6p valence relativistic effects in 5d photoemission spectrum of Pb atom and bonding properties of Pb-dimer using Dirac–Hartree–Fock formalism including many-body effects
There has been strong recent interest related to the large spin–orbit coupling in Pb monolayers on various properties of graphene and other 2D-materials. The underlying physical/chemical origin of the spin–orbit splitting has been discussed in terms of the valence 6p atomic level of the lead atom. I...
Saved in:
Published in | Journal of vacuum science & technology. A, Vacuum, surfaces, and films Vol. 40; no. 4 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
01.07.2022
|
Online Access | Get full text |
Cover
Loading…
Abstract | There has been strong recent interest related to the large spin–orbit coupling in Pb monolayers on various properties of graphene and other 2D-materials. The underlying physical/chemical origin of the spin–orbit splitting has been discussed in terms of the valence 6p atomic level of the lead atom. Indeed, the photoelectron spectra of the Pb atom were the subject of investigations about 50 years ago in Dave Shirley’s laboratory at UC Berkeley. In a paper published in 1975, using He-I UV photoelectron spectroscopy, we reported an unexpected relative intensity ratio for the observed atomic Pb peaks (2P1/2 and 2P3/2) after removal of a 6p valence electron and attributed it to the large spin–orbit interaction in that level. In this contribution, we use the Dirac–Hartree–Fock formalism to reanalyze the complex spectral features reported five years later, for the 5d He-II UV photoelectron spectrum of atomic lead, to extract the 6p valence contribution, which turns out to be significant. Furthermore, we calculate the energy levels of the Pb-dimer at the experimental equilibrium geometry of the molecule to also find the significant contribution of the spin–orbit splitting of the atomic 6p levels in the composition of the valence molecular orbitals of the dimer. Such an approach can be extended to larger systems like monolayers containing lead or other heavy atoms, thus helping in designing 2D-materials with controlled and better targeted properties. |
---|---|
AbstractList | There has been strong recent interest related to the large spin–orbit coupling in Pb monolayers on various properties of graphene and other 2D-materials. The underlying physical/chemical origin of the spin–orbit splitting has been discussed in terms of the valence 6p atomic level of the lead atom. Indeed, the photoelectron spectra of the Pb atom were the subject of investigations about 50 years ago in Dave Shirley’s laboratory at UC Berkeley. In a paper published in 1975, using He-I UV photoelectron spectroscopy, we reported an unexpected relative intensity ratio for the observed atomic Pb peaks (2P1/2 and 2P3/2) after removal of a 6p valence electron and attributed it to the large spin–orbit interaction in that level. In this contribution, we use the Dirac–Hartree–Fock formalism to reanalyze the complex spectral features reported five years later, for the 5d He-II UV photoelectron spectrum of atomic lead, to extract the 6p valence contribution, which turns out to be significant. Furthermore, we calculate the energy levels of the Pb-dimer at the experimental equilibrium geometry of the molecule to also find the significant contribution of the spin–orbit splitting of the atomic 6p levels in the composition of the valence molecular orbitals of the dimer. Such an approach can be extended to larger systems like monolayers containing lead or other heavy atoms, thus helping in designing 2D-materials with controlled and better targeted properties. |
Author | Bagus, Paul S. Suzer, Sefik |
Author_xml | – sequence: 1 givenname: Paul S. surname: Bagus fullname: Bagus, Paul S. organization: Center for Advanced Scientific Computing and Modeling (CASCaM), Department of Chemistry, University of North Texas – sequence: 2 givenname: Sefik surname: Suzer fullname: Suzer, Sefik organization: Chemistry Department, Bilkent University |
BookMark | eNp9kM1KAzEQx4NUsK0efINcFbZN9iO7PUq1VijoQc9LPmY1upssSVrozXfwOXwpn8StbRFEPc3A_OY_w2-AesYaQOiUkhGllI3ZiBBCi6I4QH2axSQqsmzSQ32SJ2kUU0KP0MD75w6KY8L66J21eMVrMBKwg5oHvdI-aImhqkAGj7XBmcLtkw0WGu29tgb7thu5ZYNthe8E5sE2mBuFhTVKm0fcOtuCCxr8loiUbsDhpd8ML7Xj8uP1bc5dcABdN7PyBVfWNbzWvukuynr5ldNws46EVev9N8fosOK1h5NdHaKH2dX9dB4tbq9vpheLSCZJGiIRp7mK80wwkkyqQqqYS06ByUmeZoVgnR5BKRFFBjxmkoCgJC-EAtqZAyaSITrb5kpnvXdQla3TDXfrkpJy47lk5c5zx45_sFKHzqM1wXFd_7pxvt3we_Lf-D_hlXXfYNmqKvkE5uui8Q |
CODEN | JVTAD6 |
CitedBy_id | crossref_primary_10_1039_D4CP01868K |
Cites_doi | 10.1103/PhysRev.156.35 10.1524/ract.2011.1842 10.1103/PhysRevB.9.600 10.1021/cr00085a006 10.1016/0009-2614(76)85237-2 10.1063/1.431398 10.1063/1.444504 10.1098/rsta.2019.0305 10.1063/1.439166 10.1021/ar50140a002 10.1016/j.surfrep.2013.03.001 10.1088/1367-2630/13/12/123018 10.1103/PhysRevB.48.12425 10.1063/5.0004844 10.1063/1.462503 10.1016/j.elspec.2015.04.021 10.1021/cr200042e 10.1103/PhysRevA.9.1090 10.1063/5.0039765 10.1524/ract.2011.1855 10.1038/nphys3173 10.1002/qua.560060605 10.1016/0010-4655(94)90115-5 10.1063/1.431785 10.1016/0009-2614(70)80309-8 10.1021/ed068p110 10.1103/PhysRevLett.23.1397 10.1063/1.1622923 10.1021/acsnano.6b05982 10.1021/j100213a006 10.1146/annurev-physchem-032511-143755 10.1021/jacsau.1c00192 10.1524/ract.2011.1860 10.1021/ar50140a001 10.1021/ic4026766 10.1103/PhysRevLett.106.018301 10.1016/0375-9601(72)90390-8 10.1016/0009-2614(75)85741-1 10.1021/cr00099a005 10.1016/S0065-3276(08)60241-5 |
ContentType | Journal Article |
Copyright | Author(s) |
Copyright_xml | – notice: Author(s) |
DBID | AAYXX CITATION |
DOI | 10.1116/6.0001888 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1520-8559 |
ExternalDocumentID | 10_1116_6_0001888 |
GrantInformation_xml | – fundername: US Department of Energy, Office of Basic Energy Sciences, Geosciences Program at Pasific Nortwest National Laboratory grantid: DE-AC05-76RL01830 |
GroupedDBID | -~X .DC 29L 5-Q AAAAW AAEUA AAPUP AAYIH ABFTF ABNAN ACBRY ACGFS ADCTM ADLOM AENEX AFFNX AFHCQ AGKCL AGMXG AGTJO AGVCI AHSDT AI. ALMA_UNASSIGNED_HOLDINGS BAUXJ DU5 EBS EJD F5P H~9 M71 M73 RAW RIP RNS ROL RQS SJN UPT VAS VH1 VOH WH7 XFK XJT YQT AAGWI AAYXX ABJGX ADMLS CITATION |
ID | FETCH-LOGICAL-c334t-b247d275b6039f8cd2aca1e6c97458b6888b110b85ea26c0eb1078bde1188e6b3 |
ISSN | 0734-2101 |
IngestDate | Tue Jul 01 03:53:38 EDT 2025 Thu Apr 24 23:08:21 EDT 2025 Fri Jun 21 00:19:14 EDT 2024 Thu Jun 23 13:36:04 EDT 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Published under an exclusive license by the AVS. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c334t-b247d275b6039f8cd2aca1e6c97458b6888b110b85ea26c0eb1078bde1188e6b3 |
ORCID | 0000-0002-5866-2600 0000-0002-5791-1820 |
OpenAccessLink | https://avs.scitation.org/doi/pdf/10.1116/6.0001888 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1116_6_0001888 crossref_citationtrail_10_1116_6_0001888 scitation_primary_10_1116_6_0001888 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220700 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 20220700 |
