Validation of a Time-Distributed residual LSTM–CNN and BiLSTM for equine behavior recognition using collar-worn sensors
•Deep neural network recognizes equine behavior from collar worn sensor data.•Framework combines local spatiotemporal and long-term temporal feature extraction.•Model achieved > 93 % accuracy in 10-fold and > 85 % in leave-one-out cross-validation.•Performance varied across behaviors and housi...
Saved in:
Published in | Computers and electronics in agriculture Vol. 231; p. 109999 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Deep neural network recognizes equine behavior from collar worn sensor data.•Framework combines local spatiotemporal and long-term temporal feature extraction.•Model achieved > 93 % accuracy in 10-fold and > 85 % in leave-one-out cross-validation.•Performance varied across behaviors and housing conditions.•Model recognized locomotion, resting and feeding behavior with high accuracy.
Equine daily behavior is a key welfare indicator, offering insights into how environmental and training conditions influence health and well-being. Continuous direct behavior observation, however, is labor-intensive and impractical for large-scale studies. While advances in wearable sensors and deep learning have revolutionized human and animal activity recognition, automated wearable sensor systems for recognizing a diverse repertoire of equine daily behaviors remain limited.
We propose a hierarchical deep learning framework combining a Time-Distributed Residual LSTM-CNN for extracting local spatiotemporal features from short subsegments of sensor data and a bidirectional LSTM (BiLSTM) for capturing long-term temporal dependencies. Our model was validated using approximately 60 h of tri-axial accelerometer and gyroscope data collected from 10 horses wearing collar-mounted sensors. Fifteen daily behaviors were labeled based on video recordings. The model achieved an overall classification accuracy of > 93 % in 10-fold cross-validation and > 85 % in leave-one-subject-out cross-validation. The classification performance was significantly affected by housing conditions and the associated varying frequency of behaviors in the dataset.
This study provides a valid framework for sensor-based automatic behavior recognition in horses, capable of capturing both local spatiotemporal and long-term temporal dependencies from raw sensor data. Our proposed framework enables scalable and reliable monitoring of equine daily behaviors and makes an important contribution to the development of automated, data-driven approaches to equine welfare assessment. |
---|---|
AbstractList | Equine daily behavior is a key welfare indicator, offering insights into how environmental and training conditions influence health and well-being. Continuous direct behavior observation, however, is labor-intensive and impractical for large-scale studies. While advances in wearable sensors and deep learning have revolutionized human and animal activity recognition, automated wearable sensor systems for recognizing a diverse repertoire of equine daily behaviors remain limited. We propose a hierarchical deep learning framework combining a Time-Distributed Residual LSTM-CNN for extracting local spatiotemporal features from short subsegments of sensor data and a bidirectional LSTM (BiLSTM) for capturing long-term temporal dependencies. Our model was validated using approximately 60 h of tri-axial accelerometer and gyroscope data collected from 10 horses wearing collar-mounted sensors. Fifteen daily behaviors were labeled based on video recordings. The model achieved an overall classification accuracy of > 93 % in 10-fold cross-validation and > 85 % in leave-one-subject-out cross-validation. The classification performance was significantly affected by housing conditions and the associated varying frequency of behaviors in the dataset. This study provides a valid framework for sensor-based automatic behavior recognition in horses, capable of capturing both local spatiotemporal and long-term temporal dependencies from raw sensor data. Our proposed framework enables scalable and reliable monitoring of equine daily behaviors and makes an important contribution to the development of automated, data-driven approaches to equine welfare assessment. •Deep neural network recognizes equine behavior from collar worn sensor data.•Framework combines local spatiotemporal and long-term temporal feature extraction.•Model achieved > 93 % accuracy in 10-fold and > 85 % in leave-one-out cross-validation.•Performance varied across behaviors and housing conditions.•Model recognized locomotion, resting and feeding behavior with high accuracy. Equine daily behavior is a key welfare indicator, offering insights into how environmental and training conditions influence health and well-being. Continuous direct behavior observation, however, is labor-intensive and impractical for large-scale studies. While advances in wearable sensors and deep learning have revolutionized human and animal activity recognition, automated wearable sensor systems for recognizing a diverse repertoire of equine daily behaviors remain limited. We propose a hierarchical deep learning framework combining a Time-Distributed Residual LSTM-CNN for extracting local spatiotemporal features from short subsegments of sensor data and a bidirectional LSTM (BiLSTM) for capturing long-term temporal dependencies. Our model was validated using approximately 60 h of tri-axial accelerometer and gyroscope data collected from 10 horses wearing collar-mounted sensors. Fifteen daily behaviors were labeled based on video recordings. The model achieved an overall classification accuracy of > 93 % in 10-fold cross-validation and > 85 % in leave-one-subject-out cross-validation. The classification performance was significantly affected by housing conditions and the associated varying frequency of behaviors in the dataset. This study provides a valid framework for sensor-based automatic behavior recognition in horses, capable of capturing both local spatiotemporal and long-term temporal dependencies from raw sensor data. Our proposed framework enables scalable and reliable monitoring of equine daily behaviors and makes an important contribution to the development of automated, data-driven approaches to equine welfare assessment. |
ArticleNumber | 109999 |
Author | Kirsch, Katharina Pilger, Franziska Strutzke, Saskia Klitzing, Lara Hoffmann, Gundula Thöne-Reineke, Christa |
Author_xml | – sequence: 1 givenname: Katharina surname: Kirsch fullname: Kirsch, Katharina email: katharina.kirsch@fu-berlin.de organization: Department Sensors and Modeling, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100 14469 Potsdam, Germany – sequence: 2 givenname: Saskia surname: Strutzke fullname: Strutzke, Saskia organization: Department Sensors and Modeling, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100 14469 Potsdam, Germany – sequence: 3 givenname: Lara surname: Klitzing fullname: Klitzing, Lara organization: Institute for Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Königsweg 67 14163 Berlin, Germany – sequence: 4 givenname: Franziska surname: Pilger fullname: Pilger, Franziska organization: Graf Lehndorff Institute for Equine Science, Vetmeduni Vienna 16845 Neustadt (Dosse), Germany – sequence: 5 givenname: Christa surname: Thöne-Reineke fullname: Thöne-Reineke, Christa organization: Institute for Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Königsweg 67 14163 Berlin, Germany – sequence: 6 givenname: Gundula surname: Hoffmann fullname: Hoffmann, Gundula organization: Department Sensors and Modeling, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100 14469 Potsdam, Germany |
BookMark | eNp9kDtOA0EMhqcACQjcgGJKmg07-94GCcJTCqEg0I7m4Q2ONjNhZjcoHXfghpyECUuNG8u_7V_2d0T2jDVAyCmLxyxmxflyrOxqLRbjJE7yINUh9shhaFURK-r6gBx5v4xDXVflIdm-iha16NAaahsq6BxXEF2j7xzKvgNNHXjUvWjp9Hn--P35NZnNqDCaXuFOoI11FN57NEAlvIkNhtqBsguDv6a9R7OgyratcNGHdYZ6MN46f0z2G9F6OPnLI_JyezOf3EfTp7uHyeU0UmmadZFQjDWySWUMpZS10HWikyxLK5lBkbJcFqlgmaqyIErRlHGZK0ikKjVTRVmpdETOBt-1s-89-I6v0CsI9xiwvecpK_KqyOI6D6PZMKqc9d5Bw9cOV8JtOYv5ji5f8oEu39HlA92wdjGsQXhjg-C4VwhGgcZAouPa4v8GPz8ui18 |
Cites_doi | 10.1145/2750858.2807551 10.1207/s15516709cog1402_1 10.1016/j.compag.2019.105139 10.3390/s22062360 10.1016/S0168-1591(02)00205-8 10.1109/5.726791 10.1111/evj.13130 10.3390/s16010115 10.1007/s00778-022-00775-9 10.1016/j.applanim.2007.08.007 10.1109/ACCESS.2020.3010715 10.1038/s41598-020-73215-9 10.3390/ani10020294 10.1016/j.biosystemseng.2024.04.014 10.3390/s23146511 10.1145/2638728.2641306 10.1016/j.compag.2023.108043 10.1162/neco.1997.9.8.1735 10.3390/ani10030371 10.1242/jeb.01658 10.1017/S175173111400247X 10.1016/j.applanim.2008.03.003 10.1016/j.applanim.2017.02.016 10.1016/j.compag.2014.01.001 10.3390/s22187082 10.1109/CVPR.2016.90 10.2746/042516405775314826 10.3390/s18030850 10.3390/s24237791 10.3390/rs16030533 10.3390/s24248170 10.1109/ACCESS.2020.3037715 10.1109/ACCESS.2020.2982225 10.1016/j.applanim.2015.09.005 10.3390/ani11030850 10.1038/nature14539 |
ContentType | Journal Article |
Copyright | 2025 The Authors |
Copyright_xml | – notice: 2025 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.compag.2025.109999 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
ExternalDocumentID | 10_1016_j_compag_2025_109999 S016816992500105X |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6I. 6J9 7-5 71M 8P~ 9JM 9JN AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABBQC ABFNM ABFRF ABGRD ABJNI ABKYH ABMAC ABMZM ABRWV ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACIUM ACIWK ACMHX ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO ADQTV ADSLC AEBSH AEFWE AEIPS AEKER AENEX AEQOU AEUPX AEXOQ AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWPP AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLV HLZ HVGLF HZ~ IHE J1W KOM LG9 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- ROL RPZ SAB SBC SDF SDG SES SEW SNL SPC SPCBC SSA SSH SSV SSZ T5K UHS UNMZH WUQ Y6R ~G- ~KM AAYXX AGRNS CITATION RIG 7S9 L.6 |
ID | FETCH-LOGICAL-c334t-ac11fbf3b0e7bb9ad92d24438b4e6315b63a14c84244baf7075ce2bc7d1c678c3 |
IEDL.DBID | .~1 |
ISSN | 0168-1699 |
IngestDate | Fri Aug 22 20:35:32 EDT 2025 Thu Jul 31 00:45:31 EDT 2025 Sat Aug 30 17:14:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Behavior classification Deep learning IMU Wearable sensors Equine activity recognition |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-ac11fbf3b0e7bb9ad92d24438b4e6315b63a14c84244baf7075ce2bc7d1c678c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S016816992500105X |
PQID | 3165864095 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3165864095 crossref_primary_10_1016_j_compag_2025_109999 elsevier_sciencedirect_doi_10_1016_j_compag_2025_109999 |
PublicationCentury | 2000 |
PublicationDate | April 2025 2025-04-00 20250401 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: April 2025 |
PublicationDecade | 2020 |
PublicationTitle | Computers and electronics in agriculture |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Li, Wang (b0140) 2022; 22 Gholamiangonabadi, Kiselov, Grolinger (b0090) 2020; 8 Mills, D.S., McDonnell, S. (Eds.), 2009. The domestic horse: The origins, development and management of its behaviour. Cambridge University Press, Cambridge, 249 Serra Bragança, Broomé, Rhodin, Björnsdóttir, Gunnarsson, Voskamp, Persson-Sjodin, Back, Lindgren, Novoa-Bravo, Gmel, Roepstorff, van der Zwaag, van Weeren, Hernlund (b0200) 2020; 10 Ashley, Waterman-Pearson, Whay (b0010) 2005; 37 Hausberger, Lerch, Guilbaud, Stomp, Grandgeorge, Henry, Lesimple (b0105) 2020; 10 He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep Residual Learning for Image Recognition, in Demrozi, Pravadelli, Bihorac, Rashidi (b0055) 2020; 8 Hochreiter, Schmidhuber (b0115) 1997; 9 Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing Adjunct Publication. UbiComp '14: The 2014 ACM Conference on Ubiquitous Computing, Seattle Washington. 13 09 2014 17 09 2014. ACM, New York, NY, pp. DuBois, Zakrajsek, Haley, Merkies (b0060) 2015; 9 Ordóñez, Roggen (b0175) 2016; 16 Whang, Roh, Song, Lee (b0215) 2023; 32 Sagawa, Raghunathan, Wei Koh, Liang (b0195) 2020; abs/2005.04345. Lesimple (b0135) 2020; 10 Lockhart, J.W., Weiss, G.M., 2014. Limitations with activity recognition methodology & data sets, in Farhadpour, Warner, Maxwell (b0075) 2024; 16 Bragança, Colonna, Oliveira, Souto (b0035) 2022; 22 Bento, Rebelo, Carreiro, Ravache, Barandas (b0025) 2023; 23 Fercher, Bartsch, Kluge, Schneider, Liedtke, Schleichardt, Ueberschär (b0080) 2024; 24 pp. Pritchett, Ulibarri, Roberts, Schneider, Sellon (b0185) 2003; 80 Dehghani, A., Glatard, T., Shihab, E., 2019. Subject Cross Validation in Human Activity Recognition. http://arxiv.org/pdf/1904.02666. Pfau, Witte, Wilson (b0180) 2005; 208 Maisonpierre, Sutton, Harris, Menzies-Gow, Weller, Pfau (b0155) 2019; 51 Auer, Kelemen, Engl, Jenner (b0015) 2021; 11 Eerdekens, Deruyck, Fontaine, Martens, de Poorter, Joseph (b0065) 2020; 168 LeCun, Bengio, Hinton (b0130) 2015; 521 Elman (b0070) 1990; 14 García, Luengo, Herrera (b0085) 2015 Hausberger, Fureix, Lesimple (b0100) 2016; 175 1041–1051. Bosch, Serra Bragança, Marin-Perianu, Marin-Perianu, van der Zwaag, Voskamp, Back, van Weeren, Havinga (b0030) 2018; 18 Qin, X., Wang, J., Chen, Y., Lu, W., Jiang, X., 2022. Domain Generalization for Activity Recognition via Adaptive Feature Fusion. http://arxiv.org/pdf/2207.11221. Waran, Randle (b0210) 2017; 190 770–778. Xia, Huang, Wang (b0220) 2020; 8 Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing. UbiComp '15: The 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka Japan. 07 09 2015 11 09 2015. ACM, New York, NY, USA, pp. Liu, Zhou, Zheng, Bai, Chen, Guo (b0145) 2024; 24 Martin-Cirera, Nowak, Norton, Auer, Oczak (b0165) 2024; 242 Benhajali, Richard-Yris, Leroux, Ezzaouia, Charfi, Hausberger (b0020) 2008; 112 van der Maaten, Hinton (b0120) 2008; 9 Anderson, Morrice-West, Walmsley, Fisher, Whitton, Hitchens (b0005) 2022 Visser, Ellis, van Reenen (b0205) 2008; 114 Zhou, Liu, Qiao, Xiang, Loy (b0225) 2022; 13 Crecan, Morar, Lupsan, Repciuc, Rus, Pestean (b0045) 2022; 22 Burla, Ostertag, Schulze Westerath, Hillmann (b0040) 2014; 102 Hammerla, N.Y., Plötz, T., 2015. Let's (not) stick together, in Lecun, Bottou, Bengio, Haffner (b0125) 1998; 86 Mao, Huang, Wang, Liu (b0160) 2023; 211 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA. 27.06.2016 - 30.06.2016. IEEE, pp. 747–756. Ordóñez (10.1016/j.compag.2025.109999_b0175) 2016; 16 Zhou (10.1016/j.compag.2025.109999_b0225) 2022; 13 Anderson (10.1016/j.compag.2025.109999_b0005) 2022 Hochreiter (10.1016/j.compag.2025.109999_b0115) 1997; 9 Pritchett (10.1016/j.compag.2025.109999_b0185) 2003; 80 Serra Bragança (10.1016/j.compag.2025.109999_b0200) 2020; 10 Whang (10.1016/j.compag.2025.109999_b0215) 2023; 32 Ashley (10.1016/j.compag.2025.109999_b0010) 2005; 37 García (10.1016/j.compag.2025.109999_b0085) 2015 Bosch (10.1016/j.compag.2025.109999_b0030) 2018; 18 Benhajali (10.1016/j.compag.2025.109999_b0020) 2008; 112 Li (10.1016/j.compag.2025.109999_b0140) 2022; 22 Crecan (10.1016/j.compag.2025.109999_b0045) 2022; 22 Farhadpour (10.1016/j.compag.2025.109999_b0075) 2024; 16 Fercher (10.1016/j.compag.2025.109999_b0080) 2024; 24 Mao (10.1016/j.compag.2025.109999_b0160) 2023; 211 Visser (10.1016/j.compag.2025.109999_b0205) 2008; 114 Lecun (10.1016/j.compag.2025.109999_b0125) 1998; 86 Eerdekens (10.1016/j.compag.2025.109999_b0065) 2020; 168 Burla (10.1016/j.compag.2025.109999_b0040) 2014; 102 LeCun (10.1016/j.compag.2025.109999_b0130) 2015; 521 Elman (10.1016/j.compag.2025.109999_b0070) 1990; 14 10.1016/j.compag.2025.109999_b0190 Auer (10.1016/j.compag.2025.109999_b0015) 2021; 11 Gholamiangonabadi (10.1016/j.compag.2025.109999_b0090) 2020; 8 Bragança (10.1016/j.compag.2025.109999_b0035) 2022; 22 Demrozi (10.1016/j.compag.2025.109999_b0055) 2020; 8 Liu (10.1016/j.compag.2025.109999_b0145) 2024; 24 Hausberger (10.1016/j.compag.2025.109999_b0100) 2016; 175 Maisonpierre (10.1016/j.compag.2025.109999_b0155) 2019; 51 Waran (10.1016/j.compag.2025.109999_b0210) 2017; 190 Lesimple (10.1016/j.compag.2025.109999_b0135) 2020; 10 Martin-Cirera (10.1016/j.compag.2025.109999_b0165) 2024; 242 Bento (10.1016/j.compag.2025.109999_b0025) 2023; 23 DuBois (10.1016/j.compag.2025.109999_b0060) 2015; 9 Hausberger (10.1016/j.compag.2025.109999_b0105) 2020; 10 10.1016/j.compag.2025.109999_b0110 Sagawa (10.1016/j.compag.2025.109999_b0195) 2020; abs/2005.04345. 10.1016/j.compag.2025.109999_b0170 van der Maaten (10.1016/j.compag.2025.109999_b0120) 2008; 9 10.1016/j.compag.2025.109999_b0050 10.1016/j.compag.2025.109999_b0095 10.1016/j.compag.2025.109999_b0150 Pfau (10.1016/j.compag.2025.109999_b0180) 2005; 208 Xia (10.1016/j.compag.2025.109999_b0220) 2020; 8 |
References_xml | – volume: 8 start-page: 133982 year: 2020 end-page: 133994 ident: b0090 article-title: Deep Neural Networks for Human Activity Recognition With Wearable Sensors: Leave-One-Subject-Out Cross-Validation for Model Selection publication-title: IEEE Access – volume: 10 year: 2020 ident: b0105 article-title: On-Farm Welfare Assessment of Horses: The Risks of Putting the Cart before the Horse publication-title: Animals : an Open Access Journal from MDPI – volume: 22 year: 2022 ident: b0035 article-title: How Validation Methodology Influences Human Activity Recognition Mobile Systems publication-title: Sensors (basel, Switzerland) – volume: 16 year: 2016 ident: b0175 article-title: Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition publication-title: Sensors (basel, Switzerland) – volume: 13 start-page: 1 year: 2022 end-page: 20 ident: b0225 article-title: Domain Generalization: A Survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b0115 article-title: Long short-term memory publication-title: Neural Computation – volume: 112 start-page: 196 year: 2008 end-page: 200 ident: b0020 article-title: A note on the time budget and social behaviour of densely housed horses publication-title: Applied Animal Behaviour Science – reference: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing. UbiComp '15: The 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka Japan. 07 09 2015 11 09 2015. ACM, New York, NY, USA, pp. – volume: 190 start-page: 74 year: 2017 end-page: 81 ident: b0210 article-title: What we can measure, we can manage: The importance of using robust welfare indicators in Equitation Science publication-title: Applied Animal Behaviour Science – volume: abs/2005.04345. year: 2020 ident: b0195 article-title: An Investigation of Why Overparameterization Exacerbates Spurious Correlations publication-title: ArXiv – reference: pp. – volume: 211 year: 2023 ident: b0160 article-title: Deep learning-based animal activity recognition with wearable sensors: Overview, challenges, and future directions publication-title: Computers and Electronics in Agriculture – reference: 747–756. – volume: 8 start-page: 56855 year: 2020 end-page: 56866 ident: b0220 article-title: LSTM-CNN Architecture for Human Activity Recognition publication-title: IEEE Access – volume: 175 start-page: 41 year: 2016 end-page: 49 ident: b0100 article-title: Detecting horses’ sickness: In search of visible signs publication-title: Applied Animal Behaviour Science – volume: 18 year: 2018 ident: b0030 article-title: EquiMoves: A Wireless Networked Inertial Measurement System for Objective Examination of Horse Gait publication-title: Sensors (basel, Switzerland) – reference: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing Adjunct Publication. UbiComp '14: The 2014 ACM Conference on Ubiquitous Computing, Seattle Washington. 13 09 2014 17 09 2014. ACM, New York, NY, pp. – volume: 51 start-page: 840 year: 2019 end-page: 845 ident: b0155 article-title: Accelerometer activity tracking in horses and the effect of pasture management on time budget publication-title: Equine Veterinary Journal – reference: Hammerla, N.Y., Plötz, T., 2015. Let's (not) stick together, in: – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: b0125 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE – volume: 10 start-page: 17785 year: 2020 ident: b0200 article-title: Improving gait classification in horses by using inertial measurement unit (IMU) generated data and machine learning publication-title: Scientific Reports – volume: 242 start-page: 154 year: 2024 end-page: 168 ident: b0165 article-title: Comparison of Transformers with LSTM for classification of the behavioural time budget in horses based on video data publication-title: Biosystems Engineering – year: 2015 ident: b0085 publication-title: Data Preprocessing in Data Mining – volume: 80 start-page: 31 year: 2003 end-page: 43 ident: b0185 article-title: Identification of potential physiological and behavioral indicators of postoperative pain in horses after exploratory celiotomy for colic publication-title: Applied Animal Behaviour Science – volume: 168 year: 2020 ident: b0065 article-title: Automatic equine activity detection by convolutional neural networks using accelerometer data publication-title: Computers and Electronics in Agriculture – volume: 14 start-page: 179 year: 1990 end-page: 211 ident: b0070 article-title: Finding structure in time publication-title: Cognitive Science – reference: Mills, D.S., McDonnell, S. (Eds.), 2009. The domestic horse: The origins, development and management of its behaviour. Cambridge University Press, Cambridge, 249 – volume: 23 year: 2023 ident: b0025 article-title: Exploring Regularization Methods for Domain Generalization in Accelerometer-Based Human Activity Recognition publication-title: Sensors (basel, Switzerland) – volume: 208 start-page: 2503 year: 2005 end-page: 2514 ident: b0180 article-title: A method for deriving displacement data during cyclical movement using an inertial sensor publication-title: The Journal of Experimental Biology – volume: 16 start-page: 533 year: 2024 ident: b0075 article-title: Selecting and Interpreting Multiclass Loss and Accuracy Assessment Metrics for Classifications with Class Imbalance: Guidance and Best Practices publication-title: Remote Sensing – reference: 770–778. – reference: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA. 27.06.2016 - 30.06.2016. IEEE, pp. – reference: Qin, X., Wang, J., Chen, Y., Lu, W., Jiang, X., 2022. Domain Generalization for Activity Recognition via Adaptive Feature Fusion. http://arxiv.org/pdf/2207.11221. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b0130 article-title: Deep learning publication-title: Nature – volume: 102 start-page: 127 year: 2014 end-page: 133 ident: b0040 article-title: Gait determination and activity measurement in horses using an accelerometer publication-title: Computers and Electronics in Agriculture – volume: 114 start-page: 521 year: 2008 end-page: 533 ident: b0205 article-title: The effect of two different housing conditions on the welfare of young horses stabled for the first time publication-title: Applied Animal Behaviour Science – volume: 10 year: 2020 ident: b0135 article-title: Indicators of Horse Welfare: State-of-the-Art publication-title: Animals : an Open Access Journal from MDPI – reference: Dehghani, A., Glatard, T., Shihab, E., 2019. Subject Cross Validation in Human Activity Recognition. http://arxiv.org/pdf/1904.02666. – volume: 11 year: 2021 ident: b0015 article-title: Activity Time Budgets-A Potential Tool to Monitor Equine Welfare? publication-title: Animals : an Open Access Journal from MDPI – volume: 22 year: 2022 ident: b0140 article-title: Human Activity Recognition Based on Residual Network and BiLSTM publication-title: Sensors (basel, Switzerland) – volume: 24 year: 2024 ident: b0080 article-title: Applying Multi-Purpose Commercial Inertial Sensors for Monitoring Equine Locomotion in Equestrian Training publication-title: Sensors (basel, Switzerland) – reference: He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep Residual Learning for Image Recognition, in: – volume: 24 year: 2024 ident: b0145 article-title: Sleeping and Eating Behavior Recognition of Horses Based on an Improved SlowFast Network publication-title: Sensors (basel, Switzerland) – volume: 22 year: 2022 ident: b0045 article-title: Development of a Novel Approach for Detection of Equine Lameness Based on Inertial Sensors: A Preliminary Study publication-title: Sensors (basel, Switzerland) – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: b0120 article-title: Visualizing Data using t-SNE publication-title: Journal of Machine Learning Research – reference: Lockhart, J.W., Weiss, G.M., 2014. Limitations with activity recognition methodology & data sets, in: – volume: 8 start-page: 210816 year: 2020 end-page: 210836 ident: b0055 article-title: Human Activity Recognition using Inertial, Physiological and Environmental Sensors: A Comprehensive Survey publication-title: IEEE Access : Practical Innovations, Open Solutions – year: 2022 ident: b0005 article-title: Validation of inertial measurement units to detect and predict horse behaviour while stabled publication-title: Equine Veterinary Journal – volume: 9 start-page: 110 year: 2015 end-page: 114 ident: b0060 article-title: Validation of triaxial accelerometers to measure the lying behaviour of adult domestic horses publication-title: Animal : an International Journal of Animal Bioscience – volume: 37 start-page: 565 year: 2005 end-page: 575 ident: b0010 article-title: Behavioural assessment of pain in horses and donkeys: application to clinical practice and future studies publication-title: Equine Veterinary Journal – volume: 32 start-page: 791 year: 2023 end-page: 813 ident: b0215 article-title: Data collection and quality challenges in deep learning: a data-centric AI perspective publication-title: The VLDB Journal – reference: 1041–1051. – volume: 13 start-page: 1 year: 2022 ident: 10.1016/j.compag.2025.109999_b0225 article-title: Domain Generalization: A Survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – ident: 10.1016/j.compag.2025.109999_b0095 doi: 10.1145/2750858.2807551 – ident: 10.1016/j.compag.2025.109999_b0170 – volume: 14 start-page: 179 year: 1990 ident: 10.1016/j.compag.2025.109999_b0070 article-title: Finding structure in time publication-title: Cognitive Science doi: 10.1207/s15516709cog1402_1 – volume: 168 year: 2020 ident: 10.1016/j.compag.2025.109999_b0065 article-title: Automatic equine activity detection by convolutional neural networks using accelerometer data publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2019.105139 – volume: 22 year: 2022 ident: 10.1016/j.compag.2025.109999_b0035 article-title: How Validation Methodology Influences Human Activity Recognition Mobile Systems publication-title: Sensors (basel, Switzerland) doi: 10.3390/s22062360 – volume: 80 start-page: 31 year: 2003 ident: 10.1016/j.compag.2025.109999_b0185 article-title: Identification of potential physiological and behavioral indicators of postoperative pain in horses after exploratory celiotomy for colic publication-title: Applied Animal Behaviour Science doi: 10.1016/S0168-1591(02)00205-8 – volume: 86 start-page: 2278 year: 1998 ident: 10.1016/j.compag.2025.109999_b0125 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – year: 2015 ident: 10.1016/j.compag.2025.109999_b0085 – volume: 51 start-page: 840 year: 2019 ident: 10.1016/j.compag.2025.109999_b0155 article-title: Accelerometer activity tracking in horses and the effect of pasture management on time budget publication-title: Equine Veterinary Journal doi: 10.1111/evj.13130 – volume: 16 year: 2016 ident: 10.1016/j.compag.2025.109999_b0175 article-title: Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition publication-title: Sensors (basel, Switzerland) doi: 10.3390/s16010115 – volume: abs/2005.04345. year: 2020 ident: 10.1016/j.compag.2025.109999_b0195 article-title: An Investigation of Why Overparameterization Exacerbates Spurious Correlations publication-title: ArXiv – volume: 32 start-page: 791 year: 2023 ident: 10.1016/j.compag.2025.109999_b0215 article-title: Data collection and quality challenges in deep learning: a data-centric AI perspective publication-title: The VLDB Journal doi: 10.1007/s00778-022-00775-9 – volume: 112 start-page: 196 year: 2008 ident: 10.1016/j.compag.2025.109999_b0020 article-title: A note on the time budget and social behaviour of densely housed horses publication-title: Applied Animal Behaviour Science doi: 10.1016/j.applanim.2007.08.007 – volume: 8 start-page: 133982 year: 2020 ident: 10.1016/j.compag.2025.109999_b0090 article-title: Deep Neural Networks for Human Activity Recognition With Wearable Sensors: Leave-One-Subject-Out Cross-Validation for Model Selection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3010715 – volume: 10 start-page: 17785 year: 2020 ident: 10.1016/j.compag.2025.109999_b0200 article-title: Improving gait classification in horses by using inertial measurement unit (IMU) generated data and machine learning publication-title: Scientific Reports doi: 10.1038/s41598-020-73215-9 – volume: 10 year: 2020 ident: 10.1016/j.compag.2025.109999_b0135 article-title: Indicators of Horse Welfare: State-of-the-Art publication-title: Animals : an Open Access Journal from MDPI doi: 10.3390/ani10020294 – volume: 242 start-page: 154 year: 2024 ident: 10.1016/j.compag.2025.109999_b0165 article-title: Comparison of Transformers with LSTM for classification of the behavioural time budget in horses based on video data publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2024.04.014 – volume: 23 year: 2023 ident: 10.1016/j.compag.2025.109999_b0025 article-title: Exploring Regularization Methods for Domain Generalization in Accelerometer-Based Human Activity Recognition publication-title: Sensors (basel, Switzerland) doi: 10.3390/s23146511 – ident: 10.1016/j.compag.2025.109999_b0150 doi: 10.1145/2638728.2641306 – volume: 211 year: 2023 ident: 10.1016/j.compag.2025.109999_b0160 article-title: Deep learning-based animal activity recognition with wearable sensors: Overview, challenges, and future directions publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2023.108043 – volume: 9 start-page: 1735 year: 1997 ident: 10.1016/j.compag.2025.109999_b0115 article-title: Long short-term memory publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1735 – volume: 10 year: 2020 ident: 10.1016/j.compag.2025.109999_b0105 article-title: On-Farm Welfare Assessment of Horses: The Risks of Putting the Cart before the Horse publication-title: Animals : an Open Access Journal from MDPI doi: 10.3390/ani10030371 – volume: 208 start-page: 2503 year: 2005 ident: 10.1016/j.compag.2025.109999_b0180 article-title: A method for deriving displacement data during cyclical movement using an inertial sensor publication-title: The Journal of Experimental Biology doi: 10.1242/jeb.01658 – volume: 9 start-page: 110 year: 2015 ident: 10.1016/j.compag.2025.109999_b0060 article-title: Validation of triaxial accelerometers to measure the lying behaviour of adult domestic horses publication-title: Animal : an International Journal of Animal Bioscience doi: 10.1017/S175173111400247X – volume: 114 start-page: 521 year: 2008 ident: 10.1016/j.compag.2025.109999_b0205 article-title: The effect of two different housing conditions on the welfare of young horses stabled for the first time publication-title: Applied Animal Behaviour Science doi: 10.1016/j.applanim.2008.03.003 – volume: 190 start-page: 74 year: 2017 ident: 10.1016/j.compag.2025.109999_b0210 article-title: What we can measure, we can manage: The importance of using robust welfare indicators in Equitation Science publication-title: Applied Animal Behaviour Science doi: 10.1016/j.applanim.2017.02.016 – year: 2022 ident: 10.1016/j.compag.2025.109999_b0005 article-title: Validation of inertial measurement units to detect and predict horse behaviour while stabled publication-title: Equine Veterinary Journal – volume: 102 start-page: 127 year: 2014 ident: 10.1016/j.compag.2025.109999_b0040 article-title: Gait determination and activity measurement in horses using an accelerometer publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2014.01.001 – volume: 9 start-page: 2579 year: 2008 ident: 10.1016/j.compag.2025.109999_b0120 article-title: Visualizing Data using t-SNE publication-title: Journal of Machine Learning Research – ident: 10.1016/j.compag.2025.109999_b0190 – volume: 22 year: 2022 ident: 10.1016/j.compag.2025.109999_b0045 article-title: Development of a Novel Approach for Detection of Equine Lameness Based on Inertial Sensors: A Preliminary Study publication-title: Sensors (basel, Switzerland) doi: 10.3390/s22187082 – ident: 10.1016/j.compag.2025.109999_b0110 doi: 10.1109/CVPR.2016.90 – volume: 37 start-page: 565 year: 2005 ident: 10.1016/j.compag.2025.109999_b0010 article-title: Behavioural assessment of pain in horses and donkeys: application to clinical practice and future studies publication-title: Equine Veterinary Journal doi: 10.2746/042516405775314826 – volume: 22 year: 2022 ident: 10.1016/j.compag.2025.109999_b0140 article-title: Human Activity Recognition Based on Residual Network and BiLSTM publication-title: Sensors (basel, Switzerland) – volume: 18 year: 2018 ident: 10.1016/j.compag.2025.109999_b0030 article-title: EquiMoves: A Wireless Networked Inertial Measurement System for Objective Examination of Horse Gait publication-title: Sensors (basel, Switzerland) doi: 10.3390/s18030850 – volume: 24 year: 2024 ident: 10.1016/j.compag.2025.109999_b0145 article-title: Sleeping and Eating Behavior Recognition of Horses Based on an Improved SlowFast Network publication-title: Sensors (basel, Switzerland) doi: 10.3390/s24237791 – volume: 16 start-page: 533 year: 2024 ident: 10.1016/j.compag.2025.109999_b0075 article-title: Selecting and Interpreting Multiclass Loss and Accuracy Assessment Metrics for Classifications with Class Imbalance: Guidance and Best Practices publication-title: Remote Sensing doi: 10.3390/rs16030533 – ident: 10.1016/j.compag.2025.109999_b0050 – volume: 24 year: 2024 ident: 10.1016/j.compag.2025.109999_b0080 article-title: Applying Multi-Purpose Commercial Inertial Sensors for Monitoring Equine Locomotion in Equestrian Training publication-title: Sensors (basel, Switzerland) doi: 10.3390/s24248170 – volume: 8 start-page: 210816 year: 2020 ident: 10.1016/j.compag.2025.109999_b0055 article-title: Human Activity Recognition using Inertial, Physiological and Environmental Sensors: A Comprehensive Survey publication-title: IEEE Access : Practical Innovations, Open Solutions doi: 10.1109/ACCESS.2020.3037715 – volume: 8 start-page: 56855 year: 2020 ident: 10.1016/j.compag.2025.109999_b0220 article-title: LSTM-CNN Architecture for Human Activity Recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2982225 – volume: 175 start-page: 41 year: 2016 ident: 10.1016/j.compag.2025.109999_b0100 article-title: Detecting horses’ sickness: In search of visible signs publication-title: Applied Animal Behaviour Science doi: 10.1016/j.applanim.2015.09.005 – volume: 11 year: 2021 ident: 10.1016/j.compag.2025.109999_b0015 article-title: Activity Time Budgets-A Potential Tool to Monitor Equine Welfare? publication-title: Animals : an Open Access Journal from MDPI doi: 10.3390/ani11030850 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.compag.2025.109999_b0130 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 |
SSID | ssj0016987 |
Score | 2.4315288 |
Snippet | •Deep neural network recognizes equine behavior from collar worn sensor data.•Framework combines local spatiotemporal and long-term temporal feature... Equine daily behavior is a key welfare indicator, offering insights into how environmental and training conditions influence health and well-being. Continuous... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 109999 |
SubjectTerms | accelerometers agriculture automation Behavior classification data collection Deep learning electronics Equine activity recognition horses humans IMU Wearable sensors welfare assessment |
Title | Validation of a Time-Distributed residual LSTM–CNN and BiLSTM for equine behavior recognition using collar-worn sensors |
URI | https://dx.doi.org/10.1016/j.compag.2025.109999 https://www.proquest.com/docview/3165864095 |
Volume | 231 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lBW8xna7eR5rtdRHe2krvS27m02ph6SmLeJF_A_-Q3-JM3kUFEHwmCVZwmR25hvyfTOEXPiBllKbpmVj_0ubc2lJV0eoWHZ41OTGRChO7g_c3ti-mziTCumUWhikVRaxP4_pWbQuVhqFNRvz2awxBLDiMzcIIInjmMcJKthtD7388m1N84Ab_Fwy7UK1BHeX8rmM45XxvKdQJbYc7KsUZB1gf01PPwJ1ln26O2S7gI20nb_ZLqmYeI9stadp0TrD7JPXR4DU-YQkmkRUUlR3WNfYGBdnWpmQQmWdSa_ow3DU_3z_6AwGVMYhvZrhAgX4Ss3zCmAnLcX7dM0vgk2RIj-lmeOk1kuSxnQBNXCSLg7IuHsz6vSsYrCCpTm3l5bUjEUq4qppPKUCGQatENI895VtXM4c5XLJbO2jCE7JyANYoU1LaS9kGpKb5oekGiexOSIUjO-HnnZ9OMeArKB8Y03lKBY6La25jGrEKu0p5nn_DFESy55Ebn-B9he5_WvEK40uvvmBgBD_x5Pn5TcScETwv4eMTbJaCM4AZrlQyDrH_979hGziVc7ZOSXVZboyZwBHlqqe-VudbLRv73uDL40Y4cY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhU7RoJjaB1nPXAASlWg7YUW9WZsx6nKIYUuQlwQ_8Cn8Ed8CeMsSCAkJKReHcWyniezKO_NABwGoRJC6bLlmP6XDmPCEp6KjWLZZXGZaR0bcXKj6dXazlXH7UzBe6GFMbTK3PdnPj311vlKKUez9NDrlW4wWQmoF4YYxM2Yx07OrLzWz09Ytw1PLit4yUe2Xb1ondesfLSApRhzRpZQlMYyZrKsfSlDEYV2hIGOBdLRHqOu9JigjgqMDEyK2MfAqrQtlR9Rhe5dMdx3GmYddBdmbMLxyxevBE8UZBptD8szPF6h10tJZSmxvItlqe2aRk5h2nL213j4IzKk4a66BIt5nkpOMyiWYUonK7Bw2h3kvTr0KjzfYg6fjWQi_ZgIYuQkVsV04jVDtHREsJRPtV6kftNqfLy-nTebRCQROeuZBYL5MtGPY8xzSdEtgHwRmnBTw8nvktRSBxainZAhFt39wXAN2hOBex1mkn6iN4DgbQeRr7wAHQemclgv0rJ0JY1cWykm4k2wCjz5Q9awgxdMtnue4c8N_jzDfxP8AnT-zfA4xpQ_3jwo7ojjN2l-tIhE98dDzijmdR5Wzu7Wv3ffh7laq1Hn9cvm9TbMmycZYWgHZkaDsd7FXGgk91LbI3A3aWP_BEbfHi8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+a+Time-Distributed+residual+LSTM%E2%80%93CNN+and+BiLSTM+for+equine+behavior+recognition+using+collar-worn+sensors&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Kirsch%2C+Katharina&rft.au=Strutzke%2C+Saskia&rft.au=Klitzing%2C+Lara&rft.au=Pilger%2C+Franziska&rft.date=2025-04-01&rft.pub=Elsevier+B.V&rft.issn=0168-1699&rft.volume=231&rft_id=info:doi/10.1016%2Fj.compag.2025.109999&rft.externalDocID=S016816992500105X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon |