Validation of a Time-Distributed residual LSTM–CNN and BiLSTM for equine behavior recognition using collar-worn sensors

•Deep neural network recognizes equine behavior from collar worn sensor data.•Framework combines local spatiotemporal and long-term temporal feature extraction.•Model achieved > 93 % accuracy in 10-fold and > 85 % in leave-one-out cross-validation.•Performance varied across behaviors and housi...

Full description

Saved in:
Bibliographic Details
Published inComputers and electronics in agriculture Vol. 231; p. 109999
Main Authors Kirsch, Katharina, Strutzke, Saskia, Klitzing, Lara, Pilger, Franziska, Thöne-Reineke, Christa, Hoffmann, Gundula
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Deep neural network recognizes equine behavior from collar worn sensor data.•Framework combines local spatiotemporal and long-term temporal feature extraction.•Model achieved > 93 % accuracy in 10-fold and > 85 % in leave-one-out cross-validation.•Performance varied across behaviors and housing conditions.•Model recognized locomotion, resting and feeding behavior with high accuracy. Equine daily behavior is a key welfare indicator, offering insights into how environmental and training conditions influence health and well-being. Continuous direct behavior observation, however, is labor-intensive and impractical for large-scale studies. While advances in wearable sensors and deep learning have revolutionized human and animal activity recognition, automated wearable sensor systems for recognizing a diverse repertoire of equine daily behaviors remain limited. We propose a hierarchical deep learning framework combining a Time-Distributed Residual LSTM-CNN for extracting local spatiotemporal features from short subsegments of sensor data and a bidirectional LSTM (BiLSTM) for capturing long-term temporal dependencies. Our model was validated using approximately 60 h of tri-axial accelerometer and gyroscope data collected from 10 horses wearing collar-mounted sensors. Fifteen daily behaviors were labeled based on video recordings. The model achieved an overall classification accuracy of > 93 % in 10-fold cross-validation and > 85 % in leave-one-subject-out cross-validation. The classification performance was significantly affected by housing conditions and the associated varying frequency of behaviors in the dataset. This study provides a valid framework for sensor-based automatic behavior recognition in horses, capable of capturing both local spatiotemporal and long-term temporal dependencies from raw sensor data. Our proposed framework enables scalable and reliable monitoring of equine daily behaviors and makes an important contribution to the development of automated, data-driven approaches to equine welfare assessment.
AbstractList Equine daily behavior is a key welfare indicator, offering insights into how environmental and training conditions influence health and well-being. Continuous direct behavior observation, however, is labor-intensive and impractical for large-scale studies. While advances in wearable sensors and deep learning have revolutionized human and animal activity recognition, automated wearable sensor systems for recognizing a diverse repertoire of equine daily behaviors remain limited. We propose a hierarchical deep learning framework combining a Time-Distributed Residual LSTM-CNN for extracting local spatiotemporal features from short subsegments of sensor data and a bidirectional LSTM (BiLSTM) for capturing long-term temporal dependencies. Our model was validated using approximately 60 h of tri-axial accelerometer and gyroscope data collected from 10 horses wearing collar-mounted sensors. Fifteen daily behaviors were labeled based on video recordings. The model achieved an overall classification accuracy of > 93 % in 10-fold cross-validation and > 85 % in leave-one-subject-out cross-validation. The classification performance was significantly affected by housing conditions and the associated varying frequency of behaviors in the dataset. This study provides a valid framework for sensor-based automatic behavior recognition in horses, capable of capturing both local spatiotemporal and long-term temporal dependencies from raw sensor data. Our proposed framework enables scalable and reliable monitoring of equine daily behaviors and makes an important contribution to the development of automated, data-driven approaches to equine welfare assessment.
•Deep neural network recognizes equine behavior from collar worn sensor data.•Framework combines local spatiotemporal and long-term temporal feature extraction.•Model achieved > 93 % accuracy in 10-fold and > 85 % in leave-one-out cross-validation.•Performance varied across behaviors and housing conditions.•Model recognized locomotion, resting and feeding behavior with high accuracy. Equine daily behavior is a key welfare indicator, offering insights into how environmental and training conditions influence health and well-being. Continuous direct behavior observation, however, is labor-intensive and impractical for large-scale studies. While advances in wearable sensors and deep learning have revolutionized human and animal activity recognition, automated wearable sensor systems for recognizing a diverse repertoire of equine daily behaviors remain limited. We propose a hierarchical deep learning framework combining a Time-Distributed Residual LSTM-CNN for extracting local spatiotemporal features from short subsegments of sensor data and a bidirectional LSTM (BiLSTM) for capturing long-term temporal dependencies. Our model was validated using approximately 60 h of tri-axial accelerometer and gyroscope data collected from 10 horses wearing collar-mounted sensors. Fifteen daily behaviors were labeled based on video recordings. The model achieved an overall classification accuracy of > 93 % in 10-fold cross-validation and > 85 % in leave-one-subject-out cross-validation. The classification performance was significantly affected by housing conditions and the associated varying frequency of behaviors in the dataset. This study provides a valid framework for sensor-based automatic behavior recognition in horses, capable of capturing both local spatiotemporal and long-term temporal dependencies from raw sensor data. Our proposed framework enables scalable and reliable monitoring of equine daily behaviors and makes an important contribution to the development of automated, data-driven approaches to equine welfare assessment.
ArticleNumber 109999
Author Kirsch, Katharina
Pilger, Franziska
Strutzke, Saskia
Klitzing, Lara
Hoffmann, Gundula
Thöne-Reineke, Christa
Author_xml – sequence: 1
  givenname: Katharina
  surname: Kirsch
  fullname: Kirsch, Katharina
  email: katharina.kirsch@fu-berlin.de
  organization: Department Sensors and Modeling, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100 14469 Potsdam, Germany
– sequence: 2
  givenname: Saskia
  surname: Strutzke
  fullname: Strutzke, Saskia
  organization: Department Sensors and Modeling, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100 14469 Potsdam, Germany
– sequence: 3
  givenname: Lara
  surname: Klitzing
  fullname: Klitzing, Lara
  organization: Institute for Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Königsweg 67 14163 Berlin, Germany
– sequence: 4
  givenname: Franziska
  surname: Pilger
  fullname: Pilger, Franziska
  organization: Graf Lehndorff Institute for Equine Science, Vetmeduni Vienna 16845 Neustadt (Dosse), Germany
– sequence: 5
  givenname: Christa
  surname: Thöne-Reineke
  fullname: Thöne-Reineke, Christa
  organization: Institute for Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Königsweg 67 14163 Berlin, Germany
– sequence: 6
  givenname: Gundula
  surname: Hoffmann
  fullname: Hoffmann, Gundula
  organization: Department Sensors and Modeling, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100 14469 Potsdam, Germany
BookMark eNp9kDtOA0EMhqcACQjcgGJKmg07-94GCcJTCqEg0I7m4Q2ONjNhZjcoHXfghpyECUuNG8u_7V_2d0T2jDVAyCmLxyxmxflyrOxqLRbjJE7yINUh9shhaFURK-r6gBx5v4xDXVflIdm-iha16NAaahsq6BxXEF2j7xzKvgNNHXjUvWjp9Hn--P35NZnNqDCaXuFOoI11FN57NEAlvIkNhtqBsguDv6a9R7OgyratcNGHdYZ6MN46f0z2G9F6OPnLI_JyezOf3EfTp7uHyeU0UmmadZFQjDWySWUMpZS10HWikyxLK5lBkbJcFqlgmaqyIErRlHGZK0ikKjVTRVmpdETOBt-1s-89-I6v0CsI9xiwvecpK_KqyOI6D6PZMKqc9d5Bw9cOV8JtOYv5ji5f8oEu39HlA92wdjGsQXhjg-C4VwhGgcZAouPa4v8GPz8ui18
Cites_doi 10.1145/2750858.2807551
10.1207/s15516709cog1402_1
10.1016/j.compag.2019.105139
10.3390/s22062360
10.1016/S0168-1591(02)00205-8
10.1109/5.726791
10.1111/evj.13130
10.3390/s16010115
10.1007/s00778-022-00775-9
10.1016/j.applanim.2007.08.007
10.1109/ACCESS.2020.3010715
10.1038/s41598-020-73215-9
10.3390/ani10020294
10.1016/j.biosystemseng.2024.04.014
10.3390/s23146511
10.1145/2638728.2641306
10.1016/j.compag.2023.108043
10.1162/neco.1997.9.8.1735
10.3390/ani10030371
10.1242/jeb.01658
10.1017/S175173111400247X
10.1016/j.applanim.2008.03.003
10.1016/j.applanim.2017.02.016
10.1016/j.compag.2014.01.001
10.3390/s22187082
10.1109/CVPR.2016.90
10.2746/042516405775314826
10.3390/s18030850
10.3390/s24237791
10.3390/rs16030533
10.3390/s24248170
10.1109/ACCESS.2020.3037715
10.1109/ACCESS.2020.2982225
10.1016/j.applanim.2015.09.005
10.3390/ani11030850
10.1038/nature14539
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.compag.2025.109999
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
ExternalDocumentID 10_1016_j_compag_2025_109999
S016816992500105X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
6J9
7-5
71M
8P~
9JM
9JN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABMAC
ABMZM
ABRWV
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACIWK
ACMHX
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
ADQTV
ADSLC
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AEXOQ
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWPP
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
AAYXX
AGRNS
CITATION
RIG
7S9
L.6
ID FETCH-LOGICAL-c334t-ac11fbf3b0e7bb9ad92d24438b4e6315b63a14c84244baf7075ce2bc7d1c678c3
IEDL.DBID .~1
ISSN 0168-1699
IngestDate Fri Aug 22 20:35:32 EDT 2025
Thu Jul 31 00:45:31 EDT 2025
Sat Aug 30 17:14:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Behavior classification
Deep learning
IMU
Wearable sensors
Equine activity recognition
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-ac11fbf3b0e7bb9ad92d24438b4e6315b63a14c84244baf7075ce2bc7d1c678c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S016816992500105X
PQID 3165864095
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3165864095
crossref_primary_10_1016_j_compag_2025_109999
elsevier_sciencedirect_doi_10_1016_j_compag_2025_109999
PublicationCentury 2000
PublicationDate April 2025
2025-04-00
20250401
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: April 2025
PublicationDecade 2020
PublicationTitle Computers and electronics in agriculture
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Wang (b0140) 2022; 22
Gholamiangonabadi, Kiselov, Grolinger (b0090) 2020; 8
Mills, D.S., McDonnell, S. (Eds.), 2009. The domestic horse: The origins, development and management of its behaviour. Cambridge University Press, Cambridge, 249
Serra Bragança, Broomé, Rhodin, Björnsdóttir, Gunnarsson, Voskamp, Persson-Sjodin, Back, Lindgren, Novoa-Bravo, Gmel, Roepstorff, van der Zwaag, van Weeren, Hernlund (b0200) 2020; 10
Ashley, Waterman-Pearson, Whay (b0010) 2005; 37
Hausberger, Lerch, Guilbaud, Stomp, Grandgeorge, Henry, Lesimple (b0105) 2020; 10
He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep Residual Learning for Image Recognition, in
Demrozi, Pravadelli, Bihorac, Rashidi (b0055) 2020; 8
Hochreiter, Schmidhuber (b0115) 1997; 9
Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing Adjunct Publication. UbiComp '14: The 2014 ACM Conference on Ubiquitous Computing, Seattle Washington. 13 09 2014 17 09 2014. ACM, New York, NY, pp.
DuBois, Zakrajsek, Haley, Merkies (b0060) 2015; 9
Ordóñez, Roggen (b0175) 2016; 16
Whang, Roh, Song, Lee (b0215) 2023; 32
Sagawa, Raghunathan, Wei Koh, Liang (b0195) 2020; abs/2005.04345.
Lesimple (b0135) 2020; 10
Lockhart, J.W., Weiss, G.M., 2014. Limitations with activity recognition methodology & data sets, in
Farhadpour, Warner, Maxwell (b0075) 2024; 16
Bragança, Colonna, Oliveira, Souto (b0035) 2022; 22
Bento, Rebelo, Carreiro, Ravache, Barandas (b0025) 2023; 23
Fercher, Bartsch, Kluge, Schneider, Liedtke, Schleichardt, Ueberschär (b0080) 2024; 24
pp.
Pritchett, Ulibarri, Roberts, Schneider, Sellon (b0185) 2003; 80
Dehghani, A., Glatard, T., Shihab, E., 2019. Subject Cross Validation in Human Activity Recognition. http://arxiv.org/pdf/1904.02666.
Pfau, Witte, Wilson (b0180) 2005; 208
Maisonpierre, Sutton, Harris, Menzies-Gow, Weller, Pfau (b0155) 2019; 51
Auer, Kelemen, Engl, Jenner (b0015) 2021; 11
Eerdekens, Deruyck, Fontaine, Martens, de Poorter, Joseph (b0065) 2020; 168
LeCun, Bengio, Hinton (b0130) 2015; 521
Elman (b0070) 1990; 14
García, Luengo, Herrera (b0085) 2015
Hausberger, Fureix, Lesimple (b0100) 2016; 175
1041–1051.
Bosch, Serra Bragança, Marin-Perianu, Marin-Perianu, van der Zwaag, Voskamp, Back, van Weeren, Havinga (b0030) 2018; 18
Qin, X., Wang, J., Chen, Y., Lu, W., Jiang, X., 2022. Domain Generalization for Activity Recognition via Adaptive Feature Fusion. http://arxiv.org/pdf/2207.11221.
Waran, Randle (b0210) 2017; 190
770–778.
Xia, Huang, Wang (b0220) 2020; 8
Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing. UbiComp '15: The 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka Japan. 07 09 2015 11 09 2015. ACM, New York, NY, USA, pp.
Liu, Zhou, Zheng, Bai, Chen, Guo (b0145) 2024; 24
Martin-Cirera, Nowak, Norton, Auer, Oczak (b0165) 2024; 242
Benhajali, Richard-Yris, Leroux, Ezzaouia, Charfi, Hausberger (b0020) 2008; 112
van der Maaten, Hinton (b0120) 2008; 9
Anderson, Morrice-West, Walmsley, Fisher, Whitton, Hitchens (b0005) 2022
Visser, Ellis, van Reenen (b0205) 2008; 114
Zhou, Liu, Qiao, Xiang, Loy (b0225) 2022; 13
Crecan, Morar, Lupsan, Repciuc, Rus, Pestean (b0045) 2022; 22
Burla, Ostertag, Schulze Westerath, Hillmann (b0040) 2014; 102
Hammerla, N.Y., Plötz, T., 2015. Let's (not) stick together, in
Lecun, Bottou, Bengio, Haffner (b0125) 1998; 86
Mao, Huang, Wang, Liu (b0160) 2023; 211
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA. 27.06.2016 - 30.06.2016. IEEE, pp.
747–756.
Ordóñez (10.1016/j.compag.2025.109999_b0175) 2016; 16
Zhou (10.1016/j.compag.2025.109999_b0225) 2022; 13
Anderson (10.1016/j.compag.2025.109999_b0005) 2022
Hochreiter (10.1016/j.compag.2025.109999_b0115) 1997; 9
Pritchett (10.1016/j.compag.2025.109999_b0185) 2003; 80
Serra Bragança (10.1016/j.compag.2025.109999_b0200) 2020; 10
Whang (10.1016/j.compag.2025.109999_b0215) 2023; 32
Ashley (10.1016/j.compag.2025.109999_b0010) 2005; 37
García (10.1016/j.compag.2025.109999_b0085) 2015
Bosch (10.1016/j.compag.2025.109999_b0030) 2018; 18
Benhajali (10.1016/j.compag.2025.109999_b0020) 2008; 112
Li (10.1016/j.compag.2025.109999_b0140) 2022; 22
Crecan (10.1016/j.compag.2025.109999_b0045) 2022; 22
Farhadpour (10.1016/j.compag.2025.109999_b0075) 2024; 16
Fercher (10.1016/j.compag.2025.109999_b0080) 2024; 24
Mao (10.1016/j.compag.2025.109999_b0160) 2023; 211
Visser (10.1016/j.compag.2025.109999_b0205) 2008; 114
Lecun (10.1016/j.compag.2025.109999_b0125) 1998; 86
Eerdekens (10.1016/j.compag.2025.109999_b0065) 2020; 168
Burla (10.1016/j.compag.2025.109999_b0040) 2014; 102
LeCun (10.1016/j.compag.2025.109999_b0130) 2015; 521
Elman (10.1016/j.compag.2025.109999_b0070) 1990; 14
10.1016/j.compag.2025.109999_b0190
Auer (10.1016/j.compag.2025.109999_b0015) 2021; 11
Gholamiangonabadi (10.1016/j.compag.2025.109999_b0090) 2020; 8
Bragança (10.1016/j.compag.2025.109999_b0035) 2022; 22
Demrozi (10.1016/j.compag.2025.109999_b0055) 2020; 8
Liu (10.1016/j.compag.2025.109999_b0145) 2024; 24
Hausberger (10.1016/j.compag.2025.109999_b0100) 2016; 175
Maisonpierre (10.1016/j.compag.2025.109999_b0155) 2019; 51
Waran (10.1016/j.compag.2025.109999_b0210) 2017; 190
Lesimple (10.1016/j.compag.2025.109999_b0135) 2020; 10
Martin-Cirera (10.1016/j.compag.2025.109999_b0165) 2024; 242
Bento (10.1016/j.compag.2025.109999_b0025) 2023; 23
DuBois (10.1016/j.compag.2025.109999_b0060) 2015; 9
Hausberger (10.1016/j.compag.2025.109999_b0105) 2020; 10
10.1016/j.compag.2025.109999_b0110
Sagawa (10.1016/j.compag.2025.109999_b0195) 2020; abs/2005.04345.
10.1016/j.compag.2025.109999_b0170
van der Maaten (10.1016/j.compag.2025.109999_b0120) 2008; 9
10.1016/j.compag.2025.109999_b0050
10.1016/j.compag.2025.109999_b0095
10.1016/j.compag.2025.109999_b0150
Pfau (10.1016/j.compag.2025.109999_b0180) 2005; 208
Xia (10.1016/j.compag.2025.109999_b0220) 2020; 8
References_xml – volume: 8
  start-page: 133982
  year: 2020
  end-page: 133994
  ident: b0090
  article-title: Deep Neural Networks for Human Activity Recognition With Wearable Sensors: Leave-One-Subject-Out Cross-Validation for Model Selection
  publication-title: IEEE Access
– volume: 10
  year: 2020
  ident: b0105
  article-title: On-Farm Welfare Assessment of Horses: The Risks of Putting the Cart before the Horse
  publication-title: Animals : an Open Access Journal from MDPI
– volume: 22
  year: 2022
  ident: b0035
  article-title: How Validation Methodology Influences Human Activity Recognition Mobile Systems
  publication-title: Sensors (basel, Switzerland)
– volume: 16
  year: 2016
  ident: b0175
  article-title: Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition
  publication-title: Sensors (basel, Switzerland)
– volume: 13
  start-page: 1
  year: 2022
  end-page: 20
  ident: b0225
  article-title: Domain Generalization: A Survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0115
  article-title: Long short-term memory
  publication-title: Neural Computation
– volume: 112
  start-page: 196
  year: 2008
  end-page: 200
  ident: b0020
  article-title: A note on the time budget and social behaviour of densely housed horses
  publication-title: Applied Animal Behaviour Science
– reference: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing. UbiComp '15: The 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka Japan. 07 09 2015 11 09 2015. ACM, New York, NY, USA, pp.
– volume: 190
  start-page: 74
  year: 2017
  end-page: 81
  ident: b0210
  article-title: What we can measure, we can manage: The importance of using robust welfare indicators in Equitation Science
  publication-title: Applied Animal Behaviour Science
– volume: abs/2005.04345.
  year: 2020
  ident: b0195
  article-title: An Investigation of Why Overparameterization Exacerbates Spurious Correlations
  publication-title: ArXiv
– reference: pp.
– volume: 211
  year: 2023
  ident: b0160
  article-title: Deep learning-based animal activity recognition with wearable sensors: Overview, challenges, and future directions
  publication-title: Computers and Electronics in Agriculture
– reference: 747–756.
