Investigating hydrogenation and decarbonylation in vapor-phase furfural hydrotreating over Ni/SiO2 catalysts: Propylene production

[Display omitted] •A full furfural utilization, either to furfuryl alcohol (a biofuel) or to propylene and furan (as chemical feedstock), can be realized with proper design of Ni-catalyst and operation of reaction.•This design can be related to Ni structure sensitive, the terrace sites prefer the hy...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. A, General Vol. 613; p. 118020
Main Authors Chen, Szu-Hua, Tseng, Ya-Chun, Yang, Sheng-Chiang, Lin, Shawn D.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 05.03.2021
Elsevier Science SA
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •A full furfural utilization, either to furfuryl alcohol (a biofuel) or to propylene and furan (as chemical feedstock), can be realized with proper design of Ni-catalyst and operation of reaction.•This design can be related to Ni structure sensitive, the terrace sites prefer the hydrogenation as furfuryl alcohol production, and the step/edge sites prefer the decarbonylation as propylene production, together with proper operation.•This disclosed approach will be applied to sustainable bio-refinery processes and scientific fields over non-expensive Ni catalysts. Furfural can be mass-produced from lignocellulose biomass and can be a platform chemical for producing valuable chemicals. In this study, we examine Ni/SiO2 catalysts for the conversion of furfural under a hydrogen atmosphere. The reactivity and the product selectivity are governed by the reaction temperature and the Ni particle size. A catalyst pretreatment by including calcination prior to hydrogen reduction leads to Ni/SiO2–CR with large Ni particles (∼ 15 nm) and a high selectivity to furfuryl alcohol (FA) at below 200 °C. The Ni/SiO2-R is hydrogen-pretreated without a prior calcination and it contains small Ni particles (∼ 5 nm) and exhibits relatively high selectivity to furan. The turnover frequency (TOF) of furfural conversion is 239 and 408 h−1, respectively, on Ni/SiO2-CR and Ni/SiO2-R at 175 °C, when the former shows 100% selectivity to FA and the latter exhibits a selectivity of around 38% and 62%, to FA and furan, respectively. Moreover, the furan can be reacted to produce propylene and CO by the Ni catalysts at above 200 °C and Ni/SiO2-R exhibits a higher activity than Ni/SiO2-CR. The results suggest that the furfural hydrotreating reaction over Ni catalysts is structure sensitive and a proper design of catalyst and operating temperature can provide a full furfural utilization, either to FA (a biofuel), or to furan and propylene (as chemical feedstock).
AbstractList [Display omitted] •A full furfural utilization, either to furfuryl alcohol (a biofuel) or to propylene and furan (as chemical feedstock), can be realized with proper design of Ni-catalyst and operation of reaction.•This design can be related to Ni structure sensitive, the terrace sites prefer the hydrogenation as furfuryl alcohol production, and the step/edge sites prefer the decarbonylation as propylene production, together with proper operation.•This disclosed approach will be applied to sustainable bio-refinery processes and scientific fields over non-expensive Ni catalysts. Furfural can be mass-produced from lignocellulose biomass and can be a platform chemical for producing valuable chemicals. In this study, we examine Ni/SiO2 catalysts for the conversion of furfural under a hydrogen atmosphere. The reactivity and the product selectivity are governed by the reaction temperature and the Ni particle size. A catalyst pretreatment by including calcination prior to hydrogen reduction leads to Ni/SiO2–CR with large Ni particles (∼ 15 nm) and a high selectivity to furfuryl alcohol (FA) at below 200 °C. The Ni/SiO2-R is hydrogen-pretreated without a prior calcination and it contains small Ni particles (∼ 5 nm) and exhibits relatively high selectivity to furan. The turnover frequency (TOF) of furfural conversion is 239 and 408 h−1, respectively, on Ni/SiO2-CR and Ni/SiO2-R at 175 °C, when the former shows 100% selectivity to FA and the latter exhibits a selectivity of around 38% and 62%, to FA and furan, respectively. Moreover, the furan can be reacted to produce propylene and CO by the Ni catalysts at above 200 °C and Ni/SiO2-R exhibits a higher activity than Ni/SiO2-CR. The results suggest that the furfural hydrotreating reaction over Ni catalysts is structure sensitive and a proper design of catalyst and operating temperature can provide a full furfural utilization, either to FA (a biofuel), or to furan and propylene (as chemical feedstock).
