A comparison of country-scale subsoil predictions between a numeric and a taxonomic soil classification system
Traditional soil classification systems are designed to communicate information; however, surveyor biases and tacit knowledge can lead to subjective soil class designations. Consequently, different soil scientists may classify the same soil differently. This becomes a critical issue when mapping soi...
Saved in:
Published in | Geoderma Regional Vol. 40; p. e00902 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Traditional soil classification systems are designed to communicate information; however, surveyor biases and tacit knowledge can lead to subjective soil class designations. Consequently, different soil scientists may classify the same soil differently. This becomes a critical issue when mapping soil classes, as there could be multiple interpretations for the same observation. To address this problem, numerical soil classification systems have been developed. However, little is known about how well they compare to taxonomic systems when spatially predicted on a national scale. This study aimed to compare a previously developed, unsupervised numeric classification system and South Africa's taxonomic soil classification system in terms of their spatial predictions across the country. The taxonomic system of South Africa has 19 defined subsoil horizons, which were aggregated into eight horizons and compared to a nine horizon numeric classification as well as South Africa's profile (soil form) classification comprising of 73 different soil groupings, which was used as a control. The comparison was conducted from predictions through gradient tree boosting in Google Earth Engine at a 30 m resolution. The numerical system (kappa = 0.30, accuracy = 0.57) exhibited poor spatial predictions, with a kappa 22% lower and accuracy 2% lower than the control (kappa = 0.52, accuracy = 59%). On the other hand, the taxonomic system performed well, with a kappa of 0.57 and an accuracy of 67%, exhibiting a 5% increase in kappa and an 8% increase in accuracy compared to the control. It was hypothesized that the overpredictions of the predominant horizon contributed to the numeric system's poor performance. Nevertheless, both systems showed the highest maximum entropy in arid regions of the Karoo and savannah biomes, albeit in spatially distinct ecoregions. It was thought that the divergence in the two systems' maximum entropy was due to their association with precipitation differences (amount and seasonality) as well as vegetation type and cover (woodlands vs. shrublands). To map the country in more detail, further soil sampling should be conducted in arid regions and optimisation of the predictive algorithm for each soil category should be performed.
•30 m subsoil horizon maps were developed for all of South Africa.•A numeric and a taxonomic classification system were compared.•The taxonomic system (67 %) greatly outperformed the numerical system (57 %).•A control with 73 soil types was also predicted and achieved an accuracy of 59 %.•This study highlights aspects for the development of a detailed soil class map. |
---|---|
AbstractList | Traditional soil classification systems are designed to communicate information; however, surveyor biases and tacit knowledge can lead to subjective soil class designations. Consequently, different soil scientists may classify the same soil differently. This becomes a critical issue when mapping soil classes, as there could be multiple interpretations for the same observation. To address this problem, numerical soil classification systems have been developed. However, little is known about how well they compare to taxonomic systems when spatially predicted on a national scale. This study aimed to compare a previously developed, unsupervised numeric classification system and South Africa's taxonomic soil classification system in terms of their spatial predictions across the country. The taxonomic system of South Africa has 19 defined subsoil horizons, which were aggregated into eight horizons and compared to a nine horizon numeric classification as well as South Africa's profile (soil form) classification comprising of 73 different soil groupings, which was used as a control. The comparison was conducted from predictions through gradient tree boosting in Google Earth Engine at a 30 m resolution. The numerical system (kappa = 0.30, accuracy = 0.57) exhibited poor spatial predictions, with a kappa 22% lower and accuracy 2% lower than the control (kappa = 0.52, accuracy = 59%). On the other hand, the taxonomic system performed well, with a kappa of 0.57 and an accuracy of 67%, exhibiting a 5% increase in kappa and an 8% increase in accuracy compared to the control. It was hypothesized that the overpredictions of the predominant horizon contributed to the numeric system's poor performance. Nevertheless, both systems showed the highest maximum entropy in arid regions of the Karoo and savannah biomes, albeit in spatially distinct ecoregions. It was thought that the divergence in the two systems' maximum entropy was due to their association with precipitation differences (amount and seasonality) as well as vegetation type and cover (woodlands vs. shrublands). To map the country in more detail, further soil sampling should be conducted in arid regions and optimisation of the predictive algorithm for each soil category should be performed.
•30 m subsoil horizon maps were developed for all of South Africa.•A numeric and a taxonomic classification system were compared.•The taxonomic system (67 %) greatly outperformed the numerical system (57 %).•A control with 73 soil types was also predicted and achieved an accuracy of 59 %.•This study highlights aspects for the development of a detailed soil class map. Traditional soil classification systems are designed to communicate information; however, surveyor biases and tacit knowledge can lead to subjective soil class designations. Consequently, different soil scientists may classify the same soil differently. This becomes a critical issue when mapping soil classes, as there could be multiple interpretations for the same observation. To address this problem, numerical soil classification systems have been developed. However, little is known about how well they compare to taxonomic systems when spatially predicted on a national scale. This study aimed to compare a previously developed, unsupervised numeric classification system and South Africa's taxonomic soil classification system in terms of their spatial predictions across the country. The taxonomic system of South Africa has 19 defined subsoil horizons, which were aggregated into eight horizons and compared to a nine horizon numeric classification as well as South Africa's profile (soil form) classification comprising of 73 different soil groupings, which was used as a control. The comparison was conducted from predictions through gradient tree boosting in Google Earth Engine at a 30 m resolution. The numerical system (kappa = 0.30, accuracy = 0.57) exhibited poor spatial predictions, with a kappa 22% lower and accuracy 2% lower than the control (kappa = 0.52, accuracy = 59%). On the other hand, the taxonomic system performed well, with a kappa of 0.57 and an accuracy of 67%, exhibiting a 5% increase in kappa and an 8% increase in accuracy compared to the control. It was hypothesized that the overpredictions of the predominant horizon contributed to the numeric system's poor performance. Nevertheless, both systems showed the highest maximum entropy in arid regions of the Karoo and savannah biomes, albeit in spatially distinct ecoregions. It was thought that the divergence in the two systems' maximum entropy was due to their association with precipitation differences (amount and seasonality) as well as vegetation type and cover (woodlands vs. shrublands). To map the country in more detail, further soil sampling should be conducted in arid regions and optimisation of the predictive algorithm for each soil category should be performed. |
ArticleNumber | e00902 |
Author | Kostecki, Rosana Clarke, Catherine Rebi, Ansa Flynn, Trevan |
Author_xml | – sequence: 1 givenname: Trevan surname: Flynn fullname: Flynn, Trevan email: trevan.flynn@sydney.edu.au organization: Sydney Institute of Agriculture & School of Life and Environmental Sciences, The University of Sydney, Eveleigh, NSW 2015, Australia – sequence: 2 givenname: Catherine surname: Clarke fullname: Clarke, Catherine organization: Department of Soil Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa – sequence: 3 givenname: Rosana surname: Kostecki fullname: Kostecki, Rosana organization: Department of Geography, State University of Londrina, Londrina 86057, Brazil – sequence: 4 givenname: Ansa surname: Rebi fullname: Rebi, Ansa organization: Jianshui Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China |
BookMark | eNp9kE1P3DAQhi1EJT7KP-jBx16yOLbjJBckhApUQuLSni1nPFt5ldiLJwH239fbcOiJ08wjve9I81yw05giMvatFpta1OZ6t_mDyWfaSCH1BoXohTxh51I1siqgT__bz9gV0U4IIftGtUaes3jLIU17lwOlyNO20BLnfKgI3IicloFSGPk-ow8whxSJDzi_IUbueFwmzAG4i77Q7N5TTFPhfxUYHVHYBnDHGqcDzTh9ZV-2biS8-piX7Pf9j193j9XT88PPu9unCpTSc-W8B2GUGAw6NMp3Rg3eF5Zdp6FV2PveaGGc9ND41sDQoaw71KoF3Ta9umTf17v7nF4WpNlOgQDH0UVMC1lVN1o2RmpVonqNQk5EGbd2n8Pk8sHWwh4N251dDdujYbsaLrWbtYbljdeA2RIEjFA8ZYTZ-hQ-P_AX1lqKcQ |
Cites_doi | 10.1002/joc.5086 10.1016/j.apgeog.2014.04.008 10.1038/nmeth.3968 10.1111/j.1600-0587.2013.07872.x 10.1016/S0034-4257(98)00030-3 10.1016/j.geoderma.2014.03.008 10.1111/j.1472-4642.2010.00725.x 10.1103/PhysRev.106.620 10.1016/0016-7061(70)90003-0 10.1177/001316446002000104 10.1111/j.1365-2389.1989.tb01290.x 10.1080/014311697217369 10.1080/02571862.2019.1570566 10.5194/soil-6-269-2020 10.1371/journal.pbio.3001441 10.1109/TPAMI.2013.146 10.1029/2019JD032352 10.1016/S0140-1963(18)31148-0 10.1016/j.rse.2017.06.031 10.1016/j.geoderma.2019.02.002 10.1111/j.1541-0420.2008.01116.x 10.1111/j.1365-2389.1995.tb01823.x 10.1093/biosci/bix014 10.1016/j.ecolmodel.2005.03.026 10.1002/j.1538-7305.1948.tb01338.x 10.1613/jair.953 10.1111/j.1365-2389.1972.tb01655.x 10.1029/2019JD032361 10.1016/j.geoderma.2014.09.019 10.1023/A:1010933404324 10.1016/j.geoderma.2008.11.008 10.1016/j.neuron.2018.05.013 10.1134/S2079086421030087 10.1186/s12859-015-0610-4 10.1021/ci00062a008 10.17159/sajs.2015/20140178 10.2136/sssaj2001.652403x |
ContentType | Journal Article |
Copyright | 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geodrs.2024.e00902 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-0094 |
ExternalDocumentID | 10_1016_j_geodrs_2024_e00902 S2352009424001494 |
GeographicLocations | South Africa |
GeographicLocations_xml | – name: South Africa |
GroupedDBID | --M 0R~ 4.4 457 4G. 6I. 7-5 AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AATTM AAXKI AAXUO ABGRD ABJNI ABMAC ABQEM ABQYD ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEIPS AFJKZ AFTJW AFXIZ AGHFR AGUBO AHEUO AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ATOGT AXJTR BKOJK BLECG BLXMC EBS EFJIC EJD FDB FIRID FYGXN HZ~ KOM M41 O9- OAUVE RIG ROL SPC SPCBC SSA SSE SSJ SSZ T5K ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c334t-addc0630b6eae63d863bdd30b2884c73e9d96406a2dc5d76cb8e218e437c47593 |
IEDL.DBID | AIKHN |
ISSN | 2352-0094 |
IngestDate | Wed Jul 02 04:52:59 EDT 2025 Tue Jul 01 05:15:50 EDT 2025 Sat Mar 29 16:11:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gradient tree boost South Africa Digital soil mapping Google Earth Engine Maximum entropy |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-addc0630b6eae63d863bdd30b2884c73e9d96406a2dc5d76cb8e218e437c47593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2352009424001494 |
PQID | 3154256243 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3154256243 crossref_primary_10_1016_j_geodrs_2024_e00902 elsevier_sciencedirect_doi_10_1016_j_geodrs_2024_e00902 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2025 2025-03-00 20250301 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: March 2025 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma Regional |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ward, Hastie, Barry, Elith, Leathwick (bb0325) 2009; 65 Butzer, Stuckenrath, Bruzewicz, Helgren (bb0040) 1978; 10 Lissovsky, Dudov (bb0185) 2021; 11 Escadafal, Belghith, Ben Moussa (bb0105) 1994 Phillips, Anderson, Schapire (bb0270) 2006; 190 Bakker (bb0025) 1970; 4 Møller, Beucher, Pouladi, Mogens Humlekrog Greve (bb9071) 2020; 6 Slavutsky, Benjamini (bb0290) 2020 Amazon Web Services (bb0015) 2023 Zhang, Hartemink, Huang, Minasny (bb0345) 2023 Ludwig (bb0195) 1987; 13 Gorelick, Hancher, Dixon, Ilyushchenko, Thau, Moore (bb0140) 2017; 202 Soil Classification Working Group (bb0300) 2018 Cowling, Richardson, Pierce (bb0070) 1997 Dudík, Phillips (bb0090) 2009; 21 Lever, Krzywinski, Altman (bb0175) 2016 Dinerstein, Olson, Joshi, Vynne, Burgess, Wikramanayake, Hahn, Palminteri, Hedao, Noss, Hansen, Locke, Ellis, Jones, Barber, Hayes, Kormos, Martin, Crist, Sechrest, Price, Baillie, Weeden, Suckling, Davis, Sizer, Moore, Thau, Birch, Potapov, Turubanova, Tyukavina, de Souza, Pintea, Brito, Llewellyn, Miller, Patzelt, Ghazanfar, Timberlake, Klöser, Shennan-Farpón, Kindt, Lillesø, van Breugel, Graudal, Voge, Al-Shammari, Saleem (bb0085) 2017; 67 Low (bb0190) 2015 Kuhn, Johnson (bb0170) 2013 Paterson, Turner, Wiese, Van Zijl, Clarke, Van Tol (bb0260) 2015; 111 Soil Survey Staff (bb0305) 2014 Goliatt, Saporetti, Oliveira, Pereira (bb0135) 2023 CSIR (bb0075) 2017 McBratney, Mendonça Santos, Minasny (bib346) 2003; 117 Burrough (bb0035) 1989; 40 Truswell (bb0315) 1977 Brungard, Boettinger, Duniway, Wills, Edwards (bb0030) 2015; 239–240 Partridge, Maud (bb0255) 1987; 90 Safanelli, Poppiel, Chimelo Ruiz, Bonfatti, de Oliveira Mello, Rizzo, Demattê (bb0280) 2020; 9 Riddlesden, Singleton (bb0275) 2014; 52 von Winterfeldt, Edwards (bb0320) 1986 Escadafal, Huete (bb0100) 1991; 219 Breiman (bib347) 2001; 45 Morice, Kennedy, Rayner, Winn, Hogan, Killick, Dunn, Osborn, Jones, Simpson (bb0225) 2021; 126 Webster, Burrough (bb0330) 1972; 23 Addiscott (bb0005) 1995; 46 Soil Classification Working Group (bb0295) 1991 Shannon (bb0285) 1948; 27 de Gruijter (bb0080) 1977 Flynn, Triantafilis, Rozanov, Ellis, Lázaro-López, Watson, Clarke (bb0125) 2021; 206 Clarke, Francis, Sakala, Hattingh, Miller (bb0055) 2023; 232 Hastie, Tibshirani, Friedman (bb0150) 2009 Akata, Perronnin, Harchaoui, Schmid (bb0010) 2014; 36 Møller, Beucher, Pouladi, Humlekrog Greve (bb9072) 2020; 6 Konovalov, Krajbich (bb0165) 2018; 98 Bai, Jin (bb0020) 2016 Carré, Jacobson (bb0045) 2009; 148 Triantafilis, Ward, Odeh, McBratney (bb0310) 2001; 65 Jaynes (bb0160) 1957; 106 Merow, Smith, Silander (bb0210) 2013; 36 IUSS Working Group WRB (bb0155) 2015 Council for Geoscience (bb0065) 2008 Cohen (bb0060) 1960; 20 Li, Liu, Zeng (bb0180) 2022; 137 Madeira, Bedidi, Cervelle, Pouget, Flay (bb0200) 1997; 18 Fick, Hijmans (bb0115) 2017; 37 Microsoft (bb0215) 2023 Miller, Shepherd, Kisitu, Collinson (bb0220) 2021; 19 Zhang, Hartemink (bb0340) 2019; 343 Friedman, Hastie (bb0130) 1998 Osborn, Jones, Lister, Morice, Simpson, Winn, Hogan, Harris (bb0245) 2021; 126 Novianti, Jong, Roes, Eijkemans (bb0240) 2015; 16 Weininger, Weininger, Weininger (bb0335) 1989; 29 Palo, Sahoo, Subudhi (bb0250) 2021 Mathieu, Pouget, Cervelle, Escadafal (bb0205) 1998; 66 NASA JPL (bb0235) 2022 Chawla, Bowyer, Hall, Kegelmeyer (bb0050) 2002; 16 Hartemink, Minasny (bb0145) 2014; 230–231 Elith, Phillips, Hastie, Dudík, Chee, Yates (bb0095) 2011; 17 Fey, Hughes, Lambrechts, Dohse (bb0110) 2001 Phillips, Dudík, Schapire (bb0265) 2004 Flynn, de Clercq, Rozanov, Clarke (bb0120) 2019; 36 Mucina, Rutherford (bb0230) 2006 Weininger (10.1016/j.geodrs.2024.e00902_bb0335) 1989; 29 Bakker (10.1016/j.geodrs.2024.e00902_bb0025) 1970; 4 Goliatt (10.1016/j.geodrs.2024.e00902_bb0135) 2023 Madeira (10.1016/j.geodrs.2024.e00902_bb0200) 1997; 18 Brungard (10.1016/j.geodrs.2024.e00902_bb0030) 2015; 239–240 Flynn (10.1016/j.geodrs.2024.e00902_bb0120) 2019; 36 Webster (10.1016/j.geodrs.2024.e00902_bb0330) 1972; 23 McBratney (10.1016/j.geodrs.2024.e00902_bib346) 2003; 117 Escadafal (10.1016/j.geodrs.2024.e00902_bb0100) 1991; 219 Ludwig (10.1016/j.geodrs.2024.e00902_bb0195) 1987; 13 Gorelick (10.1016/j.geodrs.2024.e00902_bb0140) 2017; 202 Fey (10.1016/j.geodrs.2024.e00902_bb0110) 2001 Lever (10.1016/j.geodrs.2024.e00902_bb0175) 2016 Shannon (10.1016/j.geodrs.2024.e00902_bb0285) 1948; 27 Bai (10.1016/j.geodrs.2024.e00902_bb0020) 2016 Butzer (10.1016/j.geodrs.2024.e00902_bb0040) 1978; 10 Mathieu (10.1016/j.geodrs.2024.e00902_bb0205) 1998; 66 Paterson (10.1016/j.geodrs.2024.e00902_bb0260) 2015; 111 Zhang (10.1016/j.geodrs.2024.e00902_bb0345) 2023 Cohen (10.1016/j.geodrs.2024.e00902_bb0060) 1960; 20 CSIR (10.1016/j.geodrs.2024.e00902_bb0075) 2017 Phillips (10.1016/j.geodrs.2024.e00902_bb0270) 2006; 190 Møller (10.1016/j.geodrs.2024.e00902_bb9072) 2020; 6 Triantafilis (10.1016/j.geodrs.2024.e00902_bb0310) 2001; 65 Lissovsky (10.1016/j.geodrs.2024.e00902_bb0185) 2021; 11 Li (10.1016/j.geodrs.2024.e00902_bb0180) 2022; 137 Mucina (10.1016/j.geodrs.2024.e00902_bb0230) 2006 Osborn (10.1016/j.geodrs.2024.e00902_bb0245) 2021; 126 Partridge (10.1016/j.geodrs.2024.e00902_bb0255) 1987; 90 Riddlesden (10.1016/j.geodrs.2024.e00902_bb0275) 2014; 52 Flynn (10.1016/j.geodrs.2024.e00902_bb0125) 2021; 206 Soil Classification Working Group (10.1016/j.geodrs.2024.e00902_bb0300) 2018 Slavutsky (10.1016/j.geodrs.2024.e00902_bb0290) 2020 Addiscott (10.1016/j.geodrs.2024.e00902_bb0005) 1995; 46 Miller (10.1016/j.geodrs.2024.e00902_bb0220) 2021; 19 NASA JPL (10.1016/j.geodrs.2024.e00902_bb0235) 2022 Clarke (10.1016/j.geodrs.2024.e00902_bb0055) 2023; 232 Dinerstein (10.1016/j.geodrs.2024.e00902_bb0085) 2017; 67 Cowling (10.1016/j.geodrs.2024.e00902_bb0070) 1997 Carré (10.1016/j.geodrs.2024.e00902_bb0045) 2009; 148 Kuhn (10.1016/j.geodrs.2024.e00902_bb0170) 2013 Amazon Web Services (10.1016/j.geodrs.2024.e00902_bb0015) 2023 Jaynes (10.1016/j.geodrs.2024.e00902_bb0160) 1957; 106 Friedman (10.1016/j.geodrs.2024.e00902_bb0130) 1998 Phillips (10.1016/j.geodrs.2024.e00902_bb0265) 2004 Hastie (10.1016/j.geodrs.2024.e00902_bb0150) 2009 de Gruijter (10.1016/j.geodrs.2024.e00902_bb0080) 1977 Møller (10.1016/j.geodrs.2024.e00902_bb9071) 2020; 6 Elith (10.1016/j.geodrs.2024.e00902_bb0095) 2011; 17 Escadafal (10.1016/j.geodrs.2024.e00902_bb0105) 1994 Breiman (10.1016/j.geodrs.2024.e00902_bib347) 2001; 45 IUSS Working Group WRB (10.1016/j.geodrs.2024.e00902_bb0155) 2015 Truswell (10.1016/j.geodrs.2024.e00902_bb0315) 1977 Novianti (10.1016/j.geodrs.2024.e00902_bb0240) 2015; 16 Soil Classification Working Group (10.1016/j.geodrs.2024.e00902_bb0295) 1991 Soil Survey Staff (10.1016/j.geodrs.2024.e00902_bb0305) 2014 Chawla (10.1016/j.geodrs.2024.e00902_bb0050) 2002; 16 Burrough (10.1016/j.geodrs.2024.e00902_bb0035) 1989; 40 Palo (10.1016/j.geodrs.2024.e00902_bb0250) 2021 von Winterfeldt (10.1016/j.geodrs.2024.e00902_bb0320) 1986 Konovalov (10.1016/j.geodrs.2024.e00902_bb0165) 2018; 98 Morice (10.1016/j.geodrs.2024.e00902_bb0225) 2021; 126 Safanelli (10.1016/j.geodrs.2024.e00902_bb0280) 2020; 9 Ward (10.1016/j.geodrs.2024.e00902_bb0325) 2009; 65 Microsoft (10.1016/j.geodrs.2024.e00902_bb0215) 2023 Council for Geoscience (10.1016/j.geodrs.2024.e00902_bb0065) 2008 Fick (10.1016/j.geodrs.2024.e00902_bb0115) 2017; 37 Hartemink (10.1016/j.geodrs.2024.e00902_bb0145) 2014; 230–231 Dudík (10.1016/j.geodrs.2024.e00902_bb0090) 2009; 21 Akata (10.1016/j.geodrs.2024.e00902_bb0010) 2014; 36 Zhang (10.1016/j.geodrs.2024.e00902_bb0340) 2019; 343 Low (10.1016/j.geodrs.2024.e00902_bb0190) 2015 Merow (10.1016/j.geodrs.2024.e00902_bb0210) 2013; 36 |
References_xml | – volume: 20 start-page: 37 year: 1960 end-page: 46 ident: bb0060 article-title: A coefficient of agreement for nominal scales publication-title: Educ. Psychol. Meas. – volume: 202 start-page: 18 year: 2017 end-page: 27 ident: bb0140 article-title: Google earth engine: planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ. – volume: 23 start-page: 222 year: 1972 end-page: 234 ident: bb0330 article-title: Computer-based soil mapping of small areas from sample data II classification smoothing publication-title: J. Soil Sci. – start-page: 253 year: 1994 end-page: 259 ident: bb0105 article-title: Indices spectraux pour la de’gradation des milieux naturels en Tunisie aride publication-title: Proc. 6e‘me Symp. Int. Mesures Physiques et Signatures En Te’le’de’tection – year: 2023 ident: bb0135 article-title: Performance of evolutionary optimized machine learning for modeling total organic carbon in core samples of shale gas fields publication-title: Petroleum – year: 1977 ident: bb0315 article-title: The Geological Evolution of South Africa – volume: 239–240 start-page: 68 year: 2015 end-page: 83 ident: bb0030 article-title: Machine learning for predicting soil classes in three semi-arid landscapes publication-title: Geoderma – volume: 17 start-page: 43 year: 2011 end-page: 57 ident: bb0095 article-title: A statistical explanation of MaxEnt for ecologists publication-title: Divers. Distrib. – volume: 67 start-page: 534 year: 2017 end-page: 545 ident: bb0085 article-title: An ecoregion-based approach to protecting half the terrestrial realm publication-title: Bioscience – volume: 232 year: 2023 ident: bb0055 article-title: Enhanced carbon storage in semi-arid soils through termite activity publication-title: Catena (Amst) – volume: 36 start-page: 507 year: 2014 end-page: 520 ident: bb0010 article-title: Good practice in large-scale learning for image classification publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 11 start-page: 265 year: 2021 end-page: 275 ident: bb0185 article-title: Species-distribution modeling: advantages and limitations of its application. 2 publication-title: MaxEnt Biol. Bull. Rev. – volume: 148 start-page: 336 year: 2009 end-page: 345 ident: bb0045 article-title: Numerical classification of soil profile data using distance metrics publication-title: Geoderma – start-page: 1 year: 2017 end-page: 162 ident: bb0075 article-title: Understanding the social & environmental implications of global change publication-title: South African Risk and Vulnerability Atlas – volume: 126 year: 2021 ident: bb0245 article-title: Land surface air temperature variations across the globe updated to 2019: the CRUTEM5 data set publication-title: J. Geophys. Res. Atmos. – volume: 18 start-page: 2835 year: 1997 end-page: 2852 ident: bb0200 article-title: Visible spectrometric indices of hematite (Hm) and goethite (Gt) content in lateritic soils: the application of a thematic mapper (TM) image for soil-mapping in Brasilia, Brazil publication-title: Int. J. Remote Sens. – year: 1998 ident: bb0130 article-title: Additive Logistic Regression: A Statistical View of Boosting – start-page: 69 year: 2015 end-page: 80 ident: bb0190 article-title: Thermodynamics of soil systems: a personal perspective publication-title: Future Prospects for Soil Chemistry wiley – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: bb0050 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. – volume: 111 start-page: 1 year: 2015 end-page: 7 ident: bb0260 article-title: Spatial soil information in South Africa: situational analysis, limitations and challenges publication-title: S. Afr. J. Sci. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib347 article-title: Random forests publication-title: Mach. Learn. – volume: 27 start-page: 379 year: 1948 end-page: 423 ident: bb0285 article-title: From the mathematical theory of communication publication-title: Bell. Syst. Tech. J. – year: 1977 ident: bb0080 article-title: Numerical Classification of Soils and its Application in Survey – volume: 19 year: 2021 ident: bb0220 article-title: iSDAsoil: the first continent-scale soil property map at 30 m resolution provides a soil information revolution for Africa publication-title: PLoS Biol. – volume: 137 year: 2022 ident: bb0180 article-title: Application of the MaxEnt model in improving the accuracy of ecological red line identification: a case study of Zhanjiang publication-title: China Ecol. Indic. – year: 2016 ident: bb0175 article-title: Points of significance: model selection and overfitting publication-title: Nat. Methods – volume: 6 start-page: 269 year: 2020 end-page: 289 ident: bb9072 article-title: Oblique geographic coordinates as covariates for digital soil mapping publication-title: Soil – volume: 13 start-page: 1 year: 1987 end-page: 7 ident: bb0195 article-title: Primary productivity in arid lands: myths and realities publication-title: J. Arid Environ. – start-page: 77 year: 2021 end-page: 107 ident: bb0250 article-title: Dimensionality reduction techniques: principles, benefits, and limitations publication-title: Data Analytics in Bioinformatics – volume: 16 start-page: 199 year: 2015 ident: bb0240 article-title: Factors affecting the accuracy of a class prediction model in gene expression data publication-title: BMC Bioinform. – year: 2014 ident: bb0305 article-title: Keys to Soil Taxonomy – volume: 230–231 start-page: 305 year: 2014 end-page: 317 ident: bb0145 article-title: Towards digital soil morphometrics publication-title: Geoderma – volume: 65 start-page: 403 year: 2001 end-page: 413 ident: bb0310 article-title: Creation and interpolation of continuous soil layer classes in the lower Namoi Valley publication-title: Soil Sci. Soc. Am. J. – volume: 6 start-page: 269 year: 2020 end-page: 289 ident: bb9071 article-title: Oblique geographic coordinates as covariates for digital soil mapping publication-title: SOIL – volume: 46 start-page: 161 year: 1995 end-page: 168 ident: bb0005 article-title: Entropy and sustainability publication-title: Eur. J. Soil Sci. – year: 2023 ident: bb0215 article-title: Azure Portal Documentation – volume: 117 start-page: 3 year: 2003 end-page: 52 ident: bib346 publication-title: On digital soil mapping, Geoderma – start-page: 63 year: 1986 end-page: 89 ident: bb0320 article-title: Decision trees publication-title: Decision Analysis and Behavioral Research – year: 2008 ident: bb0065 article-title: Simplified Geological Map of South Africa. Pretoria – volume: 206 year: 2021 ident: bb0125 article-title: Numerical soil horizon classification from South Africa’s legacy database publication-title: Catena (Amst) – volume: 9 year: 2020 ident: bb0280 article-title: Terrain analysis in Google Earth Engine: a method adapted for high-performance global-scale analysis publication-title: ISPRS Int. J. Geoinf. – volume: 65 start-page: 554 year: 2009 end-page: 563 ident: bb0325 article-title: Presence-only data and the EM algorithm publication-title: Biometrics – start-page: 568 year: 2023 end-page: 578 ident: bb0345 article-title: Digital soil morphometrics publication-title: Encyclopedia of Soils in the Environment – year: 2015 ident: bb0155 article-title: World reference base for soil resources 2014, update 2015: international soil classification system for naming soils and creating legends for soil maps publication-title: World Soil Resources Reports No. 106, Rome, Italy – year: 2009 ident: bb0150 article-title: The Elements of Statistical Learning – year: 2018 ident: bb0300 article-title: Soil Classification. A Natural and Anthropogenic System for South Africa. ARC-NRE – volume: 40 start-page: 447 year: 1989 end-page: 492 ident: bb0035 article-title: Fuzzy mathematical methods for soil survey and land evaluation publication-title: J. Soil Sci. – volume: 37 start-page: 4302 year: 2017 end-page: 4315 ident: bb0115 article-title: WorldClim 2: new 1km spatial resolution climate surface for global land areas publication-title: Int. J. Climatol. – volume: 52 start-page: 25 year: 2014 end-page: 33 ident: bb0275 article-title: Broadband speed equity: a new digital divide? publication-title: Appl. Geogr. – start-page: 83 year: 2004 ident: bb0265 article-title: A maximum entropy approach to species distribution modeling publication-title: Twenty-First International Conference on Machine Learning - ICML ‘04 – volume: 90 start-page: 179 year: 1987 end-page: 208 ident: bb0255 article-title: Geomorphic evolution of southern Africa since the Mesozoic publication-title: S. Afr. JGeol. – volume: 219 start-page: 1385 year: 1991 end-page: 1391 ident: bb0100 article-title: Etude des proprie’te’s spectrales des sols arides applique’e a‘ l’ame’lioration des indices ve’ge’tation obtenus par te’le’de’tection publication-title: Comp. Rendus l’Acad. Sci. II – year: 2022 ident: bb0235 article-title: NASADEM Merged DEM Global 1 Arc Second V001 – volume: 190 start-page: 231 year: 2006 end-page: 259 ident: bb0270 article-title: Maximum entropy modeling of species geographic distributions publication-title: Ecol. Model. – year: 2020 ident: bb0290 article-title: Predicting Classification Accuracy when Adding New Unobserved Classes – volume: 4 start-page: 195 year: 1970 end-page: 208 ident: bb0025 article-title: Purposes of soil classification publication-title: Geoderma – start-page: 615 year: 2016 end-page: 625 ident: bb0020 article-title: Random variables and uncertainty analysis publication-title: Marine Structural Design – year: 2013 ident: bb0170 article-title: Applied Predictive Modeling – year: 1997 ident: bb0070 article-title: Vegetation of Southern Africa – volume: 29 start-page: 97 year: 1989 end-page: 101 ident: bb0335 article-title: SMILES. 2. Algorithm for generation of unique SMILES notation publication-title: J. Chem. Inf. Comput. Sci. – volume: 36 start-page: 237 year: 2019 end-page: 247 ident: bb0120 article-title: High-resolution digital soil mapping of multiple soil properties: an alternative to the traditional field survey? publication-title: S. Afr. J. Plant Soil – year: 1991 ident: bb0295 article-title: Soil Classificatioin: A Taxonomic System for South Africa – year: 2006 ident: bb0230 article-title: The Vegetation of South Africa – year: 2023 ident: bb0015 article-title: AWS General Reference: Reference guide – volume: 10 start-page: 310 year: 1978 end-page: 339 ident: bb0040 article-title: Late Cenozoic paleoclimates of the Gaap escarpment, Kalahari Margin, South Africa publication-title: Quant. Res. – volume: 106 start-page: 620 year: 1957 end-page: 630 ident: bb0160 article-title: Information theory and statistical mechanics publication-title: Phys. Rev. – volume: 21 year: 2009 ident: bb0090 article-title: Generative and discriminative learning with unknown labeling bias publication-title: Adv. Neural Inf. Proces. Syst. – volume: 66 start-page: 17 year: 1998 end-page: 28 ident: bb0205 article-title: Relationships between satellite-based radiometric indices simulated using laboratory reflectance data and typic soil color of an arid environment publication-title: Remote Sens. Environ. – volume: 36 start-page: 1058 year: 2013 end-page: 1069 ident: bb0210 article-title: A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter publication-title: Ecography – volume: 343 start-page: 97 year: 2019 end-page: 115 ident: bb0340 article-title: A method for automated soil horizon delineation using digital images publication-title: Geoderma – volume: 126 year: 2021 ident: bb0225 article-title: An updated assessment of near-surface temperature change from 1850: the HadCRUT5 data set publication-title: J. Geophys. Res. Atmos. – start-page: 9 year: 2001 end-page: 10 ident: bb0110 article-title: Chapter 2: The Soil groups: distribution, properties, classification, genesis and use publication-title: Soils of South Africa – volume: 98 start-page: 1282 year: 2018 end-page: 1293.e4 ident: bb0165 article-title: Neurocomputational dynamics of sequence learning publication-title: Neuron – start-page: 615 year: 2016 ident: 10.1016/j.geodrs.2024.e00902_bb0020 article-title: Random variables and uncertainty analysis – volume: 37 start-page: 4302 year: 2017 ident: 10.1016/j.geodrs.2024.e00902_bb0115 article-title: WorldClim 2: new 1km spatial resolution climate surface for global land areas publication-title: Int. J. Climatol. doi: 10.1002/joc.5086 – volume: 52 start-page: 25 year: 2014 ident: 10.1016/j.geodrs.2024.e00902_bb0275 article-title: Broadband speed equity: a new digital divide? publication-title: Appl. Geogr. doi: 10.1016/j.apgeog.2014.04.008 – year: 2016 ident: 10.1016/j.geodrs.2024.e00902_bb0175 article-title: Points of significance: model selection and overfitting publication-title: Nat. Methods doi: 10.1038/nmeth.3968 – volume: 36 start-page: 1058 year: 2013 ident: 10.1016/j.geodrs.2024.e00902_bb0210 article-title: A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter publication-title: Ecography doi: 10.1111/j.1600-0587.2013.07872.x – volume: 66 start-page: 17 year: 1998 ident: 10.1016/j.geodrs.2024.e00902_bb0205 article-title: Relationships between satellite-based radiometric indices simulated using laboratory reflectance data and typic soil color of an arid environment publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(98)00030-3 – volume: 10 start-page: 310 year: 1978 ident: 10.1016/j.geodrs.2024.e00902_bb0040 article-title: Late Cenozoic paleoclimates of the Gaap escarpment, Kalahari Margin, South Africa publication-title: Quant. Res. – volume: 230–231 start-page: 305 year: 2014 ident: 10.1016/j.geodrs.2024.e00902_bb0145 article-title: Towards digital soil morphometrics publication-title: Geoderma doi: 10.1016/j.geoderma.2014.03.008 – volume: 17 start-page: 43 year: 2011 ident: 10.1016/j.geodrs.2024.e00902_bb0095 article-title: A statistical explanation of MaxEnt for ecologists publication-title: Divers. Distrib. doi: 10.1111/j.1472-4642.2010.00725.x – volume: 106 start-page: 620 year: 1957 ident: 10.1016/j.geodrs.2024.e00902_bb0160 article-title: Information theory and statistical mechanics publication-title: Phys. Rev. doi: 10.1103/PhysRev.106.620 – year: 2008 ident: 10.1016/j.geodrs.2024.e00902_bb0065 – volume: 90 start-page: 179 year: 1987 ident: 10.1016/j.geodrs.2024.e00902_bb0255 article-title: Geomorphic evolution of southern Africa since the Mesozoic publication-title: S. Afr. JGeol. – start-page: 1 year: 2017 ident: 10.1016/j.geodrs.2024.e00902_bb0075 article-title: Understanding the social & environmental implications of global change – volume: 4 start-page: 195 year: 1970 ident: 10.1016/j.geodrs.2024.e00902_bb0025 article-title: Purposes of soil classification publication-title: Geoderma doi: 10.1016/0016-7061(70)90003-0 – volume: 20 start-page: 37 year: 1960 ident: 10.1016/j.geodrs.2024.e00902_bb0060 article-title: A coefficient of agreement for nominal scales publication-title: Educ. Psychol. Meas. doi: 10.1177/001316446002000104 – volume: 232 year: 2023 ident: 10.1016/j.geodrs.2024.e00902_bb0055 article-title: Enhanced carbon storage in semi-arid soils through termite activity publication-title: Catena (Amst) – volume: 137 year: 2022 ident: 10.1016/j.geodrs.2024.e00902_bb0180 article-title: Application of the MaxEnt model in improving the accuracy of ecological red line identification: a case study of Zhanjiang publication-title: China Ecol. Indic. – year: 2014 ident: 10.1016/j.geodrs.2024.e00902_bb0305 – volume: 40 start-page: 447 year: 1989 ident: 10.1016/j.geodrs.2024.e00902_bb0035 article-title: Fuzzy mathematical methods for soil survey and land evaluation publication-title: J. Soil Sci. doi: 10.1111/j.1365-2389.1989.tb01290.x – volume: 18 start-page: 2835 year: 1997 ident: 10.1016/j.geodrs.2024.e00902_bb0200 article-title: Visible spectrometric indices of hematite (Hm) and goethite (Gt) content in lateritic soils: the application of a thematic mapper (TM) image for soil-mapping in Brasilia, Brazil publication-title: Int. J. Remote Sens. doi: 10.1080/014311697217369 – start-page: 568 year: 2023 ident: 10.1016/j.geodrs.2024.e00902_bb0345 article-title: Digital soil morphometrics – year: 1997 ident: 10.1016/j.geodrs.2024.e00902_bb0070 – year: 2013 ident: 10.1016/j.geodrs.2024.e00902_bb0170 – volume: 36 start-page: 237 year: 2019 ident: 10.1016/j.geodrs.2024.e00902_bb0120 article-title: High-resolution digital soil mapping of multiple soil properties: an alternative to the traditional field survey? publication-title: S. Afr. J. Plant Soil doi: 10.1080/02571862.2019.1570566 – volume: 6 start-page: 269 year: 2020 ident: 10.1016/j.geodrs.2024.e00902_bb9072 article-title: Oblique geographic coordinates as covariates for digital soil mapping publication-title: Soil doi: 10.5194/soil-6-269-2020 – volume: 19 year: 2021 ident: 10.1016/j.geodrs.2024.e00902_bb0220 article-title: iSDAsoil: the first continent-scale soil property map at 30 m resolution provides a soil information revolution for Africa publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3001441 – start-page: 63 year: 1986 ident: 10.1016/j.geodrs.2024.e00902_bb0320 article-title: Decision trees – year: 2015 ident: 10.1016/j.geodrs.2024.e00902_bb0155 article-title: World reference base for soil resources 2014, update 2015: international soil classification system for naming soils and creating legends for soil maps – start-page: 83 year: 2004 ident: 10.1016/j.geodrs.2024.e00902_bb0265 article-title: A maximum entropy approach to species distribution modeling – start-page: 69 year: 2015 ident: 10.1016/j.geodrs.2024.e00902_bb0190 article-title: Thermodynamics of soil systems: a personal perspective – volume: 36 start-page: 507 year: 2014 ident: 10.1016/j.geodrs.2024.e00902_bb0010 article-title: Good practice in large-scale learning for image classification publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.146 – year: 2023 ident: 10.1016/j.geodrs.2024.e00902_bb0015 – volume: 219 start-page: 1385 year: 1991 ident: 10.1016/j.geodrs.2024.e00902_bb0100 article-title: Etude des proprie’te’s spectrales des sols arides applique’e a‘ l’ame’lioration des indices ve’ge’tation obtenus par te’le’de’tection publication-title: Comp. Rendus l’Acad. Sci. II – start-page: 9 year: 2001 ident: 10.1016/j.geodrs.2024.e00902_bb0110 article-title: Chapter 2: The Soil groups: distribution, properties, classification, genesis and use – volume: 126 year: 2021 ident: 10.1016/j.geodrs.2024.e00902_bb0245 article-title: Land surface air temperature variations across the globe updated to 2019: the CRUTEM5 data set publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2019JD032352 – volume: 13 start-page: 1 year: 1987 ident: 10.1016/j.geodrs.2024.e00902_bb0195 article-title: Primary productivity in arid lands: myths and realities publication-title: J. Arid Environ. doi: 10.1016/S0140-1963(18)31148-0 – year: 2023 ident: 10.1016/j.geodrs.2024.e00902_bb0215 – start-page: 253 year: 1994 ident: 10.1016/j.geodrs.2024.e00902_bb0105 article-title: Indices spectraux pour la de’gradation des milieux naturels en Tunisie aride – volume: 202 start-page: 18 year: 2017 ident: 10.1016/j.geodrs.2024.e00902_bb0140 article-title: Google earth engine: planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.031 – year: 2022 ident: 10.1016/j.geodrs.2024.e00902_bb0235 – volume: 343 start-page: 97 year: 2019 ident: 10.1016/j.geodrs.2024.e00902_bb0340 article-title: A method for automated soil horizon delineation using digital images publication-title: Geoderma doi: 10.1016/j.geoderma.2019.02.002 – volume: 65 start-page: 554 year: 2009 ident: 10.1016/j.geodrs.2024.e00902_bb0325 article-title: Presence-only data and the EM algorithm publication-title: Biometrics doi: 10.1111/j.1541-0420.2008.01116.x – volume: 46 start-page: 161 year: 1995 ident: 10.1016/j.geodrs.2024.e00902_bb0005 article-title: Entropy and sustainability publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.1995.tb01823.x – year: 1991 ident: 10.1016/j.geodrs.2024.e00902_bb0295 – volume: 67 start-page: 534 year: 2017 ident: 10.1016/j.geodrs.2024.e00902_bb0085 article-title: An ecoregion-based approach to protecting half the terrestrial realm publication-title: Bioscience doi: 10.1093/biosci/bix014 – year: 2020 ident: 10.1016/j.geodrs.2024.e00902_bb0290 – volume: 190 start-page: 231 year: 2006 ident: 10.1016/j.geodrs.2024.e00902_bb0270 article-title: Maximum entropy modeling of species geographic distributions publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2005.03.026 – volume: 117 start-page: 3 year: 2003 ident: 10.1016/j.geodrs.2024.e00902_bib346 publication-title: On digital soil mapping, Geoderma – volume: 27 start-page: 379 year: 1948 ident: 10.1016/j.geodrs.2024.e00902_bb0285 article-title: From the mathematical theory of communication publication-title: Bell. Syst. Tech. J. doi: 10.1002/j.1538-7305.1948.tb01338.x – volume: 16 start-page: 321 year: 2002 ident: 10.1016/j.geodrs.2024.e00902_bb0050 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 – volume: 23 start-page: 222 year: 1972 ident: 10.1016/j.geodrs.2024.e00902_bb0330 article-title: Computer-based soil mapping of small areas from sample data II classification smoothing publication-title: J. Soil Sci. doi: 10.1111/j.1365-2389.1972.tb01655.x – volume: 206 year: 2021 ident: 10.1016/j.geodrs.2024.e00902_bb0125 article-title: Numerical soil horizon classification from South Africa’s legacy database publication-title: Catena (Amst) – volume: 126 year: 2021 ident: 10.1016/j.geodrs.2024.e00902_bb0225 article-title: An updated assessment of near-surface temperature change from 1850: the HadCRUT5 data set publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2019JD032361 – year: 2023 ident: 10.1016/j.geodrs.2024.e00902_bb0135 article-title: Performance of evolutionary optimized machine learning for modeling total organic carbon in core samples of shale gas fields publication-title: Petroleum – year: 1998 ident: 10.1016/j.geodrs.2024.e00902_bb0130 – volume: 239–240 start-page: 68 year: 2015 ident: 10.1016/j.geodrs.2024.e00902_bb0030 article-title: Machine learning for predicting soil classes in three semi-arid landscapes publication-title: Geoderma doi: 10.1016/j.geoderma.2014.09.019 – volume: 21 year: 2009 ident: 10.1016/j.geodrs.2024.e00902_bb0090 article-title: Generative and discriminative learning with unknown labeling bias publication-title: Adv. Neural Inf. Proces. Syst. – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.geodrs.2024.e00902_bib347 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – year: 2009 ident: 10.1016/j.geodrs.2024.e00902_bb0150 – volume: 9 year: 2020 ident: 10.1016/j.geodrs.2024.e00902_bb0280 article-title: Terrain analysis in Google Earth Engine: a method adapted for high-performance global-scale analysis publication-title: ISPRS Int. J. Geoinf. – volume: 148 start-page: 336 year: 2009 ident: 10.1016/j.geodrs.2024.e00902_bb0045 article-title: Numerical classification of soil profile data using distance metrics publication-title: Geoderma doi: 10.1016/j.geoderma.2008.11.008 – volume: 98 start-page: 1282 year: 2018 ident: 10.1016/j.geodrs.2024.e00902_bb0165 article-title: Neurocomputational dynamics of sequence learning publication-title: Neuron doi: 10.1016/j.neuron.2018.05.013 – year: 2018 ident: 10.1016/j.geodrs.2024.e00902_bb0300 – year: 1977 ident: 10.1016/j.geodrs.2024.e00902_bb0080 – volume: 11 start-page: 265 year: 2021 ident: 10.1016/j.geodrs.2024.e00902_bb0185 article-title: Species-distribution modeling: advantages and limitations of its application. 2 publication-title: MaxEnt Biol. Bull. Rev. doi: 10.1134/S2079086421030087 – volume: 6 start-page: 269 year: 2020 ident: 10.1016/j.geodrs.2024.e00902_bb9071 article-title: Oblique geographic coordinates as covariates for digital soil mapping publication-title: SOIL doi: 10.5194/soil-6-269-2020 – volume: 16 start-page: 199 year: 2015 ident: 10.1016/j.geodrs.2024.e00902_bb0240 article-title: Factors affecting the accuracy of a class prediction model in gene expression data publication-title: BMC Bioinform. doi: 10.1186/s12859-015-0610-4 – year: 1977 ident: 10.1016/j.geodrs.2024.e00902_bb0315 – volume: 29 start-page: 97 year: 1989 ident: 10.1016/j.geodrs.2024.e00902_bb0335 article-title: SMILES. 2. Algorithm for generation of unique SMILES notation publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci00062a008 – start-page: 77 year: 2021 ident: 10.1016/j.geodrs.2024.e00902_bb0250 article-title: Dimensionality reduction techniques: principles, benefits, and limitations – volume: 111 start-page: 1 year: 2015 ident: 10.1016/j.geodrs.2024.e00902_bb0260 article-title: Spatial soil information in South Africa: situational analysis, limitations and challenges publication-title: S. Afr. J. Sci. doi: 10.17159/sajs.2015/20140178 – volume: 65 start-page: 403 year: 2001 ident: 10.1016/j.geodrs.2024.e00902_bb0310 article-title: Creation and interpolation of continuous soil layer classes in the lower Namoi Valley publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2001.652403x – year: 2006 ident: 10.1016/j.geodrs.2024.e00902_bb0230 |
SSID | ssj0002953762 |
Score | 2.3092473 |
Snippet | Traditional soil classification systems are designed to communicate information; however, surveyor biases and tacit knowledge can lead to subjective soil class... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e00902 |
SubjectTerms | algorithms class Digital soil mapping Google Earth Engine Gradient tree boost Internet Maximum entropy savannas shrublands soil classification South Africa subsoil trees |
Title | A comparison of country-scale subsoil predictions between a numeric and a taxonomic soil classification system |
URI | https://dx.doi.org/10.1016/j.geodrs.2024.e00902 https://www.proquest.com/docview/3154256243 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7qXryIouKbCF7jrkmatsdlUVYX9-ADvYW8KivSLvsA_ffOpK2gIIKnNoWUMklnvna--YaQs8JZb6VJsDiGM0DEKcsVD-yCFxDNvHM9i7XDt2M1fJQ3z8nzChm0tTBIq2x8f-3To7durnQba3ank0n3nosoGSSRBQk4X66SDhe5gq3d6V-PhuOvXy08R80SHtvMJZzhnLaILjK9XkLlZyjdzeV56CFR8bcg9cNdxxh0tUk2GvBI-_XzbZGVUG6Tsk_dVzNBWhU0tn-YfbA5mD_QOXiGavJGpzNMycRdRhtyFjW0XMaMDTWlh9HCvNdlyjROcYiskUoUV4_Wos875PHq8mEwZE0XBeaEkAsGDsyhsJZVwQQlfKaE9R7GPMukS0XIfa4grBvuXeJT5WwWIO4HKVKHYoBil6yVVRn2CFWJsJkTRZFIC9-FFwbOg7E9izJvmbL7hLVm09NaLEO3LLJXXZtZo5l1beZ9kra21d8WXYM__2PmabsUGt4HTHKYMlTLuRaACQHGcSkO_n33Q7LOsc1vpJodkbXFbBmOAXss7Emzt_A4unsafQIB6txO |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66HvQiiopvI3iNuyZp2j0ui7K-9uIK3kJelRVpl32A_ntn0nZBQQRvbSGlfEm_mTbffEPIRe6st9IkWBzDGWTEKesqHtgVzyGaeec6FmuHH4dq8CzvXpKXFdJvamFQVllzf8Xpka3rK-0azfZkPG4_cREtgySqICHPl6tkDd2pkhZZ693eD4bLXy28i54lPLaZSzjDMU0RXVR6vYbST9G6m8vL0EGh4m9B6gddxxh0s0U26-SR9qrn2yYrodghRY-6ZTNBWuY0tn-YfrIZwB_oDJihHL_TyRS3ZOIqo7U4ixpaLOKODTWFh7O5-ajKlGkc4jCzRilRnD1amT7vkueb61F_wOouCswJIecMCMyhsZZVwQQlfKaE9R7OeZZJl4rQ9V0FYd1w7xKfKmezAHE_SJE6NAMUe6RVlEXYJ1QlwmZO5HkiLXwXXhk4DsZ2LNq8ZcoeENbApieVWYZuVGRvuoJZI8y6gvmApA22-tuka-DzP0aeN1Oh4X3ATQ5ThHIx0wJyQkjjuBSH_777GVkfjB4f9MPt8P6IbHBs-RtlZ8ekNZ8uwgnkIXN7Wq-zL32U3ZE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+country-scale+subsoil+predictions+between+a+numeric+and+a+taxonomic+soil+classification+system&rft.jtitle=Geoderma+Regional&rft.au=Flynn%2C+Trevan&rft.au=Clarke%2C+Catherine&rft.au=Kostecki%2C+Rosana&rft.au=Rebi%2C+Ansa&rft.date=2025-03-01&rft.issn=2352-0094&rft.eissn=2352-0094&rft.volume=40&rft.spage=e00902&rft_id=info:doi/10.1016%2Fj.geodrs.2024.e00902&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geodrs_2024_e00902 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon |