Ionic conductivity of Ga-doped LLZO prepared using Couette–Taylor reactor for all-solid lithium batteries

A Couette–Taylor reactor and a batch reactor were used to synthesize garnet-related LLZO materials (Li7-3xMxLa3Zr2O12, M=Ga, Al) for all-solid batteries, and the properties of the resulting samples were compared. Ga-doped LLZO synthesized with the Couette–Taylor reactor comprised cubic phase primary...

Full description

Saved in:
Bibliographic Details
Published inJournal of industrial and engineering chemistry (Seoul, Korea) Vol. 56; pp. 422 - 427
Main Authors Yang, Seung Hoon, Kim, Min Young, Kim, Da Hye, Jung, Ha Young, Ryu, Hye Min, Han, Jong Hoon, Lee, Moo Sung, Kim, Ho-Sung
Format Journal Article
LanguageEnglish
Published Elsevier B.V 25.12.2017
한국공업화학회
Subjects
Online AccessGet full text
ISSN1226-086X
1876-794X
DOI10.1016/j.jiec.2017.07.041

Cover

Loading…
Abstract A Couette–Taylor reactor and a batch reactor were used to synthesize garnet-related LLZO materials (Li7-3xMxLa3Zr2O12, M=Ga, Al) for all-solid batteries, and the properties of the resulting samples were compared. Ga-doped LLZO synthesized with the Couette–Taylor reactor comprised cubic phase primary nanoparticles; the calculated lattice parameter and crystallite size for the Couette–Taylor and batch reactor samples were a=12.98043Å and 129.8nm and a=12.97568Å and 394.5nm, respectively. The parameters for the Al-doped LLZO congener synthesized with the Couette–Taylor reactor were a=13.10758Å, c=12.67279Å, and 132.5nm. The cross-section of the Ga-doped LLZO pellet synthesized with the Couette–Taylor reactor showed a denser microstructure than that of the other pellets, with a relative density of 98%. The total ionic conductivity of the Ga-doped LLZO pellets synthesized with the Couette–Taylor reactor was 1.2–1.75×10−3S/cm at 25°C. This value contrasts sharply with that of the sample from the batch reactor (3.9×10−4S/cm). This is may be related to the large size of Ga doped into the LLZO crystallite structure and the primary nanoparticles, which promoted sintering of the pellet.
AbstractList A Couette–Taylor reactor and a batch reactor were used to synthesize garnet-related LLZO materials (Li7-3xMxLa3Zr2O12, M=Ga, Al) for all-solid batteries, and the properties of the resulting samples were compared. Ga-doped LLZO synthesized with the Couette–Taylor reactor comprised cubic phase primary nanoparticles; the calculated lattice parameter and crystallite size for the Couette–Taylor and batch reactor samples were a=12.98043Å and 129.8nm and a=12.97568Å and 394.5nm, respectively. The parameters for the Al-doped LLZO congener synthesized with the Couette–Taylor reactor were a=13.10758Å, c=12.67279Å, and 132.5nm. The cross-section of the Ga-doped LLZO pellet synthesized with the Couette–Taylor reactor showed a denser microstructure than that of the other pellets, with a relative density of 98%. The total ionic conductivity of the Ga-doped LLZO pellets synthesized with the Couette–Taylor reactor was 1.2–1.75×10−3S/cm at 25°C. This value contrasts sharply with that of the sample from the batch reactor (3.9×10−4S/cm). This is may be related to the large size of Ga doped into the LLZO crystallite structure and the primary nanoparticles, which promoted sintering of the pellet.
A Couette–Taylor reactor and a batch reactor were used to synthesize garnet-related LLZO materials (Li7-3xMxLa3Zr2O12, M = Ga, Al) for all-solid batteries, and the properties of the resulting samples werecompared. Ga-doped LLZO synthesized with the Couette–Taylor reactor comprised cubic phase primarynanoparticles; the calculated lattice parameter and crystallite size for the Couette–Taylor and batchreactor samples were a = 12.98043 Å and 129.8 nm and a = 12.97568 Å and 394.5 nm, respectively. Theparameters for the Al-doped LLZO congener synthesized with the Couette–Taylor reactor werea = 13.10758 Å, c = 12.67279 Å, and 132.5 nm. The cross-section of the Ga-doped LLZO pellet synthesizedwith the Couette–Taylor reactor showed a denser microstructure than that of the other pellets, with arelative density of 98%. The total ionic conductivity of the Ga-doped LLZO pellets synthesized with theCouette–Taylor reactor was 1.2–1.7510 3 S/cm at 25 C. This value contrasts sharply with that of thesample from the batch reactor (3.9 10 4 S/cm). This is may be related to the large size of Ga doped intothe LLZO crystallite structure and the primary nanoparticles, which promoted sintering of the pellet. KCI Citation Count: 27
Author Jung, Ha Young
Yang, Seung Hoon
Ryu, Hye Min
Han, Jong Hoon
Lee, Moo Sung
Kim, Da Hye
Kim, Min Young
Kim, Ho-Sung
Author_xml – sequence: 1
  givenname: Seung Hoon
  surname: Yang
  fullname: Yang, Seung Hoon
  organization: Korea Institute of Industrial Technology (KITECH), 6, Cheomdan-gwagiro 208-gil, Buk-gu, Gwangju 500-480, Republic of Korea
– sequence: 2
  givenname: Min Young
  surname: Kim
  fullname: Kim, Min Young
  organization: Korea Institute of Industrial Technology (KITECH), 6, Cheomdan-gwagiro 208-gil, Buk-gu, Gwangju 500-480, Republic of Korea
– sequence: 3
  givenname: Da Hye
  surname: Kim
  fullname: Kim, Da Hye
  organization: Korea Institute of Industrial Technology (KITECH), 6, Cheomdan-gwagiro 208-gil, Buk-gu, Gwangju 500-480, Republic of Korea
– sequence: 4
  givenname: Ha Young
  surname: Jung
  fullname: Jung, Ha Young
  organization: Korea Institute of Industrial Technology (KITECH), 6, Cheomdan-gwagiro 208-gil, Buk-gu, Gwangju 500-480, Republic of Korea
– sequence: 5
  givenname: Hye Min
  surname: Ryu
  fullname: Ryu, Hye Min
  organization: Korea Institute of Industrial Technology (KITECH), 6, Cheomdan-gwagiro 208-gil, Buk-gu, Gwangju 500-480, Republic of Korea
– sequence: 6
  givenname: Jong Hoon
  surname: Han
  fullname: Han, Jong Hoon
  organization: Department of Advance Chemicals and Engineering, Chonnam National University, 77, Yongbongro, Buk-gu, Gwangju 500-757, Republic of Korea
– sequence: 7
  givenname: Moo Sung
  surname: Lee
  fullname: Lee, Moo Sung
  organization: Department of Advance Chemicals and Engineering, Chonnam National University, 77, Yongbongro, Buk-gu, Gwangju 500-757, Republic of Korea
– sequence: 8
  givenname: Ho-Sung
  surname: Kim
  fullname: Kim, Ho-Sung
  email: hosung42@kitech.re.kr, hskim153@hotmail.com
  organization: Korea Institute of Industrial Technology (KITECH), 6, Cheomdan-gwagiro 208-gil, Buk-gu, Gwangju 500-480, Republic of Korea
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002291917$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kMFqGzEQhkVJoImTF-hJ1x7WlVbrXQl6MaZNDQZDccHkIrTSrDv2ZmUkOeBb3qFv2CeJHOeUg-Ef_hn4vzn8t-Rq8AMQ8oWzMWe8_rYdbxHsuGS8GbOsin8iN1w2ddGoan2V97KsCybr9WdyG-OWsZoJWd-Q3dwPaKn1gzvYhM-YjtR39MEUzu_B0cXicUn3AfYm5OsQcdjQmT9ASvD_5d_KHHsfaABjU_Yuj-n7IvoeHe0x_cXDE21NDgeEeEeuO9NHuH_3Efnz88dq9qtYLB_ms-misEJUqVBuAryzQkrHylLwrlXQVKpVXFbQOAOtVK5uxYRNJqxVknWVbUFIxRoQTrRiRL6e_w6h0zuL2ht8843Xu6Cnv1dzXfJGyYrlbHnO2uBjDNDpfcAnE46aM32qVm_1qVp9qlazrIpnSH6ALCaT0A8pGOwvo9_PKOQCnhGCjhZhsOAwgE3aebyEvwLOVZkH
CitedBy_id crossref_primary_10_1007_s11581_019_03436_0
crossref_primary_10_1016_j_mtener_2021_100669
crossref_primary_10_1002_ente_202300334
crossref_primary_10_33889_PMSL_2023_2_1_003
crossref_primary_10_3938_jkps_74_187
crossref_primary_10_1002_bte2_20220024
crossref_primary_10_1007_s42864_021_00102_9
crossref_primary_10_1016_j_jpowsour_2021_229845
crossref_primary_10_1016_j_matchemphys_2022_126762
crossref_primary_10_1149_1945_7111_ad75bd
crossref_primary_10_1002_crat_202300130
crossref_primary_10_1016_j_ssi_2018_09_021
crossref_primary_10_1021_acsami_0c17422
crossref_primary_10_1021_acsami_8b17217
crossref_primary_10_1007_s10008_023_05522_w
crossref_primary_10_1149_1945_7111_aca6a3
crossref_primary_10_1016_j_rechem_2023_100800
crossref_primary_10_1149_1945_7111_abd91a
crossref_primary_10_1016_j_ssi_2023_116245
crossref_primary_10_1016_j_ceramint_2020_02_221
crossref_primary_10_1039_D1RA06210G
crossref_primary_10_1039_D2RA01430K
crossref_primary_10_1016_j_jpowsour_2022_231789
crossref_primary_10_1016_j_est_2023_107421
crossref_primary_10_1039_D2CC04862K
crossref_primary_10_1088_2053_1591_abcc85
crossref_primary_10_1007_s40242_020_0116_0
crossref_primary_10_1088_1742_6596_2079_1_012017
crossref_primary_10_1016_j_ceja_2023_100532
crossref_primary_10_1016_j_powtec_2023_119277
crossref_primary_10_1007_s10008_019_04296_4
crossref_primary_10_1021_acsaem_0c00716
crossref_primary_10_1007_s40242_020_9110_9
crossref_primary_10_3390_app12147318
crossref_primary_10_4191_kcers_2019_56_2_01
crossref_primary_10_1016_j_ceramint_2022_06_232
crossref_primary_10_1007_s11581_020_03670_x
crossref_primary_10_1002_smll_202402035
crossref_primary_10_1016_j_jeurceramsoc_2021_11_028
crossref_primary_10_3390_en16237695
crossref_primary_10_1016_j_ensm_2021_04_016
crossref_primary_10_1021_acsami_1c05846
crossref_primary_10_1021_acsaem_2c03706
crossref_primary_10_1002_smll_202205550
crossref_primary_10_1016_j_jiec_2018_12_001
crossref_primary_10_1016_j_electacta_2020_137348
crossref_primary_10_1007_s12598_018_1036_8
Cites_doi 10.1002/anie.200701144
10.1016/j.ssi.2013.10.059
10.1098/rsta.1923.0008
10.1002/cjce.5450630104
10.1016/j.jpowsour.2010.11.089
10.1149/1.2096693
10.1103/PhysRevLett.51.1442
10.1016/j.materresbull.2014.05.005
10.1016/j.ssi.2011.01.002
10.1016/0025-5408(88)90264-4
10.1016/S0167-2738(98)00070-8
10.1016/j.matchemphys.2012.03.054
10.1038/srep41217
10.1016/j.jpowsour.2012.01.131
10.1039/c3ta11996c
10.1016/j.carbon.2014.11.024
10.1016/j.jiec.2016.02.016
10.1021/acs.macromol.6b00412
10.1038/srep18053
10.1038/35104644
ContentType Journal Article
Copyright 2017 The Korean Society of Industrial and Engineering Chemistry
Copyright_xml – notice: 2017 The Korean Society of Industrial and Engineering Chemistry
DBID AAYXX
CITATION
ACYCR
DOI 10.1016/j.jiec.2017.07.041
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1876-794X
EndPage 427
ExternalDocumentID oai_kci_go_kr_ARTI_2179840
10_1016_j_jiec_2017_07_041
S1226086X1730415X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9ZL
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
GBLVA
HH5
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SSG
SSZ
T5K
~G-
2WC
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
HZ~
MZR
OK1
SSH
ZY4
ZZE
85H
ABPIF
ABTAH
ACYCR
ID FETCH-LOGICAL-c334t-9d5e1fc388d02231fb9e749b9184e7daeb89d6b350550b980f4cbe38907e3d3b3
IEDL.DBID .~1
ISSN 1226-086X
IngestDate Wed Feb 07 01:48:27 EST 2024
Tue Jul 01 03:34:07 EDT 2025
Thu Apr 24 22:54:20 EDT 2025
Fri Feb 23 02:30:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Couette–Taylor
Garnet-like structure
All-solid battery
Ionic conductivity
Sintering temperature
Co-precipitation
Cubic phase
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-9d5e1fc388d02231fb9e749b9184e7daeb89d6b350550b980f4cbe38907e3d3b3
PageCount 6
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_2179840
crossref_primary_10_1016_j_jiec_2017_07_041
crossref_citationtrail_10_1016_j_jiec_2017_07_041
elsevier_sciencedirect_doi_10_1016_j_jiec_2017_07_041
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-25
PublicationDateYYYYMMDD 2017-12-25
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-25
  day: 25
PublicationDecade 2010
PublicationTitle Journal of industrial and engineering chemistry (Seoul, Korea)
PublicationYear 2017
Publisher Elsevier B.V
한국공업화학회
Publisher_xml – name: Elsevier B.V
– name: 한국공업화학회
References Imagawa, Ohta, Kihira, Asaoka (bib0030) 2014; 262
Kim, Yang, Kim, Lee, Lim, Chang, Kim (bib0035) 2016; 36
Allen, Wolfentstine, Rangasamy, Sakamoto (bib0050) 2012
Tarascon, Armand (bib0005) 2001; 414
Park, Kim, Kim, Kim, Yoo, Kim, Yoon, Yang (bib0070) 2015; 83
Sun, Zhao, Li, Guo, Feng, Liu, Liu, Cui, Zheng, Gu, Li (bib0105) 2017; 7
Aono, Sugimoto, Sadaoka, Imanaka, Adachi (bib0010) 1989; 136
Kokal, Somer, Notten, Hintzen (bib0025) 2011; 185
Wolfenstine, Ratchford, Rangasamy, Sakamoto, Allen (bib0055) 2012; 134
Murugan, Thangadurai, Weppner (bib0020) 2007; 46
Chintapalli, Timachova, Olson, Mecham, Devaux, DeSimone, Balsara (bib0095) 2016; 49
Taylor (bib0075) 1923; 223
Harada, Ishigaki, Kawai, Kuwano (bib0015) 1998; 108
Shin, Ohm, Kim, Park, Lee, Lee, Kang (bib0060) 2015; 5
Larraz, Orera, Sanjuan (bib0100) 2013; 1
Brandstater, Swift, Swinney, Wolf, Farmer, Crutchfield (bib0080) 1983; 51
Thompson, Sharafi, Johannes, Huq, Allen, Wolfenstine, Sakamoto (bib0065) 2015
Choi, Kim, Kim, Park, Lee, Jin (bib0090) 2014; 58
Ohta, Kobayashi, Asaoka (bib0045) 2011; 196
Hyooma, Hayashi (bib0040) 1988; 23
Gu, Fahidy (bib0085) 1985; 63
Tarascon (10.1016/j.jiec.2017.07.041_bib0005) 2001; 414
Park (10.1016/j.jiec.2017.07.041_bib0070) 2015; 83
Larraz (10.1016/j.jiec.2017.07.041_bib0100) 2013; 1
Gu (10.1016/j.jiec.2017.07.041_bib0085) 1985; 63
Allen (10.1016/j.jiec.2017.07.041_bib0050) 2012
Kim (10.1016/j.jiec.2017.07.041_bib0035) 2016; 36
Taylor (10.1016/j.jiec.2017.07.041_bib0075) 1923; 223
Thompson (10.1016/j.jiec.2017.07.041_bib0065) 2015
Aono (10.1016/j.jiec.2017.07.041_bib0010) 1989; 136
Murugan (10.1016/j.jiec.2017.07.041_bib0020) 2007; 46
Imagawa (10.1016/j.jiec.2017.07.041_bib0030) 2014; 262
Hyooma (10.1016/j.jiec.2017.07.041_bib0040) 1988; 23
Harada (10.1016/j.jiec.2017.07.041_bib0015) 1998; 108
Wolfenstine (10.1016/j.jiec.2017.07.041_bib0055) 2012; 134
Brandstater (10.1016/j.jiec.2017.07.041_bib0080) 1983; 51
Shin (10.1016/j.jiec.2017.07.041_bib0060) 2015; 5
Chintapalli (10.1016/j.jiec.2017.07.041_bib0095) 2016; 49
Choi (10.1016/j.jiec.2017.07.041_bib0090) 2014; 58
Kokal (10.1016/j.jiec.2017.07.041_bib0025) 2011; 185
Ohta (10.1016/j.jiec.2017.07.041_bib0045) 2011; 196
Sun (10.1016/j.jiec.2017.07.041_bib0105) 2017; 7
References_xml – volume: 51
  start-page: 1442
  year: 1983
  ident: bib0080
  publication-title: Phys. Rev. Lett.
– start-page: 150096
  year: 2015
  ident: bib0065
  publication-title: Adv. Energy Mater.
– volume: 49
  start-page: 3508
  year: 2016
  ident: bib0095
  publication-title: Macromolecules
– volume: 83
  start-page: 217
  year: 2015
  ident: bib0070
  publication-title: Carbon
– volume: 63
  start-page: 14
  year: 1985
  ident: bib0085
  publication-title: Can. J. Chem. Eng.
– volume: 58
  start-page: 223
  year: 2014
  ident: bib0090
  publication-title: Mater. Res. Bull.
– volume: 223
  start-page: 289
  year: 1923
  ident: bib0075
  publication-title: Philos. Trans. R. Soc. Lond. Ser. A
– volume: 1
  start-page: 11419
  year: 2013
  ident: bib0100
  publication-title: J. Mater. Chem. A
– volume: 136
  start-page: 590
  year: 1989
  ident: bib0010
  publication-title: J. Electrochem. Soc.
– volume: 5
  start-page: 18053
  year: 2015
  ident: bib0060
  publication-title: Sci. Rep.
– volume: 134
  start-page: 571
  year: 2012
  ident: bib0055
  publication-title: Mater. Chem. Phys.
– volume: 36
  start-page: 279
  year: 2016
  ident: bib0035
  publication-title: J. Ind. Eng. Chem.
– volume: 108
  start-page: 407
  year: 1998
  ident: bib0015
  publication-title: Solid State Ionics
– volume: 7
  start-page: 41217
  year: 2017
  ident: bib0105
  publication-title: Sci. Rep.
– volume: 185
  start-page: 42
  year: 2011
  ident: bib0025
  publication-title: Solid State Ionics
– volume: 262
  start-page: 609
  year: 2014
  ident: bib0030
  publication-title: Solid State Ionics
– start-page: 315
  year: 2012
  ident: bib0050
  publication-title: J. Power Sources
– volume: 46
  start-page: 7778
  year: 2007
  ident: bib0020
  publication-title: Angew. Chem. Int. Ed.
– volume: 414
  start-page: 359
  year: 2001
  ident: bib0005
  publication-title: Nature
– volume: 23
  start-page: 1399
  year: 1988
  ident: bib0040
  publication-title: Mater. Res. Bull.
– volume: 196
  start-page: 3342
  year: 2011
  ident: bib0045
  publication-title: J. Power Sources
– volume: 46
  start-page: 7778
  year: 2007
  ident: 10.1016/j.jiec.2017.07.041_bib0020
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200701144
– volume: 262
  start-page: 609
  year: 2014
  ident: 10.1016/j.jiec.2017.07.041_bib0030
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2013.10.059
– volume: 223
  start-page: 289
  year: 1923
  ident: 10.1016/j.jiec.2017.07.041_bib0075
  publication-title: Philos. Trans. R. Soc. Lond. Ser. A
  doi: 10.1098/rsta.1923.0008
– volume: 63
  start-page: 14
  year: 1985
  ident: 10.1016/j.jiec.2017.07.041_bib0085
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.5450630104
– volume: 196
  start-page: 3342
  year: 2011
  ident: 10.1016/j.jiec.2017.07.041_bib0045
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.11.089
– volume: 136
  start-page: 590
  year: 1989
  ident: 10.1016/j.jiec.2017.07.041_bib0010
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2096693
– volume: 51
  start-page: 1442
  year: 1983
  ident: 10.1016/j.jiec.2017.07.041_bib0080
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.51.1442
– volume: 58
  start-page: 223
  year: 2014
  ident: 10.1016/j.jiec.2017.07.041_bib0090
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2014.05.005
– volume: 185
  start-page: 42
  year: 2011
  ident: 10.1016/j.jiec.2017.07.041_bib0025
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2011.01.002
– volume: 23
  start-page: 1399
  year: 1988
  ident: 10.1016/j.jiec.2017.07.041_bib0040
  publication-title: Mater. Res. Bull.
  doi: 10.1016/0025-5408(88)90264-4
– volume: 108
  start-page: 407
  year: 1998
  ident: 10.1016/j.jiec.2017.07.041_bib0015
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(98)00070-8
– volume: 134
  start-page: 571
  year: 2012
  ident: 10.1016/j.jiec.2017.07.041_bib0055
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2012.03.054
– start-page: 150096
  year: 2015
  ident: 10.1016/j.jiec.2017.07.041_bib0065
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 41217
  year: 2017
  ident: 10.1016/j.jiec.2017.07.041_bib0105
  publication-title: Sci. Rep.
  doi: 10.1038/srep41217
– start-page: 315
  year: 2012
  ident: 10.1016/j.jiec.2017.07.041_bib0050
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.01.131
– volume: 1
  start-page: 11419
  year: 2013
  ident: 10.1016/j.jiec.2017.07.041_bib0100
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta11996c
– volume: 83
  start-page: 217
  year: 2015
  ident: 10.1016/j.jiec.2017.07.041_bib0070
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.11.024
– volume: 36
  start-page: 279
  year: 2016
  ident: 10.1016/j.jiec.2017.07.041_bib0035
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2016.02.016
– volume: 49
  start-page: 3508
  year: 2016
  ident: 10.1016/j.jiec.2017.07.041_bib0095
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.6b00412
– volume: 5
  start-page: 18053
  year: 2015
  ident: 10.1016/j.jiec.2017.07.041_bib0060
  publication-title: Sci. Rep.
  doi: 10.1038/srep18053
– volume: 414
  start-page: 359
  year: 2001
  ident: 10.1016/j.jiec.2017.07.041_bib0005
  publication-title: Nature
  doi: 10.1038/35104644
SSID ssj0060386
ssib009049966
ssib053391666
Score 2.3685412
Snippet A Couette–Taylor reactor and a batch reactor were used to synthesize garnet-related LLZO materials (Li7-3xMxLa3Zr2O12, M=Ga, Al) for all-solid batteries, and...
A Couette–Taylor reactor and a batch reactor were used to synthesize garnet-related LLZO materials (Li7-3xMxLa3Zr2O12, M = Ga, Al) for all-solid batteries, and...
SourceID nrf
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 422
SubjectTerms All-solid battery
Co-precipitation
Couette–Taylor
Cubic phase
Garnet-like structure
Ionic conductivity
Sintering temperature
화학공학
Title Ionic conductivity of Ga-doped LLZO prepared using Couette–Taylor reactor for all-solid lithium batteries
URI https://dx.doi.org/10.1016/j.jiec.2017.07.041
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002291917
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Industrial and Engineering Chemistry, 2017, 56(0), , pp.422-427
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUoXOBQlS9BC8iquFVm49hx4iNaFXYp0AMgrbhYcWwvYbeb1Wr3WvU_8A_7SzqTZBEc4FApUpTIiaLxZOaN9fyGkONEu0THCn6kIqRMKsuZ9jxhWaa4KoRWrsD1jqtr1buTF4NksEK6y70wSKtsY38T0-to3d7ptNbsTMuyc8MBOQAgH3BwUkhDA9zBLlP08pPfzzQPFYm62yMOZji63TjTcLweS48yhjytBTwlfys5fZjMwou0c_aJfGzxIj1tPmmTrPjJFtl4oSK4TUZ9lLelUNiidmvdDIJWgZ7nzFVT7-jl5f1POp35mmtOkeg-pN1qgRyfv3-empKdAnbE5XsKGJbm4zEDlywdBYz-UC5-UVurcEJRvUPuzr7fdnus7aHACiHknMFUeB4KkWUOsrXgwWqfSm01VHY-dbm3mXbKCgBCSWR1FgVZWA8oJkq9cMKKXbI6qSZ-j1AoWbXNk9ilQUibQ14TsfWBOyUg2oawT_jSeKZoBcaxz8XYLJlkjwYNbtDgJoJD8n3y7fmZaSOv8e7oZDkn5pWTGIj_7z73FSbQjIrSoJo2noeVGc0M1Ax9E6Nmm4w-_-fLv5B1vEKKS5wckNX5bOEPAajM7VHtiUdk7bT_o3f9D05e6EE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELba7QE4oPIShQIW4oasjeNH4mO1ot2l2-VAK624WHFsl3SXzWq1e-c_8A_5JZ3JA5UDPSBFipTEUTSezHxjff6GkA_KeGVSDT9SGTMmtePMBK5YnmuuS2G0L3G942Kmx1fy81zN98io3wuDtMou9rcxvYnW3ZVhZ83huqqGXzkgBwDkcw5OCmlovk8OUJ1KDcjByeR8POsDsk5E0_ARn2c4oNs709K8bqqASoY8azQ8Jf9XftpfbeKdzHN6SB53kJGetF_1hOyF1VPy6I6Q4DOymKDCLYXaFuVbm34QtI70rGC-XgdPp9NvX-h6Exq6OUWu-zUd1Tuk-fz--aut2inAR1zBpwBjabFcMvDKylOA6d-r3Q_qGiFOqKufk6vTT5ejMevaKLBSCLllMBuBx1LkuYeELXh0JmTSOAPFXch8EVxuvHYCsJBKnMmTKEsXAMgkWRBeOPGCDFb1KrwkFKpW4wqV-iwK6QpIbSJ1IXKvBQTcGI8I741ny05jHFtdLG1PJruxaHCLBrcJHJIfkY9_xqxbhY17n1b9nNi__MRCCrh33HuYQLsoK4uC2ni-ru1iY6FsmNgUZdtk8uo_X_6OPBhfXkztdDI7f00e4h1kvKTqmAy2m114A7hl6952fnkLR2nq8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ionic+conductivity+of+Ga-doped+LLZO+prepared+using+Couette%E2%80%93Taylor+reactor+for+all-solid+lithium+batteries&rft.jtitle=Journal+of+industrial+and+engineering+chemistry+%28Seoul%2C+Korea%29&rft.au=%EC%96%91%EC%8A%B9%ED%9B%88&rft.au=%EA%B9%80%EB%AF%BC%EC%98%81&rft.au=%EA%B9%80%EB%8B%A4%ED%98%9C&rft.au=%EC%A0%95%ED%95%98%EC%98%81&rft.date=2017-12-25&rft.pub=%ED%95%9C%EA%B5%AD%EA%B3%B5%EC%97%85%ED%99%94%ED%95%99%ED%9A%8C&rft.issn=1226-086X&rft.eissn=1876-794X&rft.spage=422&rft.epage=427&rft_id=info:doi/10.1016%2Fj.jiec.2017.07.041&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_2179840
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-086X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-086X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-086X&client=summon