– volume: 8
  start-page: 56855
  year: 2020
  end-page: 56866
  ident: b0220
  article-title: LSTM-CNN Architecture for Human Activity Recognition
  publication-title: IEEE Access
– volume: 175
  start-page: 41
  year: 2016
  end-page: 49
  ident: b0100
  article-title: Detecting horses’ sickness: In search of visible signs
  publication-title: Applied Animal Behaviour Science
– volume: 18
  year: 2018
  ident: b0030
  article-title: EquiMoves: A Wireless Networked Inertial Measurement System for Objective Examination of Horse Gait
  publication-title: Sensors (basel, Switzerland)
– reference: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing Adjunct Publication. UbiComp '14: The 2014 ACM Conference on Ubiquitous Computing, Seattle Washington. 13 09 2014 17 09 2014. ACM, New York, NY, pp.
– volume: 51
  start-page: 840
  year: 2019
  end-page: 845
  ident: b0155
  article-title: Accelerometer activity tracking in horses and the effect of pasture management on time budget
  publication-title: Equine Veterinary Journal
– reference: Hammerla, N.Y., Plötz, T., 2015. Let's (not) stick together, in:
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: b0125
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– volume: 10
  start-page: 17785
  year: 2020
  ident: b0200
  article-title: Improving gait classification in horses by using inertial measurement unit (IMU) generated data and machine learning
  publication-title: Scientific Reports
– volume: 242
  start-page: 154
  year: 2024
  end-page: 168
  ident: b0165
  article-title: Comparison of Transformers with LSTM for classification of the behavioural time budget in horses based on video data
  publication-title: Biosystems Engineering
– year: 2015
  ident: b0085
  publication-title: Data Preprocessing in Data Mining
– volume: 80
  start-page: 31
  year: 2003
  end-page: 43
  ident: b0185
  article-title: Identification of potential physiological and behavioral indicators of postoperative pain in horses after exploratory celiotomy for colic
  publication-title: Applied Animal Behaviour Science
– volume: 168
  year: 2020
  ident: b0065
  article-title: Automatic equine activity detection by convolutional neural networks using accelerometer data
  publication-title: Computers and Electronics in Agriculture
– volume: 14
  start-page: 179
  year: 1990
  end-page: 211
  ident: b0070
  article-title: Finding structure in time
  publication-title: Cognitive Science
– reference: Mills, D.S., McDonnell, S. (Eds.), 2009. The domestic horse: The origins, development and management of its behaviour. Cambridge University Press, Cambridge, 249
– volume: 23
  year: 2023
  ident: b0025
  article-title: Exploring Regularization Methods for Domain Generalization in Accelerometer-Based Human Activity Recognition
  publication-title: Sensors (basel, Switzerland)
– volume: 208
  start-page: 2503
  year: 2005
  end-page: 2514
  ident: b0180
  article-title: A method for deriving displacement data during cyclical movement using an inertial sensor
  publication-title: The Journal of Experimental Biology
– volume: 16
  start-page: 533
  year: 2024
  ident: b0075
  article-title: Selecting and Interpreting Multiclass Loss and Accuracy Assessment Metrics for Classifications with Class Imbalance: Guidance and Best Practices
  publication-title: Remote Sensing
– reference: 770–778.
– reference: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA. 27.06.2016 - 30.06.2016. IEEE, pp.
– reference: Qin, X., Wang, J., Chen, Y., Lu, W., Jiang, X., 2022. Domain Generalization for Activity Recognition via Adaptive Feature Fusion. http://arxiv.org/pdf/2207.11221.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b0130
  article-title: Deep learning
  publication-title: Nature
– volume: 102
  start-page: 127
  year: 2014
  end-page: 133
  ident: b0040
  article-title: Gait determination and activity measurement in horses using an accelerometer
  publication-title: Computers and Electronics in Agriculture
– volume: 114
  start-page: 521
  year: 2008
  end-page: 533
  ident: b0205
  article-title: The effect of two different housing conditions on the welfare of young horses stabled for the first time
  publication-title: Applied Animal Behaviour Science
– volume: 10
  year: 2020
  ident: b0135
  article-title: Indicators of Horse Welfare: State-of-the-Art
  publication-title: Animals : an Open Access Journal from MDPI
– reference: Dehghani, A., Glatard, T., Shihab, E., 2019. Subject Cross Validation in Human Activity Recognition. http://arxiv.org/pdf/1904.02666.
– volume: 11
  year: 2021
  ident: b0015
  article-title: Activity Time Budgets-A Potential Tool to Monitor Equine Welfare?
  publication-title: Animals : an Open Access Journal from MDPI
– volume: 22
  year: 2022
  ident: b0140
  article-title: Human Activity Recognition Based on Residual Network and BiLSTM
  publication-title: Sensors (basel, Switzerland)
– volume: 24
  year: 2024
  ident: b0080
  article-title: Applying Multi-Purpose Commercial Inertial Sensors for Monitoring Equine Locomotion in Equestrian Training
  publication-title: Sensors (basel, Switzerland)
– reference: He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep Residual Learning for Image Recognition, in:
– volume: 24
  year: 2024
  ident: b0145
  article-title: Sleeping and Eating Behavior Recognition of Horses Based on an Improved SlowFast Network
  publication-title: Sensors (basel, Switzerland)
– volume: 22
  year: 2022
  ident: b0045
  article-title: Development of a Novel Approach for Detection of Equine Lameness Based on Inertial Sensors: A Preliminary Study
  publication-title: Sensors (basel, Switzerland)
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: b0120
  article-title: Visualizing Data using t-SNE
  publication-title: Journal of Machine Learning Research
– reference: Lockhart, J.W., Weiss, G.M., 2014. Limitations with activity recognition methodology & data sets, in:
– volume: 8
  start-page: 210816
  year: 2020
  end-page: 210836
  ident: b0055
  article-title: Human Activity Recognition using Inertial, Physiological and Environmental Sensors: A Comprehensive Survey
  publication-title: IEEE Access : Practical Innovations, Open Solutions
– year: 2022
  ident: b0005
  article-title: Validation of inertial measurement units to detect and predict horse behaviour while stabled
  publication-title: Equine Veterinary Journal
– volume: 9
  start-page: 110
  year: 2015
  end-page: 114
  ident: b0060
  article-title: Validation of triaxial accelerometers to measure the lying behaviour of adult domestic horses
  publication-title: Animal : an International Journal of Animal Bioscience
– volume: 37
  start-page: 565
  year: 2005
  end-page: 575
  ident: b0010
  article-title: Behavioural assessment of pain in horses and donkeys: application to clinical practice and future studies
  publication-title: Equine Veterinary Journal
– volume: 32
  start-page: 791
  year: 2023
  end-page: 813
  ident: b0215
  article-title: Data collection and quality challenges in deep learning: a data-centric AI perspective
  publication-title: The VLDB Journal
– reference: 1041–1051.
– volume: 13
  start-page: 1
  year: 2022
  ident: 10.1016/j.compag.2025.109999_b0225
  article-title: Domain Generalization: A Survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: 10.1016/j.compag.2025.109999_b0095
  doi: 10.1145/2750858.2807551
– ident: 10.1016/j.compag.2025.109999_b0170
– volume: 14
  start-page: 179
  year: 1990
  ident: 10.1016/j.compag.2025.109999_b0070
  article-title: Finding structure in time
  publication-title: Cognitive Science
  doi: 10.1207/s15516709cog1402_1
– volume: 168
  year: 2020
  ident: 10.1016/j.compag.2025.109999_b0065
  article-title: Automatic equine activity detection by convolutional neural networks using accelerometer data
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2019.105139
– volume: 22
  year: 2022
  ident: 10.1016/j.compag.2025.109999_b0035
  article-title: How Validation Methodology Influences Human Activity Recognition Mobile Systems
  publication-title: Sensors (basel, Switzerland)
  doi: 10.3390/s22062360
– volume: 80
  start-page: 31
  year: 2003
  ident: 10.1016/j.compag.2025.109999_b0185
  article-title: Identification of potential physiological and behavioral indicators of postoperative pain in horses after exploratory celiotomy for colic
  publication-title: Applied Animal Behaviour Science
  doi: 10.1016/S0168-1591(02)00205-8
– volume: 86
  start-page: 2278
  year: 1998
  ident: 10.1016/j.compag.2025.109999_b0125
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– year: 2015
  ident: 10.1016/j.compag.2025.109999_b0085
– volume: 51
  start-page: 840
  year: 2019
  ident: 10.1016/j.compag.2025.109999_b0155
  article-title: Accelerometer activity tracking in horses and the effect of pasture management on time budget
  publication-title: Equine Veterinary Journal
  doi: 10.1111/evj.13130
– volume: 16
  year: 2016
  ident: 10.1016/j.compag.2025.109999_b0175
  article-title: Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition
  publication-title: Sensors (basel, Switzerland)
  doi: 10.3390/s16010115
– volume: abs/2005.04345.
  year: 2020
  ident: 10.1016/j.compag.2025.109999_b0195
  article-title: An Investigation of Why Overparameterization Exacerbates Spurious Correlations
  publication-title: ArXiv
– volume: 32
  start-page: 791
  year: 2023
  ident: 10.1016/j.compag.2025.109999_b0215
  article-title: Data collection and quality challenges in deep learning: a data-centric AI perspective
  publication-title: The VLDB Journal
  doi: 10.1007/s00778-022-00775-9
– volume: 112
  start-page: 196
  year: 2008
  ident: 10.1016/j.compag.2025.109999_b0020
  article-title: A note on the time budget and social behaviour of densely housed horses
  publication-title: Applied Animal Behaviour Science
  doi: 10.1016/j.applanim.2007.08.007
– volume: 8
  start-page: 133982
  year: 2020
  ident: 10.1016/j.compag.2025.109999_b0090
  article-title: Deep Neural Networks for Human Activity Recognition With Wearable Sensors: Leave-One-Subject-Out Cross-Validation for Model Selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3010715
– volume: 10
  start-page: 17785
  year: 2020
  ident: 10.1016/j.compag.2025.109999_b0200
  article-title: Improving gait classification in horses by using inertial measurement unit (IMU) generated data and machine learning
  publication-title: Scientific Reports
  doi: 10.1038/s41598-020-73215-9
– volume: 10
  year: 2020
  ident: 10.1016/j.compag.2025.109999_b0135
  article-title: Indicators of Horse Welfare: State-of-the-Art
  publication-title: Animals : an Open Access Journal from MDPI
  doi: 10.3390/ani10020294
– volume: 242
  start-page: 154
  year: 2024
  ident: 10.1016/j.compag.2025.109999_b0165
  article-title: Comparison of Transformers with LSTM for classification of the behavioural time budget in horses based on video data
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2024.04.014
– volume: 23
  year: 2023
  ident: 10.1016/j.compag.2025.109999_b0025
  article-title: Exploring Regularization Methods for Domain Generalization in Accelerometer-Based Human Activity Recognition
  publication-title: Sensors (basel, Switzerland)
  doi: 10.3390/s23146511
– ident: 10.1016/j.compag.2025.109999_b0150
  doi: 10.1145/2638728.2641306
– volume: 211
  year: 2023
  ident: 10.1016/j.compag.2025.109999_b0160
  article-title: Deep learning-based animal activity recognition with wearable sensors: Overview, challenges, and future directions
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2023.108043
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.compag.2025.109999_b0115
  article-title: Long short-term memory
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– volume: 10
  year: 2020
  ident: 10.1016/j.compag.2025.109999_b0105
  article-title: On-Farm Welfare Assessment of Horses: The Risks of Putting the Cart before the Horse
  publication-title: Animals : an Open Access Journal from MDPI
  doi: 10.3390/ani10030371
– volume: 208
  start-page: 2503
  year: 2005
  ident: 10.1016/j.compag.2025.109999_b0180
  article-title: A method for deriving displacement data during cyclical movement using an inertial sensor
  publication-title: The Journal of Experimental Biology
  doi: 10.1242/jeb.01658
– volume: 9
  start-page: 110
  year: 2015
  ident: 10.1016/j.compag.2025.109999_b0060
  article-title: Validation of triaxial accelerometers to measure the lying behaviour of adult domestic horses
  publication-title: Animal : an International Journal of Animal Bioscience
  doi: 10.1017/S175173111400247X
– volume: 114
  start-page: 521
  year: 2008
  ident: 10.1016/j.compag.2025.109999_b0205
  article-title: The effect of two different housing conditions on the welfare of young horses stabled for the first time
  publication-title: Applied Animal Behaviour Science
  doi: 10.1016/j.applanim.2008.03.003
– volume: 190
  start-page: 74
  year: 2017
  ident: 10.1016/j.compag.2025.109999_b0210
  article-title: What we can measure, we can manage: The importance of using robust welfare indicators in Equitation Science
  publication-title: Applied Animal Behaviour Science
  doi: 10.1016/j.applanim.2017.02.016
– year: 2022
  ident: 10.1016/j.compag.2025.109999_b0005
  article-title: Validation of inertial measurement units to detect and predict horse behaviour while stabled
  publication-title: Equine Veterinary Journal
– volume: 102
  start-page: 127
  year: 2014
  ident: 10.1016/j.compag.2025.109999_b0040
  article-title: Gait determination and activity measurement in horses using an accelerometer
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2014.01.001
– volume: 9
  start-page: 2579
  year: 2008
  ident: 10.1016/j.compag.2025.109999_b0120
  article-title: Visualizing Data using t-SNE
  publication-title: Journal of Machine Learning Research
– ident: 10.1016/j.compag.2025.109999_b0190
– volume: 22
  year: 2022
  ident: 10.1016/j.compag.2025.109999_b0045
  article-title: Development of a Novel Approach for Detection of Equine Lameness Based on Inertial Sensors: A Preliminary Study
  publication-title: Sensors (basel, Switzerland)
  doi: 10.3390/s22187082
– ident: 10.1016/j.compag.2025.109999_b0110
  doi: 10.1109/CVPR.2016.90
– volume: 37
  start-page: 565
  year: 2005
  ident: 10.1016/j.compag.2025.109999_b0010
  article-title: Behavioural assessment of pain in horses and donkeys: application to clinical practice and future studies
  publication-title: Equine Veterinary Journal
  doi: 10.2746/042516405775314826
– volume: 22
  year: 2022
  ident: 10.1016/j.compag.2025.109999_b0140
  article-title: Human Activity Recognition Based on Residual Network and BiLSTM
  publication-title: Sensors (basel, Switzerland)
– volume: 18
  year: 2018
  ident: 10.1016/j.compag.2025.109999_b0030
  article-title: EquiMoves: A Wireless Networked Inertial Measurement System for Objective Examination of Horse Gait
  publication-title: Sensors (basel, Switzerland)
  doi: 10.3390/s18030850
– volume: 24
  year: 2024
  ident: 10.1016/j.compag.2025.109999_b0145
  article-title: Sleeping and Eating Behavior Recognition of Horses Based on an Improved SlowFast Network
  publication-title: Sensors (basel, Switzerland)
  doi: 10.3390/s24237791
– volume: 16
  start-page: 533
  year: 2024
  ident: 10.1016/j.compag.2025.109999_b0075
  article-title: Selecting and Interpreting Multiclass Loss and Accuracy Assessment Metrics for Classifications with Class Imbalance: Guidance and Best Practices
  publication-title: Remote Sensing
  doi: 10.3390/rs16030533
– ident: 10.1016/j.compag.2025.109999_b0050
– volume: 24
  year: 2024
  ident: 10.1016/j.compag.2025.109999_b0080
  article-title: Applying Multi-Purpose Commercial Inertial Sensors for Monitoring Equine Locomotion in Equestrian Training
  publication-title: Sensors (basel, Switzerland)
  doi: 10.3390/s24248170
– volume: 8
  start-page: 210816
  year: 2020
  ident: 10.1016/j.compag.2025.109999_b0055
  article-title: Human Activity Recognition using Inertial, Physiological and Environmental Sensors: A Comprehensive Survey
  publication-title: IEEE Access : Practical Innovations, Open Solutions
  doi: 10.1109/ACCESS.2020.3037715
– volume: 8
  start-page: 56855
  year: 2020
  ident: 10.1016/j.compag.2025.109999_b0220
  article-title: LSTM-CNN Architecture for Human Activity Recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982225
– volume: 175
  start-page: 41
  year: 2016
  ident: 10.1016/j.compag.2025.109999_b0100
  article-title: Detecting horses’ sickness: In search of visible signs
  publication-title: Applied Animal Behaviour Science
  doi: 10.1016/j.applanim.2015.09.005
– volume: 11
  year: 2021
  ident: 10.1016/j.compag.2025.109999_b0015
  article-title: Activity Time Budgets-A Potential Tool to Monitor Equine Welfare?
  publication-title: Animals : an Open Access Journal from MDPI
  doi: 10.3390/ani11030850
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.compag.2025.109999_b0130
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
SSID ssj0016987
Score 2.4315288
Snippet •Deep neural network recognizes equine behavior from collar worn sensor data.•Framework combines local spatiotemporal and long-term temporal feature...
Equine daily behavior is a key welfare indicator, offering insights into how environmental and training conditions influence health and well-being. Continuous...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 109999
SubjectTerms accelerometers
agriculture
automation
Behavior classification
data collection
Deep learning
electronics
Equine activity recognition
horses
humans
IMU
Wearable sensors
welfare assessment
Title Validation of a Time-Distributed residual LSTM–CNN and BiLSTM for equine behavior recognition using collar-worn sensors
URI https://dx.doi.org/10.1016/j.compag.2025.109999
https://www.proquest.com/docview/3165864095
Volume 231
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lBW8xna7eR5rtdRHe2krvS27m02ph6SmLeJF_A_-Q3-JM3kUFEHwmCVZwmR25hvyfTOEXPiBllKbpmVj_0ubc2lJV0eoWHZ41OTGRChO7g_c3ti-mziTCumUWhikVRaxP4_pWbQuVhqFNRvz2awxBLDiMzcIIInjmMcJKthtD7388m1N84Ab_Fwy7UK1BHeX8rmM45XxvKdQJbYc7KsUZB1gf01PPwJ1ln26O2S7gI20nb_ZLqmYeI9stadp0TrD7JPXR4DU-YQkmkRUUlR3WNfYGBdnWpmQQmWdSa_ow3DU_3z_6AwGVMYhvZrhAgX4Ss3zCmAnLcX7dM0vgk2RIj-lmeOk1kuSxnQBNXCSLg7IuHsz6vSsYrCCpTm3l5bUjEUq4qppPKUCGQatENI895VtXM4c5XLJbO2jCE7JyANYoU1LaS9kGpKb5oekGiexOSIUjO-HnnZ9OMeArKB8Y03lKBY6La25jGrEKu0p5nn_DFESy55Ebn-B9he5_WvEK40uvvmBgBD_x5Pn5TcScETwv4eMTbJaCM4AZrlQyDrH_979hGziVc7ZOSXVZboyZwBHlqqe-VudbLRv73uDL40Y4cY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhU7RoJjaB1nPXAASlWg7YUW9WZsx6nKIYUuQlwQ_8Cn8Ed8CeMsSCAkJKReHcWyniezKO_NABwGoRJC6bLlmP6XDmPCEp6KjWLZZXGZaR0bcXKj6dXazlXH7UzBe6GFMbTK3PdnPj311vlKKUez9NDrlW4wWQmoF4YYxM2Yx07OrLzWz09Ytw1PLit4yUe2Xb1ondesfLSApRhzRpZQlMYyZrKsfSlDEYV2hIGOBdLRHqOu9JigjgqMDEyK2MfAqrQtlR9Rhe5dMdx3GmYddBdmbMLxyxevBE8UZBptD8szPF6h10tJZSmxvItlqe2aRk5h2nL213j4IzKk4a66BIt5nkpOMyiWYUonK7Bw2h3kvTr0KjzfYg6fjWQi_ZgIYuQkVsV04jVDtHREsJRPtV6kftNqfLy-nTebRCQROeuZBYL5MtGPY8xzSdEtgHwRmnBTw8nvktRSBxainZAhFt39wXAN2hOBex1mkn6iN4DgbQeRr7wAHQemclgv0rJ0JY1cWykm4k2wCjz5Q9awgxdMtnue4c8N_jzDfxP8AnT-zfA4xpQ_3jwo7ojjN2l-tIhE98dDzijmdR5Wzu7Wv3ffh7laq1Hn9cvm9TbMmycZYWgHZkaDsd7FXGgk91LbI3A3aWP_BEbfHi8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+a+Time-Distributed+residual+LSTM%E2%80%93CNN+and+BiLSTM+for+equine+behavior+recognition+using+collar-worn+sensors&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Kirsch%2C+Katharina&rft.au=Strutzke%2C+Saskia&rft.au=Klitzing%2C+Lara&rft.au=Pilger%2C+Franziska&rft.date=2025-04-01&rft.pub=Elsevier+B.V&rft.issn=0168-1699&rft.volume=231&rft_id=info:doi/10.1016%2Fj.compag.2025.109999&rft.externalDocID=S016816992500105X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon