MIA-Net: Multi-information aggregation network combining transformers and convolutional feature learning for polyp segmentation

Accurate polyp segmentation is of immense importance for the early diagnosis and treatment of colorectal cancer. However, polyp segmentation is a difficult task, and most current methods suffer from two challenges. First, individual polyps widely vary in shape, size, and location (intra-class incons...

Full description

Saved in:
Bibliographic Details
Published inKnowledge-based systems Vol. 247; p. 108824
Main Authors Li, Weisheng, Zhao, Yinghui, Li, Feiyan, Wang, Linhong
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 08.07.2022
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0950-7051
1872-7409
DOI10.1016/j.knosys.2022.108824

Cover

Loading…
Abstract Accurate polyp segmentation is of immense importance for the early diagnosis and treatment of colorectal cancer. However, polyp segmentation is a difficult task, and most current methods suffer from two challenges. First, individual polyps widely vary in shape, size, and location (intra-class inconsistency). Second, subject to conditions such as motion blur and light reflection, polyps and their surrounding background have a high degree of similarity (inter-class indistinction). To overcome intra-class inconsistency and inter-class indistinction, we propose a multi-information aggregation network (MIA-Net) combining transformer and convolutional features. We use the transformer encoder to extract powerful global features and better localize polyps with an advanced global contextual feature extraction module. This approach reduces the influence of intra-class inconsistency. In addition, we capture fine-grained local texture features using the convolutional encoder and aggregate them with high-level and low-level information extracted by the transformer. This rich feature information makes the model more sensitive to edge information and alleviates inter-class indistinction. We evaluated the new approach quantitatively and qualitatively on five datasets using six metrics. The experimental results revealed that MIA-Net has good fitting ability and strong generalization ability. In addition, MIA-Net significantly improved the accuracy of polyp segmentation and outperformed the current state-of-the-art algorithms.
AbstractList Accurate polyp segmentation is of immense importance for the early diagnosis and treatment of colorectal cancer. However, polyp segmentation is a difficult task, and most current methods suffer from two challenges. First, individual polyps widely vary in shape, size, and location (intra-class inconsistency). Second, subject to conditions such as motion blur and light reflection, polyps and their surrounding background have a high degree of similarity (inter-class indistinction). To overcome intra-class inconsistency and inter-class indistinction, we propose a multi-information aggregation network (MIA-Net) combining transformer and convolutional features. We use the transformer encoder to extract powerful global features and better localize polyps with an advanced global contextual feature extraction module. This approach reduces the influence of intra-class inconsistency. In addition, we capture fine-grained local texture features using the convolutional encoder and aggregate them with high-level and low-level information extracted by the transformer. This rich feature information makes the model more sensitive to edge information and alleviates inter-class indistinction. We evaluated the new approach quantitatively and qualitatively on five datasets using six metrics. The experimental results revealed that MIA-Net has good fitting ability and strong generalization ability. In addition, MIA-Net significantly improved the accuracy of polyp segmentation and outperformed the current state-of-the-art algorithms.