Furfural can be mass-produced from lignocellulose biomass and can be a platform chemical for producing valuable chemicals. In this study, we examine Ni/SiO2 catalysts for the conversion of furfural under a hydrogen atmosphere. The reactivity and the product selectivity are governed by the reaction temperature and the Ni particle size. A catalyst pretreatment by including calcination prior to hydrogen reduction leads to Ni/SiO2–CR with large Ni particles (∼ 15 nm) and a high selectivity to furfuryl alcohol (FA) at below 200 °C. The Ni/SiO2-R is hydrogen-pretreated without a prior calcination and it contains small Ni particles (∼ 5 nm) and exhibits relatively high selectivity to furan. The turnover frequency (TOF) of furfural conversion is 239 and 408 h−1, respectively, on Ni/SiO2-CR and Ni/SiO2-R at 175 °C, when the former shows 100% selectivity to FA and the latter exhibits a selectivity of around 38% and 62%, to FA and furan, respectively. Moreover, the furan can be reacted to produce propylene and CO by the Ni catalysts at above 200 °C and Ni/SiO2-R exhibits a higher activity than Ni/SiO2-CR. The results suggest that the furfural hydrotreating reaction over Ni catalysts is structure sensitive and a proper design of catalyst and operating temperature can provide a full furfural utilization, either to FA (a biofuel), or to furan and propylene (as chemical feedstock).
ArticleNumber 118020
Author Lin, Shawn D.
Chen, Szu-Hua
Yang, Sheng-Chiang
Tseng, Ya-Chun
Author_xml – sequence: 1
  givenname: Szu-Hua
  surname: Chen
  fullname: Chen, Szu-Hua
  organization: Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Rd. Sec. 4, Taipei, 10617, Taiwan, ROC
– sequence: 2
  givenname: Ya-Chun
  surname: Tseng
  fullname: Tseng, Ya-Chun
  organization: Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Rd. Sec. 4, Taipei, 10617, Taiwan, ROC
– sequence: 3
  givenname: Sheng-Chiang
  surname: Yang
  fullname: Yang, Sheng-Chiang
  email: scy@mail.ntust.edu.tw, scy@gm.lhu.edu.tw
  organization: Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Rd. Sec. 4, Taipei, 10617, Taiwan, ROC
– sequence: 4
  givenname: Shawn D.
  surname: Lin
  fullname: Lin, Shawn D.
  email: sdlin@mail.ntust.edu.tw
  organization: Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Rd. Sec. 4, Taipei, 10617, Taiwan, ROC
BookMark eNqFkE-LFDEQxYPsgrOr38BDwHPPJul_6T0Isui6sLjCKngL1UllNkObtElmoK9-8s3YnjwoBIoU772q-l2QMx88EvKGsy1nvLvab2HWkGErmOBbziUT7AXZcNnXVS379oxs2CC6Snbs-0tykdKeMSaaod2QX3f-iCm7HWTnd_RpMTHs0Jdf8BS8oQY1xDH4ZVp7ztMjzCFW8xMkpPYQy4NpdeaIa044YqSf3dWjexD0tNq0pJyu6ZcY5mVCj3SOwRz0KfIVObcwJXz9p16Sbx8_fL35VN0_3N7dvL-vdF03uRpFg8JaCaYB25eeATPCOIwNNNAawSUfalsbLWxreoNSS7Aj2k73HTLZ1pfk7ZpbRv88lKPVPhyiLyOVaItg4FI0RdWsKh1DShGtmqP7AXFRnKkTbbVXK211oq1W2sV2_ZdNu_ybWI7gpv-Z361mLOcfHUaVtEOv0biIOisT3L8DngE5pKRl
CitedBy_id crossref_primary_10_1016_j_fuproc_2023_107726
crossref_primary_10_1016_j_apcata_2024_119619
crossref_primary_10_1021_acscatal_1c03375
crossref_primary_10_1016_j_jece_2023_110085
crossref_primary_10_1021_acs_iecr_2c01624
crossref_primary_10_1002_cctc_202401976
crossref_primary_10_3390_pr9122269
crossref_primary_10_1002_slct_202200013
crossref_primary_10_1021_acssuschemeng_4c09477
crossref_primary_10_1039_D2CY00671E
crossref_primary_10_1016_j_scitotenv_2023_166882
crossref_primary_10_1039_D3NJ02140H
crossref_primary_10_1016_j_checat_2022_04_009
crossref_primary_10_1002_cctc_202300766
crossref_primary_10_1016_j_fuproc_2021_106820
Cites_doi 10.1016/j.apcatb.2013.12.030
10.1016/j.molcata.2016.12.004
10.1016/S0141-0229(98)00101-X
10.1016/j.apcatb.2013.03.031
10.1021/cm200410s
10.1016/j.jcat.2010.10.005
10.1002/cctc.201200218
10.1016/j.apcatb.2015.07.006
10.1021/j100123a040
10.1038/ncomms3448
10.1016/j.cattod.2015.08.022
10.1002/anie.201407236
10.1021/cr068360d
10.1002/cctc.201500840
10.1002/anie.200604514
10.1021/nl3023127
10.1021/acscatal.7b04097
10.1021/acscatal.6b01838
10.1016/j.jcat.2014.06.025
10.1002/cssc.201100648
10.1021/cm703644x
10.1039/jr9470001068
10.1021/ie50458a005
10.1007/s10562-012-0816-2
10.1002/aic.14902
10.1021/ja105800z
10.1039/B611568C
10.1039/jr9450000058
10.1039/jr9450000048
10.1016/j.cattod.2015.02.034
10.1007/s10562-011-0581-7
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier Science SA Mar 5, 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier Science SA Mar 5, 2021
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.apcata.2021.118020
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-3875
ExternalDocumentID 10_1016_j_apcata_2021_118020
S0926860X2100034X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPD
SSG
SSZ
T5K
XPP
ZMT
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AI.
AIIUN
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
7SR
7U5
8BQ
8FD
EFKBS
JG9
L7M
ID FETCH-LOGICAL-c334t-b24e2ff8ad4af7c33dadbab9b4a4a5d218193f3dc2f5d7de8c8afbef6c76e0853
IEDL.DBID .~1
ISSN 0926-860X
IngestDate Sun Jul 13 04:18:52 EDT 2025
Tue Jul 01 00:39:23 EDT 2025
Thu Apr 24 22:50:56 EDT 2025
Fri Feb 23 02:41:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Furfural hydrotreating
Decarbonylation
Structure sensitive
Hydrogenation
Bio-refinery
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-b24e2ff8ad4af7c33dadbab9b4a4a5d218193f3dc2f5d7de8c8afbef6c76e0853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2508591824
PQPubID 2047481
ParticipantIDs proquest_journals_2508591824
crossref_primary_10_1016_j_apcata_2021_118020
crossref_citationtrail_10_1016_j_apcata_2021_118020
elsevier_sciencedirect_doi_10_1016_j_apcata_2021_118020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-05
PublicationDateYYYYMMDD 2021-03-05
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-05
  day: 05
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied catalysis. A, General
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science SA
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science SA
References Sitthisa, Sooknoi, Ma, Balbuena, Resasco (bib0140) 2011; 277
Wilson (bib0060) 1945
Grilc, Likozar, Levec (bib0010) 2014; 150-151
Larsson, Palmqvist, Hahn-Hägerdal, Tengborg, Stenberg, Zacchi, Nilvebrant (bib0030) 1999; 24
Lee, Xu, Huber (bib0080) 2013; 140-141
Sitthisa, Resasco (bib0085) 2011; 141
Cai, Wang, Wang, Mei (bib0155) 2015; 61
Gong, Chen, Zhang, Zhang, Zhang, Wang, Zhao (bib0070) 2017; 429
Nakagawa, Nakazawa, Watanabe, Tomishige (bib0090) 2012; 4
Zhang, Gu, Canlas, Kropf, Aich, Greeley, Elam, Meyers, Dumesic, Stair, Marshall (bib0150) 2014; 53
Wilson (bib0055) 1945
Schaefer, Weeber, Misra, Schiffer, Schaak (bib0130) 2011; 23
Pang, Schoenbaum, Schwartz, Medlin (bib0145) 2013; 4
Pushkarev, Musselwhite, An, Alayoglu, Somorjai (bib0100) 2012; 12
Runnebaum, Nimmanwudipong, Doan, Block, Gates (bib0095) 2012; 142
Yu, Xiong, Ji, Porosoff, Chen (bib0105) 2014; 317
Huber, Iborra, Corma (bib0050) 2006; 106
Taylor, Durndell, Isaacs, Parlett, Wilson, Lee, Kyriakou (bib0075) 2016; 180
Louis, Cheng, Che (bib0110) 1993; 97
Chheda, Roman-Leshkov, Dumesic (bib0035) 2007; 9
Kamm (bib0025) 2007; 46
Grilc, Likozar, Levec (bib0005) 2016; 8
Brownlee, Miner (bib0040) 1948; 40
Yang, Liu, Zhao, Wang, Han, Ge, Zhu (bib0115) 2018; 8
Lange, van der Heide, van Buijtenen, Price (bib0045) 2012; 5
Li, Jia, Wang (bib0020) 2016; 6
Goto, Taniguchi, Omata, Otsuka-Yao-Matsuo, Ohashi, Ueda, Yoshikawa, Yamashita, Oohashi, Kobayashi (bib0125) 2008; 20
Bremner, Keeys (bib0065) 1947
Kliewer, Aliaga, Bieri, Huang, Tsung, Wood, Komvopoulos, Somorjai (bib0120) 2010; 132
Mortensen, Grunwaldt, Jensen, Jensen (bib0135) 2016; 259
Grilc, Likozar, Levec (bib0015) 2015; 256
Huber (10.1016/j.apcata.2021.118020_bib0050) 2006; 106
Sitthisa (10.1016/j.apcata.2021.118020_bib0140) 2011; 277
Goto (10.1016/j.apcata.2021.118020_bib0125) 2008; 20
Yang (10.1016/j.apcata.2021.118020_bib0115) 2018; 8
Cai (10.1016/j.apcata.2021.118020_bib0155) 2015; 61
Grilc (10.1016/j.apcata.2021.118020_bib0015) 2015; 256
Runnebaum (10.1016/j.apcata.2021.118020_bib0095) 2012; 142
Pushkarev (10.1016/j.apcata.2021.118020_bib0100) 2012; 12
Grilc (10.1016/j.apcata.2021.118020_bib0005) 2016; 8
Kliewer (10.1016/j.apcata.2021.118020_bib0120) 2010; 132
Taylor (10.1016/j.apcata.2021.118020_bib0075) 2016; 180
Zhang (10.1016/j.apcata.2021.118020_bib0150) 2014; 53
Li (10.1016/j.apcata.2021.118020_bib0020) 2016; 6
Kamm (10.1016/j.apcata.2021.118020_bib0025) 2007; 46
Larsson (10.1016/j.apcata.2021.118020_bib0030) 1999; 24
Chheda (10.1016/j.apcata.2021.118020_bib0035) 2007; 9
Yu (10.1016/j.apcata.2021.118020_bib0105) 2014; 317
Schaefer (10.1016/j.apcata.2021.118020_bib0130) 2011; 23
Pang (10.1016/j.apcata.2021.118020_bib0145) 2013; 4
Bremner (10.1016/j.apcata.2021.118020_bib0065) 1947
Lange (10.1016/j.apcata.2021.118020_bib0045) 2012; 5
Mortensen (10.1016/j.apcata.2021.118020_bib0135) 2016; 259
Wilson (10.1016/j.apcata.2021.118020_bib0060) 1945
Louis (10.1016/j.apcata.2021.118020_bib0110) 1993; 97
Brownlee (10.1016/j.apcata.2021.118020_bib0040) 1948; 40
Grilc (10.1016/j.apcata.2021.118020_bib0010) 2014; 150-151
Wilson (10.1016/j.apcata.2021.118020_bib0055) 1945
Sitthisa (10.1016/j.apcata.2021.118020_bib0085) 2011; 141
Lee (10.1016/j.apcata.2021.118020_bib0080) 2013; 140-141
Gong (10.1016/j.apcata.2021.118020_bib0070) 2017; 429
Nakagawa (10.1016/j.apcata.2021.118020_bib0090) 2012; 4
References_xml – volume: 6
  start-page: 7621
  year: 2016
  end-page: 7640
  ident: bib0020
  publication-title: ACS Catal.
– volume: 40
  start-page: 201
  year: 1948
  end-page: 204
  ident: bib0040
  publication-title: Ind. Eng. Chem.
– volume: 46
  start-page: 5056
  year: 2007
  end-page: 5058
  ident: bib0025
  publication-title: Angew. Chemie Int. Ed.
– start-page: 48
  year: 1945
  end-page: 51
  ident: bib0060
  publication-title: J. Chem. Soc. (Resumed)
– volume: 259
  start-page: 277
  year: 2016
  end-page: 284
  ident: bib0135
  publication-title: Catal. Today
– volume: 132
  start-page: 13088
  year: 2010
  end-page: 13095
  ident: bib0120
  publication-title: J. Am. Chem. Soc.
– volume: 140-141
  start-page: 98
  year: 2013
  end-page: 107
  ident: bib0080
  publication-title: Appl. Catal. B
– volume: 4
  start-page: 2448
  year: 2013
  ident: bib0145
  publication-title: Nat. Commun.
– volume: 8
  start-page: 1672
  year: 2018
  end-page: 1682
  ident: bib0115
  publication-title: ACS Catal.
– volume: 5
  start-page: 150
  year: 2012
  end-page: 166
  ident: bib0045
  publication-title: ChemSusChem
– volume: 277
  start-page: 1
  year: 2011
  end-page: 13
  ident: bib0140
  publication-title: J. Catal.
– volume: 8
  start-page: 180
  year: 2016
  end-page: 191
  ident: bib0005
  publication-title: ChemCatChem
– volume: 150-151
  start-page: 275
  year: 2014
  end-page: 287
  ident: bib0010
  publication-title: Appl. Catal. B
– start-page: 58
  year: 1945
  end-page: 61
  ident: bib0055
  publication-title: J. Chem. Soc. (Resumed)
– volume: 141
  start-page: 784
  year: 2011
  end-page: 791
  ident: bib0085
  publication-title: Catal. Lett.
– volume: 24
  start-page: 151
  year: 1999
  end-page: 159
  ident: bib0030
  publication-title: Enzyme Microb. Technol.
– volume: 20
  start-page: 4156
  year: 2008
  end-page: 4160
  ident: bib0125
  publication-title: Chem. Mater.
– volume: 106
  start-page: 4044
  year: 2006
  end-page: 4098
  ident: bib0050
  publication-title: Chem. Rev.
– volume: 12
  start-page: 5196
  year: 2012
  end-page: 5201
  ident: bib0100
  publication-title: Nano Lett.
– volume: 180
  start-page: 580
  year: 2016
  end-page: 585
  ident: bib0075
  publication-title: Appl. Catal. B
– volume: 256
  start-page: 302
  year: 2015
  end-page: 314
  ident: bib0015
  publication-title: Catal. Today
– volume: 9
  start-page: 342
  year: 2007
  end-page: 350
  ident: bib0035
  publication-title: Green Chem.
– volume: 23
  start-page: 2475
  year: 2011
  end-page: 2480
  ident: bib0130
  publication-title: Chem. Mater.
– volume: 317
  start-page: 253
  year: 2014
  end-page: 262
  ident: bib0105
  publication-title: J. Catal.
– volume: 97
  start-page: 5703
  year: 1993
  end-page: 5712
  ident: bib0110
  publication-title: J. Phys. Chem.
– volume: 429
  start-page: 51
  year: 2017
  end-page: 59
  ident: bib0070
  publication-title: Mol. Catal.
– volume: 61
  start-page: 3812
  year: 2015
  end-page: 3824
  ident: bib0155
  publication-title: Aiche J.
– volume: 142
  start-page: 664
  year: 2012
  end-page: 666
  ident: bib0095
  publication-title: Catal. Lett.
– volume: 53
  start-page: 12132
  year: 2014
  end-page: 12136
  ident: bib0150
  publication-title: Angew. Chemie Int. Ed.
– start-page: 1068
  year: 1947
  end-page: 1080
  ident: bib0065
  publication-title: J. Chem. Soc. (Resumed)
– volume: 4
  start-page: 1791
  year: 2012
  end-page: 1797
  ident: bib0090
  publication-title: ChemCatChem
– volume: 150-151
  start-page: 275
  year: 2014
  ident: 10.1016/j.apcata.2021.118020_bib0010
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2013.12.030
– volume: 429
  start-page: 51
  year: 2017
  ident: 10.1016/j.apcata.2021.118020_bib0070
  publication-title: Mol. Catal.
  doi: 10.1016/j.molcata.2016.12.004
– volume: 24
  start-page: 151
  year: 1999
  ident: 10.1016/j.apcata.2021.118020_bib0030
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/S0141-0229(98)00101-X
– volume: 140-141
  start-page: 98
  year: 2013
  ident: 10.1016/j.apcata.2021.118020_bib0080
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2013.03.031
– volume: 23
  start-page: 2475
  year: 2011
  ident: 10.1016/j.apcata.2021.118020_bib0130
  publication-title: Chem. Mater.
  doi: 10.1021/cm200410s
– volume: 277
  start-page: 1
  year: 2011
  ident: 10.1016/j.apcata.2021.118020_bib0140
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2010.10.005
– volume: 4
  start-page: 1791
  year: 2012
  ident: 10.1016/j.apcata.2021.118020_bib0090
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201200218
– volume: 180
  start-page: 580
  year: 2016
  ident: 10.1016/j.apcata.2021.118020_bib0075
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2015.07.006
– volume: 97
  start-page: 5703
  year: 1993
  ident: 10.1016/j.apcata.2021.118020_bib0110
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100123a040
– volume: 4
  start-page: 2448
  year: 2013
  ident: 10.1016/j.apcata.2021.118020_bib0145
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3448
– volume: 259
  start-page: 277
  year: 2016
  ident: 10.1016/j.apcata.2021.118020_bib0135
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2015.08.022
– volume: 53
  start-page: 12132
  year: 2014
  ident: 10.1016/j.apcata.2021.118020_bib0150
  publication-title: Angew. Chemie Int. Ed.
  doi: 10.1002/anie.201407236
– volume: 106
  start-page: 4044
  year: 2006
  ident: 10.1016/j.apcata.2021.118020_bib0050
  publication-title: Chem. Rev.
  doi: 10.1021/cr068360d
– volume: 8
  start-page: 180
  year: 2016
  ident: 10.1016/j.apcata.2021.118020_bib0005
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201500840
– volume: 46
  start-page: 5056
  year: 2007
  ident: 10.1016/j.apcata.2021.118020_bib0025
  publication-title: Angew. Chemie Int. Ed.
  doi: 10.1002/anie.200604514
– volume: 12
  start-page: 5196
  year: 2012
  ident: 10.1016/j.apcata.2021.118020_bib0100
  publication-title: Nano Lett.
  doi: 10.1021/nl3023127
– volume: 8
  start-page: 1672
  year: 2018
  ident: 10.1016/j.apcata.2021.118020_bib0115
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b04097
– volume: 6
  start-page: 7621
  year: 2016
  ident: 10.1016/j.apcata.2021.118020_bib0020
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01838
– volume: 317
  start-page: 253
  year: 2014
  ident: 10.1016/j.apcata.2021.118020_bib0105
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2014.06.025
– volume: 5
  start-page: 150
  year: 2012
  ident: 10.1016/j.apcata.2021.118020_bib0045
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201100648
– volume: 20
  start-page: 4156
  year: 2008
  ident: 10.1016/j.apcata.2021.118020_bib0125
  publication-title: Chem. Mater.
  doi: 10.1021/cm703644x
– start-page: 1068
  year: 1947
  ident: 10.1016/j.apcata.2021.118020_bib0065
  publication-title: J. Chem. Soc. (Resumed)
  doi: 10.1039/jr9470001068
– volume: 40
  start-page: 201
  year: 1948
  ident: 10.1016/j.apcata.2021.118020_bib0040
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50458a005
– volume: 142
  start-page: 664
  year: 2012
  ident: 10.1016/j.apcata.2021.118020_bib0095
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-012-0816-2
– volume: 61
  start-page: 3812
  year: 2015
  ident: 10.1016/j.apcata.2021.118020_bib0155
  publication-title: Aiche J.
  doi: 10.1002/aic.14902
– volume: 132
  start-page: 13088
  year: 2010
  ident: 10.1016/j.apcata.2021.118020_bib0120
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja105800z
– volume: 9
  start-page: 342
  year: 2007
  ident: 10.1016/j.apcata.2021.118020_bib0035
  publication-title: Green Chem.
  doi: 10.1039/B611568C
– start-page: 58
  year: 1945
  ident: 10.1016/j.apcata.2021.118020_bib0055
  publication-title: J. Chem. Soc. (Resumed)
  doi: 10.1039/jr9450000058
– start-page: 48
  year: 1945
  ident: 10.1016/j.apcata.2021.118020_bib0060
  publication-title: J. Chem. Soc. (Resumed)
  doi: 10.1039/jr9450000048
– volume: 256
  start-page: 302
  year: 2015
  ident: 10.1016/j.apcata.2021.118020_bib0015
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2015.02.034
– volume: 141
  start-page: 784
  year: 2011
  ident: 10.1016/j.apcata.2021.118020_bib0085
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-011-0581-7
SSID ssj0002495
Score 2.4348247
Snippet [Display omitted] •A full furfural utilization, either to furfuryl alcohol (a biofuel) or to propylene and furan (as chemical feedstock), can be realized with...
Furfural can be mass-produced from lignocellulose biomass and can be a platform chemical for producing valuable chemicals. In this study, we examine Ni/SiO2...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118020
SubjectTerms Bio-refinery
Biofuels
Catalysts
Conversion
Decarbonylation
Furfural
Furfural hydrotreating
Furfuryl alcohol
Hydrogen reduction
Hydrogenation
Lignocellulose
Operating temperature
Pretreatment
Propylene
Roasting
Selectivity
Silicon dioxide
Structure sensitive
Title Investigating hydrogenation and decarbonylation in vapor-phase furfural hydrotreating over Ni/SiO2 catalysts: Propylene production
URI https://dx.doi.org/10.1016/j.apcata.2021.118020
https://www.proquest.com/docview/2508591824
Volume 613
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB_UgPvFNDl7rdtP0sd5kUVbFVVBhbyFPXZFu6a7CXjz4y51JW18ggseGJJTMZOZL-PINIQcdyAsqQkaNMXBAiRkPpHMyiFMdq0Rlbe2rllz2k94dPx_EgxnSbd7CIK2yjv1VTPfRum5p1avZKobD1k3YYUmWhAPW9iorA3zBzlP08sPXT5oH1lb2enssCbB383zOc7xkgZckcEpk7UOvhRb-lp5-BGqffU6XyVING-lx9WcrZMbmq2S-21RrWyWLX4QF18jbF_mM_J4-TE05Ak_xVqAyN9RYLUuFrPSqbZjTFwlQPCgeIK1R91w61OOoRnoyOs6DdE_ah0UZXjHqL36m48n4iF6Xo2IK6cvSohKQhSnXyd3pyW23F9TVFgIdRXwSKMYtcy6ThkuXQpuRRknVUVxyGRuEAp3IRUYzF5vU2Exn0inrEp0mFoBbtEFm81FuNwl1gKIkDzlmf85jruAUGrYzrWQEgMnyLRI1iyx0LUWOFTGeRMM5exSVaQSaRlSm2SLBx6iikuL4o3_a2E98cykB2eKPkbuNuUW9pccCsCJq_WWMb_974h2ygF-ewxbvktlJ-Wz3ANRM1L732n0yd3x20eu_A5wQ-cM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB6l4UB7QDwFbSh76NXEWa8f6Q1FRAGSgARIua32CUGVYzmhUq795Z1d2xGtVCH1uvasrJ3xzLerb78B-NbHuiAjx6jRGjcoMWWBsFYEcapimcisp3zXksk0GT2y61k8a8GguQvjaJV17q9yus_W9Ui3Xs1uMZ9378M-TbIknNGeV1mZfYAtp04Vt2Hr4upmNN0kZNde2Uvu0SRwBs0NOk_zEoU7J8GNIu2dezm08F8V6q9c7QvQcBd2auRILqqP24OWyfdhe9A0bNuHT2-0BQ_g1xsFjfyJPK91ucBg8Y4gItdEGyVK6Yjp1dg8Jz8FovGgeMbKRuxraZ0kR2Xp-ehuHsf4JFNcl_ktJf7sZ71cLb-Tu3JRrLGCGVJUGrI45SE8Di8fBqOgbrgQqChiq0BSZqi1mdBM2BTHtNBSyL5kgolYOzTQj2ykFbWxTrXJVCasNDZRaWIQu0VH0M4XuTkGYhFICRYyBwAYukXiRjTsZUqKCDGTYScQNYvMVa1G7ppi_OAN7eyFV67hzjW8cs0JBBurolLjeOf9tPEf_yOqOBaMdyw7jbt5_VcvOcJFJ_eXUfb5vyc-g-3Rw2TMx1fTmy_w0T3xlLa4A-1V-WpOEeOs5Nc6hn8DIWX8dA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+hydrogenation+and+decarbonylation+in+vapor-phase+furfural+hydrotreating+over+Ni%2FSiO2+catalysts%3A+Propylene+production&rft.jtitle=Applied+catalysis.+A%2C+General&rft.au=Chen%2C+Szu-Hua&rft.au=Tseng%2C+Ya-Chun&rft.au=Yang%2C+Sheng-Chiang&rft.au=Lin%2C+Shawn+D.&rft.date=2021-03-05&rft.issn=0926-860X&rft.volume=613&rft.spage=118020&rft_id=info:doi/10.1016%2Fj.apcata.2021.118020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcata_2021_118020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-860X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-860X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-860X&client=summon