PublicationDecade | 2020 |
PublicationTitle | Journal of vacuum science & technology. A, Vacuum, surfaces, and films |
PublicationYear | 2022 |
References | Balasubramanian (c19) 1990 Manne, Åberg (c42) 1970 Ley, Pollak, Kowalczyk, Shirley (c48) 1972 Pyykko (c26) 2012 Pershina (c14) 2011 Yakushev (c16) 2014 Pyykko (c24) 1988 Desclaux (c10) 1972 Dullman (c15) 2012 Pyper (c4) 2020 Saue (c35) 2020 Pyykko (c23) 1979 Ma, Yang (c31) 2011 Hermsmeier, Fadley, Sinkovic, Krause, Jimenez-Mier, Gerard, Carlson, Manson, Bhattacharya (c45) 1993 Ley, Pollak, McFeely, Kowalczyk, Shirley (c49) 1974 Bagus, Nelin, Brundle, Crist, Lahiri, Rosso (c43) 2021 Suzer, Banna, Shirley (c6) 1975 Calleja (c28) 2014 Balasubramanian, Pitzer (c17) 1983 Bagus, Lee, Pitzer (c20) 1975 Ho, Polak, Lineberger (c47) 1992 Pyykko (c3) 2012 Fadley, Shirley, Freeman, Bagus, Mallow (c21) 1969 Bychkov, Rashba (c32) 1984 Suzer (c34) 1980 Pitzer (c1) 1979 Klimovskikhi (c29) 2017 Norby (c27) 1991 Pitzer (c12) 1975 Oganessian (c13) 2011 Bagus, Schrenk, Davis, Shirley (c22) 1974 Pyykko, Desclaux (c2) 1979 Pitzer, Balasubramanian (c18) 1982 Bagus, Sassi, Rosso (c8) 2015 Ahuja, Blomqvist, Larsson, Pyykko, Zaleski-Ejgierd (c25) 2011 Peterson (c39) 2003 Visscher, Visser, Aerts, Merenga, Nieuwpoort (c36) 1994 Lee, Suzer, Shirley (c11) 1976 Bagus, Ilton, Nelin (c44) 2013 Yang (c30) 2021 Aberg (c41) 1967 (2023081006410943600_c15) 2012; 100 2023081006410943600_c38 (2023081006410943600_c27) 1991; 68 (2023081006410943600_c2) 1979; 12 Clark (2023081006410943600_c33) (2023081006410943600_c12) 1975; 63 (2023081006410943600_c14) 2011; 99 (2023081006410943600_c8) 2015; 200 (2023081006410943600_c30) 2021; 1 (2023081006410943600_c18) 1982; 86 (2023081006410943600_c32) 1984; 39 (2023081006410943600_c22) 1974; 9 (2023081006410943600_c16) 2014; 53 (2023081006410943600_c37) 1950 (2023081006410943600_c1) 1979; 12 (2023081006410943600_c23) 1979; 11 (2023081006410943600_c3) 2012; 63 (2023081006410943600_c21) 1969; 23 (2023081006410943600_c41) 1967; 156 (2023081006410943600_c43) 2021; 154 (2023081006410943600_c7) 1951 (2023081006410943600_c20) 1975; 33 (2023081006410943600_c6) 1975; 63 (2023081006410943600_c29) 2017; 11 (2023081006410943600_c45) 1993; 48 (2023081006410943600_c4) 2020; 378 (2023081006410943600_c34) 1980; 72 (2023081006410943600_c26) 2012; 112 (2023081006410943600_c31) 2011; 13 (2023081006410943600_c36) 1994; 81 (2023081006410943600_c35) 2020; 152 (2023081006410943600_c44) 2013; 68 (2023081006410943600_c47) 1992; 96 (2023081006410943600_c42) 1970; 7 (2023081006410943600_c17) 1983; 78 (2023081006410943600_c25) 2011; 106 (2023081006410943600_c10) 1972; 6 2023081006410943600_c40 (2023081006410943600_c24) 1988; 88 (2023081006410943600_c19) 1990; 90 2023081006410943600_c9 (2023081006410943600_c49) 1974; 9 (2023081006410943600_c46) 1958 2023081006410943600_c5 (2023081006410943600_c13) 2011; 99 (2023081006410943600_c28) 2014; 11 (2023081006410943600_c48) 1972; 41 (2023081006410943600_c11) 1976; 41 (2023081006410943600_c39) 2003; 119 |
References_xml | – start-page: 25 year: 1972 ident: c10 publication-title: Int. J. Quantum Chem. – start-page: 018301 year: 2011 ident: c25 publication-title: Phys. Rev. Lett. – start-page: 25 year: 1976 ident: c11 publication-title: Chem. Phys. Lett. – start-page: 3068 year: 1982 ident: c18 publication-title: J. Phys. Chem. – start-page: 43 year: 2014 ident: c28 publication-title: Nat. Phys. – start-page: 204104 year: 2020 ident: c35 publication-title: J. Chem. Phys. – start-page: 273 year: 2013 ident: c44 publication-title: Surf. Sci. Rep. – start-page: 1090 year: 1974 ident: c22 publication-title: Phys. Rev. A – start-page: 1624 year: 2014 ident: c16 publication-title: Inorg. Chem. – start-page: 67 year: 2012 ident: c15 publication-title: Radiochim. Acta – start-page: 1032 year: 1975 ident: c12 publication-title: J. Chem. Phys. – start-page: 429 year: 2011 ident: c13 publication-title: Radiochim. Acta – start-page: 120 year: 1994 ident: c36 publication-title: Comput. Phys. Commun. – start-page: 271 year: 1979 ident: c1 publication-title: Acc. Chem. Res. – start-page: 563 year: 1988 ident: c24 publication-title: Chem. Rev. – start-page: 353 year: 1979 ident: c23 publication-title: Adv. Quantum Chem. – start-page: 78 year: 1984 ident: c32 publication-title: JETP Lett. – start-page: 282 year: 1970 ident: c42 publication-title: Chem. Phys. Lett. – start-page: 144 year: 1992 ident: c47 publication-title: J. Chem. Phys. – start-page: 276 year: 1979 ident: c2 publication-title: Acc. Chem. Res. – start-page: 321 year: 1983 ident: c17 publication-title: J. Chem. Phys. – start-page: 11099 year: 2003 ident: c39 publication-title: J. Chem. Phys. – start-page: 408 year: 1975 ident: c20 publication-title: Chem. Phys. Lett. – start-page: 174 year: 2015 ident: c8 publication-title: J. Electron Spectrosc. Relat. Phenom. – start-page: 35 year: 1967 ident: c41 publication-title: Phys. Rev. – start-page: 459 year: 2011 ident: c14 publication-title: Radiochim. Acta – start-page: 6763 year: 1980 ident: c34 publication-title: J. Chem. Phys. – start-page: 3473 year: 1975 ident: c6 publication-title: J. Chem. Phys. – start-page: 45 year: 2012 ident: c3 publication-title: Annu. Rev. Phys. Chem. – start-page: 371 year: 2012 ident: c26 publication-title: Chem. Rev. – start-page: 123018 year: 2011 ident: c31 publication-title: New J. Phys. – start-page: 368 year: 2017 ident: c29 publication-title: ACS Nano – start-page: 1178 year: 2021 ident: c30 publication-title: JACS Au – start-page: 110 year: 1991 ident: c27 publication-title: J. Chem. Educ. – start-page: 20190305 year: 2020 ident: c4 publication-title: Philos. Trans. R. Soc. London A – start-page: 93 year: 1990 ident: c19 publication-title: Chem. Rev. – start-page: 429 year: 1972 ident: c48 publication-title: Phys. Lett. A – start-page: 600 year: 1974 ident: c49 publication-title: Phys. Rev. B – start-page: 12425 year: 1993 ident: c45 publication-title: Phys. Rev. B – start-page: 1397 year: 1969 ident: c21 publication-title: Phys. Rev. Lett. – start-page: 094709 year: 2021 ident: c43 publication-title: J. Chem. Phys. – volume: 156 start-page: 35 year: 1967 ident: 2023081006410943600_c41 publication-title: Phys. Rev. doi: 10.1103/PhysRev.156.35 – volume: 100 start-page: 67 year: 2012 ident: 2023081006410943600_c15 publication-title: Radiochim. Acta doi: 10.1524/ract.2011.1842 – volume: 9 start-page: 600 year: 1974 ident: 2023081006410943600_c49 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.9.600 – volume: 88 start-page: 563 year: 1988 ident: 2023081006410943600_c24 publication-title: Chem. Rev. doi: 10.1021/cr00085a006 – volume: 41 start-page: 25 year: 1976 ident: 2023081006410943600_c11 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(76)85237-2 – volume: 63 start-page: 1032 year: 1975 ident: 2023081006410943600_c12 publication-title: J. Chem. Phys. doi: 10.1063/1.431398 – volume: 78 start-page: 321 year: 1983 ident: 2023081006410943600_c17 publication-title: J. Chem. Phys. doi: 10.1063/1.444504 – volume: 378 start-page: 20190305 year: 2020 ident: 2023081006410943600_c4 publication-title: Philos. Trans. R. Soc. London A doi: 10.1098/rsta.2019.0305 – volume-title: Quantum Mechanics year: 1958 ident: 2023081006410943600_c46 – volume: 72 start-page: 6763 year: 1980 ident: 2023081006410943600_c34 publication-title: J. Chem. Phys. doi: 10.1063/1.439166 – volume-title: Molecular Spectra and Molecular Structure year: 1950 ident: 2023081006410943600_c37 – volume: 12 start-page: 276 year: 1979 ident: 2023081006410943600_c2 publication-title: Acc. Chem. Res. doi: 10.1021/ar50140a002 – volume: 68 start-page: 273 year: 2013 ident: 2023081006410943600_c44 publication-title: Surf. Sci. Rep. doi: 10.1016/j.surfrep.2013.03.001 – volume: 13 start-page: 123018 year: 2011 ident: 2023081006410943600_c31 publication-title: New J. Phys. doi: 10.1088/1367-2630/13/12/123018 – volume: 48 start-page: 12425 year: 1993 ident: 2023081006410943600_c45 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.48.12425 – volume: 152 start-page: 204104 year: 2020 ident: 2023081006410943600_c35 publication-title: J. Chem. Phys. doi: 10.1063/5.0004844 – volume: 96 start-page: 144 year: 1992 ident: 2023081006410943600_c47 publication-title: J. Chem. Phys. doi: 10.1063/1.462503 – volume: 200 start-page: 174 year: 2015 ident: 2023081006410943600_c8 publication-title: J. Electron Spectrosc. Relat. Phenom. doi: 10.1016/j.elspec.2015.04.021 – volume: 112 start-page: 371 year: 2012 ident: 2023081006410943600_c26 publication-title: Chem. Rev. doi: 10.1021/cr200042e – volume: 9 start-page: 1090 year: 1974 ident: 2023081006410943600_c22 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.9.1090 – volume: 154 start-page: 094709 year: 2021 ident: 2023081006410943600_c43 publication-title: J. Chem. Phys. doi: 10.1063/5.0039765 – volume-title: The Theory of Atomic Spectra year: 1951 ident: 2023081006410943600_c7 – ident: 2023081006410943600_c5 – ident: 2023081006410943600_c38 – volume: 99 start-page: 459 year: 2011 ident: 2023081006410943600_c14 publication-title: Radiochim. Acta doi: 10.1524/ract.2011.1855 – volume: 11 start-page: 43 year: 2014 ident: 2023081006410943600_c28 publication-title: Nat. Phys. doi: 10.1038/nphys3173 – volume: 6 start-page: 25 year: 1972 ident: 2023081006410943600_c10 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.560060605 – volume: 81 start-page: 120 year: 1994 ident: 2023081006410943600_c36 publication-title: Comput. Phys. Commun. doi: 10.1016/0010-4655(94)90115-5 – volume: 63 start-page: 3473 year: 1975 ident: 2023081006410943600_c6 publication-title: J. Chem. Phys. doi: 10.1063/1.431785 – ident: 2023081006410943600_c40 – volume: 7 start-page: 282 year: 1970 ident: 2023081006410943600_c42 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(70)80309-8 – volume: 68 start-page: 110 year: 1991 ident: 2023081006410943600_c27 publication-title: J. Chem. Educ. doi: 10.1021/ed068p110 – volume: 23 start-page: 1397 year: 1969 ident: 2023081006410943600_c21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.23.1397 – volume: 119 start-page: 11099 year: 2003 ident: 2023081006410943600_c39 publication-title: J. Chem. Phys. doi: 10.1063/1.1622923 – volume: 11 start-page: 368 year: 2017 ident: 2023081006410943600_c29 publication-title: ACS Nano doi: 10.1021/acsnano.6b05982 – volume: 39 start-page: 78 year: 1984 ident: 2023081006410943600_c32 publication-title: JETP Lett. – volume: 86 start-page: 3068 year: 1982 ident: 2023081006410943600_c18 publication-title: J. Phys. Chem. doi: 10.1021/j100213a006 – volume-title: Electronic Structure Theory of Plutonium Molecules and Compounds, Plutonium Handbook ident: 2023081006410943600_c33 – volume: 63 start-page: 45 year: 2012 ident: 2023081006410943600_c3 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-032511-143755 – volume: 1 start-page: 1178 year: 2021 ident: 2023081006410943600_c30 publication-title: JACS Au doi: 10.1021/jacsau.1c00192 – volume: 99 start-page: 429 year: 2011 ident: 2023081006410943600_c13 publication-title: Radiochim. Acta doi: 10.1524/ract.2011.1860 – volume: 12 start-page: 271 year: 1979 ident: 2023081006410943600_c1 publication-title: Acc. Chem. Res. doi: 10.1021/ar50140a001 – volume: 53 start-page: 1624 year: 2014 ident: 2023081006410943600_c16 publication-title: Inorg. Chem. doi: 10.1021/ic4026766 – volume: 106 start-page: 018301 year: 2011 ident: 2023081006410943600_c25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.018301 – volume: 41 start-page: 429 year: 1972 ident: 2023081006410943600_c48 publication-title: Phys. Lett. A doi: 10.1016/0375-9601(72)90390-8 – ident: 2023081006410943600_c9 – volume: 33 start-page: 408 year: 1975 ident: 2023081006410943600_c20 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(75)85741-1 – volume: 90 start-page: 93 year: 1990 ident: 2023081006410943600_c19 publication-title: Chem. Rev. doi: 10.1021/cr00099a005 – volume: 11 start-page: 353 year: 1979 ident: 2023081006410943600_c23 publication-title: Adv. Quantum Chem. doi: 10.1016/S0065-3276(08)60241-5 |
SSID | ssj0002206 |
Score | 2.3555357 |
Snippet | There has been strong recent interest related to the large spin–orbit coupling in Pb monolayers on various properties of graphene and other 2D-materials. The... |
SourceID | crossref scitation |
SourceType | Enrichment Source Index Database Publisher |
Title | 6p valence relativistic effects in 5d photoemission spectrum of Pb atom and bonding properties of Pb-dimer using Dirac–Hartree–Fock formalism including many-body effects |
URI | http://dx.doi.org/10.1116/6.0001888 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FVgg4ICggyksr4IBkOThre7M5RkAVIUBIbaXeIu_DxSKxLSeORE9cOfM7-FP8EmYfXqdSK7VcrM1qvNnsfBnPjOeB0OtEyGQkCQtppEiYMJ6EPMnjMJ4wOZpw3eDaRFt8obPj5ONJejIY_NqKWmrXfCjOLswr-R-uwhzwVWfJXoOzflGYgDHwF67AYbheice0DmA589-0OSkbU3bZB2kUZZDKoP5WrSvd1k07xgKTWtm0SxP8xgOwuW2TDF7Z_JZae-cbXWbVUoSyWKomaI1PAQRkJrr4iHgGW2qU8p8PQLbabMiFbr1RlGLRmjWXIHFCXskf3c4uUYk3mWhhZ12qkUbl2rv-h8HUBOUaGj1atU2eOTGnf0FeLJa90z87bVdd6GNwOOxffp25VmMqL75v-zxIHx_bicZxnIRgrNop5UQ3GMIsdfXFnWy3paAchpNLHhnae6FfSUUjxtgNtEvA4gCRuTt9__nToX-sE2IatfqvdmWq4Pa3_uZzys0tOC0bTrGlsRzdQ3fdueKpxc19NFDlHrqzVYByD900AcBi9QD9oTV2WMLbWMKOY7gocSrxOSzhDku4yvFXjjWWMHACOyzhHkuWwmIJGyxhg6W_P387FMFI4wd7_GCPH-zx0-3mITo--HD0bha6Vh6hiONkHXKSjCUZp5xG8SRnQpJMZCNFBZizKeMUzg7kQsRZqjJCRQQaBOiuXCoQFkxRHj9CO2VVqscIKxIpShQHKQOalSJc5JkEu1pmOVEqUvvoTceDeccA3W5lMbf2Lp3TuWPXPnrpSWtb3OUioleekdek2lRNTzGvZf7kSms9Rbd70D9DO8BI9RxU3zV_4UD5DxX4tVU |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=6p+valence+relativistic+effects+in+5d+photoemission+spectrum+of+Pb+atom+and+bonding+properties+of+Pb-dimer+using+Dirac%E2%80%93Hartree%E2%80%93Fock+formalism+including+many-body+effects&rft.jtitle=Journal+of+vacuum+science+%26+technology.+A%2C+Vacuum%2C+surfaces%2C+and+films&rft.au=Bagus%2C+Paul+S.&rft.au=Suzer%2C+Sefik&rft.date=2022-07-01&rft.issn=0734-2101&rft.eissn=1520-8559&rft.volume=40&rft.issue=4&rft_id=info:doi/10.1116%2F6.0001888 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-2101&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-2101&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-2101&client=summon |