A comparison of country-scale subsoil predictions between a numeric and a taxonomic soil classification system

Traditional soil classification systems are designed to communicate information; however, surveyor biases and tacit knowledge can lead to subjective soil class designations. Consequently, different soil scientists may classify the same soil differently. This becomes a critical issue when mapping soi...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Regional Vol. 40; p. e00902
Main Authors Flynn, Trevan, Clarke, Catherine, Kostecki, Rosana, Rebi, Ansa
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Traditional soil classification systems are designed to communicate information; however, surveyor biases and tacit knowledge can lead to subjective soil class designations. Consequently, different soil scientists may classify the same soil differently. This becomes a critical issue when mapping soil classes, as there could be multiple interpretations for the same observation. To address this problem, numerical soil classification systems have been developed. However, little is known about how well they compare to taxonomic systems when spatially predicted on a national scale. This study aimed to compare a previously developed, unsupervised numeric classification system and South Africa's taxonomic soil classification system in terms of their spatial predictions across the country. The taxonomic system of South Africa has 19 defined subsoil horizons, which were aggregated into eight horizons and compared to a nine horizon numeric classification as well as South Africa's profile (soil form) classification comprising of 73 different soil groupings, which was used as a control. The comparison was conducted from predictions through gradient tree boosting in Google Earth Engine at a 30 m resolution. The numerical system (kappa = 0.30, accuracy = 0.57) exhibited poor spatial predictions, with a kappa 22% lower and accuracy 2% lower than the control (kappa = 0.52, accuracy = 59%). On the other hand, the taxonomic system performed well, with a kappa of 0.57 and an accuracy of 67%, exhibiting a 5% increase in kappa and an 8% increase in accuracy compared to the control. It was hypothesized that the overpredictions of the predominant horizon contributed to the numeric system's poor performance. Nevertheless, both systems showed the highest maximum entropy in arid regions of the Karoo and savannah biomes, albeit in spatially distinct ecoregions. It was thought that the divergence in the two systems' maximum entropy was due to their association with precipitation differences (amount and seasonality) as well as vegetation type and cover (woodlands vs. shrublands). To map the country in more detail, further soil sampling should be conducted in arid regions and optimisation of the predictive algorithm for each soil category should be performed. •30 m subsoil horizon maps were developed for all of South Africa.•A numeric and a taxonomic classification system were compared.•The taxonomic system (67 %) greatly outperformed the numerical system (57 %).•A control with 73 soil types was also predicted and achieved an accuracy of 59 %.•This study highlights aspects for the development of a detailed soil class map.
AbstractList Traditional soil classification systems are designed to communicate information; however, surveyor biases and tacit knowledge can lead to subjective soil class designations. Consequently, different soil scientists may classify the same soil differently. This becomes a critical issue when mapping soil classes, as there could be multiple interpretations for the same observation. To address this problem, numerical soil classification systems have been developed. However, little is known about how well they compare to taxonomic systems when spatially predicted on a national scale. This study aimed to compare a previously developed, unsupervised numeric classification system and South Africa's taxonomic soil classification system in terms of their spatial predictions across the country. The taxonomic system of South Africa has 19 defined subsoil horizons, which were aggregated into eight horizons and compared to a nine horizon numeric classification as well as South Africa's profile (soil form) classification comprising of 73 different soil groupings, which was used as a control. The comparison was conducted from predictions through gradient tree boosting in Google Earth Engine at a 30 m resolution. The numerical system (kappa = 0.30, accuracy = 0.57) exhibited poor spatial predictions, with a kappa 22% lower and accuracy 2% lower than the control (kappa = 0.52, accuracy = 59%). On the other hand, the taxonomic system performed well, with a kappa of 0.57 and an accuracy of 67%, exhibiting a 5% increase in kappa and an 8% increase in accuracy compared to the control. It was hypothesized that the overpredictions of the predominant horizon contributed to the numeric system's poor performance. Nevertheless, both systems showed the highest maximum entropy in arid regions of the Karoo and savannah biomes, albeit in spatially distinct ecoregions. It was thought that the divergence in the two systems' maximum entropy was due to their association with precipitation differences (amount and seasonality) as well as vegetation type and cover (woodlands vs. shrublands). To map the country in more detail, further soil sampling should be conducted in arid regions and optimisation of the predictive algorithm for each soil category should be performed. •30 m subsoil horizon maps were developed for all of South Africa.•A numeric and a taxonomic classification system were compared.•The taxonomic system (67 %) greatly outperformed the numerical system (57 %).•A control with 73 soil types was also predicted and achieved an accuracy of 59 %.•This study highlights aspects for the development of a detailed soil class map.
Traditional soil classification systems are designed to communicate information; however, surveyor biases and tacit knowledge can lead to subjective soil class designations. Consequently, different soil scientists may classify the same soil differently. This becomes a critical issue when mapping soil classes, as there could be multiple interpretations for the same observation. To address this problem, numerical soil classification systems have been developed. However, little is known about how well they compare to taxonomic systems when spatially predicted on a national scale. This study aimed to compare a previously developed, unsupervised numeric classification system and South Africa's taxonomic soil classification system in terms of their spatial predictions across the country. The taxonomic system of South Africa has 19 defined subsoil horizons, which were aggregated into eight horizons and compared to a nine horizon numeric classification as well as South Africa's profile (soil form) classification comprising of 73 different soil groupings, which was used as a control. The comparison was conducted from predictions through gradient tree boosting in Google Earth Engine at a 30 m resolution. The numerical system (kappa = 0.30, accuracy = 0.57) exhibited poor spatial predictions, with a kappa 22% lower and accuracy 2% lower than the control (kappa = 0.52, accuracy = 59%). On the other hand, the taxonomic system performed well, with a kappa of 0.57 and an accuracy of 67%, exhibiting a 5% increase in kappa and an 8% increase in accuracy compared to the control. It was hypothesized that the overpredictions of the predominant horizon contributed to the numeric system's poor performance. Nevertheless, both systems showed the highest maximum entropy in arid regions of the Karoo and savannah biomes, albeit in spatially distinct ecoregions. It was thought that the divergence in the two systems' maximum entropy was due to their association with precipitation differences (amount and seasonality) as well as vegetation type and cover (woodlands vs. shrublands). To map the country in more detail, further soil sampling should be conducted in arid regions and optimisation of the predictive algorithm for each soil category should be performed.