ArticleNumber 108824
Author Li, Weisheng
Zhao, Yinghui
Li, Feiyan
Wang, Linhong
Author_xml – sequence: 1
  givenname: Weisheng
  orcidid: 0000-0002-9033-8245
  surname: Li
  fullname: Li, Weisheng
  email: liws@cqupt.edu.cn
– sequence: 2
  givenname: Yinghui
  surname: Zhao
  fullname: Zhao, Yinghui
– sequence: 3
  givenname: Feiyan
  surname: Li
  fullname: Li, Feiyan
– sequence: 4
  givenname: Linhong
  surname: Wang
  fullname: Wang, Linhong
BookMark eNqFkLFu2zAURYkiBeq4-YMOBDrLeaQkU8pQwDDaJICTLs1MUNSTQFsmXZJK4Km_HtrqlCGZSJDnPrx7LsmFdRYJ-cZgwYAtr7eLnXXhGBYcOE9PVcWLT2TGKsEzUUB9QWZQl5AJKNkXchnCFiCRrJqRfw_3q-wR4w19GIdoMmM75_cqGmep6nuP_XS3GF-c31Ht9o2xxvY0emXDCUYfqLJt-rLPbhhPuBpohyqOHumAyp_5hNKDG44HGrDfo43nwV_J504NAa_-n3Py9Ovnn_Vdtvl9e79ebTKd50XMVFdq3YLOG-gErzXHUhdlywTkqslFWeTAGqG5VrXgZd6lugLaroLkoi4anc_J92nuwbu_I4Yot270adEg-bKqBVsCqxNVTJT2LgSPnTx4s1f-KBnIk2q5lZNqeVItJ9UpdvMmps1UL0kyw0fhH1MYU_1ng14GbdBqbI1HHWXrzPsDXgEBFqIC
CitedBy_id crossref_primary_10_1002_ima_23183
crossref_primary_10_1007_s00521_025_11144_2
crossref_primary_10_3390_cancers16071441
crossref_primary_10_1016_j_compbiomed_2024_108202
crossref_primary_10_1016_j_knosys_2023_110932
crossref_primary_10_1002_ima_23089
crossref_primary_10_3390_info14120657
crossref_primary_10_1016_j_eswa_2024_125419
crossref_primary_10_3390_bioengineering11100959
crossref_primary_10_1016_j_engappai_2023_106729
crossref_primary_10_1007_s13369_024_09762_4
crossref_primary_10_3390_jmse11040691
crossref_primary_10_1016_j_knosys_2024_112181
crossref_primary_10_1016_j_compbiomed_2023_107541
crossref_primary_10_1016_j_compeleceng_2025_110099
crossref_primary_10_1109_JBHI_2023_3270724
crossref_primary_10_1016_j_bspc_2023_105194
crossref_primary_10_1016_j_eswa_2024_123663
crossref_primary_10_1007_s10278_023_00954_2
crossref_primary_10_1016_j_bspc_2024_106487
crossref_primary_10_3390_s23104688
crossref_primary_10_1109_JBHI_2024_3370864
crossref_primary_10_1109_TCSVT_2022_3197643
crossref_primary_10_1007_s00371_024_03720_9
crossref_primary_10_1016_j_cmpb_2024_108119
crossref_primary_10_1049_ipr2_12813
crossref_primary_10_3390_bioengineering12030277
Cites_doi 10.1109/TMI.2015.2487997
10.1109/ISM46123.2019.00049
10.1109/TPAMI.2019.2913372
10.1007/s11548-013-0926-3
10.1016/j.compmedimag.2015.02.007
10.18203/2320-6012.ijrms20174914
10.1145/3158674
10.1109/TPAMI.2016.2644615
10.1117/12.2254361
10.1109/TMI.2014.2314959
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright Elsevier Science Ltd. Jul 8, 2022
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Jul 8, 2022
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2022.108824
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2022_108824
S0950705122003926
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
UHS
WUQ
7SC
8FD
E3H
EFKBS
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-af5ccd0c3b0f729c2e5c45d1703ab3754301b7c2ca97253f09570df8008894bc3
IEDL.DBID .~1
ISSN 0950-7051
IngestDate Fri Jul 25 03:00:05 EDT 2025
Tue Jul 01 00:20:21 EDT 2025
Thu Apr 24 22:57:20 EDT 2025
Fri Feb 23 02:39:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-information aggregation
Transformer
Colonoscopy
Polyp segmentation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-af5ccd0c3b0f729c2e5c45d1703ab3754301b7c2ca97253f09570df8008894bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9033-8245
PQID 2689716019
PQPubID 2035257
ParticipantIDs proquest_journals_2689716019
crossref_primary_10_1016_j_knosys_2022_108824
crossref_citationtrail_10_1016_j_knosys_2022_108824
elsevier_sciencedirect_doi_10_1016_j_knosys_2022_108824
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-08
PublicationDateYYYYMMDD 2022-07-08
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-08
  day: 08
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2022
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References O. Oktay, J. chlemper, L.L. Folgoc, et al. Attention U-Net: Learning Where to Look for the Pancreas, arXiv preprint
Hu, Shen, Sun (b35) 2020; 42
B. Dong, W. Wang, D.P. Fan, et al. Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers, arXiv preprint
D.P. Fan, C. Gong, Y. Cao, et al. Enhanced-alignment measure for binary foreground map evaluation. arXiv preprint
Wei, Wang, Huang (b37) 2020
J. Bernal, F.J. Sánchez, G. Fernández-Esparrach, et al., WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians, Comput. Med. Imaging Graph. 99–111
K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, arXiv preprint
W. Wang, E. Xie, X. Li, et al. PVTv2: Improved Baselines with Pyramid Vision Transformer, arXiv preprint
Liu, Huang, Wang (b36) 2018
Deng, Dong, Socher (b45) 2009
Wei, Hu, Zhan (b19) 2021
P. Brandao, E. Mazomenos, G. Ciuti, et al., Fully convolutional neural networks for polyp segmentation in colonoscopy, in: Medical Imaging 2017: Computer-Aided Diagnosis, p. 10134
Jha, Smedsrud, Riegler (b39) 2020
Rawla, Sunkara, Barsouk (b1) 2019; 14
Yu, Wang, Peng (b10) 2018
C.H. Huang, H.Y. Wu, Y.L. Lin. others, Hardnet-mseg: A simple encoder–decoder polyp segmentation neural network that achieves over 0.9 mean dice and 86 fps. arXiv preprint
Long, Shelhamer, Darrell (b12) 2015
Zhou, Siddiquee, Tajbakhsh (b6) 2018
A. Dosovitskiy, L. Beyer, A. Kolesnikov, et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, arXiv preprint
Fan, Ji, Zhou (b16) 2020
Silva, Histace, Romain (b40) 2014; 9
D. Jha, P.H. Smedsrud, M.A. Riegler, ResUNet++: An Advanced Architecture for Medical Image Segmentation, in: IEEE International Symposium on Multimedia (ISM), pp. 225–2255
He, Zhang, Ren (b15) 2016
H. Wu, Y. Liu, X. Zhan, et al. P2T: Pyramid pooling transformer for scene understanding. arXiv preprint
Gao, Ye, Cao (b9) 2021; 214
Chu, Tian, Wang (b29) 2021
Fan, Cheng, Liu (b43) 2017
W. Wang, E. Xie, X. Li, et al. Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions, arXiv preprint
Vázquez, Bernal, Sánchez (b41) 2017; 2017
Fang, Chen, Yuan (b46) 2019
Granados-Romero, Valderrama-Treviño, Contreras-Flores (b2) 2017; 5
Mamonov, Figueiredo, Figueiredo (b3) 2014; 33
Zhao, Wu (b34) 2019
,
.
Tajbakhsh, Gurudu, Liang (b4) 2016; 35
S. Bhojanapalli, A. Chakrabarti, D. Glasner, et al. Understanding robustness of transformers for image classification. arXiv preprint
E. Xie, W. Wang, Z. Yu, et al. SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers. arXiv preprint
Zhang, Li, Li (b17) 2020
