High-temperature CMAS resistance performance of Ti2AlC oxide scales

•Bi-layered oxide scales were developed by pre-oxidizing Ti2AlC bulk at different temperatures.•Molten CMAS corrosion behavior on scales at 1523 K was studied though a sessile-drop method.•CaTiO3 phase could help increase CMAS droplet viscosity and reduce spreading rate.•Glassy CMAS on Al2TiO5 layer...

Full description

Saved in:
Bibliographic Details
Published inCorrosion science Vol. 174; p. 108832
Main Authors Jing, Jing, Li, Jimeng, He, Zhe, He, Jian, Guo, Hongbo
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.09.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Bi-layered oxide scales were developed by pre-oxidizing Ti2AlC bulk at different temperatures.•Molten CMAS corrosion behavior on scales at 1523 K was studied though a sessile-drop method.•CaTiO3 phase could help increase CMAS droplet viscosity and reduce spreading rate.•Glassy CMAS on Al2TiO5 layer shows the slowest spreading rate and the largest equilibrium contact angle among all. Failure of thermal barrier coatings (TBCs) caused by glassy deposits mostly composed of calcium-magnesium-aluminium-silicate (CMAS) has become an urgent issue. The addition of Al and Ti elements in TBCs is beneficial to improve the CMAS resistance. In this paper, bi-layered oxide scales were formed through pre-oxidation of Ti2AlC (POTAC) bulks at high temperatures. The wettability and spreading behaviors of CMAS on the oxide scales, as well as the interaction between them were investigated by a sessile-drop method. The glassy CMAS deposit on the Al2TiO5 layer revealed the largest equilibrium contact angle and slowest diffusion-limited spreading rate among all the samples.
AbstractList Failure of thermal barrier coatings (TBCs) caused by glassy deposits mostly composed of calcium-magnesium-aluminium-silicate (CMAS) has become an urgent issue. The addition of Al and Ti elements in TBCs is beneficial to improve the CMAS resistance. In this paper, bi-layered oxide scales were formed through pre-oxidation of Ti2AlC (POTAC) bulks at high temperatures. The wettability and spreading behaviors of CMAS on the oxide scales, as well as the interaction between them were investigated by a sessile-drop method. The glassy CMAS deposit on the Al2TiO5 layer revealed the largest equilibrium contact angle and slowest diffusion-limited spreading rate among all the samples.
•Bi-layered oxide scales were developed by pre-oxidizing Ti2AlC bulk at different temperatures.•Molten CMAS corrosion behavior on scales at 1523 K was studied though a sessile-drop method.•CaTiO3 phase could help increase CMAS droplet viscosity and reduce spreading rate.•Glassy CMAS on Al2TiO5 layer shows the slowest spreading rate and the largest equilibrium contact angle among all. Failure of thermal barrier coatings (TBCs) caused by glassy deposits mostly composed of calcium-magnesium-aluminium-silicate (CMAS) has become an urgent issue. The addition of Al and Ti elements in TBCs is beneficial to improve the CMAS resistance. In this paper, bi-layered oxide scales were formed through pre-oxidation of Ti2AlC (POTAC) bulks at high temperatures. The wettability and spreading behaviors of CMAS on the oxide scales, as well as the interaction between them were investigated by a sessile-drop method. The glassy CMAS deposit on the Al2TiO5 layer revealed the largest equilibrium contact angle and slowest diffusion-limited spreading rate among all the samples.
ArticleNumber 108832
Author He, Zhe
Guo, Hongbo
He, Jian
Li, Jimeng
Jing, Jing
Author_xml – sequence: 1
  givenname: Jing
  surname: Jing
  fullname: Jing, Jing
  organization: School of Materials Science and Engineering, Beihang University (BUAA), Beijing, 100191, China
– sequence: 2
  givenname: Jimeng
  surname: Li
  fullname: Li, Jimeng
  organization: School of Materials Science and Engineering, Beihang University (BUAA), Beijing, 100191, China
– sequence: 3
  givenname: Zhe
  surname: He
  fullname: He, Zhe
  organization: School of Materials Science and Engineering, Beihang University (BUAA), Beijing, 100191, China
– sequence: 4
  givenname: Jian
  surname: He
  fullname: He, Jian
  email: hejian511690@buaa.edu.cn
  organization: Research Institute of Frontier Science, Beihang University (BUAA), Beijing, 100191, China
– sequence: 5
  givenname: Hongbo
  surname: Guo
  fullname: Guo, Hongbo
  email: guo.hongbo@buaa.edu.cn
  organization: School of Materials Science and Engineering, Beihang University (BUAA), Beijing, 100191, China
BookMark eNqFkE9LAzEQxYNUsFa_gYcFz1sn-zfxIJRFrVDxYAVvIZudaJbtpiap6Ld363ryoKcZZt57w_yOyaS3PRJyRmFOgRYX7VxZ55WZJ5DsR4ylyQGZUlbyGDJeTMgUgELMU_Z8RI69bwEGJYUpqZbm5TUOuNmik2HnMKruF4-RQ298kL3CaFho6zbfvdXR2iSLrorsh2kw8kp26E_IoZadx9OfOiNPN9frahmvHm7vqsUqVmmahZjnWVKzHGqsIS95o6Ep8prVRUIpYM15wXWm8gJ5WUpZlGlKkamaK9lAqbVOZ-R8zN06-7ZDH0Rrd64fTookyzhnJdB8UGWjSjnrvUMtts5spPsUFMQel2jFiEvscYkR12C7_GVTJshgbB-cNN1_5qvRjMP77wadGBQ4EGuMQxVEY83fAV-2komF
CitedBy_id crossref_primary_10_1016_j_corsci_2024_112048
crossref_primary_10_1016_j_ceramint_2021_01_124
crossref_primary_10_1016_j_ceramint_2024_02_372
crossref_primary_10_1016_j_matchemphys_2021_125324
crossref_primary_10_1007_s40145_022_0588_0
crossref_primary_10_26599_JAC_2023_9220781
crossref_primary_10_1016_j_corsci_2022_110712
crossref_primary_10_1016_j_jallcom_2023_172114
crossref_primary_10_1080_10408436_2021_1966384
crossref_primary_10_1111_jace_18442
crossref_primary_10_1016_j_ceramint_2021_07_028
crossref_primary_10_1016_j_corsci_2023_111369
crossref_primary_10_1016_j_surfcoat_2021_127584
crossref_primary_10_1016_j_corsci_2022_110738
Cites_doi 10.1111/jace.12502
10.1016/S1359-6462(96)00418-6
10.1016/j.jeurceramsoc.2018.03.027
10.1016/j.jeurceramsoc.2017.02.004
10.1179/1743280413Y.0000000019
10.1016/j.jcrysgro.2012.08.015
10.1146/annurev-matsci-010917-105000
10.1016/j.jeurceramsoc.2016.07.027
10.1111/j.1551-2916.2009.03278.x
10.1016/j.ceramint.2016.05.210
10.1023/A:1023092027697
10.1016/j.surfcoat.2009.09.055
10.1016/j.actamat.2017.06.055
10.1016/j.ceramint.2015.05.128
10.1007/s11085-016-9694-0
10.1007/s11661-017-4346-9
10.1016/j.scriptamat.2018.12.028
10.1016/j.surfcoat.2015.11.009
10.1111/jace.16180
10.1111/j.1551-2916.2006.01209.x
10.1016/j.matchemphys.2008.03.017
10.1016/j.jnucmat.2017.03.016
10.1361/105497102770331271
10.1002/adma.201004783
10.1038/nmat4687
10.1016/j.jeurceramsoc.2018.06.039
10.1016/j.pnsc.2012.06.007
10.1016/j.surfcoat.2018.02.035
10.1016/j.scriptamat.2011.03.031
10.1016/j.msea.2008.01.006
10.1111/jace.13209
10.1016/j.jallcom.2012.12.126
10.1016/j.ceramint.2016.05.169
10.1006/jssc.1998.8088
10.1016/j.jeurceramsoc.2017.10.057
10.2355/isijinternational.49.1290
10.1016/j.matchemphys.2008.06.038
10.1016/j.jeurceramsoc.2014.09.006
10.1016/j.actamat.2011.03.035
10.1016/j.ceramint.2019.01.059
10.1557/jmr.2009.0260
10.1016/j.actamat.2004.11.028
10.1016/j.corsci.2019.04.014
10.1016/j.matdes.2017.10.060
10.1115/1.4037599
10.1016/j.scriptamat.2007.09.048
10.1016/j.jmst.2018.09.046
10.2355/isijinternational.52.355
10.1016/j.actamat.2007.08.028
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Sep 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Sep 2020
DBID AAYXX
CITATION
7SE
8BQ
8FD
F28
FR3
JG9
DOI 10.1016/j.corsci.2020.108832
DatabaseName CrossRef
Corrosion Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineering Research Database
Technology Research Database
Corrosion Abstracts
ANTE: Abstracts in New Technology & Engineering
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0496
ExternalDocumentID 10_1016_j_corsci_2020_108832
S0010938X2030370X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AELAQ
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSM
SSZ
T5K
TAE
VH1
WUQ
XPP
XSW
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SE
8BQ
8FD
EFKBS
F28
FR3
JG9
ID FETCH-LOGICAL-c334t-9542b850beb0579df0d65b8b62110eb9969f4c56e977aa67331e8cb9cad07fff3
IEDL.DBID .~1
ISSN 0010-938X
IngestDate Fri Jul 25 04:57:16 EDT 2025
Tue Jul 01 01:02:12 EDT 2025
Thu Apr 24 22:51:07 EDT 2025
Fri Feb 23 02:49:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Oxidation
Thermal barrier coatings (TBCs)
Wetting
Calcium-magnesium-aluminium-silicate (CMAS)
Ti2AlC
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-9542b850beb0579df0d65b8b62110eb9969f4c56e977aa67331e8cb9cad07fff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2449987015
PQPubID 2045264
ParticipantIDs proquest_journals_2449987015
crossref_primary_10_1016_j_corsci_2020_108832
crossref_citationtrail_10_1016_j_corsci_2020_108832
elsevier_sciencedirect_doi_10_1016_j_corsci_2020_108832
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Corrosion science
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Guo, Yan, Yu, Yang, Li (bib0120) 2019; 154
Das, Choudhury, Das (bib0215) 2002; 23
Mohan, Yao, Patterson, Sohn (bib0055) 2009; 204
Poerschke, Levi (bib0130) 2015; 35
Poerschke, Jackson, Levi (bib0010) 2017; 47
Kramer, Yang, Levi, Johnson (bib0030) 2006; 89
Guo, Yan, Wang, He (bib0175) 2019; 45
Zhang, Song, Wei, Xiu, Xu, Dingwell, Guo (bib0075) 2019; 163
Chevalier, Gremillard, Virkar, Clarke (bib0025) 2009; 92
Zheng, Guo, Zhao, Wang, Ye (bib0180) 2020; 167
Shen, Lin, Jiang, Fujii, Nogi (bib0240) 2011; 24
Peng, Wang, Guo, Miao, Guo, Gong (bib0045) 2012; 22
Wang, Zhou, Liao, Zhang, Lin (bib0235) 2008; 58
Song, Pei, Sloof, Li, De Hosson, van der Zwaag (bib0230) 2008; 112
Kramer, Faulhaber, Chambers, Clarke, Levi, Hutchinson, Evans (bib0040) 2008; 490
Low, Oo (bib0205) 2008; 111
Padture (bib0005) 2016; 15
Wu, Luo, Cai, Wang, Zhou, Yang, Zhou (bib0135) 2019; 35
Wang, Guo, Li, Peng, Ma, Gong, Guo (bib0050) 2015; 41
Aygun, Vasiliev, Padture, Ma (bib0085) 2007; 55
Eustathopoulos, Nicholas, Drevet (bib0250) 1999
Wang, Zhou (bib0165) 2003; 59
Jung, Eriksson, Wu, Pelton (bib0220) 2009; 49
Eils, Mechnich, Braue (bib0090) 2013; 96
Hanaor, Xu, Ferry, Sorrell (bib0200) 2012; 359
Drexler, Gledhill, Shinoda, Vasiliev, Reddy, Sampath, Padture (bib0080) 2011; 23
Tang, Steinbrück, Große, Bergfeldt, Seifert (bib0170) 2017; 490
Mercer, Faulhaber, Evans, Darolia (bib0015) 2005; 53
He, Xia, Yang (bib0245) 2013; 556
Steinberg, Naraparaju, Heckert, Mikulla, Schulz, Leyens (bib0035) 2018; 38
Zhou, Wang, Yuan, Sun, Dong, He, Cao (bib0125) 2018; 38
Wan, Zhang, Gao, Bai, Zhang (bib0190) 2018; 138
Yang, Pei, Rao, De Hosson, Li, Song (bib0225) 2011; 65
Gok, Goller (bib0115) 2017; 37
Webster, Opila (bib0145) 2019; 102
Ghoshal, Murugan, Walock, Nieto, Barnett, Pepi, Swab, Zhu, Kerner, Rowe, Shiao, Hopkins, Gazonas (bib0150) 2018; 140
Gesenhues, Rentschler (bib0195) 1999; 143
Krause, Garces, Senturk, Padture (bib0100) 2014; 97
Smialek (bib0155) 2018; 49a
Cui, Jayaseelan, Lee (bib0210) 2011; 59
Mahade, Curry, Bjorklund, Markocsan, Nylen (bib0110) 2015; 283
Barsoum, Brodkin, El-Raghy (bib0185) 1997; 36
Gonzalez-Julian, Go, Mack, Vaßen (bib0160) 2018; 340
Naraparaju, Pubbysetty, Mechnich, Schulz (bib0065) 2018; 38
Naraparaju, Chavez, Schulz, Ramana (bib0095) 2017; 136
Naraparaju, Huttermann, Schulz, Mechnich (bib0070) 2017; 37
Delon, Ansart, Duluard, Bonino, Malie, Joulia, Gomez (bib0105) 2016; 42
Lutz, Jackson, Abdul-Jabbar, Tolpygo, Levi (bib0140) 2017; 88
Zhang, Chou, Mills (bib0255) 2012; 52
Darolia (bib0020) 2013; 58
Zhang, Zhou, Liu, Deng, Deng, Song, Tong (bib0060) 2016; 42
Guo (10.1016/j.corsci.2020.108832_bib0175) 2019; 45
Jung (10.1016/j.corsci.2020.108832_bib0220) 2009; 49
Zhang (10.1016/j.corsci.2020.108832_bib0060) 2016; 42
Lutz (10.1016/j.corsci.2020.108832_bib0140) 2017; 88
Cui (10.1016/j.corsci.2020.108832_bib0210) 2011; 59
Mohan (10.1016/j.corsci.2020.108832_bib0055) 2009; 204
Yang (10.1016/j.corsci.2020.108832_bib0225) 2011; 65
Mercer (10.1016/j.corsci.2020.108832_bib0015) 2005; 53
Gonzalez-Julian (10.1016/j.corsci.2020.108832_bib0160) 2018; 340
Zheng (10.1016/j.corsci.2020.108832_bib0180) 2020; 167
Wang (10.1016/j.corsci.2020.108832_bib0165) 2003; 59
Wan (10.1016/j.corsci.2020.108832_bib0190) 2018; 138
Peng (10.1016/j.corsci.2020.108832_bib0045) 2012; 22
Kramer (10.1016/j.corsci.2020.108832_bib0040) 2008; 490
Mahade (10.1016/j.corsci.2020.108832_bib0110) 2015; 283
Shen (10.1016/j.corsci.2020.108832_bib0240) 2011; 24
Kramer (10.1016/j.corsci.2020.108832_bib0030) 2006; 89
Guo (10.1016/j.corsci.2020.108832_bib0120) 2019; 154
Chevalier (10.1016/j.corsci.2020.108832_bib0025) 2009; 92
Eils (10.1016/j.corsci.2020.108832_bib0090) 2013; 96
Tang (10.1016/j.corsci.2020.108832_bib0170) 2017; 490
Das (10.1016/j.corsci.2020.108832_bib0215) 2002; 23
Naraparaju (10.1016/j.corsci.2020.108832_bib0065) 2018; 38
Naraparaju (10.1016/j.corsci.2020.108832_bib0095) 2017; 136
Poerschke (10.1016/j.corsci.2020.108832_bib0130) 2015; 35
Darolia (10.1016/j.corsci.2020.108832_bib0020) 2013; 58
Padture (10.1016/j.corsci.2020.108832_bib0005) 2016; 15
Webster (10.1016/j.corsci.2020.108832_bib0145) 2019; 102
Wang (10.1016/j.corsci.2020.108832_bib0235) 2008; 58
Wang (10.1016/j.corsci.2020.108832_bib0050) 2015; 41
Wu (10.1016/j.corsci.2020.108832_bib0135) 2019; 35
Naraparaju (10.1016/j.corsci.2020.108832_bib0070) 2017; 37
Gesenhues (10.1016/j.corsci.2020.108832_bib0195) 1999; 143
He (10.1016/j.corsci.2020.108832_bib0245) 2013; 556
Barsoum (10.1016/j.corsci.2020.108832_bib0185) 1997; 36
Low (10.1016/j.corsci.2020.108832_bib0205) 2008; 111
Krause (10.1016/j.corsci.2020.108832_bib0100) 2014; 97
Steinberg (10.1016/j.corsci.2020.108832_bib0035) 2018; 38
Zhou (10.1016/j.corsci.2020.108832_bib0125) 2018; 38
Delon (10.1016/j.corsci.2020.108832_bib0105) 2016; 42
Poerschke (10.1016/j.corsci.2020.108832_bib0010) 2017; 47
Aygun (10.1016/j.corsci.2020.108832_bib0085) 2007; 55
Eustathopoulos (10.1016/j.corsci.2020.108832_bib0250) 1999
Zhang (10.1016/j.corsci.2020.108832_bib0075) 2019; 163
Gok (10.1016/j.corsci.2020.108832_bib0115) 2017; 37
Drexler (10.1016/j.corsci.2020.108832_bib0080) 2011; 23
Zhang (10.1016/j.corsci.2020.108832_bib0255) 2012; 52
Song (10.1016/j.corsci.2020.108832_bib0230) 2008; 112
Hanaor (10.1016/j.corsci.2020.108832_bib0200) 2012; 359
Ghoshal (10.1016/j.corsci.2020.108832_bib0150) 2018; 140
Smialek (10.1016/j.corsci.2020.108832_bib0155) 2018; 49a
References_xml – volume: 35
  start-page: 440
  year: 2019
  end-page: 447
  ident: bib0135
  article-title: Comparison of CMAS corrosion and sintering induced microstructural characteristics of APS thermal barrier coatings
  publication-title: J. Mater. Sci. Technol.
– volume: 36
  start-page: 535
  year: 1997
  end-page: 541
  ident: bib0185
  article-title: Layered machinable ceramics for high temperature applications
  publication-title: Scr. Mater.
– volume: 154
  start-page: 111
  year: 2019
  end-page: 122
  ident: bib0120
  article-title: CMAS resistance characteristics of LaPO
  publication-title: Corros. Sci.
– volume: 35
  start-page: 681
  year: 2015
  end-page: 691
  ident: bib0130
  article-title: Effects of cation substitution and temperature on the interaction between thermal barrier oxides and molten CMAS
  publication-title: J. Eur. Ceram. Soc.
– volume: 490
  start-page: 26
  year: 2008
  end-page: 35
  ident: bib0040
  article-title: Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration
  publication-title: Mater. Sci. Eng. A
– volume: 163
  start-page: 71
  year: 2019
  end-page: 76
  ident: bib0075
  article-title: Novel thermal barrier coatings repel and resist molten silicate deposits
  publication-title: Scr. Mater.
– volume: 111
  start-page: 9
  year: 2008
  end-page: 12
  ident: bib0205
  article-title: Reformation of phase composition in decomposed aluminium titanate
  publication-title: Mater. Chem. Phys.
– volume: 58
  start-page: 315
  year: 2013
  end-page: 348
  ident: bib0020
  article-title: Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects
  publication-title: Int. Mater. Rev.
– volume: 38
  start-page: 5101
  year: 2018
  end-page: 5112
  ident: bib0035
  article-title: Erosion behavior of EB-PVD 7YSZ coatings under corrosion/erosion regime: effect of TBC microstructure and the CMAS chemistry
  publication-title: J. Eur. Ceram. Soc.
– volume: 59
  start-page: 303
  year: 2003
  end-page: 320
  ident: bib0165
  article-title: High-temperature oxidation behavior of Ti
  publication-title: Oxid. Met.
– volume: 65
  start-page: 135
  year: 2011
  end-page: 138
  ident: bib0225
  article-title: High temperature healing of Ti
  publication-title: Scr. Mater.
– volume: 37
  start-page: 2501
  year: 2017
  end-page: 2508
  ident: bib0115
  article-title: Microstructural characterization of GZ/CYSZ thermal barrier coatings after thermal shock and CMAS plus hot corrosion test
  publication-title: J. Eur. Ceram. Soc.
– volume: 23
  start-page: 2419
  year: 2011
  end-page: 2424
  ident: bib0080
  article-title: Jet engine coatings for resisting volcanic ash damage
  publication-title: Adv. Mater.
– volume: 55
  start-page: 6734
  year: 2007
  end-page: 6745
  ident: bib0085
  article-title: Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits
  publication-title: Acta Mater.
– volume: 138
  start-page: 103
  year: 2018
  end-page: 110
  ident: bib0190
  article-title: High-temperature wettability and interactions between Hf-containing NbSi-based alloys and Y
  publication-title: Mater. Des.
– volume: 167
  year: 2020
  ident: bib0180
  article-title: Versatility of potential protective layer material Ti
  publication-title: Corros. Sci.
– volume: 143
  start-page: 210
  year: 1999
  end-page: 218
  ident: bib0195
  article-title: Crystal growth and defects structure of Al
  publication-title: J. Solid State Chem.
– volume: 45
  start-page: 7627
  year: 2019
  end-page: 7634
  ident: bib0175
  article-title: Ti
  publication-title: Ceram. Int.
– volume: 112
  start-page: 762
  year: 2008
  end-page: 768
  ident: bib0230
  article-title: Early stages of oxidation of Ti
  publication-title: Mater. Chem. Phys.
– volume: 42
  start-page: 13969
  year: 2016
  end-page: 13975
  ident: bib0060
  article-title: Enhanced properties of Al-modified EB-PVD 7YSZ thermal barrier coatings
  publication-title: Ceram. Int.
– volume: 42
  start-page: 13704
  year: 2016
  end-page: 13714
  ident: bib0105
  article-title: Synthesis of yttria by aqueous sol-gel route to develop anti-CMAS coatings for the protection of EBPVD thermal barriers
  publication-title: Ceram. Int.
– volume: 340
  start-page: 17
  year: 2018
  end-page: 24
  ident: bib0160
  article-title: Thermal cycling testing of TBCs on Cr
  publication-title: Surf. Coat. Technol.
– volume: 204
  start-page: 797
  year: 2009
  end-page: 801
  ident: bib0055
  article-title: Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation
  publication-title: Surf. Coat. Technol.
– volume: 59
  start-page: 4116
  year: 2011
  end-page: 4125
  ident: bib0210
  article-title: Microstructural evolution during high-temperature oxidation of Ti
  publication-title: Acta Mater.
– volume: 37
  start-page: 261
  year: 2017
  end-page: 270
  ident: bib0070
  article-title: Tailoring the EB-PVD columnar microstructure to mitigate the infiltration of CMAS in 7YSZ thermal barrier coatings
  publication-title: J. Eur. Ceram. Soc.
– volume: 140
  year: 2018
  ident: bib0150
  article-title: Molten particulate impact on tailored thermal barrier coatings for gas turbine engine
  publication-title: J. Eng. Gas Turbines Power
– volume: 24
  start-page: 2420
  year: 2011
  end-page: 2427
  ident: bib0240
  article-title: Reactive wetting of polycrystalline TiC by molten Zr
  publication-title: J. Mater. Res.
– volume: 556
  start-page: 12
  year: 2013
  end-page: 19
  ident: bib0245
  article-title: Synthesis and characterization of LTCC composites based on the spodumene/anorthite crystallizable glass
  publication-title: J. Alloys Compd.
– volume: 58
  start-page: 227
  year: 2008
  end-page: 230
  ident: bib0235
  article-title: A first-principles investigation of the phase stability of Ti
  publication-title: Scr. Mater.
– volume: 53
  start-page: 1029
  year: 2005
  end-page: 1039
  ident: bib0015
  article-title: A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate (CMAS) infiltration
  publication-title: Acta Mater.
– volume: 97
  start-page: 3950
  year: 2014
  end-page: 3957
  ident: bib0100
  article-title: 2ZrO
  publication-title: J. Am. Ceram. Soc.
– volume: 96
  start-page: 3333
  year: 2013
  end-page: 3340
  ident: bib0090
  article-title: Effect of CMAS deposits on MOCVD coatings in the system Y
  publication-title: J. Am. Ceram. Soc.
– year: 1999
  ident: bib0250
  article-title: Wettability at High Temperatures
– volume: 283
  start-page: 329
  year: 2015
  end-page: 336
  ident: bib0110
  article-title: Thermal conductivity and thermal cyclic fatigue of multilayered Gd
  publication-title: Surf. Coat. Technol.
– volume: 15
  start-page: 804
  year: 2016
  end-page: 809
  ident: bib0005
  article-title: Advanced structural ceramics in aerospace propulsion
  publication-title: Nat. Mater.
– volume: 47
  start-page: 297
  year: 2017
  end-page: 330
  ident: bib0010
  article-title: Silicate deposit degradation of engineered coatings in gas turbines: progress toward models and materials solutions
  publication-title: Annu. Rev. Mater. Res.
– volume: 38
  start-page: 1897
  year: 2018
  end-page: 1907
  ident: bib0125
  article-title: Calcium-magnesium-alumino-silicate induced degradation and failure of La
  publication-title: J. Eur. Ceram. Soc.
– volume: 102
  start-page: 3354
  year: 2019
  end-page: 3367
  ident: bib0145
  article-title: The effect of TiO
  publication-title: J. Am. Ceram. Soc.
– volume: 89
  start-page: 3167
  year: 2006
  end-page: 3175
  ident: bib0030
  article-title: Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al
  publication-title: J. Am. Ceram. Soc.
– volume: 92
  start-page: 1901
  year: 2009
  end-page: 1920
  ident: bib0025
  article-title: The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends
  publication-title: J. Am. Ceram. Soc.
– volume: 490
  start-page: 130
  year: 2017
  end-page: 142
  ident: bib0170
  article-title: Oxidation behavior of Ti
  publication-title: J. Nucl. Mater.
– volume: 41
  start-page: 11662
  year: 2015
  end-page: 11669
  ident: bib0050
  article-title: Protectiveness of Pt and Gd
  publication-title: Ceram. Int.
– volume: 49a
  start-page: 782
  year: 2018
  end-page: 792
  ident: bib0155
  article-title: Oxidation of Al
  publication-title: Metall. Mater. Trans. A
– volume: 22
  start-page: 461
  year: 2012
  end-page: 467
  ident: bib0045
  article-title: Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits
  publication-title: Prog. Nat. Sci.: Mater. Int.
– volume: 38
  start-page: 3333
  year: 2018
  end-page: 3346
  ident: bib0065
  article-title: EB-PVD alumina (Al
  publication-title: J. Eur. Ceram. Soc.
– volume: 23
  start-page: 525
  year: 2002
  end-page: 536
  ident: bib0215
  article-title: The Al-O-Ti (aluminium-oxygen-titanium) system
  publication-title: J. Phase Equilibria Diffus.
– volume: 136
  start-page: 164
  year: 2017
  end-page: 180
  ident: bib0095
  article-title: Interaction and infiltration behavior of Eyjafjallajokull, Sakurajima volcanic ashes and a synthetic CMAS containing FeO with/in EB-PVD ZrO
  publication-title: Acta Mater.
– volume: 359
  start-page: 83
  year: 2012
  end-page: 91
  ident: bib0200
  article-title: Abnormal grain growth of rutile TiO
  publication-title: J. Cryst. Growth
– volume: 49
  start-page: 1290
  year: 2009
  end-page: 1297
  ident: bib0220
  article-title: Thermodynamic modelling of the Al
  publication-title: ISIJ Int.
– volume: 52
  start-page: 355
  year: 2012
  end-page: 362
  ident: bib0255
  article-title: Modelling viscosities of CaO–MgO–Al
  publication-title: ISIJ Int.
– volume: 88
  start-page: 73
  year: 2017
  end-page: 85
  ident: bib0140
  article-title: Water vapor effects on the cmas degradation of thermal barrier coatings
  publication-title: Oxid. Met.
– volume: 96
  start-page: 3333
  year: 2013
  ident: 10.1016/j.corsci.2020.108832_bib0090
  article-title: Effect of CMAS deposits on MOCVD coatings in the system Y2O3-ZrO2: phase relationships
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.12502
– volume: 36
  start-page: 535
  year: 1997
  ident: 10.1016/j.corsci.2020.108832_bib0185
  article-title: Layered machinable ceramics for high temperature applications
  publication-title: Scr. Mater.
  doi: 10.1016/S1359-6462(96)00418-6
– volume: 38
  start-page: 3333
  year: 2018
  ident: 10.1016/j.corsci.2020.108832_bib0065
  article-title: EB-PVD alumina (Al2O3) as a top coat on 7YSZ TBCs against CMAS/VA infiltration: deposition and reaction mechanisms
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2018.03.027
– volume: 37
  start-page: 2501
  year: 2017
  ident: 10.1016/j.corsci.2020.108832_bib0115
  article-title: Microstructural characterization of GZ/CYSZ thermal barrier coatings after thermal shock and CMAS plus hot corrosion test
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2017.02.004
– volume: 58
  start-page: 315
  year: 2013
  ident: 10.1016/j.corsci.2020.108832_bib0020
  article-title: Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects
  publication-title: Int. Mater. Rev.
  doi: 10.1179/1743280413Y.0000000019
– volume: 359
  start-page: 83
  year: 2012
  ident: 10.1016/j.corsci.2020.108832_bib0200
  article-title: Abnormal grain growth of rutile TiO2 induced by ZrSiO4
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2012.08.015
– volume: 47
  start-page: 297
  year: 2017
  ident: 10.1016/j.corsci.2020.108832_bib0010
  article-title: Silicate deposit degradation of engineered coatings in gas turbines: progress toward models and materials solutions
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-010917-105000
– volume: 37
  start-page: 261
  year: 2017
  ident: 10.1016/j.corsci.2020.108832_bib0070
  article-title: Tailoring the EB-PVD columnar microstructure to mitigate the infiltration of CMAS in 7YSZ thermal barrier coatings
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2016.07.027
– volume: 92
  start-page: 1901
  year: 2009
  ident: 10.1016/j.corsci.2020.108832_bib0025
  article-title: The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2009.03278.x
– volume: 42
  start-page: 13969
  year: 2016
  ident: 10.1016/j.corsci.2020.108832_bib0060
  article-title: Enhanced properties of Al-modified EB-PVD 7YSZ thermal barrier coatings
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.05.210
– volume: 59
  start-page: 303
  year: 2003
  ident: 10.1016/j.corsci.2020.108832_bib0165
  article-title: High-temperature oxidation behavior of Ti2AlC in air
  publication-title: Oxid. Met.
  doi: 10.1023/A:1023092027697
– volume: 204
  start-page: 797
  year: 2009
  ident: 10.1016/j.corsci.2020.108832_bib0055
  article-title: Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2009.09.055
– volume: 136
  start-page: 164
  year: 2017
  ident: 10.1016/j.corsci.2020.108832_bib0095
  article-title: Interaction and infiltration behavior of Eyjafjallajokull, Sakurajima volcanic ashes and a synthetic CMAS containing FeO with/in EB-PVD ZrO2-65 wt% Y2O3 coating at high temperature
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.06.055
– volume: 41
  start-page: 11662
  year: 2015
  ident: 10.1016/j.corsci.2020.108832_bib0050
  article-title: Protectiveness of Pt and Gd2Zr2O7 layers on EB-PVD YSZ thermal barrier coatings against calcium-magnesium-alumina-silicate (CMAS) attack
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2015.05.128
– volume: 88
  start-page: 73
  year: 2017
  ident: 10.1016/j.corsci.2020.108832_bib0140
  article-title: Water vapor effects on the cmas degradation of thermal barrier coatings
  publication-title: Oxid. Met.
  doi: 10.1007/s11085-016-9694-0
– volume: 49a
  start-page: 782
  year: 2018
  ident: 10.1016/j.corsci.2020.108832_bib0155
  article-title: Oxidation of Al2O3 scale-forming MAX phases in turbine environments
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-017-4346-9
– volume: 163
  start-page: 71
  year: 2019
  ident: 10.1016/j.corsci.2020.108832_bib0075
  article-title: Novel thermal barrier coatings repel and resist molten silicate deposits
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2018.12.028
– volume: 283
  start-page: 329
  year: 2015
  ident: 10.1016/j.corsci.2020.108832_bib0110
  article-title: Thermal conductivity and thermal cyclic fatigue of multilayered Gd2Zr2O7/YSZ thermal barrier coatings processed by suspension plasma spray
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2015.11.009
– volume: 102
  start-page: 3354
  year: 2019
  ident: 10.1016/j.corsci.2020.108832_bib0145
  article-title: The effect of TiO2 additions on CaO-MgO-Al2O3-SiO2 (CMAS) crystallization behavior from the melt
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.16180
– volume: 89
  start-page: 3167
  year: 2006
  ident: 10.1016/j.corsci.2020.108832_bib0030
  article-title: Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2 (CMAS) deposits
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2006.01209.x
– volume: 111
  start-page: 9
  year: 2008
  ident: 10.1016/j.corsci.2020.108832_bib0205
  article-title: Reformation of phase composition in decomposed aluminium titanate
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2008.03.017
– volume: 167
  year: 2020
  ident: 10.1016/j.corsci.2020.108832_bib0180
  article-title: Versatility of potential protective layer material Ti2AlC on resisting CMAS corrosion to thermal barrier coatings
  publication-title: Corros. Sci.
– volume: 490
  start-page: 130
  year: 2017
  ident: 10.1016/j.corsci.2020.108832_bib0170
  article-title: Oxidation behavior of Ti2AlC in the temperature range of 1400 °C–1600 °C in steam
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2017.03.016
– volume: 23
  start-page: 525
  year: 2002
  ident: 10.1016/j.corsci.2020.108832_bib0215
  article-title: The Al-O-Ti (aluminium-oxygen-titanium) system
  publication-title: J. Phase Equilibria Diffus.
  doi: 10.1361/105497102770331271
– volume: 23
  start-page: 2419
  year: 2011
  ident: 10.1016/j.corsci.2020.108832_bib0080
  article-title: Jet engine coatings for resisting volcanic ash damage
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201004783
– volume: 15
  start-page: 804
  year: 2016
  ident: 10.1016/j.corsci.2020.108832_bib0005
  article-title: Advanced structural ceramics in aerospace propulsion
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4687
– year: 1999
  ident: 10.1016/j.corsci.2020.108832_bib0250
– volume: 38
  start-page: 5101
  year: 2018
  ident: 10.1016/j.corsci.2020.108832_bib0035
  article-title: Erosion behavior of EB-PVD 7YSZ coatings under corrosion/erosion regime: effect of TBC microstructure and the CMAS chemistry
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2018.06.039
– volume: 22
  start-page: 461
  year: 2012
  ident: 10.1016/j.corsci.2020.108832_bib0045
  article-title: Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits
  publication-title: Prog. Nat. Sci.: Mater. Int.
  doi: 10.1016/j.pnsc.2012.06.007
– volume: 340
  start-page: 17
  year: 2018
  ident: 10.1016/j.corsci.2020.108832_bib0160
  article-title: Thermal cycling testing of TBCs on Cr2AlC MAX phase substrates
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2018.02.035
– volume: 65
  start-page: 135
  year: 2011
  ident: 10.1016/j.corsci.2020.108832_bib0225
  article-title: High temperature healing of Ti2AlC: on the origin of inhomogeneous oxide scale
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2011.03.031
– volume: 490
  start-page: 26
  year: 2008
  ident: 10.1016/j.corsci.2020.108832_bib0040
  article-title: Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2008.01.006
– volume: 97
  start-page: 3950
  year: 2014
  ident: 10.1016/j.corsci.2020.108832_bib0100
  article-title: 2ZrO2‧Y2O3 thermal barrier coatings resistant to degradation by molten CMAS: part II, interactions with sand and fly ash
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.13209
– volume: 556
  start-page: 12
  year: 2013
  ident: 10.1016/j.corsci.2020.108832_bib0245
  article-title: Synthesis and characterization of LTCC composites based on the spodumene/anorthite crystallizable glass
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2012.12.126
– volume: 42
  start-page: 13704
  year: 2016
  ident: 10.1016/j.corsci.2020.108832_bib0105
  article-title: Synthesis of yttria by aqueous sol-gel route to develop anti-CMAS coatings for the protection of EBPVD thermal barriers
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.05.169
– volume: 143
  start-page: 210
  year: 1999
  ident: 10.1016/j.corsci.2020.108832_bib0195
  article-title: Crystal growth and defects structure of Al3+-doped rutile
  publication-title: J. Solid State Chem.
  doi: 10.1006/jssc.1998.8088
– volume: 38
  start-page: 1897
  year: 2018
  ident: 10.1016/j.corsci.2020.108832_bib0125
  article-title: Calcium-magnesium-alumino-silicate induced degradation and failure of La2(Zr0.7Ce0.3)2O7/YSZ double-ceramic-layer thermal barrier coatings prepared by electron beam-physical vapor deposition
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2017.10.057
– volume: 49
  start-page: 1290
  year: 2009
  ident: 10.1016/j.corsci.2020.108832_bib0220
  article-title: Thermodynamic modelling of the Al2O3–Ti2O3–TiO2 system and its applications to the Fe–Al–Ti–O inclusion diagram
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.49.1290
– volume: 112
  start-page: 762
  year: 2008
  ident: 10.1016/j.corsci.2020.108832_bib0230
  article-title: Early stages of oxidation of Ti3AlC2 ceramics
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2008.06.038
– volume: 35
  start-page: 681
  year: 2015
  ident: 10.1016/j.corsci.2020.108832_bib0130
  article-title: Effects of cation substitution and temperature on the interaction between thermal barrier oxides and molten CMAS
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2014.09.006
– volume: 59
  start-page: 4116
  year: 2011
  ident: 10.1016/j.corsci.2020.108832_bib0210
  article-title: Microstructural evolution during high-temperature oxidation of Ti2AlC ceramics
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2011.03.035
– volume: 45
  start-page: 7627
  year: 2019
  ident: 10.1016/j.corsci.2020.108832_bib0175
  article-title: Ti2AlC MAX phase for resistance against CMAS attack to thermal barrier coatings
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.01.059
– volume: 24
  start-page: 2420
  year: 2011
  ident: 10.1016/j.corsci.2020.108832_bib0240
  article-title: Reactive wetting of polycrystalline TiC by molten Zr55Cu30Al10Ni5 metallic glass alloy
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2009.0260
– volume: 53
  start-page: 1029
  year: 2005
  ident: 10.1016/j.corsci.2020.108832_bib0015
  article-title: A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate (CMAS) infiltration
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2004.11.028
– volume: 154
  start-page: 111
  year: 2019
  ident: 10.1016/j.corsci.2020.108832_bib0120
  article-title: CMAS resistance characteristics of LaPO4/YSZ thermal barrier coatings at 1250 °C–1350 °C
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2019.04.014
– volume: 138
  start-page: 103
  year: 2018
  ident: 10.1016/j.corsci.2020.108832_bib0190
  article-title: High-temperature wettability and interactions between Hf-containing NbSi-based alloys and Y2O3 ceramics with various microstructures
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.10.060
– volume: 140
  year: 2018
  ident: 10.1016/j.corsci.2020.108832_bib0150
  article-title: Molten particulate impact on tailored thermal barrier coatings for gas turbine engine
  publication-title: J. Eng. Gas Turbines Power
  doi: 10.1115/1.4037599
– volume: 58
  start-page: 227
  year: 2008
  ident: 10.1016/j.corsci.2020.108832_bib0235
  article-title: A first-principles investigation of the phase stability of Ti2AlC with Al vacancies
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2007.09.048
– volume: 35
  start-page: 440
  year: 2019
  ident: 10.1016/j.corsci.2020.108832_bib0135
  article-title: Comparison of CMAS corrosion and sintering induced microstructural characteristics of APS thermal barrier coatings
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2018.09.046
– volume: 52
  start-page: 355
  year: 2012
  ident: 10.1016/j.corsci.2020.108832_bib0255
  article-title: Modelling viscosities of CaO–MgO–Al2O3–SiO2 molten slags
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.52.355
– volume: 55
  start-page: 6734
  year: 2007
  ident: 10.1016/j.corsci.2020.108832_bib0085
  article-title: Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2007.08.028
SSID ssj0002010
Score 2.403428
Snippet •Bi-layered oxide scales were developed by pre-oxidizing Ti2AlC bulk at different temperatures.•Molten CMAS corrosion behavior on scales at 1523 K was studied...
Failure of thermal barrier coatings (TBCs) caused by glassy deposits mostly composed of calcium-magnesium-aluminium-silicate (CMAS) has become an urgent issue....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108832
SubjectTerms Aluminum titanates
Calcium magnesium silicates
Calcium-magnesium-aluminium-silicate (CMAS)
Contact angle
Diffusion layers
Diffusion rate
High temperature
Oxidation
Oxidation resistance
Scale (corrosion)
Sessile drop method
Thermal barrier coatings
Thermal barrier coatings (TBCs)
Ti2AlC
Wettability
Wetting
Title High-temperature CMAS resistance performance of Ti2AlC oxide scales
URI https://dx.doi.org/10.1016/j.corsci.2020.108832
https://www.proquest.com/docview/2449987015
Volume 174
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DL3oQf-J0jhy8xnVp0h_HUhxT2S5u0FtI0gQmYxtugif_dvPa1KkgA48tSWhfXl_el77vC0K3AZesX8IWmLaGsET2ieJSkjANWWyNpUEC5OTROBpO2WPBixbKGy4MlFX62F_H9Cpa-zs9b83eajYDji9IISUFdX4axkEBDHYWg5fffWzLPOBvbx2NAwKtG_pcVePlAJ4b2qFEWhXbJSH9a3n6Fair1WdwjI582oiz-slOUMssTtHhNzHBM5RDyQYBqSmvk4zzUfaMHZyGFNG9F15tSQJ4afFkRrN5jpfvs9LgtZsrsz5H08H9JB8Sf0QC0WHINiTljKqEB8ooYJWWNigjrhIVAa4zyoGZ1DLNI-PSPCkjOKDRJFqlWrr5sdaGF2hvsVyYS4R5yUurHHxQOqlUAaOSch1TbRiVNOJtFDaWEdrrh8MxFnPRFIq9iNqeAuwpanu2Efnqtar1M3a0jxujix9-IFyI39Gz08yR8N_hWrjkxeHJ2OU8V_8e-BodwFVdWNZBe5vXN3PjMpGN6lau1kX72cPTcPwJljHcag
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHNSD8RlR1D143VC23bYcSSMBeVyEhNumu91NMASIYOLPd6fd4iMxJF7b7qadnX47XzvzDcCjx9OgleEnMGU0DeK0RSVPU-q3_SAy2jAvxuLk0TjsTYPnGZ9VIClrYTCt0mF_gek5WrsjTWfN5no-xxpflEKKZ8z6qR95swOooToVr0Kt0x_0xjtAxh--BSB7FAeUFXR5mpfleHZ2SxRZnm8X--yvHeoXVucbUPcUTlzkSDrFzZ1BRS_P4fibnuAFJJi1QVFtykklk2TUeSGWUWOUaB-NrL_qBMjKkMmcdRYJWX3MM002drn05hKm3adJ0qOuSwJVvh9saZsHTMbck1piYWlmvCzkMpYhUjstLZ9pm0DxUNtIL01D7NGoYyXbKrVLZIzxr6C6XC31NRCe8cxIyyCkinNhwDBjXEVM6YClLOR18EvLCOUkxLGTxUKUuWKvorCnQHuKwp51oLtR60JCY8_1UWl08cMVhEX5PSMb5RoJ9ypuhI1fLKWMbNhz8--JH-CwNxkNxbA_HtzCEZ4p8swaUN2-ves7G5hs5b1zvE8yrN8b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-temperature+CMAS+resistance+performance+of+Ti2AlC+oxide+scales&rft.jtitle=Corrosion+science&rft.au=Jing%2C+Jing&rft.au=Li%2C+Jimeng&rft.au=He%2C+Zhe&rft.au=He%2C+Jian&rft.date=2020-09-01&rft.issn=0010-938X&rft.volume=174&rft.spage=108832&rft_id=info:doi/10.1016%2Fj.corsci.2020.108832&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_corsci_2020_108832
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-938X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-938X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-938X&client=summon