ArticleNumber e00902
Author Kostecki, Rosana
Clarke, Catherine
Rebi, Ansa
Flynn, Trevan
Author_xml – sequence: 1
  givenname: Trevan
  surname: Flynn
  fullname: Flynn, Trevan
  email: trevan.flynn@sydney.edu.au
  organization: Sydney Institute of Agriculture & School of Life and Environmental Sciences, The University of Sydney, Eveleigh, NSW 2015, Australia
– sequence: 2
  givenname: Catherine
  surname: Clarke
  fullname: Clarke, Catherine
  organization: Department of Soil Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
– sequence: 3
  givenname: Rosana
  surname: Kostecki
  fullname: Kostecki, Rosana
  organization: Department of Geography, State University of Londrina, Londrina 86057, Brazil
– sequence: 4
  givenname: Ansa
  surname: Rebi
  fullname: Rebi, Ansa
  organization: Jianshui Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
BookMark eNp9kE1P3DAQhi1EJT7KP-jBx16yOLbjJBckhApUQuLSni1nPFt5ldiLJwH239fbcOiJ08wjve9I81yw05giMvatFpta1OZ6t_mDyWfaSCH1BoXohTxh51I1siqgT__bz9gV0U4IIftGtUaes3jLIU17lwOlyNO20BLnfKgI3IicloFSGPk-ow8whxSJDzi_IUbueFwmzAG4i77Q7N5TTFPhfxUYHVHYBnDHGqcDzTh9ZV-2biS8-piX7Pf9j193j9XT88PPu9unCpTSc-W8B2GUGAw6NMp3Rg3eF5Zdp6FV2PveaGGc9ND41sDQoaw71KoF3Ta9umTf17v7nF4WpNlOgQDH0UVMC1lVN1o2RmpVonqNQk5EGbd2n8Pk8sHWwh4N251dDdujYbsaLrWbtYbljdeA2RIEjFA8ZYTZ-hQ-P_AX1lqKcQ
Cites_doi 10.1002/joc.5086
10.1016/j.apgeog.2014.04.008
10.1038/nmeth.3968
10.1111/j.1600-0587.2013.07872.x
10.1016/S0034-4257(98)00030-3
10.1016/j.geoderma.2014.03.008
10.1111/j.1472-4642.2010.00725.x
10.1103/PhysRev.106.620
10.1016/0016-7061(70)90003-0
10.1177/001316446002000104
10.1111/j.1365-2389.1989.tb01290.x
10.1080/014311697217369
10.1080/02571862.2019.1570566
10.5194/soil-6-269-2020
10.1371/journal.pbio.3001441
10.1109/TPAMI.2013.146
10.1029/2019JD032352
10.1016/S0140-1963(18)31148-0
10.1016/j.rse.2017.06.031
10.1016/j.geoderma.2019.02.002
10.1111/j.1541-0420.2008.01116.x
10.1111/j.1365-2389.1995.tb01823.x
10.1093/biosci/bix014
10.1016/j.ecolmodel.2005.03.026
10.1002/j.1538-7305.1948.tb01338.x
10.1613/jair.953
10.1111/j.1365-2389.1972.tb01655.x
10.1029/2019JD032361
10.1016/j.geoderma.2014.09.019
10.1023/A:1010933404324
10.1016/j.geoderma.2008.11.008
10.1016/j.neuron.2018.05.013
10.1134/S2079086421030087
10.1186/s12859-015-0610-4
10.1021/ci00062a008
10.17159/sajs.2015/20140178
10.2136/sssaj2001.652403x
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geodrs.2024.e00902
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
EISSN 2352-0094
ExternalDocumentID 10_1016_j_geodrs_2024_e00902
S2352009424001494
GeographicLocations South Africa
GeographicLocations_xml – name: South Africa
GroupedDBID --M
0R~
4.4
457
4G.
6I.
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AATTM
AAXKI
AAXUO
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEIPS
AFJKZ
AFTJW
AFXIZ
AGHFR
AGUBO
AHEUO
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
EBS
EFJIC
EJD
FDB
FIRID
FYGXN
HZ~
KOM
M41
O9-
OAUVE
RIG
ROL
SPC
SPCBC
SSA
SSE
SSJ
SSZ
T5K
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c334t-addc0630b6eae63d863bdd30b2884c73e9d96406a2dc5d76cb8e218e437c47593
IEDL.DBID AIKHN
ISSN 2352-0094
IngestDate Wed Jul 02 04:52:59 EDT 2025
Tue Jul 01 05:15:50 EDT 2025
Sat Mar 29 16:11:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Gradient tree boost
South Africa
Digital soil mapping
Google Earth Engine
Maximum entropy
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-addc0630b6eae63d863bdd30b2884c73e9d96406a2dc5d76cb8e218e437c47593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2352009424001494
PQID 3154256243
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3154256243
crossref_primary_10_1016_j_geodrs_2024_e00902
elsevier_sciencedirect_doi_10_1016_j_geodrs_2024_e00902
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2025
2025-03-00
20250301
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationTitle Geoderma Regional
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ward, Hastie, Barry, Elith, Leathwick (bb0325) 2009; 65
Butzer, Stuckenrath, Bruzewicz, Helgren (bb0040) 1978; 10
Lissovsky, Dudov (bb0185) 2021; 11
Escadafal, Belghith, Ben Moussa (bb0105) 1994
Phillips, Anderson, Schapire (bb0270) 2006; 190
Bakker (bb0025) 1970; 4
Møller, Beucher, Pouladi, Mogens Humlekrog Greve (bb9071) 2020; 6
Slavutsky, Benjamini (bb0290) 2020
Amazon Web Services (bb0015) 2023
Zhang, Hartemink, Huang, Minasny (bb0345) 2023
Ludwig (bb0195) 1987; 13
Gorelick, Hancher, Dixon, Ilyushchenko, Thau, Moore (bb0140) 2017; 202
Soil Classification Working Group (bb0300) 2018
Cowling, Richardson, Pierce (bb0070) 1997
Dudík, Phillips (bb0090) 2009; 21
Lever, Krzywinski, Altman (bb0175) 2016
Dinerstein, Olson, Joshi, Vynne, Burgess, Wikramanayake, Hahn, Palminteri, Hedao, Noss, Hansen, Locke, Ellis, Jones, Barber, Hayes, Kormos, Martin, Crist, Sechrest, Price, Baillie, Weeden, Suckling, Davis, Sizer, Moore, Thau, Birch, Potapov, Turubanova, Tyukavina, de Souza, Pintea, Brito, Llewellyn, Miller, Patzelt, Ghazanfar, Timberlake, Klöser, Shennan-Farpón, Kindt, Lillesø, van Breugel, Graudal, Voge, Al-Shammari, Saleem (bb0085) 2017; 67
Low (bb0190) 2015
Kuhn, Johnson (bb0170) 2013
Paterson, Turner, Wiese, Van Zijl, Clarke, Van Tol (bb0260) 2015; 111
Soil Survey Staff (bb0305) 2014
Goliatt, Saporetti, Oliveira, Pereira (bb0135) 2023
CSIR (bb0075) 2017
McBratney, Mendonça Santos, Minasny (bib346) 2003; 117
Burrough (bb0035) 1989; 40
Truswell (bb0315) 1977
Brungard, Boettinger, Duniway, Wills, Edwards (bb0030) 2015; 239–240
Partridge, Maud (bb0255) 1987; 90
Safanelli, Poppiel, Chimelo Ruiz, Bonfatti, de Oliveira Mello, Rizzo, Demattê (bb0280) 2020; 9
Riddlesden, Singleton (bb0275) 2014; 52
von Winterfeldt, Edwards (bb0320) 1986
Escadafal, Huete (bb0100) 1991; 219
Breiman (bib347) 2001; 45
Morice, Kennedy, Rayner, Winn, Hogan, Killick, Dunn, Osborn, Jones, Simpson (bb0225) 2021; 126
Webster, Burrough (bb0330) 1972; 23
Addiscott (bb0005) 1995; 46
Soil Classification Working Group (bb0295) 1991
Shannon (bb0285) 1948; 27
de Gruijter (bb0080) 1977
Flynn, Triantafilis, Rozanov, Ellis, Lázaro-López, Watson, Clarke (bb0125) 2021; 206
Clarke, Francis, Sakala, Hattingh, Miller (bb0055) 2023; 232
Hastie, Tibshirani, Friedman (bb0150) 2009
Akata, Perronnin, Harchaoui, Schmid (bb0010) 2014; 36
Møller, Beucher, Pouladi, Humlekrog Greve (bb9072) 2020; 6
Konovalov, Krajbich (bb0165) 2018; 98
Bai, Jin (bb0020) 2016
Carré, Jacobson (bb0045) 2009; 148
Triantafilis, Ward, Odeh, McBratney (bb0310) 2001; 65
Jaynes (bb0160) 1957; 106
Merow, Smith, Silander (bb0210) 2013; 36
IUSS Working Group WRB (bb0155) 2015
Council for Geoscience (bb0065) 2008
Cohen (bb0060) 1960; 20
Li, Liu, Zeng (bb0180) 2022; 137
Madeira, Bedidi, Cervelle, Pouget, Flay (bb0200) 1997; 18
Fick, Hijmans (bb0115) 2017; 37
Microsoft (bb0215) 2023
Miller, Shepherd, Kisitu, Collinson (bb0220) 2021; 19
Zhang, Hartemink (bb0340) 2019; 343
Friedman, Hastie (bb0130) 1998
Osborn, Jones, Lister, Morice, Simpson, Winn, Hogan, Harris (bb0245) 2021; 126
Novianti, Jong, Roes, Eijkemans (bb0240) 2015; 16
Weininger, Weininger, Weininger (bb0335) 1989; 29
Palo, Sahoo, Subudhi (bb0250) 2021
Mathieu, Pouget, Cervelle, Escadafal (bb0205) 1998; 66
NASA JPL (bb0235) 2022
Chawla, Bowyer, Hall, Kegelmeyer (bb0050) 2002; 16
Hartemink, Minasny (bb0145) 2014; 230–231
Elith, Phillips, Hastie, Dudík, Chee, Yates (bb0095) 2011; 17
Fey, Hughes, Lambrechts, Dohse (bb0110) 2001
Phillips, Dudík, Schapire (bb0265) 2004
Flynn, de Clercq, Rozanov, Clarke (bb0120) 2019; 36
Mucina, Rutherford (bb0230) 2006
Weininger (10.1016/j.geodrs.2024.e00902_bb0335) 1989; 29
Bakker (10.1016/j.geodrs.2024.e00902_bb0025) 1970; 4
Goliatt (10.1016/j.geodrs.2024.e00902_bb0135) 2023
Madeira (10.1016/j.geodrs.2024.e00902_bb0200) 1997; 18
Brungard (10.1016/j.geodrs.2024.e00902_bb0030) 2015; 239–240
Flynn (10.1016/j.geodrs.2024.e00902_bb0120) 2019; 36
Webster (10.1016/j.geodrs.2024.e00902_bb0330) 1972; 23
McBratney (10.1016/j.geodrs.2024.e00902_bib346) 2003; 117
Escadafal (10.1016/j.geodrs.2024.e00902_bb0100) 1991; 219
Ludwig (10.1016/j.geodrs.2024.e00902_bb0195) 1987; 13
Gorelick (10.1016/j.geodrs.2024.e00902_bb0140) 2017; 202
Fey (10.1016/j.geodrs.2024.e00902_bb0110) 2001
Lever (10.1016/j.geodrs.2024.e00902_bb0175) 2016
Shannon (10.1016/j.geodrs.2024.e00902_bb0285) 1948; 27
Bai (10.1016/j.geodrs.2024.e00902_bb0020) 2016
Butzer (10.1016/j.geodrs.2024.e00902_bb0040) 1978; 10
Mathieu (10.1016/j.geodrs.2024.e00902_bb0205) 1998; 66
Paterson (10.1016/j.geodrs.2024.e00902_bb0260) 2015; 111
Zhang (10.1016/j.geodrs.2024.e00902_bb0345) 2023
Cohen (10.1016/j.geodrs.2024.e00902_bb0060) 1960; 20
CSIR (10.1016/j.geodrs.2024.e00902_bb0075) 2017
Phillips (10.1016/j.geodrs.2024.e00902_bb0270) 2006; 190
Møller (10.1016/j.geodrs.2024.e00902_bb9072) 2020; 6
Triantafilis (10.1016/j.geodrs.2024.e00902_bb0310) 2001; 65
Lissovsky (10.1016/j.geodrs.2024.e00902_bb0185) 2021; 11
Li (10.1016/j.geodrs.2024.e00902_bb0180) 2022; 137
Mucina (10.1016/j.geodrs.2024.e00902_bb0230) 2006
Osborn (10.1016/j.geodrs.2024.e00902_bb0245) 2021; 126
Partridge (10.1016/j.geodrs.2024.e00902_bb0255) 1987; 90
Riddlesden (10.1016/j.geodrs.2024.e00902_bb0275) 2014; 52
Flynn (10.1016/j.geodrs.2024.e00902_bb0125) 2021; 206
Soil Classification Working Group (10.1016/j.geodrs.2024.e00902_bb0300) 2018
Slavutsky (10.1016/j.geodrs.2024.e00902_bb0290) 2020
Addiscott (10.1016/j.geodrs.2024.e00902_bb0005) 1995; 46
Miller (10.1016/j.geodrs.2024.e00902_bb0220) 2021; 19
NASA JPL (10.1016/j.geodrs.2024.e00902_bb0235) 2022
Clarke (10.1016/j.geodrs.2024.e00902_bb0055) 2023; 232
Dinerstein (10.1016/j.geodrs.2024.e00902_bb0085) 2017; 67
Cowling (10.1016/j.geodrs.2024.e00902_bb0070) 1997
Carré (10.1016/j.geodrs.2024.e00902_bb0045) 2009; 148
Kuhn (10.1016/j.geodrs.2024.e00902_bb0170) 2013
Amazon Web Services (10.1016/j.geodrs.2024.e00902_bb0015) 2023
Jaynes (10.1016/j.geodrs.2024.e00902_bb0160) 1957; 106
Friedman (10.1016/j.geodrs.2024.e00902_bb0130) 1998
Phillips (10.1016/j.geodrs.2024.e00902_bb0265) 2004
Hastie (10.1016/j.geodrs.2024.e00902_bb0150) 2009
de Gruijter (10.1016/j.geodrs.2024.e00902_bb0080) 1977
Møller (10.1016/j.geodrs.2024.e00902_bb9071) 2020; 6
Elith (10.1016/j.geodrs.2024.e00902_bb0095) 2011; 17
Escadafal (10.1016/j.geodrs.2024.e00902_bb0105) 1994
Breiman (10.1016/j.geodrs.2024.e00902_bib347) 2001; 45
IUSS Working Group WRB (10.1016/j.geodrs.2024.e00902_bb0155) 2015
Truswell (10.1016/j.geodrs.2024.e00902_bb0315) 1977
Novianti (10.1016/j.geodrs.2024.e00902_bb0240) 2015; 16
Soil Classification Working Group (10.1016/j.geodrs.2024.e00902_bb0295) 1991
Soil Survey Staff (10.1016/j.geodrs.2024.e00902_bb0305) 2014
Chawla (10.1016/j.geodrs.2024.e00902_bb0050) 2002; 16
Burrough (10.1016/j.geodrs.2024.e00902_bb0035) 1989; 40
Palo (10.1016/j.geodrs.2024.e00902_bb0250) 2021
von Winterfeldt (10.1016/j.geodrs.2024.e00902_bb0320) 1986
Konovalov (10.1016/j.geodrs.2024.e00902_bb0165) 2018; 98
Morice (10.1016/j.geodrs.2024.e00902_bb0225) 2021; 126
Safanelli (10.1016/j.geodrs.2024.e00902_bb0280) 2020; 9
Ward (10.1016/j.geodrs.2024.e00902_bb0325) 2009; 65
Microsoft (10.1016/j.geodrs.2024.e00902_bb0215) 2023
Council for Geoscience (10.1016/j.geodrs.2024.e00902_bb0065) 2008
Fick (10.1016/j.geodrs.2024.e00902_bb0115) 2017; 37
Hartemink (10.1016/j.geodrs.2024.e00902_bb0145) 2014; 230–231
Dudík (10.1016/j.geodrs.2024.e00902_bb0090) 2009; 21
Akata (10.1016/j.geodrs.2024.e00902_bb0010) 2014; 36
Zhang (10.1016/j.geodrs.2024.e00902_bb0340) 2019; 343
Low (10.1016/j.geodrs.2024.e00902_bb0190) 2015
Merow (10.1016/j.geodrs.2024.e00902_bb0210) 2013; 36
References_xml – volume: 20
  start-page: 37
  year: 1960
  end-page: 46
  ident: bb0060
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educ. Psychol. Meas.
– volume: 202
  start-page: 18
  year: 2017
  end-page: 27
  ident: bb0140
  article-title: Google earth engine: planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
– volume: 23
  start-page: 222
  year: 1972
  end-page: 234
  ident: bb0330
  article-title: Computer-based soil mapping of small areas from sample data II classification smoothing
  publication-title: J. Soil Sci.
– start-page: 253
  year: 1994
  end-page: 259
  ident: bb0105
  article-title: Indices spectraux pour la de’gradation des milieux naturels en Tunisie aride
  publication-title: Proc. 6e‘me Symp. Int. Mesures Physiques et Signatures En Te’le’de’tection
– year: 2023
  ident: bb0135
  article-title: Performance of evolutionary optimized machine learning for modeling total organic carbon in core samples of shale gas fields
  publication-title: Petroleum
– year: 1977
  ident: bb0315
  article-title: The Geological Evolution of South Africa
– volume: 239–240
  start-page: 68
  year: 2015
  end-page: 83
  ident: bb0030
  article-title: Machine learning for predicting soil classes in three semi-arid landscapes
  publication-title: Geoderma
– volume: 17
  start-page: 43
  year: 2011
  end-page: 57
  ident: bb0095
  article-title: A statistical explanation of MaxEnt for ecologists
  publication-title: Divers. Distrib.
– volume: 67
  start-page: 534
  year: 2017
  end-page: 545
  ident: bb0085
  article-title: An ecoregion-based approach to protecting half the terrestrial realm
  publication-title: Bioscience
– volume: 232
  year: 2023
  ident: bb0055
  article-title: Enhanced carbon storage in semi-arid soils through termite activity
  publication-title: Catena (Amst)
– volume: 36
  start-page: 507
  year: 2014
  end-page: 520
  ident: bb0010
  article-title: Good practice in large-scale learning for image classification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 11
  start-page: 265
  year: 2021
  end-page: 275
  ident: bb0185
  article-title: Species-distribution modeling: advantages and limitations of its application. 2
  publication-title: MaxEnt Biol. Bull. Rev.
– volume: 148
  start-page: 336
  year: 2009
  end-page: 345
  ident: bb0045
  article-title: Numerical classification of soil profile data using distance metrics
  publication-title: Geoderma
– start-page: 1
  year: 2017
  end-page: 162
  ident: bb0075
  article-title: Understanding the social & environmental implications of global change
  publication-title: South African Risk and Vulnerability Atlas
– volume: 126
  year: 2021
  ident: bb0245
  article-title: Land surface air temperature variations across the globe updated to 2019: the CRUTEM5 data set
  publication-title: J. Geophys. Res. Atmos.
– volume: 18
  start-page: 2835
  year: 1997
  end-page: 2852
  ident: bb0200
  article-title: Visible spectrometric indices of hematite (Hm) and goethite (Gt) content in lateritic soils: the application of a thematic mapper (TM) image for soil-mapping in Brasilia, Brazil
  publication-title: Int. J. Remote Sens.
– year: 1998
  ident: bb0130
  article-title: Additive Logistic Regression: A Statistical View of Boosting
– start-page: 69
  year: 2015
  end-page: 80
  ident: bb0190
  article-title: Thermodynamics of soil systems: a personal perspective
  publication-title: Future Prospects for Soil Chemistry wiley
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: bb0050
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
– volume: 111
  start-page: 1
  year: 2015
  end-page: 7
  ident: bb0260
  article-title: Spatial soil information in South Africa: situational analysis, limitations and challenges
  publication-title: S. Afr. J. Sci.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib347
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 27
  start-page: 379
  year: 1948
  end-page: 423
  ident: bb0285
  article-title: From the mathematical theory of communication
  publication-title: Bell. Syst. Tech. J.
– year: 1977
  ident: bb0080
  article-title: Numerical Classification of Soils and its Application in Survey
– volume: 19
  year: 2021
  ident: bb0220
  article-title: iSDAsoil: the first continent-scale soil property map at 30 m resolution provides a soil information revolution for Africa
  publication-title: PLoS Biol.
– volume: 137
  year: 2022
  ident: bb0180
  article-title: Application of the MaxEnt model in improving the accuracy of ecological red line identification: a case study of Zhanjiang
  publication-title: China Ecol. Indic.
– year: 2016
  ident: bb0175
  article-title: Points of significance: model selection and overfitting
  publication-title: Nat. Methods
– volume: 6
  start-page: 269
  year: 2020
  end-page: 289
  ident: bb9072
  article-title: Oblique geographic coordinates as covariates for digital soil mapping
  publication-title: Soil
– volume: 13
  start-page: 1
  year: 1987
  end-page: 7
  ident: bb0195
  article-title: Primary productivity in arid lands: myths and realities
  publication-title: J. Arid Environ.
– start-page: 77
  year: 2021
  end-page: 107
  ident: bb0250
  article-title: Dimensionality reduction techniques: principles, benefits, and limitations
  publication-title: Data Analytics in Bioinformatics
– volume: 16
  start-page: 199
  year: 2015
  ident: bb0240
  article-title: Factors affecting the accuracy of a class prediction model in gene expression data
  publication-title: BMC Bioinform.
– year: 2014
  ident: bb0305
  article-title: Keys to Soil Taxonomy
– volume: 230–231
  start-page: 305
  year: 2014
  end-page: 317
  ident: bb0145
  article-title: Towards digital soil morphometrics
  publication-title: Geoderma
– volume: 65
  start-page: 403
  year: 2001
  end-page: 413
  ident: bb0310
  article-title: Creation and interpolation of continuous soil layer classes in the lower Namoi Valley
  publication-title: Soil Sci. Soc. Am. J.
– volume: 6
  start-page: 269
  year: 2020
  end-page: 289
  ident: bb9071
  article-title: Oblique geographic coordinates as covariates for digital soil mapping
  publication-title: SOIL
– volume: 46
  start-page: 161
  year: 1995
  end-page: 168
  ident: bb0005
  article-title: Entropy and sustainability
  publication-title: Eur. J. Soil Sci.
– year: 2023
  ident: bb0215
  article-title: Azure Portal Documentation
– volume: 117
  start-page: 3
  year: 2003
  end-page: 52
  ident: bib346
  publication-title: On digital soil mapping, Geoderma
– start-page: 63
  year: 1986
  end-page: 89
  ident: bb0320
  article-title: Decision trees
  publication-title: Decision Analysis and Behavioral Research
– year: 2008
  ident: bb0065
  article-title: Simplified Geological Map of South Africa. Pretoria
– volume: 206
  year: 2021
  ident: bb0125
  article-title: Numerical soil horizon classification from South Africa’s legacy database
  publication-title: Catena (Amst)
– volume: 9
  year: 2020
  ident: bb0280
  article-title: Terrain analysis in Google Earth Engine: a method adapted for high-performance global-scale analysis
  publication-title: ISPRS Int. J. Geoinf.
– volume: 65
  start-page: 554
  year: 2009
  end-page: 563
  ident: bb0325
  article-title: Presence-only data and the EM algorithm
  publication-title: Biometrics
– start-page: 568
  year: 2023
  end-page: 578
  ident: bb0345
  article-title: Digital soil morphometrics
  publication-title: Encyclopedia of Soils in the Environment
– year: 2015
  ident: bb0155
  article-title: World reference base for soil resources 2014, update 2015: international soil classification system for naming soils and creating legends for soil maps
  publication-title: World Soil Resources Reports No. 106, Rome, Italy
– year: 2009
  ident: bb0150
  article-title: The Elements of Statistical Learning
– year: 2018
  ident: bb0300
  article-title: Soil Classification. A Natural and Anthropogenic System for South Africa. ARC-NRE
– volume: 40
  start-page: 447
  year: 1989
  end-page: 492
  ident: bb0035
  article-title: Fuzzy mathematical methods for soil survey and land evaluation
  publication-title: J. Soil Sci.
– volume: 37
  start-page: 4302
  year: 2017
  end-page: 4315
  ident: bb0115
  article-title: WorldClim 2: new 1km spatial resolution climate surface for global land areas
  publication-title: Int. J. Climatol.
– volume: 52
  start-page: 25
  year: 2014
  end-page: 33
  ident: bb0275
  article-title: Broadband speed equity: a new digital divide?
  publication-title: Appl. Geogr.
– start-page: 83
  year: 2004
  ident: bb0265
  article-title: A maximum entropy approach to species distribution modeling
  publication-title: Twenty-First International Conference on Machine Learning - ICML ‘04
– volume: 90
  start-page: 179
  year: 1987
  end-page: 208
  ident: bb0255
  article-title: Geomorphic evolution of southern Africa since the Mesozoic
  publication-title: S. Afr. JGeol.
– volume: 219
  start-page: 1385
  year: 1991
  end-page: 1391
  ident: bb0100
  article-title: Etude des proprie’te’s spectrales des sols arides applique’e a‘ l’ame’lioration des indices ve’ge’tation obtenus par te’le’de’tection
  publication-title: Comp. Rendus l’Acad. Sci. II
– year: 2022
  ident: bb0235
  article-title: NASADEM Merged DEM Global 1 Arc Second V001
– volume: 190
  start-page: 231
  year: 2006
  end-page: 259
  ident: bb0270
  article-title: Maximum entropy modeling of species geographic distributions
  publication-title: Ecol. Model.
– year: 2020
  ident: bb0290
  article-title: Predicting Classification Accuracy when Adding New Unobserved Classes
– volume: 4
  start-page: 195
  year: 1970
  end-page: 208
  ident: bb0025
  article-title: Purposes of soil classification
  publication-title: Geoderma
– start-page: 615
  year: 2016
  end-page: 625
  ident: bb0020
  article-title: Random variables and uncertainty analysis
  publication-title: Marine Structural Design
– year: 2013
  ident: bb0170
  article-title: Applied Predictive Modeling
– year: 1997
  ident: bb0070
  article-title: Vegetation of Southern Africa
– volume: 29
  start-page: 97
  year: 1989
  end-page: 101
  ident: bb0335
  article-title: SMILES. 2. Algorithm for generation of unique SMILES notation
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 36
  start-page: 237
  year: 2019
  end-page: 247
  ident: bb0120
  article-title: High-resolution digital soil mapping of multiple soil properties: an alternative to the traditional field survey?
  publication-title: S. Afr. J. Plant Soil
– year: 1991
  ident: bb0295
  article-title: Soil Classificatioin: A Taxonomic System for South Africa
– year: 2006
  ident: bb0230
  article-title: The Vegetation of South Africa
– year: 2023
  ident: bb0015
  article-title: AWS General Reference: Reference guide
– volume: 10
  start-page: 310
  year: 1978
  end-page: 339
  ident: bb0040
  article-title: Late Cenozoic paleoclimates of the Gaap escarpment, Kalahari Margin, South Africa
  publication-title: Quant. Res.
– volume: 106
  start-page: 620
  year: 1957
  end-page: 630
  ident: bb0160
  article-title: Information theory and statistical mechanics
  publication-title: Phys. Rev.
– volume: 21
  year: 2009
  ident: bb0090
  article-title: Generative and discriminative learning with unknown labeling bias
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 66
  start-page: 17
  year: 1998
  end-page: 28
  ident: bb0205
  article-title: Relationships between satellite-based radiometric indices simulated using laboratory reflectance data and typic soil color of an arid environment
  publication-title: Remote Sens. Environ.
– volume: 36
  start-page: 1058
  year: 2013
  end-page: 1069
  ident: bb0210
  article-title: A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter
  publication-title: Ecography
– volume: 343
  start-page: 97
  year: 2019
  end-page: 115
  ident: bb0340
  article-title: A method for automated soil horizon delineation using digital images
  publication-title: Geoderma
– volume: 126
  year: 2021
  ident: bb0225
  article-title: An updated assessment of near-surface temperature change from 1850: the HadCRUT5 data set
  publication-title: J. Geophys. Res. Atmos.
– start-page: 9
  year: 2001
  end-page: 10
  ident: bb0110
  article-title: Chapter 2: The Soil groups: distribution, properties, classification, genesis and use
  publication-title: Soils of South Africa
– volume: 98
  start-page: 1282
  year: 2018
  end-page: 1293.e4
  ident: bb0165
  article-title: Neurocomputational dynamics of sequence learning
  publication-title: Neuron
– start-page: 615
  year: 2016
  ident: 10.1016/j.geodrs.2024.e00902_bb0020
  article-title: Random variables and uncertainty analysis
– volume: 37
  start-page: 4302
  year: 2017
  ident: 10.1016/j.geodrs.2024.e00902_bb0115
  article-title: WorldClim 2: new 1km spatial resolution climate surface for global land areas
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.5086
– volume: 52
  start-page: 25
  year: 2014
  ident: 10.1016/j.geodrs.2024.e00902_bb0275
  article-title: Broadband speed equity: a new digital divide?
  publication-title: Appl. Geogr.
  doi: 10.1016/j.apgeog.2014.04.008
– year: 2016
  ident: 10.1016/j.geodrs.2024.e00902_bb0175
  article-title: Points of significance: model selection and overfitting
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3968
– volume: 36
  start-page: 1058
  year: 2013
  ident: 10.1016/j.geodrs.2024.e00902_bb0210
  article-title: A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter
  publication-title: Ecography
  doi: 10.1111/j.1600-0587.2013.07872.x
– volume: 66
  start-page: 17
  year: 1998
  ident: 10.1016/j.geodrs.2024.e00902_bb0205
  article-title: Relationships between satellite-based radiometric indices simulated using laboratory reflectance data and typic soil color of an arid environment
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(98)00030-3
– volume: 10
  start-page: 310
  year: 1978
  ident: 10.1016/j.geodrs.2024.e00902_bb0040
  article-title: Late Cenozoic paleoclimates of the Gaap escarpment, Kalahari Margin, South Africa
  publication-title: Quant. Res.
– volume: 230–231
  start-page: 305
  year: 2014
  ident: 10.1016/j.geodrs.2024.e00902_bb0145
  article-title: Towards digital soil morphometrics
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.03.008
– volume: 17
  start-page: 43
  year: 2011
  ident: 10.1016/j.geodrs.2024.e00902_bb0095
  article-title: A statistical explanation of MaxEnt for ecologists
  publication-title: Divers. Distrib.
  doi: 10.1111/j.1472-4642.2010.00725.x
– volume: 106
  start-page: 620
  year: 1957
  ident: 10.1016/j.geodrs.2024.e00902_bb0160
  article-title: Information theory and statistical mechanics
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.106.620
– year: 2008
  ident: 10.1016/j.geodrs.2024.e00902_bb0065
– volume: 90
  start-page: 179
  year: 1987
  ident: 10.1016/j.geodrs.2024.e00902_bb0255
  article-title: Geomorphic evolution of southern Africa since the Mesozoic
  publication-title: S. Afr. JGeol.
– start-page: 1
  year: 2017
  ident: 10.1016/j.geodrs.2024.e00902_bb0075
  article-title: Understanding the social & environmental implications of global change
– volume: 4
  start-page: 195
  year: 1970
  ident: 10.1016/j.geodrs.2024.e00902_bb0025
  article-title: Purposes of soil classification
  publication-title: Geoderma
  doi: 10.1016/0016-7061(70)90003-0
– volume: 20
  start-page: 37
  year: 1960
  ident: 10.1016/j.geodrs.2024.e00902_bb0060
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educ. Psychol. Meas.
  doi: 10.1177/001316446002000104
– volume: 232
  year: 2023
  ident: 10.1016/j.geodrs.2024.e00902_bb0055
  article-title: Enhanced carbon storage in semi-arid soils through termite activity
  publication-title: Catena (Amst)
– volume: 137
  year: 2022
  ident: 10.1016/j.geodrs.2024.e00902_bb0180
  article-title: Application of the MaxEnt model in improving the accuracy of ecological red line identification: a case study of Zhanjiang
  publication-title: China Ecol. Indic.
– year: 2014
  ident: 10.1016/j.geodrs.2024.e00902_bb0305
– volume: 40
  start-page: 447
  year: 1989
  ident: 10.1016/j.geodrs.2024.e00902_bb0035
  article-title: Fuzzy mathematical methods for soil survey and land evaluation
  publication-title: J. Soil Sci.
  doi: 10.1111/j.1365-2389.1989.tb01290.x
– volume: 18
  start-page: 2835
  year: 1997
  ident: 10.1016/j.geodrs.2024.e00902_bb0200
  article-title: Visible spectrometric indices of hematite (Hm) and goethite (Gt) content in lateritic soils: the application of a thematic mapper (TM) image for soil-mapping in Brasilia, Brazil
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311697217369
– start-page: 568
  year: 2023
  ident: 10.1016/j.geodrs.2024.e00902_bb0345
  article-title: Digital soil morphometrics
– year: 1997
  ident: 10.1016/j.geodrs.2024.e00902_bb0070
– year: 2013
  ident: 10.1016/j.geodrs.2024.e00902_bb0170
– volume: 36
  start-page: 237
  year: 2019
  ident: 10.1016/j.geodrs.2024.e00902_bb0120
  article-title: High-resolution digital soil mapping of multiple soil properties: an alternative to the traditional field survey?
  publication-title: S. Afr. J. Plant Soil
  doi: 10.1080/02571862.2019.1570566
– volume: 6
  start-page: 269
  year: 2020
  ident: 10.1016/j.geodrs.2024.e00902_bb9072
  article-title: Oblique geographic coordinates as covariates for digital soil mapping
  publication-title: Soil
  doi: 10.5194/soil-6-269-2020
– volume: 19
  year: 2021
  ident: 10.1016/j.geodrs.2024.e00902_bb0220
  article-title: iSDAsoil: the first continent-scale soil property map at 30 m resolution provides a soil information revolution for Africa
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3001441
– start-page: 63
  year: 1986
  ident: 10.1016/j.geodrs.2024.e00902_bb0320
  article-title: Decision trees
– year: 2015
  ident: 10.1016/j.geodrs.2024.e00902_bb0155
  article-title: World reference base for soil resources 2014, update 2015: international soil classification system for naming soils and creating legends for soil maps
– start-page: 83
  year: 2004
  ident: 10.1016/j.geodrs.2024.e00902_bb0265
  article-title: A maximum entropy approach to species distribution modeling
– start-page: 69
  year: 2015
  ident: 10.1016/j.geodrs.2024.e00902_bb0190
  article-title: Thermodynamics of soil systems: a personal perspective
– volume: 36
  start-page: 507
  year: 2014
  ident: 10.1016/j.geodrs.2024.e00902_bb0010
  article-title: Good practice in large-scale learning for image classification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.146
– year: 2023
  ident: 10.1016/j.geodrs.2024.e00902_bb0015
– volume: 219
  start-page: 1385
  year: 1991
  ident: 10.1016/j.geodrs.2024.e00902_bb0100
  article-title: Etude des proprie’te’s spectrales des sols arides applique’e a‘ l’ame’lioration des indices ve’ge’tation obtenus par te’le’de’tection
  publication-title: Comp. Rendus l’Acad. Sci. II
– start-page: 9
  year: 2001
  ident: 10.1016/j.geodrs.2024.e00902_bb0110
  article-title: Chapter 2: The Soil groups: distribution, properties, classification, genesis and use
– volume: 126
  year: 2021
  ident: 10.1016/j.geodrs.2024.e00902_bb0245
  article-title: Land surface air temperature variations across the globe updated to 2019: the CRUTEM5 data set
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2019JD032352
– volume: 13
  start-page: 1
  year: 1987
  ident: 10.1016/j.geodrs.2024.e00902_bb0195
  article-title: Primary productivity in arid lands: myths and realities
  publication-title: J. Arid Environ.
  doi: 10.1016/S0140-1963(18)31148-0
– year: 2023
  ident: 10.1016/j.geodrs.2024.e00902_bb0215
– start-page: 253
  year: 1994
  ident: 10.1016/j.geodrs.2024.e00902_bb0105
  article-title: Indices spectraux pour la de’gradation des milieux naturels en Tunisie aride
– volume: 202
  start-page: 18
  year: 2017
  ident: 10.1016/j.geodrs.2024.e00902_bb0140
  article-title: Google earth engine: planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.031
– year: 2022
  ident: 10.1016/j.geodrs.2024.e00902_bb0235
– volume: 343
  start-page: 97
  year: 2019
  ident: 10.1016/j.geodrs.2024.e00902_bb0340
  article-title: A method for automated soil horizon delineation using digital images
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.02.002
– volume: 65
  start-page: 554
  year: 2009
  ident: 10.1016/j.geodrs.2024.e00902_bb0325
  article-title: Presence-only data and the EM algorithm
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2008.01116.x
– volume: 46
  start-page: 161
  year: 1995
  ident: 10.1016/j.geodrs.2024.e00902_bb0005
  article-title: Entropy and sustainability
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.1995.tb01823.x
– year: 1991
  ident: 10.1016/j.geodrs.2024.e00902_bb0295
– volume: 67
  start-page: 534
  year: 2017
  ident: 10.1016/j.geodrs.2024.e00902_bb0085
  article-title: An ecoregion-based approach to protecting half the terrestrial realm
  publication-title: Bioscience
  doi: 10.1093/biosci/bix014
– year: 2020
  ident: 10.1016/j.geodrs.2024.e00902_bb0290
– volume: 190
  start-page: 231
  year: 2006
  ident: 10.1016/j.geodrs.2024.e00902_bb0270
  article-title: Maximum entropy modeling of species geographic distributions
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2005.03.026
– volume: 117
  start-page: 3
  year: 2003
  ident: 10.1016/j.geodrs.2024.e00902_bib346
  publication-title: On digital soil mapping, Geoderma
– volume: 27
  start-page: 379
  year: 1948
  ident: 10.1016/j.geodrs.2024.e00902_bb0285
  article-title: From the mathematical theory of communication
  publication-title: Bell. Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.geodrs.2024.e00902_bb0050
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– volume: 23
  start-page: 222
  year: 1972
  ident: 10.1016/j.geodrs.2024.e00902_bb0330
  article-title: Computer-based soil mapping of small areas from sample data II classification smoothing
  publication-title: J. Soil Sci.
  doi: 10.1111/j.1365-2389.1972.tb01655.x
– volume: 206
  year: 2021
  ident: 10.1016/j.geodrs.2024.e00902_bb0125
  article-title: Numerical soil horizon classification from South Africa’s legacy database
  publication-title: Catena (Amst)
– volume: 126
  year: 2021
  ident: 10.1016/j.geodrs.2024.e00902_bb0225
  article-title: An updated assessment of near-surface temperature change from 1850: the HadCRUT5 data set
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2019JD032361
– year: 2023
  ident: 10.1016/j.geodrs.2024.e00902_bb0135
  article-title: Performance of evolutionary optimized machine learning for modeling total organic carbon in core samples of shale gas fields
  publication-title: Petroleum
– year: 1998
  ident: 10.1016/j.geodrs.2024.e00902_bb0130
– volume: 239–240
  start-page: 68
  year: 2015
  ident: 10.1016/j.geodrs.2024.e00902_bb0030
  article-title: Machine learning for predicting soil classes in three semi-arid landscapes
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.09.019
– volume: 21
  year: 2009
  ident: 10.1016/j.geodrs.2024.e00902_bb0090
  article-title: Generative and discriminative learning with unknown labeling bias
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.geodrs.2024.e00902_bib347
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– year: 2009
  ident: 10.1016/j.geodrs.2024.e00902_bb0150
– volume: 9
  year: 2020
  ident: 10.1016/j.geodrs.2024.e00902_bb0280
  article-title: Terrain analysis in Google Earth Engine: a method adapted for high-performance global-scale analysis
  publication-title: ISPRS Int. J. Geoinf.
– volume: 148
  start-page: 336
  year: 2009
  ident: 10.1016/j.geodrs.2024.e00902_bb0045
  article-title: Numerical classification of soil profile data using distance metrics
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.11.008
– volume: 98
  start-page: 1282
  year: 2018
  ident: 10.1016/j.geodrs.2024.e00902_bb0165
  article-title: Neurocomputational dynamics of sequence learning
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.05.013
– year: 2018
  ident: 10.1016/j.geodrs.2024.e00902_bb0300
– year: 1977
  ident: 10.1016/j.geodrs.2024.e00902_bb0080
– volume: 11
  start-page: 265
  year: 2021
  ident: 10.1016/j.geodrs.2024.e00902_bb0185
  article-title: Species-distribution modeling: advantages and limitations of its application. 2
  publication-title: MaxEnt Biol. Bull. Rev.
  doi: 10.1134/S2079086421030087
– volume: 6
  start-page: 269
  year: 2020
  ident: 10.1016/j.geodrs.2024.e00902_bb9071
  article-title: Oblique geographic coordinates as covariates for digital soil mapping
  publication-title: SOIL
  doi: 10.5194/soil-6-269-2020
– volume: 16
  start-page: 199
  year: 2015
  ident: 10.1016/j.geodrs.2024.e00902_bb0240
  article-title: Factors affecting the accuracy of a class prediction model in gene expression data
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-015-0610-4
– year: 1977
  ident: 10.1016/j.geodrs.2024.e00902_bb0315
– volume: 29
  start-page: 97
  year: 1989
  ident: 10.1016/j.geodrs.2024.e00902_bb0335
  article-title: SMILES. 2. Algorithm for generation of unique SMILES notation
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci00062a008
– start-page: 77
  year: 2021
  ident: 10.1016/j.geodrs.2024.e00902_bb0250
  article-title: Dimensionality reduction techniques: principles, benefits, and limitations
– volume: 111
  start-page: 1
  year: 2015
  ident: 10.1016/j.geodrs.2024.e00902_bb0260
  article-title: Spatial soil information in South Africa: situational analysis, limitations and challenges
  publication-title: S. Afr. J. Sci.
  doi: 10.17159/sajs.2015/20140178
– volume: 65
  start-page: 403
  year: 2001
  ident: 10.1016/j.geodrs.2024.e00902_bb0310
  article-title: Creation and interpolation of continuous soil layer classes in the lower Namoi Valley
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2001.652403x
– year: 2006
  ident: 10.1016/j.geodrs.2024.e00902_bb0230
SSID ssj0002953762
Score 2.3092473
Snippet Traditional soil classification systems are designed to communicate information; however, surveyor biases and tacit knowledge can lead to subjective soil class...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage e00902
SubjectTerms algorithms
class
Digital soil mapping
Google Earth Engine
Gradient tree boost
Internet
Maximum entropy
savannas
shrublands
soil classification
South Africa
subsoil
trees
Title A comparison of country-scale subsoil predictions between a numeric and a taxonomic soil classification system
URI https://dx.doi.org/10.1016/j.geodrs.2024.e00902
https://www.proquest.com/docview/3154256243
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7qXryIouKbCF7jrkmatsdlUVYX9-ADvYW8KivSLvsA_ffOpK2gIIKnNoWUMklnvna--YaQs8JZb6VJsDiGM0DEKcsVD-yCFxDNvHM9i7XDt2M1fJQ3z8nzChm0tTBIq2x8f-3To7durnQba3ank0n3nosoGSSRBQk4X66SDhe5gq3d6V-PhuOvXy08R80SHtvMJZzhnLaILjK9XkLlZyjdzeV56CFR8bcg9cNdxxh0tUk2GvBI-_XzbZGVUG6Tsk_dVzNBWhU0tn-YfbA5mD_QOXiGavJGpzNMycRdRhtyFjW0XMaMDTWlh9HCvNdlyjROcYiskUoUV4_Wos875PHq8mEwZE0XBeaEkAsGDsyhsJZVwQQlfKaE9R7GPMukS0XIfa4grBvuXeJT5WwWIO4HKVKHYoBil6yVVRn2CFWJsJkTRZFIC9-FFwbOg7E9izJvmbL7hLVm09NaLEO3LLJXXZtZo5l1beZ9kra21d8WXYM__2PmabsUGt4HTHKYMlTLuRaACQHGcSkO_n33Q7LOsc1vpJodkbXFbBmOAXss7Emzt_A4unsafQIB6txO
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66HvQiiopvI3iNuyZp2j0ui7K-9uIK3kJelRVpl32A_ntn0nZBQQRvbSGlfEm_mTbffEPIRe6st9IkWBzDGWTEKesqHtgVzyGaeec6FmuHH4dq8CzvXpKXFdJvamFQVllzf8Xpka3rK-0azfZkPG4_cREtgySqICHPl6tkDd2pkhZZ693eD4bLXy28i54lPLaZSzjDMU0RXVR6vYbST9G6m8vL0EGh4m9B6gddxxh0s0U26-SR9qrn2yYrodghRY-6ZTNBWuY0tn-YfrIZwB_oDJihHL_TyRS3ZOIqo7U4ixpaLOKODTWFh7O5-ajKlGkc4jCzRilRnD1amT7vkueb61F_wOouCswJIecMCMyhsZZVwQQlfKaE9R7OeZZJl4rQ9V0FYd1w7xKfKmezAHE_SJE6NAMUe6RVlEXYJ1QlwmZO5HkiLXwXXhk4DsZ2LNq8ZcoeENbApieVWYZuVGRvuoJZI8y6gvmApA22-tuka-DzP0aeN1Oh4X3ATQ5ThHIx0wJyQkjjuBSH_777GVkfjB4f9MPt8P6IbHBs-RtlZ8ekNZ8uwgnkIXN7Wq-zL32U3ZE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+country-scale+subsoil+predictions+between+a+numeric+and+a+taxonomic+soil+classification+system&rft.jtitle=Geoderma+Regional&rft.au=Flynn%2C+Trevan&rft.au=Clarke%2C+Catherine&rft.au=Kostecki%2C+Rosana&rft.au=Rebi%2C+Ansa&rft.date=2025-03-01&rft.issn=2352-0094&rft.eissn=2352-0094&rft.volume=40&rft.spage=e00902&rft_id=info:doi/10.1016%2Fj.geodrs.2024.e00902&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geodrs_2024_e00902
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon