNat. Phys.2010679010.1038/nphys1740
– reference: SerkinVNHasegawaABelyaevaTLNonautonomous solitons in external potentialsPhys. Rev. Lett.2007980741022007PhRvL..98g4102S10.1103/PhysRevLett.98.074102
– reference: SuchkovSVSukhorukovAAHuangJDmitrievSVLeeCKivsharYSNonlinear switching and solitons in PT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{PT}$$\end{document}-symmetric photonic systemsLaser Photon. Rev.2016101772132016LPRv...10..177S10.1002/lpor.201500227
– reference: Vishnu PriyaNSenthilvelanMLakshmananMDark solitons, breathers and rogue wave solutions of the coupled generalized nonlinear Schröinger equationsPhys. Rev. E2014890629012014PhRvE..89f2901P10.1103/PhysRevE.89.062901
– reference: MuPHuangYZhouPZengYFangQLanRHePLiuXGuoGLiuXLiNExtreme events in two laterally-coupled semiconductor lasersOpt. Express20223029435294482022OExpr..3029435M10.1364/OE.460611
– reference: ChaiJTianBChaiHPYuanYQLax pair and vector solitons for a variable-coefficient coherently-coupled nonlinear Schrödinger system in the nonlinear birefringent optical fiberJ. Electromag. Waves Appl.201731136313752017JEWA...31.1363C10.1080/09205071.2017.1348994
– reference: KivsharYSAgrawalGPOptical Solitons: From Fibers to Photonic Crystals2003San DiegoAcademic Press
– reference: ChaiJTianBZhenHLBright and dark solitons and Bäcklund transformations for the coupled cubic-quintic nonlinear Schrödinger equations with variable coefficients in an optical fiberPhys. Scr.2015900452062015PhyS...90d5206C10.1088/0031-8949/90/4/045206
– reference: HongWPOptical solitary wave solutions for the higher order nonlinear Schrödinger equation with cubic-quintic non-Kerr termsOpt. Commun.20011942172001OptCo.194..217H10.1016/S0030-4018(01)01267-6
– reference: QiFHJuHMMengXHLiJConservation laws and Darboux transformation for the coupled cubic-quintic nonlinear Schrödinger equations with variable coefficients in nonlinear opticsNonlinear Dyn.2014771331133710.1007/s11071-014-1382-5
– reference: KengneELiuWMModulational instability and sister chirped femtosecond modulated waves in a nonlinear Schrödinger equation with self-steepening and self-frequency shiftCommun. Nonlinear Sci. Numer. Simul.202210810624010.1016/j.cnsns.2021.106240
– reference: TlidiMTakiMRogue waves in nonlinear opticsAdv. Opt. Photon.2022148714710.1364/AOP.438025
– reference: ZhaoLGuoBLingLHigh-order rogue wave solutions for the coupled nonlinear Schrödinger equations-IIJ. Math. Phys.2016570435082016JMP....57d3508Z349006010.1063/1.4947113
– reference: JiTZhaiYSoliton, breather and rogue wave solutions of the coupled Gerdjikov–Ivanov equation via Darboux transformationNonlinear Dyn.202010161963110.1007/s11071-020-05790-5
– reference: QiFHXuXGWangPRogue wave solutions for the coupled cubic-quintic nonlinear Schrödinger equations with variable coefficientsAppl. Math. Lett.2016546065343445610.1016/j.aml.2015.11.001
– reference: GoyalAGuptaRKumarCNRajuTSChirped femtosecond solitons and double-kink solitons in the cubic-quintic nonlinear Schrödinger equation with self-steepening and self-frequency shiftPhys. Rev. A2011840638302011PhRvA..84f3830A10.1103/PhysRevA.84.063830
– reference: KengneELakhssassiALiuWMNon-autonomous solitons in inhomogeneous nonlinear media with distributed dispersionNonlinear Dyn.20199744946910.1007/s11071-019-04991-x
– reference: PorsezianKKuriakoseVCOptical Solitons: Theoretical and Experimental Challenges2003New YorkSpringer10.1007/3-540-36141-3
– reference: ArshadMSeadawyARLuDExact bright-dark solitary wave solutions of the higher-order cubic-quintic nonlinear Schrödinger equation and its stabilityOptik201713840492017Optik.138...40A10.1016/j.ijleo.2017.03.005
– reference: DudleyJMFinotCGentyGTaylorRFifty years of fiber solitonsOpt. Photon. News20233452610.1364/OPN.34.5.000026
– reference: ChaiJTianBWangYFMixed-type vector solitons for the coupled cubic-quintic nonlinear Schrödinger equations with variable coefficients in an optical fiberPhysica A20154342963042015PhyA..434..296C334973210.1016/j.physa.2015.03.014
– reference: YangSXWangYFZhangXDynamics of localized waves for the higher-order nonlinear Schrödinger equation with self-steepening and cubic-quintic nonlinear terms in optical fibersNonlinear Dyn.2023111174391745410.1007/s11071-023-08755-6
– reference: MuniyappanAAmirthaniSChandrikaPBiswasAYıldırımYAlshehriHMMaturiDAAAl-BogamiDHDark solitons with anti-cubic and generalized anti-cubic nonlinearities in an optical fiberOptik20212551686412022Optik.255p8641M10.1016/j.ijleo.2022.168641
– reference: YeYBuLWangWChenSBaronioFMihalacheDPeregrine solitons on a periodic background in the vector cubic-quintic nonlinear Schrödinger equationFront. Phys.2020859695010.3389/fphy.2020.596950
– reference: ZhanCZhangDZhuDWangDLiYLiDLuZZhaoLNieYThird- and fifth-order optical nonlinearities in a new stilbazolium derivativeJ. Opt. Soc. Am. B2002193693752002OSAJB..19..369Z10.1364/JOSAB.19.000369
– reference: SerkinVNHasegawaANovel soliton solutions of the nonlinear Schrödinger equation modelPhys. Rev. Lett.20008545022000PhRvL..85.4502S10.1103/PhysRevLett.85.4502
– reference: PonomarenkoSAAgrawalGPInteractions of chirped and chirp-free similaritons in optical fiber amplifiersOpt. Express200715296329732007OExpr..15.2963P10.1364/OE.15.002963
– reference: LuoHGZhaoDHeXGExactly controllable transmission of nonautonomous optical solitonsPhys. Rev. A2009790638022009PhRvA..79f3802L10.1103/PhysRevA.79.063802
– reference: WangMTianBDarboux transformation, generalized Darboux transformation and vector breather solutions for the coupled variable-coefficient cubic-quintic nonlinear Schrödinger system in a non-Kerr medium, twin-core nonlinear optical fiber or waveguideWave. Random Complex202210.1080/17455030.2021.1986649
– reference: MusammilNMPorsezianKNithyanandanKSubhaPATchofo DindaPUltrashort dark solitons interactions and nonlinear tunneling in the modified nonlinear Schrödinger equation with variable coefficientOpt. Fiber Technol.20173711202017OptFT..37...11M10.1016/j.yofte.2017.06.006
– reference: BaronioFDegasperisAConfortiMWabnitzSSolutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue wavesPhys. Rev. Lett.20121090441022012PhRvL.109d4102B10.1103/PhysRevLett.109.044102
– reference: ChuMXTian BBYuanYQBilinear forms and dark-dark solitons for the coupled cubic-quintic nonlinear Schrödinger equations with variable coefficients in a twin-core optical fiber or non-Kerr mediumCommun. Theor. Phys.20197113932019CoTPh..71.1393C405113510.1088/0253-6102/71/12/1393
– reference: ManikandanKMuruganandamPSenthilvelanMLakshmananMManipulating localized matter waves in multicomponent Bose–Einstein condensatesPhys. Rev. E2016930322122016PhRvE..93c2212M365444110.1103/PhysRevE.93.032212
– reference: ZhangYNieXJRogue wave solutions for the coupled cubic-quintic nonlinear Schrödinger equations in nonlinear opticsPhys. Lett. A20143781911972014PhLA..378..191Z314640010.1016/j.physleta.2013.11.010
– reference: YanXWZhangJCoupled cubic-quintic nonlinear Schrödinger equation: novel bright-dark rogue waves and dynamicsNonlinear Dyn.20201003733374310.1007/s11071-020-05694-4
– reference: TrikiHBiswasAMilovićDBelicMChirped femtosecond pulses in the higher-order nonlinear Schrödinger equation with non-Kerr nonlinear terms and cubic-quintic-septic nonlinearitiesOpt. Commun.20163663623692016OptCo.366..362T10.1016/j.optcom.2016.01.005
– reference: LiXZZhaoZYZhouXQGuYHanXZhaoMRogue wave generation using a chaotic semiconductor laser with energy redistributionOpt. Lett.202348352335262023OptL...48.3523L10.1364/OL.494619
– reference: WuJIntegrability aspects and multi-soliton solutions of a new coupled Gerdjikov–Ivanov derivative nonlinear Schrödinger equationNonlinear Dyn.20199678980010.1007/s11071-019-04821-0
– volume: 98
  start-page: 074102
  year: 2007
  ident: 5205_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.074102
– volume: 194
  start-page: 217
  year: 2001
  ident: 5205_CR12
  publication-title: Opt. Commun.
  doi: 10.1016/S0030-4018(01)01267-6
– volume: 48
  start-page: 215202
  year: 2015
  ident: 5205_CR29
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8113/48/21/215202
– volume: 285
  start-page: 755
  year: 2012
  ident: 5205_CR27
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2011.10.087
– volume: 102
  start-page: 1801
  year: 2020
  ident: 5205_CR40
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-06029-z
– volume: 378
  start-page: 191
  year: 2014
  ident: 5205_CR37
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2013.11.010
– volume: 101
  start-page: 619
  year: 2020
  ident: 5205_CR42
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-05790-5
– volume: 256
  start-page: 168703
  year: 2022
  ident: 5205_CR60
  publication-title: Optik
  doi: 10.1016/j.ijleo.2022.168703
– volume-title: Emergent Nonlinear Phenomena in Bose–Einstein Condensates: Theory and Experiment
  year: 2008
  ident: 5205_CR53
  doi: 10.1007/978-3-540-73591-5
– volume: 100
  start-page: 3733
  year: 2020
  ident: 5205_CR33
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-05694-4
– volume-title: Optical Solitons: Theoretical and Experimental Challenges
  year: 2003
  ident: 5205_CR2
  doi: 10.1007/3-540-36141-3
– volume: 245
  start-page: 383
  year: 2005
  ident: 5205_CR25
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2004.10.001
– volume: 89
  start-page: 062901
  year: 2014
  ident: 5205_CR31
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.89.062901
– volume: 366
  start-page: 362
  year: 2016
  ident: 5205_CR11
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2016.01.005
– volume: 79
  start-page: 063802
  year: 2009
  ident: 5205_CR24
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.79.063802
– volume: 77
  start-page: 1331
  year: 2014
  ident: 5205_CR43
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-014-1382-5
– volume: 30
  start-page: 29435
  year: 2022
  ident: 5205_CR58
  publication-title: Opt. Express
  doi: 10.1364/OE.460611
– volume: 475
  start-page: 128836
  year: 2023
  ident: 5205_CR8
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2023.128836
– volume-title: Optical Solitons: From Fibers to Photonic Crystals
  year: 2003
  ident: 5205_CR1
– volume: 27
  start-page: 043114
  year: 2017
  ident: 5205_CR38
  publication-title: Chaos
  doi: 10.1063/1.4981907
– volume: 108
  start-page: 106240
  year: 2022
  ident: 5205_CR9
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2021.106240
– volume: 126
  start-page: 107479
  year: 2023
  ident: 5205_CR17
  publication-title: Commun. Nonlin. Sci. Num. Simul.
  doi: 10.1016/j.cnsns.2023.107479
– volume: 29
  start-page: 265
  year: 2004
  ident: 5205_CR14
  publication-title: Opt. Lett.
  doi: 10.1364/OL.29.000265
– volume: 97
  start-page: 449
  year: 2019
  ident: 5205_CR26
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-04991-x
– volume: 96
  start-page: 045210
  year: 2021
  ident: 5205_CR49
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/abbd6d
– volume: 196
  start-page: 159
  year: 2001
  ident: 5205_CR20
  publication-title: Opt. Commun.
  doi: 10.1016/S0030-4018(01)01365-7
– volume: 111
  start-page: 15347
  year: 2023
  ident: 5205_CR7
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-023-08640-2
– volume: 8
  start-page: 596950
  year: 2020
  ident: 5205_CR39
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2020.596950
– volume: 6
  start-page: 790
  year: 2010
  ident: 5205_CR4
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1740
– volume: 54
  start-page: 60
  year: 2016
  ident: 5205_CR47
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2015.11.001
– volume: 435
  start-page: 133285
  year: 2022
  ident: 5205_CR35
  publication-title: Physica D
  doi: 10.1016/j.physd.2022.133285
– volume: 71
  start-page: 1393
  year: 2019
  ident: 5205_CR48
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/71/12/1393
– volume: 48
  start-page: 3523
  year: 2023
  ident: 5205_CR59
  publication-title: Opt. Lett.
  doi: 10.1364/OL.494619
– volume: 106
  start-page: 254103
  year: 2015
  ident: 5205_CR54
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4922552
– volume: 104
  start-page: 1533
  year: 2021
  ident: 5205_CR15
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-021-06350-1
– volume: 434
  start-page: 296
  year: 2015
  ident: 5205_CR46
  publication-title: Physica A
  doi: 10.1016/j.physa.2015.03.014
– volume-title: Rogue Waves in the Ocean
  year: 2009
  ident: 5205_CR51
– volume: 70
  start-page: 985
  year: 2015
  ident: 5205_CR44
  publication-title: Zeitschrift für Naturforschung A
  doi: 10.1515/zna-2015-0319
– volume: 107
  start-page: 053507
  year: 2023
  ident: 5205_CR55
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.107.053507
– volume: 109
  start-page: 044102
  year: 2012
  ident: 5205_CR28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.044102
– volume: 14
  start-page: 87
  year: 2022
  ident: 5205_CR56
  publication-title: Adv. Opt. Photon.
  doi: 10.1364/AOP.438025
– volume: 10
  start-page: 177
  year: 2016
  ident: 5205_CR57
  publication-title: Laser Photon. Rev.
  doi: 10.1002/lpor.201500227
– volume: 111
  start-page: 17439
  year: 2023
  ident: 5205_CR32
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-023-08755-6
– volume: 31
  start-page: 1363
  year: 2017
  ident: 5205_CR36
  publication-title: J. Electromag. Waves Appl.
  doi: 10.1080/09205071.2017.1348994
– volume: 96
  start-page: 789
  year: 2019
  ident: 5205_CR41
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-04821-0
– volume: 90
  start-page: 045206
  year: 2015
  ident: 5205_CR45
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/90/4/045206
– volume: 82
  start-page: 1211
  year: 2015
  ident: 5205_CR6
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-015-2227-6
– volume: 93
  start-page: 032212
  year: 2016
  ident: 5205_CR34
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.93.032212
– volume: 34
  start-page: 26
  issue: 5
  year: 2023
  ident: 5205_CR3
  publication-title: Opt. Photon. News
  doi: 10.1364/OPN.34.5.000026
– year: 2022
  ident: 5205_CR50
  publication-title: Wave. Random Complex
  doi: 10.1080/17455030.2021.1986649
– volume: 37
  start-page: 11
  year: 2017
  ident: 5205_CR5
  publication-title: Opt. Fiber Technol.
  doi: 10.1016/j.yofte.2017.06.006
– volume: 2010
  start-page: 1456
  issue: 57
  year: 2010
  ident: 5205_CR23
  publication-title: J. Mod. Opt.
  doi: 10.1080/09500341003624750
– volume: 15
  start-page: 2963
  year: 2007
  ident: 5205_CR22
  publication-title: Opt. Express
  doi: 10.1364/OE.15.002963
– volume-title: Rogue and Shock Waves in Nonlinear Dispersive Media
  year: 2016
  ident: 5205_CR52
  doi: 10.1007/978-3-319-39214-1
– volume: 138
  start-page: 40
  year: 2017
  ident: 5205_CR18
  publication-title: Optik
  doi: 10.1016/j.ijleo.2017.03.005
– volume: 84
  start-page: 063830
  year: 2011
  ident: 5205_CR10
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.84.063830
– volume: 57
  start-page: 043508
  year: 2016
  ident: 5205_CR30
  publication-title: J. Math. Phys.
  doi: 10.1063/1.4947113
– volume: 19
  start-page: 369
  year: 2002
  ident: 5205_CR13
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.19.000369
– volume: 85
  start-page: 4502
  year: 2000
  ident: 5205_CR19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.4502
– volume: 255
  start-page: 168641
  year: 2021
  ident: 5205_CR16
  publication-title: Optik
  doi: 10.1016/j.ijleo.2022.168641
SSID ssj0000491494
Score 2.3553815
Snippet In this study, we explore variable coefficients coupled cubic–quintic nonlinear Schrödinger (CQNLS) equations with self-steepening, modeling optical pulse...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 405
SubjectTerms Applied and Technical Physics
Atomic
Behavior
Complex Systems
Condensed Matter Physics
Conservation laws
Deformation
Longitudinal waves
Mathematical and Computational Physics
Mathematical models
Molecular
Nonlinear optics
Nonlinear phenomena
Optical and Plasma Physics
Optical fibers
Optics
Parameters
Physics
Physics and Astronomy
Propagation
Pulse propagation
Regular Article
Schrodinger equation
Theoretical
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwELZKKyQuiF-xUJAPXK3Nn9P4gBA_rSokVgio1Jtlj8fqou0mu9ldpJ54B96Ah-AFeBOehLGT7AoO9Bgltix_E8-PZ75h7LnCMjvKilw4hFwU0iihrEFhSFcBJJXJ4g3--0l5ela8O5fne2wy1MKEtMrhTIwHtashxMjHeSgalVWlqpfNQoSuUeF2dWihYfrWCu5FpBi7wQ7oSK5I7g9eH08-fNxGXcgeJpeg6BO9yLkYY_OlGbfkqZWJIH0lQl6IFFd_q6md7fnPdWnUQid32O3efOSvOrzvsj2c32M3YxontPfZj7e4rUbktefT-UV9WZOMIDn4fBMj9LxuYvyaL0PUhn81G2zpQ06WIN-Q5xxqqTjUGLklQpoFPaybGToOazuF39--L9ZT2gTg845mwyz5J7hY_vrp4pI5Ljr68JaHIC9vceYFyVLotksfPGBnJ8ef35yKvguDgDwvVsKWaWol5imYI-9TZQn23HjnA7M-euWtL8mMkSaxEmRhPUiZm8KXjqAI_F4P2T6tBx8xjpkDqEqVeZrZWjTkWyqal0RCQq7ciJXDpmvoKcpDp4yZ7sqnEx3Q0h1amtDSES19NWLJdmDTsXRcP-RwQFX3v22rd0I2YumA9O71NVM-_v-UT9itrJMw0n2HbH-1XONTsmhW9lkvpn8AqlP8lg
  priority: 102
  providerName: ProQuest
Title Deformation of inhomogeneous vector optical rogue waves in the variable coefficients coupled cubic–quintic nonlinear Schrödinger equations with self-steepening
URI https://link.springer.com/article/10.1140/epjp/s13360-024-05205-z
https://www.proquest.com/docview/3053358898
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbYJiRu0GAgCqPyxW6tJXGcxZcttJtAqxBQabuybOdYKypN1rRF2hXvwBvsIXgB3oQn4dhJO7YLJnGVRPGxrHzHOT8-P4QcSMiSoyTlrADLWSq0ZNJoYBpllbVRrpNwgn86yk7G6bszcfZ3qy8f7b4-kgx_6qaebXQI1ZfqsEaTKosYChbmAzgEu9oiO3iT-D05Tnob9woqvqj7p21E1z_ob8ujGyXzzrloEDfDXfK41RNprwH2CXkAs6fkYYjXtPUeuX4Lm7RDWjo6mV2UX0tkBkBLnq6CK56WVXBU07l3z9BvegU1DqSo8tEVmsg-aYraEkIRCR9PgQ_LagoFtUszsb-__7hcTmY4BZ019TT0nH6yF_NfP4uwZAqXTZ3wmnpvLq1h6hgyjW-riwOekfFw8PnNCWvbLTDLebpgJotjI4DHVh85F0uD-HLtCudL6IOTzrgM9RWhIyOsSI2zQnCduqxAncQX8npOtnE98IJQSApr80wmDmc2BjQakRLnReyF5bLokGz90ZVta5H7lhhT1eRJR8qjpRq0FKKlAlrqqkOiDWHVlOO4n2R_japq92etuE9BFnku8w6J10jfvL5nypf_QfOKPEoatkPJt0-2F_MlvEZ9ZmG6ZCsfHnfJTm_Y74_89fj8_QCv_cHow8du4Os_2KX8zg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbKVgguFb9i2wI-wNHa_DlNDlUFtNWWtisErdSbsZ2xumjZZDebreiJd-gb9CE4cuFNeBLGTrIrONBTj1HsSeJv4vnx_BDyKoU42AqikGWgQxZxmbJUSWASZZXWXiIDd4J_PIj7p9H7M362Qn62uTA2rLLdE91GneXa-sh7oU0a5UmSJjvFhNmuUfZ0tW2hIZvWCtm2KzHWJHYcwrcLNOHK7YNdxPt1EOzvnbzrs6bLANNhGM2Yin1fcQh9LbeM8VOFnxVKkxlbOR5MapSJUUxz6SmueaSM5jyUkYkzfJStX4V075DVyGa4dsjq273Bh48LLw_q32iCRE1gGRozPSi-FL0SLcPYYygfmY1D4ezyb7G41HX_OZ51Um__AVlr1FX6puavh2QFxo_IXRc2qsvH5HoXFtmPNDd0OD7Pv-bIk5BXJZ27EwGaF85fTqfWS0Qv5BxKHEhR86RztNRt7hbVObhaFjasAy-qYgQZ1ZUa6t_frybVEBdd03Fd1kNO6Sd9Pv31I3OvTGFSlysvqXUq0xJGhiHv2u6-OOAJOb0VPJ6SDr4PPCMUgkzrJE4Dg5SVAom2bIp0kQW5DtOsS-J20YVuSqLbzhwjUadre8KiJWq0BKIlHFrisku8xcSirgpy85TNFlXRbBOlWDJ1l_gt0svbN5Bc_z_Jl-Re_-T4SBwdDA43yP2g5jaUu5ukM5tW8By1qZl60bAsJZ9v-y_5A6MoOzQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKK1AvqC2gLrTUB67WJnGcxseKdlWgVEiwUm-W7YzVRUuSbnYXqSfegTfgIXgB3oQnYewkW5VDK_UYJTOy8k0yP575TMgbCVlymKScFWA5S4WWTBoNTKOvsjbKdRJ28D-eZ6fj9P2FuFgjJ_0sTOh277ck25kGz9JUzod14Tpu22gI9dd62GB6lUUMnQzzzRyCXT8iG_hPjr25j5OjVakFg2DMA9Kuu-sO-du-6Sbg_G-PNLie0RZ52sWM9KgFeZusQblDHofeTds8I7-OYTWCSCtHJ-Vl9a1CwwDM6ukylOVpVYeiNZ35Ug39rpfQ4IMUwz-6xHTZD1BRW0EglPC9FXixqKdQULswE_v3x8-rxaREFbRsuTX0jH62l7M_v4uwZApXLWd4Q31llzYwdQwNyB-xiw88J-PRyZe3p6w7eoFZztM5M1kcGwE8tvrQuVgaxJprVzhPpw9OOuMyjF2EjoywIjXOCsF16rIC4xNP6vWCrON6YJdQSApr80wmDjUbAxoTSol60Q6E5bIYkKx_6cp2vOT-eIypamemI-XRUi1aCtFSAS11PSDRSrBuqTnuF9nrUVXdt9oo7seRRZ7LfEDiHumb2_eofPkAmQPy5NPxSJ29O__wimwmrQWiQ9wj6_PZAvYxzJmb18GI_wEV5f5t
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deformation+of+inhomogeneous+vector+optical+rogue+waves+in+the+variable+coefficients+coupled+cubic%E2%80%93quintic+nonlinear+Schr%C3%B6dinger+equations+with+self-steepening&rft.jtitle=European+physical+journal+plus&rft.au=Manigandan%2C+M.&rft.au=Manikandan%2C+K.&rft.au=Muniyappan%2C+A.&rft.au=Jakeer%2C+S.&rft.date=2024-05-10&rft.issn=2190-5444&rft.eissn=2190-5444&rft.volume=139&rft.issue=5&rft_id=info:doi/10.1140%2Fepjp%2Fs13360-024-05205-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1140_epjp_s13360_024_05205_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-5444&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-5444&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-5444&client=summon