X. Dong, J. Bao, D. Chen, et al. CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows, arXiv preprint
Zheng, Lu, Zhao (b23) 2021
Z. Liu, Y. Lin, Y. Cao, et al. Swin transformer: Hierarchical vision transformer using shifted windows. arXiv preprint
Ronneberger, Fischer, Brox (b5) 2015
Badrinarayanan, Kendall, Cipolla (b7) 2017; 39
Chao, Kao, Ruan (b21) 2019
Nguyen, Nguyen, Diep (b18) 2021
Q. Zhang, Y. Yang, ResT: An Efficient Transformer for Visual Recognition. arXiv preprint
Zhang, Fu, Han (b42) 2018; 9
10.1016/j.knosys.2022.108824_b14
10.1016/j.knosys.2022.108824_b13
Tajbakhsh (10.1016/j.knosys.2022.108824_b4) 2016; 35
10.1016/j.knosys.2022.108824_b38
He (10.1016/j.knosys.2022.108824_b15) 2016
10.1016/j.knosys.2022.108824_b32
10.1016/j.knosys.2022.108824_b11
10.1016/j.knosys.2022.108824_b33
10.1016/j.knosys.2022.108824_b30
Rawla (10.1016/j.knosys.2022.108824_b1) 2019; 14
10.1016/j.knosys.2022.108824_b31
Mamonov (10.1016/j.knosys.2022.108824_b3) 2014; 33
Wei (10.1016/j.knosys.2022.108824_b37) 2020
Granados-Romero (10.1016/j.knosys.2022.108824_b2) 2017; 5
Chao (10.1016/j.knosys.2022.108824_b21) 2019
Zhao (10.1016/j.knosys.2022.108824_b34) 2019
Liu (10.1016/j.knosys.2022.108824_b36) 2018
10.1016/j.knosys.2022.108824_b8
Gao (10.1016/j.knosys.2022.108824_b9) 2021; 214
Deng (10.1016/j.knosys.2022.108824_b45) 2009
Wei (10.1016/j.knosys.2022.108824_b19) 2021
Silva (10.1016/j.knosys.2022.108824_b40) 2014; 9
Nguyen (10.1016/j.knosys.2022.108824_b18) 2021
Ronneberger (10.1016/j.knosys.2022.108824_b5) 2015
10.1016/j.knosys.2022.108824_b25
Fan (10.1016/j.knosys.2022.108824_b16) 2020
10.1016/j.knosys.2022.108824_b26
Zhou (10.1016/j.knosys.2022.108824_b6) 2018
10.1016/j.knosys.2022.108824_b24
10.1016/j.knosys.2022.108824_b27
10.1016/j.knosys.2022.108824_b28
Long (10.1016/j.knosys.2022.108824_b12) 2015
Chu (10.1016/j.knosys.2022.108824_b29) 2021
Zhang (10.1016/j.knosys.2022.108824_b42) 2018; 9
10.1016/j.knosys.2022.108824_b22
10.1016/j.knosys.2022.108824_b44
Zhang (10.1016/j.knosys.2022.108824_b17) 2020
Yu (10.1016/j.knosys.2022.108824_b10) 2018
10.1016/j.knosys.2022.108824_b20
Fang (10.1016/j.knosys.2022.108824_b46) 2019
Hu (10.1016/j.knosys.2022.108824_b35) 2020; 42
Fan (10.1016/j.knosys.2022.108824_b43) 2017
Jha (10.1016/j.knosys.2022.108824_b39) 2020
Vázquez (10.1016/j.knosys.2022.108824_b41) 2017; 2017
Badrinarayanan (10.1016/j.knosys.2022.108824_b7) 2017; 39
Zheng (10.1016/j.knosys.2022.108824_b23) 2021
References_xml – start-page: 3552
  year: 2019
  end-page: 3561
  ident: b21
  article-title: Hardnet: A low memory traffic network
  publication-title: 2019 IEEE/CVF International Conference on Computer Vision
– reference: Q. Zhang, Y. Yang, ResT: An Efficient Transformer for Visual Recognition. arXiv preprint
– reference: Z. Liu, Y. Lin, Y. Cao, et al. Swin transformer: Hierarchical vision transformer using shifted windows. arXiv preprint
– reference: ,
– reference: W. Wang, E. Xie, X. Li, et al. PVTv2: Improved Baselines with Pyramid Vision Transformer, arXiv preprint
– volume: 14
  start-page: 89
  year: 2019
  end-page: 103
  ident: b1
  article-title: Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors
  publication-title: Przegla̧d Gastroenterol.
– reference: X. Dong, J. Bao, D. Chen, et al. CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows, arXiv preprint
– start-page: 699
  year: 2021
  end-page: 708
  ident: b19
  article-title: Shallow attention network for polyp segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 688
  year: 2021
  end-page: 6890
  ident: b23
  article-title: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers
  publication-title: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 253
  year: 2020
  end-page: 262
  ident: b17
  article-title: Adaptive context selection for polyp segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 12321
  year: 2020
  end-page: 12328
  ident: b37
  article-title: F
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34
– volume: 9
  start-page: 283
  year: 2014
  end-page: 293
  ident: b40
  article-title: Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: 9
  start-page: 1
  year: 2018
  end-page: 31
  ident: b42
  article-title: A review of co-saliency detection algorithms: Fundamentals, applications, and challenges
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
– start-page: 4548
  year: 2017
  end-page: 4557
  ident: b43
  article-title: Structure-measure: A new way to evaluate foreground maps
  publication-title: 2017 IEEE International Conference on Computer Vision
– reference: D. Jha, P.H. Smedsrud, M.A. Riegler, ResUNet++: An Advanced Architecture for Medical Image Segmentation, in: IEEE International Symposium on Multimedia (ISM), pp. 225–2255,
– volume: 35
  start-page: 630
  year: 2016
  end-page: 644
  ident: b4
  article-title: Automated polyp detection in colonoscopy videos using shape and context information
  publication-title: IEEE Trans. Med. Imaging
– volume: 42
  year: 2020
  ident: b35
  article-title: Squeeze-and-excitation networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 214
  year: 2021
  ident: b9
  article-title: Multiscale fused network with additive channel–spatial attention for image segmentation
  publication-title: Knowl.-Based Syst.
– start-page: 1857
  year: 2018
  end-page: 1866
  ident: b10
  article-title: Learning a discriminative feature network for semantic segmentation
  publication-title: 2018 IEEE Conference on Computer Vision and Pattern Recognition
– reference: O. Oktay, J. chlemper, L.L. Folgoc, et al. Attention U-Net: Learning Where to Look for the Pancreas, arXiv preprint
– year: 2021
  ident: b29
  article-title: Twins: Revisiting the design of spatial attention in vision transformers
  publication-title: Thirty-Fifth Conference on Neural Information Processing Systems
– start-page: 451
  year: 2020
  end-page: 462
  ident: b39
  article-title: Kvasir-seg: A segmented polyp dataset
  publication-title: International Conference on Multimedia Modeling
– reference: C.H. Huang, H.Y. Wu, Y.L. Lin. others, Hardnet-mseg: A simple encoder–decoder polyp segmentation neural network that achieves over 0.9 mean dice and 86 fps. arXiv preprint
– reference: E. Xie, W. Wang, Z. Yu, et al. SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers. arXiv preprint
– start-page: 3085
  year: 2019
  end-page: 3094
  ident: b34
  article-title: Pyramid feature attention network for saliency detection
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 234
  year: 2015
  end-page: 241
  ident: b5
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Int. Conf. Med. Image Comput. Compu.-Assist. Interv.
– volume: 39
  year: 2017
  ident: b7
  article-title: SegNet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: B. Dong, W. Wang, D.P. Fan, et al. Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers, arXiv preprint
– start-page: 302
  year: 2019
  end-page: 310
  ident: b46
  article-title: Selective feature aggregation network with area-boundary constraints for polyp segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 33
  start-page: 1488
  year: 2014
  end-page: 1502
  ident: b3
  article-title: Automated polyp detection in colon capsule endoscopy
  publication-title: IEEE Trans. Med. Imaging
– start-page: 633
  year: 2021
  end-page: 643
  ident: b18
  article-title: Ccbanet: Cascading context and balancing attention for polyp segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– reference: .
– start-page: 385
  year: 2018
  end-page: 400
  ident: b36
  article-title: Receptive field block net for accurate and fast object detection
  publication-title: Proceedings of the European Conference on Computer Vision
– start-page: 263
  year: 2020
  end-page: 273
  ident: b16
  article-title: Pranet: Parallel reverse attention network for polyp segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– reference: K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, arXiv preprint
– start-page: 770
  year: 2016
  end-page: 778
  ident: b15
  article-title: Deep residual learning for image recognition
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition
– reference: D.P. Fan, C. Gong, Y. Cao, et al. Enhanced-alignment measure for binary foreground map evaluation. arXiv preprint
– start-page: 248
  year: 2009
  end-page: 255
  ident: b45
  article-title: Imagenet: A large-scale hierarchical image database
  publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition
– reference: P. Brandao, E. Mazomenos, G. Ciuti, et al., Fully convolutional neural networks for polyp segmentation in colonoscopy, in: Medical Imaging 2017: Computer-Aided Diagnosis, p. 10134,
– reference: S. Bhojanapalli, A. Chakrabarti, D. Glasner, et al. Understanding robustness of transformers for image classification. arXiv preprint
– volume: 5
  start-page: 4667
  year: 2017
  end-page: 4676
  ident: b2
  article-title: Colorectal cancer: a review
  publication-title: Int. J. Res. Med. Sci.
– reference: H. Wu, Y. Liu, X. Zhan, et al. P2T: Pyramid pooling transformer for scene understanding. arXiv preprint
– reference: A. Dosovitskiy, L. Beyer, A. Kolesnikov, et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, arXiv preprint
– volume: 2017
  year: 2017
  ident: b41
  article-title: A benchmark for endoluminal scene segmentation of colonoscopy images
  publication-title: J. Healthc. Eng.
– start-page: 3431
  year: 2015
  end-page: 3440
  ident: b12
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition
– reference: W. Wang, E. Xie, X. Li, et al. Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions, arXiv preprint
– start-page: 3
  year: 2018
  end-page: 11
  ident: b6
  article-title: Unet++: A nested u-net architecture for medical image segmentation
  publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
– reference: J. Bernal, F.J. Sánchez, G. Fernández-Esparrach, et al., WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians, Comput. Med. Imaging Graph. 99–111,
– year: 2021
  ident: 10.1016/j.knosys.2022.108824_b29
  article-title: Twins: Revisiting the design of spatial attention in vision transformers
– start-page: 1857
  year: 2018
  ident: 10.1016/j.knosys.2022.108824_b10
  article-title: Learning a discriminative feature network for semantic segmentation
– start-page: 253
  year: 2020
  ident: 10.1016/j.knosys.2022.108824_b17
  article-title: Adaptive context selection for polyp segmentation
– start-page: 688
  year: 2021
  ident: 10.1016/j.knosys.2022.108824_b23
  article-title: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers
– volume: 214
  issue: 28
  year: 2021
  ident: 10.1016/j.knosys.2022.108824_b9
  article-title: Multiscale fused network with additive channel–spatial attention for image segmentation
  publication-title: Knowl.-Based Syst.
– ident: 10.1016/j.knosys.2022.108824_b13
– ident: 10.1016/j.knosys.2022.108824_b44
– start-page: 3
  year: 2018
  ident: 10.1016/j.knosys.2022.108824_b6
  article-title: Unet++: A nested u-net architecture for medical image segmentation
– start-page: 3431
  year: 2015
  ident: 10.1016/j.knosys.2022.108824_b12
  article-title: Fully convolutional networks for semantic segmentation
– start-page: 302
  year: 2019
  ident: 10.1016/j.knosys.2022.108824_b46
  article-title: Selective feature aggregation network with area-boundary constraints for polyp segmentation
– volume: 35
  start-page: 630
  issue: 2
  year: 2016
  ident: 10.1016/j.knosys.2022.108824_b4
  article-title: Automated polyp detection in colonoscopy videos using shape and context information
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2487997
– ident: 10.1016/j.knosys.2022.108824_b25
– ident: 10.1016/j.knosys.2022.108824_b27
– start-page: 248
  year: 2009
  ident: 10.1016/j.knosys.2022.108824_b45
  article-title: Imagenet: A large-scale hierarchical image database
– ident: 10.1016/j.knosys.2022.108824_b14
  doi: 10.1109/ISM46123.2019.00049
– start-page: 234
  year: 2015
  ident: 10.1016/j.knosys.2022.108824_b5
  article-title: U-net: Convolutional networks for biomedical image segmentation
– ident: 10.1016/j.knosys.2022.108824_b31
– ident: 10.1016/j.knosys.2022.108824_b33
– start-page: 385
  year: 2018
  ident: 10.1016/j.knosys.2022.108824_b36
  article-title: Receptive field block net for accurate and fast object detection
– start-page: 263
  year: 2020
  ident: 10.1016/j.knosys.2022.108824_b16
  article-title: Pranet: Parallel reverse attention network for polyp segmentation
– ident: 10.1016/j.knosys.2022.108824_b8
– volume: 42
  issue: 8
  year: 2020
  ident: 10.1016/j.knosys.2022.108824_b35
  article-title: Squeeze-and-excitation networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2913372
– volume: 9
  start-page: 283
  issue: 2
  year: 2014
  ident: 10.1016/j.knosys.2022.108824_b40
  article-title: Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-013-0926-3
– start-page: 770
  year: 2016
  ident: 10.1016/j.knosys.2022.108824_b15
  article-title: Deep residual learning for image recognition
– ident: 10.1016/j.knosys.2022.108824_b38
  doi: 10.1016/j.compmedimag.2015.02.007
– volume: 5
  start-page: 4667
  issue: 11
  year: 2017
  ident: 10.1016/j.knosys.2022.108824_b2
  article-title: Colorectal cancer: a review
  publication-title: Int. J. Res. Med. Sci.
  doi: 10.18203/2320-6012.ijrms20174914
– start-page: 451
  year: 2020
  ident: 10.1016/j.knosys.2022.108824_b39
  article-title: Kvasir-seg: A segmented polyp dataset
– start-page: 699
  year: 2021
  ident: 10.1016/j.knosys.2022.108824_b19
  article-title: Shallow attention network for polyp segmentation
– start-page: 3552
  year: 2019
  ident: 10.1016/j.knosys.2022.108824_b21
  article-title: Hardnet: A low memory traffic network
– start-page: 12321
  year: 2020
  ident: 10.1016/j.knosys.2022.108824_b37
  article-title: F3Net: Fusion, feedback and focus for salient object detection
– volume: 9
  start-page: 1
  issue: 4
  year: 2018
  ident: 10.1016/j.knosys.2022.108824_b42
  article-title: A review of co-saliency detection algorithms: Fundamentals, applications, and challenges
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
  doi: 10.1145/3158674
– volume: 14
  start-page: 89
  issue: 2
  year: 2019
  ident: 10.1016/j.knosys.2022.108824_b1
  article-title: Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors
  publication-title: Przegla̧d Gastroenterol.
– volume: 39
  issue: 12
  year: 2017
  ident: 10.1016/j.knosys.2022.108824_b7
  article-title: SegNet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– volume: 2017
  issue: 4037190
  year: 2017
  ident: 10.1016/j.knosys.2022.108824_b41
  article-title: A benchmark for endoluminal scene segmentation of colonoscopy images
  publication-title: J. Healthc. Eng.
– start-page: 633
  year: 2021
  ident: 10.1016/j.knosys.2022.108824_b18
  article-title: Ccbanet: Cascading context and balancing attention for polyp segmentation
– ident: 10.1016/j.knosys.2022.108824_b26
– ident: 10.1016/j.knosys.2022.108824_b11
  doi: 10.1117/12.2254361
– ident: 10.1016/j.knosys.2022.108824_b28
– start-page: 4548
  year: 2017
  ident: 10.1016/j.knosys.2022.108824_b43
  article-title: Structure-measure: A new way to evaluate foreground maps
– ident: 10.1016/j.knosys.2022.108824_b24
– ident: 10.1016/j.knosys.2022.108824_b22
– ident: 10.1016/j.knosys.2022.108824_b30
– ident: 10.1016/j.knosys.2022.108824_b20
– ident: 10.1016/j.knosys.2022.108824_b32
– volume: 33
  start-page: 1488
  issue: 7
  year: 2014
  ident: 10.1016/j.knosys.2022.108824_b3
  article-title: Automated polyp detection in colon capsule endoscopy
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2314959
– start-page: 3085
  year: 2019
  ident: 10.1016/j.knosys.2022.108824_b34
  article-title: Pyramid feature attention network for saliency detection
SSID ssj0002218
Score 2.4658656
Snippet Accurate polyp segmentation is of immense importance for the early diagnosis and treatment of colorectal cancer. However, polyp segmentation is a difficult...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108824
SubjectTerms Agglomeration
Algorithms
Blurring
Coders
Colonoscopy
Feature extraction
Light reflection
Machine learning
Multi-information aggregation
Polyp segmentation
Polyps
Segmentation
Transformer
Transformers
Title MIA-Net: Multi-information aggregation network combining transformers and convolutional feature learning for polyp segmentation
URI https://dx.doi.org/10.1016/j.knosys.2022.108824
https://www.proquest.com/docview/2689716019
Volume 247
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWFh4I8pLHlhNi2M3CVtVURVQuwASW2Q7dsUrjWgYWOCvc-c4IJBQJbY87Dx857vPyXd3hBw7qbjSKmeWYwkz2-NMORszY7hxkUiMFBgoPJ70Rrfi8k7etcigiYVBWmWw_bVN99Y6HOmE0eyU9_edawAHoK_gsJBflXJMuy1EjFp-8v5N8-Dcf-PDxgxbN-FznuP1WMzmb5i0m3Mk2yVc_OWefhlq732G62Q1wEbar59sg7RssUnWmpIMNMzQLfIxvuizia3OqI-sZSEvKo4-VVNYW0_r7aJmf1N4be1LRNCqQbCAB6kqcop89KCXcGdnfQZQGqpMTCk0peXs6a2kczt9DhFMxTa5HZ7fDEYs1FhgJopEBYKRxuRdE-muA5xtuJVGyPwUDIHSWB4XDICOQXAqjbmMHIxj3M0dwMwkSYU20Q5ZKmaF3SU01w6Wm7kGwIEwJdVOKZmC5I3Ef4-2TaJmaDMTEpBjHYynrGGaPWS1QDIUSFYLpE3YV6-yTsCxoH3cSC37oUgZ-IgFPQ8aIWdhIsP5XoJJtgAI7_37wvtkBfc8yTc5IEvVy6s9BChT6SOvq0dkuX9xNZp8AvVK9-0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGWDhjXjjgdVqceImYasQqAXaBZDYLNuxK6CkFYSBib_OXeIggYSQ2KLYzsPf-e5zcg-AYy-10Ebn3AkqYea6gmvvEm6tsD6KUytjChQejrr9u_jyXt7PwVkTC0NulUH31zq90tbhTDvMZnv28NC-QXKA8ooGi_yrMtGdhwXKTiVbsNAbXPVHXwpZiOozH_XnNKCJoKvcvJ6K6es75e0WgvztUhH_ZqF-6OrKAF2swnJgjqxXP9wazLliHVaaqgwsLNIN-BgOenzkylNWBdfykBqVAGB6jNvrcX1c1A7gDN_cVFUiWNmQWKSETBc5I5f0IJp4Z--qJKAsFJoYM-zKZtPJ-4y9uvFzCGIqNuHu4vz2rM9DmQVuoyguERtpbd6xkel4pNpWOGljmZ-gLtCGKuSiDjAJYqezRMjI4zwmndwj00zTLDY22oJWMS3cNrDceNxx5gY5BzGVzHitZYbgW0m_H90ORM3UKhtykFMpjIlqnM0eVQ2IIkBUDcgO8K9RszoHxx_9kwY19U2WFJqJP0buNyCrsJaxvZtSni3kwrv_vvARLPZvh9fqejC62oMlaql8ftN9aJUvb-4AmU1pDoPkfgJqLPqe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MIA-Net%3A+Multi-information+aggregation+network+combining+transformers+and+convolutional+feature+learning+for+polyp+segmentation&rft.jtitle=Knowledge-based+systems&rft.au=Li%2C+Weisheng&rft.au=Zhao%2C+Yinghui&rft.au=Li%2C+Feiyan&rft.au=Wang%2C+Linhong&rft.date=2022-07-08&rft.issn=0950-7051&rft.volume=247&rft.spage=108824&rft_id=info:doi/10.1016%2Fj.knosys.2022.108824&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2022_108824
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon