High-temperature CMAS resistance performance of Ti2AlC oxide scales
•Bi-layered oxide scales were developed by pre-oxidizing Ti2AlC bulk at different temperatures.•Molten CMAS corrosion behavior on scales at 1523 K was studied though a sessile-drop method.•CaTiO3 phase could help increase CMAS droplet viscosity and reduce spreading rate.•Glassy CMAS on Al2TiO5 layer...
Saved in:
Published in | Corrosion science Vol. 174; p. 108832 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
01.09.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Bi-layered oxide scales were developed by pre-oxidizing Ti2AlC bulk at different temperatures.•Molten CMAS corrosion behavior on scales at 1523 K was studied though a sessile-drop method.•CaTiO3 phase could help increase CMAS droplet viscosity and reduce spreading rate.•Glassy CMAS on Al2TiO5 layer shows the slowest spreading rate and the largest equilibrium contact angle among all.
Failure of thermal barrier coatings (TBCs) caused by glassy deposits mostly composed of calcium-magnesium-aluminium-silicate (CMAS) has become an urgent issue. The addition of Al and Ti elements in TBCs is beneficial to improve the CMAS resistance. In this paper, bi-layered oxide scales were formed through pre-oxidation of Ti2AlC (POTAC) bulks at high temperatures. The wettability and spreading behaviors of CMAS on the oxide scales, as well as the interaction between them were investigated by a sessile-drop method. The glassy CMAS deposit on the Al2TiO5 layer revealed the largest equilibrium contact angle and slowest diffusion-limited spreading rate among all the samples. |
---|---|
AbstractList | Failure of thermal barrier coatings (TBCs) caused by glassy deposits mostly composed of calcium-magnesium-aluminium-silicate (CMAS) has become an urgent issue. The addition of Al and Ti elements in TBCs is beneficial to improve the CMAS resistance. In this paper, bi-layered oxide scales were formed through pre-oxidation of Ti2AlC (POTAC) bulks at high temperatures. The wettability and spreading behaviors of CMAS on the oxide scales, as well as the interaction between them were investigated by a sessile-drop method. The glassy CMAS deposit on the Al2TiO5 layer revealed the largest equilibrium contact angle and slowest diffusion-limited spreading rate among all the samples. •Bi-layered oxide scales were developed by pre-oxidizing Ti2AlC bulk at different temperatures.•Molten CMAS corrosion behavior on scales at 1523 K was studied though a sessile-drop method.•CaTiO3 phase could help increase CMAS droplet viscosity and reduce spreading rate.•Glassy CMAS on Al2TiO5 layer shows the slowest spreading rate and the largest equilibrium contact angle among all. Failure of thermal barrier coatings (TBCs) caused by glassy deposits mostly composed of calcium-magnesium-aluminium-silicate (CMAS) has become an urgent issue. The addition of Al and Ti elements in TBCs is beneficial to improve the CMAS resistance. In this paper, bi-layered oxide scales were formed through pre-oxidation of Ti2AlC (POTAC) bulks at high temperatures. The wettability and spreading behaviors of CMAS on the oxide scales, as well as the interaction between them were investigated by a sessile-drop method. The glassy CMAS deposit on the Al2TiO5 layer revealed the largest equilibrium contact angle and slowest diffusion-limited spreading rate among all the samples. |
ArticleNumber | 108832 |
Author | He, Zhe Guo, Hongbo He, Jian Li, Jimeng Jing, Jing |
Author_xml | – sequence: 1 givenname: Jing surname: Jing fullname: Jing, Jing organization: School of Materials Science and Engineering, Beihang University (BUAA), Beijing, 100191, China – sequence: 2 givenname: Jimeng surname: Li fullname: Li, Jimeng organization: School of Materials Science and Engineering, Beihang University (BUAA), Beijing, 100191, China – sequence: 3 givenname: Zhe surname: He fullname: He, Zhe organization: School of Materials Science and Engineering, Beihang University (BUAA), Beijing, 100191, China – sequence: 4 givenname: Jian surname: He fullname: He, Jian email: hejian511690@buaa.edu.cn organization: Research Institute of Frontier Science, Beihang University (BUAA), Beijing, 100191, China – sequence: 5 givenname: Hongbo surname: Guo fullname: Guo, Hongbo email: guo.hongbo@buaa.edu.cn organization: School of Materials Science and Engineering, Beihang University (BUAA), Beijing, 100191, China |
BookMark | eNqFkE9LAzEQxYNUsFa_gYcFz1sn-zfxIJRFrVDxYAVvIZudaJbtpiap6Ld363ryoKcZZt57w_yOyaS3PRJyRmFOgRYX7VxZ55WZJ5DsR4ylyQGZUlbyGDJeTMgUgELMU_Z8RI69bwEGJYUpqZbm5TUOuNmik2HnMKruF4-RQ298kL3CaFho6zbfvdXR2iSLrorsh2kw8kp26E_IoZadx9OfOiNPN9frahmvHm7vqsUqVmmahZjnWVKzHGqsIS95o6Ep8prVRUIpYM15wXWm8gJ5WUpZlGlKkamaK9lAqbVOZ-R8zN06-7ZDH0Rrd64fTookyzhnJdB8UGWjSjnrvUMtts5spPsUFMQel2jFiEvscYkR12C7_GVTJshgbB-cNN1_5qvRjMP77wadGBQ4EGuMQxVEY83fAV-2komF |
CitedBy_id | crossref_primary_10_1016_j_corsci_2024_112048 crossref_primary_10_1016_j_ceramint_2021_01_124 crossref_primary_10_1016_j_ceramint_2024_02_372 crossref_primary_10_1016_j_matchemphys_2021_125324 crossref_primary_10_1007_s40145_022_0588_0 crossref_primary_10_26599_JAC_2023_9220781 crossref_primary_10_1016_j_corsci_2022_110712 crossref_primary_10_1016_j_jallcom_2023_172114 crossref_primary_10_1080_10408436_2021_1966384 crossref_primary_10_1111_jace_18442 crossref_primary_10_1016_j_ceramint_2021_07_028 crossref_primary_10_1016_j_corsci_2023_111369 crossref_primary_10_1016_j_surfcoat_2021_127584 crossref_primary_10_1016_j_corsci_2022_110738 |
Cites_doi | 10.1111/jace.12502 10.1016/S1359-6462(96)00418-6 10.1016/j.jeurceramsoc.2018.03.027 10.1016/j.jeurceramsoc.2017.02.004 10.1179/1743280413Y.0000000019 10.1016/j.jcrysgro.2012.08.015 10.1146/annurev-matsci-010917-105000 10.1016/j.jeurceramsoc.2016.07.027 10.1111/j.1551-2916.2009.03278.x 10.1016/j.ceramint.2016.05.210 10.1023/A:1023092027697 10.1016/j.surfcoat.2009.09.055 10.1016/j.actamat.2017.06.055 10.1016/j.ceramint.2015.05.128 10.1007/s11085-016-9694-0 10.1007/s11661-017-4346-9 10.1016/j.scriptamat.2018.12.028 10.1016/j.surfcoat.2015.11.009 10.1111/jace.16180 10.1111/j.1551-2916.2006.01209.x 10.1016/j.matchemphys.2008.03.017 10.1016/j.jnucmat.2017.03.016 10.1361/105497102770331271 10.1002/adma.201004783 10.1038/nmat4687 10.1016/j.jeurceramsoc.2018.06.039 10.1016/j.pnsc.2012.06.007 10.1016/j.surfcoat.2018.02.035 10.1016/j.scriptamat.2011.03.031 10.1016/j.msea.2008.01.006 10.1111/jace.13209 10.1016/j.jallcom.2012.12.126 10.1016/j.ceramint.2016.05.169 10.1006/jssc.1998.8088 10.1016/j.jeurceramsoc.2017.10.057 10.2355/isijinternational.49.1290 10.1016/j.matchemphys.2008.06.038 10.1016/j.jeurceramsoc.2014.09.006 10.1016/j.actamat.2011.03.035 10.1016/j.ceramint.2019.01.059 10.1557/jmr.2009.0260 10.1016/j.actamat.2004.11.028 10.1016/j.corsci.2019.04.014 10.1016/j.matdes.2017.10.060 10.1115/1.4037599 10.1016/j.scriptamat.2007.09.048 10.1016/j.jmst.2018.09.046 10.2355/isijinternational.52.355 10.1016/j.actamat.2007.08.028 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Sep 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Sep 2020 |
DBID | AAYXX CITATION 7SE 8BQ 8FD F28 FR3 JG9 |
DOI | 10.1016/j.corsci.2020.108832 |
DatabaseName | CrossRef Corrosion Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineering Research Database Technology Research Database Corrosion Abstracts ANTE: Abstracts in New Technology & Engineering METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0496 |
ExternalDocumentID | 10_1016_j_corsci_2020_108832 S0010938X2030370X |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABFNM ABFRF ABJNI ABMAC ABXDB ABXRA ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AELAQ AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SSM SSZ T5K TAE VH1 WUQ XPP XSW ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SE 8BQ 8FD EFKBS F28 FR3 JG9 |
ID | FETCH-LOGICAL-c334t-9542b850beb0579df0d65b8b62110eb9969f4c56e977aa67331e8cb9cad07fff3 |
IEDL.DBID | .~1 |
ISSN | 0010-938X |
IngestDate | Fri Jul 25 04:57:16 EDT 2025 Tue Jul 01 01:02:12 EDT 2025 Thu Apr 24 22:51:07 EDT 2025 Fri Feb 23 02:49:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Oxidation Thermal barrier coatings (TBCs) Wetting Calcium-magnesium-aluminium-silicate (CMAS) Ti2AlC |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-9542b850beb0579df0d65b8b62110eb9969f4c56e977aa67331e8cb9cad07fff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2449987015 |
PQPubID | 2045264 |
ParticipantIDs | proquest_journals_2449987015 crossref_primary_10_1016_j_corsci_2020_108832 crossref_citationtrail_10_1016_j_corsci_2020_108832 elsevier_sciencedirect_doi_10_1016_j_corsci_2020_108832 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2020 2020-09-00 20200901 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Corrosion science |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Guo, Yan, Yu, Yang, Li (bib0120) 2019; 154 Das, Choudhury, Das (bib0215) 2002; 23 Mohan, Yao, Patterson, Sohn (bib0055) 2009; 204 Poerschke, Levi (bib0130) 2015; 35 Poerschke, Jackson, Levi (bib0010) 2017; 47 Kramer, Yang, Levi, Johnson (bib0030) 2006; 89 Guo, Yan, Wang, He (bib0175) 2019; 45 Zhang, Song, Wei, Xiu, Xu, Dingwell, Guo (bib0075) 2019; 163 Chevalier, Gremillard, Virkar, Clarke (bib0025) 2009; 92 Zheng, Guo, Zhao, Wang, Ye (bib0180) 2020; 167 Shen, Lin, Jiang, Fujii, Nogi (bib0240) 2011; 24 Peng, Wang, Guo, Miao, Guo, Gong (bib0045) 2012; 22 Wang, Zhou, Liao, Zhang, Lin (bib0235) 2008; 58 Song, Pei, Sloof, Li, De Hosson, van der Zwaag (bib0230) 2008; 112 Kramer, Faulhaber, Chambers, Clarke, Levi, Hutchinson, Evans (bib0040) 2008; 490 Low, Oo (bib0205) 2008; 111 Padture (bib0005) 2016; 15 Wu, Luo, Cai, Wang, Zhou, Yang, Zhou (bib0135) 2019; 35 Wang, Guo, Li, Peng, Ma, Gong, Guo (bib0050) 2015; 41 Aygun, Vasiliev, Padture, Ma (bib0085) 2007; 55 Eustathopoulos, Nicholas, Drevet (bib0250) 1999 Wang, Zhou (bib0165) 2003; 59 Jung, Eriksson, Wu, Pelton (bib0220) 2009; 49 Eils, Mechnich, Braue (bib0090) 2013; 96 Hanaor, Xu, Ferry, Sorrell (bib0200) 2012; 359 Drexler, Gledhill, Shinoda, Vasiliev, Reddy, Sampath, Padture (bib0080) 2011; 23 Tang, Steinbrück, Große, Bergfeldt, Seifert (bib0170) 2017; 490 Mercer, Faulhaber, Evans, Darolia (bib0015) 2005; 53 He, Xia, Yang (bib0245) 2013; 556 Steinberg, Naraparaju, Heckert, Mikulla, Schulz, Leyens (bib0035) 2018; 38 Zhou, Wang, Yuan, Sun, Dong, He, Cao (bib0125) 2018; 38 Wan, Zhang, Gao, Bai, Zhang (bib0190) 2018; 138 Yang, Pei, Rao, De Hosson, Li, Song (bib0225) 2011; 65 Gok, Goller (bib0115) 2017; 37 Webster, Opila (bib0145) 2019; 102 Ghoshal, Murugan, Walock, Nieto, Barnett, Pepi, Swab, Zhu, Kerner, Rowe, Shiao, Hopkins, Gazonas (bib0150) 2018; 140 Gesenhues, Rentschler (bib0195) 1999; 143 Krause, Garces, Senturk, Padture (bib0100) 2014; 97 Smialek (bib0155) 2018; 49a Cui, Jayaseelan, Lee (bib0210) 2011; 59 Mahade, Curry, Bjorklund, Markocsan, Nylen (bib0110) 2015; 283 Barsoum, Brodkin, El-Raghy (bib0185) 1997; 36 Gonzalez-Julian, Go, Mack, Vaßen (bib0160) 2018; 340 Naraparaju, Pubbysetty, Mechnich, Schulz (bib0065) 2018; 38 Naraparaju, Chavez, Schulz, Ramana (bib0095) 2017; 136 Naraparaju, Huttermann, Schulz, Mechnich (bib0070) 2017; 37 Delon, Ansart, Duluard, Bonino, Malie, Joulia, Gomez (bib0105) 2016; 42 Lutz, Jackson, Abdul-Jabbar, Tolpygo, Levi (bib0140) 2017; 88 Zhang, Chou, Mills (bib0255) 2012; 52 Darolia (bib0020) 2013; 58 Zhang, Zhou, Liu, Deng, Deng, Song, Tong (bib0060) 2016; 42 Guo (10.1016/j.corsci.2020.108832_bib0175) 2019; 45 Jung (10.1016/j.corsci.2020.108832_bib0220) 2009; 49 Zhang (10.1016/j.corsci.2020.108832_bib0060) 2016; 42 Lutz (10.1016/j.corsci.2020.108832_bib0140) 2017; 88 Cui (10.1016/j.corsci.2020.108832_bib0210) 2011; 59 Mohan (10.1016/j.corsci.2020.108832_bib0055) 2009; 204 Yang (10.1016/j.corsci.2020.108832_bib0225) 2011; 65 Mercer (10.1016/j.corsci.2020.108832_bib0015) 2005; 53 Gonzalez-Julian (10.1016/j.corsci.2020.108832_bib0160) 2018; 340 Zheng (10.1016/j.corsci.2020.108832_bib0180) 2020; 167 Wang (10.1016/j.corsci.2020.108832_bib0165) 2003; 59 Wan (10.1016/j.corsci.2020.108832_bib0190) 2018; 138 Peng (10.1016/j.corsci.2020.108832_bib0045) 2012; 22 Kramer (10.1016/j.corsci.2020.108832_bib0040) 2008; 490 Mahade (10.1016/j.corsci.2020.108832_bib0110) 2015; 283 Shen (10.1016/j.corsci.2020.108832_bib0240) 2011; 24 Kramer (10.1016/j.corsci.2020.108832_bib0030) 2006; 89 Guo (10.1016/j.corsci.2020.108832_bib0120) 2019; 154 Chevalier (10.1016/j.corsci.2020.108832_bib0025) 2009; 92 Eils (10.1016/j.corsci.2020.108832_bib0090) 2013; 96 Tang (10.1016/j.corsci.2020.108832_bib0170) 2017; 490 Das (10.1016/j.corsci.2020.108832_bib0215) 2002; 23 Naraparaju (10.1016/j.corsci.2020.108832_bib0065) 2018; 38 Naraparaju (10.1016/j.corsci.2020.108832_bib0095) 2017; 136 Poerschke (10.1016/j.corsci.2020.108832_bib0130) 2015; 35 Darolia (10.1016/j.corsci.2020.108832_bib0020) 2013; 58 Padture (10.1016/j.corsci.2020.108832_bib0005) 2016; 15 Webster (10.1016/j.corsci.2020.108832_bib0145) 2019; 102 Wang (10.1016/j.corsci.2020.108832_bib0235) 2008; 58 Wang (10.1016/j.corsci.2020.108832_bib0050) 2015; 41 Wu (10.1016/j.corsci.2020.108832_bib0135) 2019; 35 Naraparaju (10.1016/j.corsci.2020.108832_bib0070) 2017; 37 Gesenhues (10.1016/j.corsci.2020.108832_bib0195) 1999; 143 He (10.1016/j.corsci.2020.108832_bib0245) 2013; 556 Barsoum (10.1016/j.corsci.2020.108832_bib0185) 1997; 36 Low (10.1016/j.corsci.2020.108832_bib0205) 2008; 111 Krause (10.1016/j.corsci.2020.108832_bib0100) 2014; 97 Steinberg (10.1016/j.corsci.2020.108832_bib0035) 2018; 38 Zhou (10.1016/j.corsci.2020.108832_bib0125) 2018; 38 Delon (10.1016/j.corsci.2020.108832_bib0105) 2016; 42 Poerschke (10.1016/j.corsci.2020.108832_bib0010) 2017; 47 Aygun (10.1016/j.corsci.2020.108832_bib0085) 2007; 55 Eustathopoulos (10.1016/j.corsci.2020.108832_bib0250) 1999 Zhang (10.1016/j.corsci.2020.108832_bib0075) 2019; 163 Gok (10.1016/j.corsci.2020.108832_bib0115) 2017; 37 Drexler (10.1016/j.corsci.2020.108832_bib0080) 2011; 23 Zhang (10.1016/j.corsci.2020.108832_bib0255) 2012; 52 Song (10.1016/j.corsci.2020.108832_bib0230) 2008; 112 Hanaor (10.1016/j.corsci.2020.108832_bib0200) 2012; 359 Ghoshal (10.1016/j.corsci.2020.108832_bib0150) 2018; 140 Smialek (10.1016/j.corsci.2020.108832_bib0155) 2018; 49a |
References_xml | – volume: 35 start-page: 440 year: 2019 end-page: 447 ident: bib0135 article-title: Comparison of CMAS corrosion and sintering induced microstructural characteristics of APS thermal barrier coatings publication-title: J. Mater. Sci. Technol. – volume: 36 start-page: 535 year: 1997 end-page: 541 ident: bib0185 article-title: Layered machinable ceramics for high temperature applications publication-title: Scr. Mater. – volume: 154 start-page: 111 year: 2019 end-page: 122 ident: bib0120 article-title: CMAS resistance characteristics of LaPO publication-title: Corros. Sci. – volume: 35 start-page: 681 year: 2015 end-page: 691 ident: bib0130 article-title: Effects of cation substitution and temperature on the interaction between thermal barrier oxides and molten CMAS publication-title: J. Eur. Ceram. Soc. – volume: 490 start-page: 26 year: 2008 end-page: 35 ident: bib0040 article-title: Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration publication-title: Mater. Sci. Eng. A – volume: 163 start-page: 71 year: 2019 end-page: 76 ident: bib0075 article-title: Novel thermal barrier coatings repel and resist molten silicate deposits publication-title: Scr. Mater. – volume: 111 start-page: 9 year: 2008 end-page: 12 ident: bib0205 article-title: Reformation of phase composition in decomposed aluminium titanate publication-title: Mater. Chem. Phys. – volume: 58 start-page: 315 year: 2013 end-page: 348 ident: bib0020 article-title: Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects publication-title: Int. Mater. Rev. – volume: 38 start-page: 5101 year: 2018 end-page: 5112 ident: bib0035 article-title: Erosion behavior of EB-PVD 7YSZ coatings under corrosion/erosion regime: effect of TBC microstructure and the CMAS chemistry publication-title: J. Eur. Ceram. Soc. – volume: 59 start-page: 303 year: 2003 end-page: 320 ident: bib0165 article-title: High-temperature oxidation behavior of Ti publication-title: Oxid. Met. – volume: 65 start-page: 135 year: 2011 end-page: 138 ident: bib0225 article-title: High temperature healing of Ti publication-title: Scr. Mater. – volume: 37 start-page: 2501 year: 2017 end-page: 2508 ident: bib0115 article-title: Microstructural characterization of GZ/CYSZ thermal barrier coatings after thermal shock and CMAS plus hot corrosion test publication-title: J. Eur. Ceram. Soc. – volume: 23 start-page: 2419 year: 2011 end-page: 2424 ident: bib0080 article-title: Jet engine coatings for resisting volcanic ash damage publication-title: Adv. Mater. – volume: 55 start-page: 6734 year: 2007 end-page: 6745 ident: bib0085 article-title: Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits publication-title: Acta Mater. – volume: 138 start-page: 103 year: 2018 end-page: 110 ident: bib0190 article-title: High-temperature wettability and interactions between Hf-containing NbSi-based alloys and Y publication-title: Mater. Des. – volume: 167 year: 2020 ident: bib0180 article-title: Versatility of potential protective layer material Ti publication-title: Corros. Sci. – volume: 143 start-page: 210 year: 1999 end-page: 218 ident: bib0195 article-title: Crystal growth and defects structure of Al publication-title: J. Solid State Chem. – volume: 45 start-page: 7627 year: 2019 end-page: 7634 ident: bib0175 article-title: Ti publication-title: Ceram. Int. – volume: 112 start-page: 762 year: 2008 end-page: 768 ident: bib0230 article-title: Early stages of oxidation of Ti publication-title: Mater. Chem. Phys. – volume: 42 start-page: 13969 year: 2016 end-page: 13975 ident: bib0060 article-title: Enhanced properties of Al-modified EB-PVD 7YSZ thermal barrier coatings publication-title: Ceram. Int. – volume: 42 start-page: 13704 year: 2016 end-page: 13714 ident: bib0105 article-title: Synthesis of yttria by aqueous sol-gel route to develop anti-CMAS coatings for the protection of EBPVD thermal barriers publication-title: Ceram. Int. – volume: 340 start-page: 17 year: 2018 end-page: 24 ident: bib0160 article-title: Thermal cycling testing of TBCs on Cr publication-title: Surf. Coat. Technol. – volume: 204 start-page: 797 year: 2009 end-page: 801 ident: bib0055 article-title: Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation publication-title: Surf. Coat. Technol. – volume: 59 start-page: 4116 year: 2011 end-page: 4125 ident: bib0210 article-title: Microstructural evolution during high-temperature oxidation of Ti publication-title: Acta Mater. – volume: 37 start-page: 261 year: 2017 end-page: 270 ident: bib0070 article-title: Tailoring the EB-PVD columnar microstructure to mitigate the infiltration of CMAS in 7YSZ thermal barrier coatings publication-title: J. Eur. Ceram. Soc. – volume: 140 year: 2018 ident: bib0150 article-title: Molten particulate impact on tailored thermal barrier coatings for gas turbine engine publication-title: J. Eng. Gas Turbines Power – volume: 24 start-page: 2420 year: 2011 end-page: 2427 ident: bib0240 article-title: Reactive wetting of polycrystalline TiC by molten Zr publication-title: J. Mater. Res. – volume: 556 start-page: 12 year: 2013 end-page: 19 ident: bib0245 article-title: Synthesis and characterization of LTCC composites based on the spodumene/anorthite crystallizable glass publication-title: J. Alloys Compd. – volume: 58 start-page: 227 year: 2008 end-page: 230 ident: bib0235 article-title: A first-principles investigation of the phase stability of Ti publication-title: Scr. Mater. – volume: 53 start-page: 1029 year: 2005 end-page: 1039 ident: bib0015 article-title: A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate (CMAS) infiltration publication-title: Acta Mater. – volume: 97 start-page: 3950 year: 2014 end-page: 3957 ident: bib0100 article-title: 2ZrO publication-title: J. Am. Ceram. Soc. – volume: 96 start-page: 3333 year: 2013 end-page: 3340 ident: bib0090 article-title: Effect of CMAS deposits on MOCVD coatings in the system Y publication-title: J. Am. Ceram. Soc. – year: 1999 ident: bib0250 article-title: Wettability at High Temperatures – volume: 283 start-page: 329 year: 2015 end-page: 336 ident: bib0110 article-title: Thermal conductivity and thermal cyclic fatigue of multilayered Gd publication-title: Surf. Coat. Technol. – volume: 15 start-page: 804 year: 2016 end-page: 809 ident: bib0005 article-title: Advanced structural ceramics in aerospace propulsion publication-title: Nat. Mater. – volume: 47 start-page: 297 year: 2017 end-page: 330 ident: bib0010 article-title: Silicate deposit degradation of engineered coatings in gas turbines: progress toward models and materials solutions publication-title: Annu. Rev. Mater. Res. – volume: 38 start-page: 1897 year: 2018 end-page: 1907 ident: bib0125 article-title: Calcium-magnesium-alumino-silicate induced degradation and failure of La publication-title: J. Eur. Ceram. Soc. – volume: 102 start-page: 3354 year: 2019 end-page: 3367 ident: bib0145 article-title: The effect of TiO publication-title: J. Am. Ceram. Soc. – volume: 89 start-page: 3167 year: 2006 end-page: 3175 ident: bib0030 article-title: Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al publication-title: J. Am. Ceram. Soc. – volume: 92 start-page: 1901 year: 2009 end-page: 1920 ident: bib0025 article-title: The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends publication-title: J. Am. Ceram. Soc. – volume: 490 start-page: 130 year: 2017 end-page: 142 ident: bib0170 article-title: Oxidation behavior of Ti publication-title: J. Nucl. Mater. – volume: 41 start-page: 11662 year: 2015 end-page: 11669 ident: bib0050 article-title: Protectiveness of Pt and Gd publication-title: Ceram. Int. – volume: 49a start-page: 782 year: 2018 end-page: 792 ident: bib0155 article-title: Oxidation of Al publication-title: Metall. Mater. Trans. A – volume: 22 start-page: 461 year: 2012 end-page: 467 ident: bib0045 article-title: Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits publication-title: Prog. Nat. Sci.: Mater. Int. – volume: 38 start-page: 3333 year: 2018 end-page: 3346 ident: bib0065 article-title: EB-PVD alumina (Al publication-title: J. Eur. Ceram. Soc. – volume: 23 start-page: 525 year: 2002 end-page: 536 ident: bib0215 article-title: The Al-O-Ti (aluminium-oxygen-titanium) system publication-title: J. Phase Equilibria Diffus. – volume: 136 start-page: 164 year: 2017 end-page: 180 ident: bib0095 article-title: Interaction and infiltration behavior of Eyjafjallajokull, Sakurajima volcanic ashes and a synthetic CMAS containing FeO with/in EB-PVD ZrO publication-title: Acta Mater. – volume: 359 start-page: 83 year: 2012 end-page: 91 ident: bib0200 article-title: Abnormal grain growth of rutile TiO publication-title: J. Cryst. Growth – volume: 49 start-page: 1290 year: 2009 end-page: 1297 ident: bib0220 article-title: Thermodynamic modelling of the Al publication-title: ISIJ Int. – volume: 52 start-page: 355 year: 2012 end-page: 362 ident: bib0255 article-title: Modelling viscosities of CaO–MgO–Al publication-title: ISIJ Int. – volume: 88 start-page: 73 year: 2017 end-page: 85 ident: bib0140 article-title: Water vapor effects on the cmas degradation of thermal barrier coatings publication-title: Oxid. Met. – volume: 96 start-page: 3333 year: 2013 ident: 10.1016/j.corsci.2020.108832_bib0090 article-title: Effect of CMAS deposits on MOCVD coatings in the system Y2O3-ZrO2: phase relationships publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.12502 – volume: 36 start-page: 535 year: 1997 ident: 10.1016/j.corsci.2020.108832_bib0185 article-title: Layered machinable ceramics for high temperature applications publication-title: Scr. Mater. doi: 10.1016/S1359-6462(96)00418-6 – volume: 38 start-page: 3333 year: 2018 ident: 10.1016/j.corsci.2020.108832_bib0065 article-title: EB-PVD alumina (Al2O3) as a top coat on 7YSZ TBCs against CMAS/VA infiltration: deposition and reaction mechanisms publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2018.03.027 – volume: 37 start-page: 2501 year: 2017 ident: 10.1016/j.corsci.2020.108832_bib0115 article-title: Microstructural characterization of GZ/CYSZ thermal barrier coatings after thermal shock and CMAS plus hot corrosion test publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2017.02.004 – volume: 58 start-page: 315 year: 2013 ident: 10.1016/j.corsci.2020.108832_bib0020 article-title: Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects publication-title: Int. Mater. Rev. doi: 10.1179/1743280413Y.0000000019 – volume: 359 start-page: 83 year: 2012 ident: 10.1016/j.corsci.2020.108832_bib0200 article-title: Abnormal grain growth of rutile TiO2 induced by ZrSiO4 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2012.08.015 – volume: 47 start-page: 297 year: 2017 ident: 10.1016/j.corsci.2020.108832_bib0010 article-title: Silicate deposit degradation of engineered coatings in gas turbines: progress toward models and materials solutions publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-010917-105000 – volume: 37 start-page: 261 year: 2017 ident: 10.1016/j.corsci.2020.108832_bib0070 article-title: Tailoring the EB-PVD columnar microstructure to mitigate the infiltration of CMAS in 7YSZ thermal barrier coatings publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2016.07.027 – volume: 92 start-page: 1901 year: 2009 ident: 10.1016/j.corsci.2020.108832_bib0025 article-title: The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2009.03278.x – volume: 42 start-page: 13969 year: 2016 ident: 10.1016/j.corsci.2020.108832_bib0060 article-title: Enhanced properties of Al-modified EB-PVD 7YSZ thermal barrier coatings publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.05.210 – volume: 59 start-page: 303 year: 2003 ident: 10.1016/j.corsci.2020.108832_bib0165 article-title: High-temperature oxidation behavior of Ti2AlC in air publication-title: Oxid. Met. doi: 10.1023/A:1023092027697 – volume: 204 start-page: 797 year: 2009 ident: 10.1016/j.corsci.2020.108832_bib0055 article-title: Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2009.09.055 – volume: 136 start-page: 164 year: 2017 ident: 10.1016/j.corsci.2020.108832_bib0095 article-title: Interaction and infiltration behavior of Eyjafjallajokull, Sakurajima volcanic ashes and a synthetic CMAS containing FeO with/in EB-PVD ZrO2-65 wt% Y2O3 coating at high temperature publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.06.055 – volume: 41 start-page: 11662 year: 2015 ident: 10.1016/j.corsci.2020.108832_bib0050 article-title: Protectiveness of Pt and Gd2Zr2O7 layers on EB-PVD YSZ thermal barrier coatings against calcium-magnesium-alumina-silicate (CMAS) attack publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.05.128 – volume: 88 start-page: 73 year: 2017 ident: 10.1016/j.corsci.2020.108832_bib0140 article-title: Water vapor effects on the cmas degradation of thermal barrier coatings publication-title: Oxid. Met. doi: 10.1007/s11085-016-9694-0 – volume: 49a start-page: 782 year: 2018 ident: 10.1016/j.corsci.2020.108832_bib0155 article-title: Oxidation of Al2O3 scale-forming MAX phases in turbine environments publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-017-4346-9 – volume: 163 start-page: 71 year: 2019 ident: 10.1016/j.corsci.2020.108832_bib0075 article-title: Novel thermal barrier coatings repel and resist molten silicate deposits publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2018.12.028 – volume: 283 start-page: 329 year: 2015 ident: 10.1016/j.corsci.2020.108832_bib0110 article-title: Thermal conductivity and thermal cyclic fatigue of multilayered Gd2Zr2O7/YSZ thermal barrier coatings processed by suspension plasma spray publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2015.11.009 – volume: 102 start-page: 3354 year: 2019 ident: 10.1016/j.corsci.2020.108832_bib0145 article-title: The effect of TiO2 additions on CaO-MgO-Al2O3-SiO2 (CMAS) crystallization behavior from the melt publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.16180 – volume: 89 start-page: 3167 year: 2006 ident: 10.1016/j.corsci.2020.108832_bib0030 article-title: Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2 (CMAS) deposits publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2006.01209.x – volume: 111 start-page: 9 year: 2008 ident: 10.1016/j.corsci.2020.108832_bib0205 article-title: Reformation of phase composition in decomposed aluminium titanate publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2008.03.017 – volume: 167 year: 2020 ident: 10.1016/j.corsci.2020.108832_bib0180 article-title: Versatility of potential protective layer material Ti2AlC on resisting CMAS corrosion to thermal barrier coatings publication-title: Corros. Sci. – volume: 490 start-page: 130 year: 2017 ident: 10.1016/j.corsci.2020.108832_bib0170 article-title: Oxidation behavior of Ti2AlC in the temperature range of 1400 °C–1600 °C in steam publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2017.03.016 – volume: 23 start-page: 525 year: 2002 ident: 10.1016/j.corsci.2020.108832_bib0215 article-title: The Al-O-Ti (aluminium-oxygen-titanium) system publication-title: J. Phase Equilibria Diffus. doi: 10.1361/105497102770331271 – volume: 23 start-page: 2419 year: 2011 ident: 10.1016/j.corsci.2020.108832_bib0080 article-title: Jet engine coatings for resisting volcanic ash damage publication-title: Adv. Mater. doi: 10.1002/adma.201004783 – volume: 15 start-page: 804 year: 2016 ident: 10.1016/j.corsci.2020.108832_bib0005 article-title: Advanced structural ceramics in aerospace propulsion publication-title: Nat. Mater. doi: 10.1038/nmat4687 – year: 1999 ident: 10.1016/j.corsci.2020.108832_bib0250 – volume: 38 start-page: 5101 year: 2018 ident: 10.1016/j.corsci.2020.108832_bib0035 article-title: Erosion behavior of EB-PVD 7YSZ coatings under corrosion/erosion regime: effect of TBC microstructure and the CMAS chemistry publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2018.06.039 – volume: 22 start-page: 461 year: 2012 ident: 10.1016/j.corsci.2020.108832_bib0045 article-title: Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits publication-title: Prog. Nat. Sci.: Mater. Int. doi: 10.1016/j.pnsc.2012.06.007 – volume: 340 start-page: 17 year: 2018 ident: 10.1016/j.corsci.2020.108832_bib0160 article-title: Thermal cycling testing of TBCs on Cr2AlC MAX phase substrates publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2018.02.035 – volume: 65 start-page: 135 year: 2011 ident: 10.1016/j.corsci.2020.108832_bib0225 article-title: High temperature healing of Ti2AlC: on the origin of inhomogeneous oxide scale publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2011.03.031 – volume: 490 start-page: 26 year: 2008 ident: 10.1016/j.corsci.2020.108832_bib0040 article-title: Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2008.01.006 – volume: 97 start-page: 3950 year: 2014 ident: 10.1016/j.corsci.2020.108832_bib0100 article-title: 2ZrO2‧Y2O3 thermal barrier coatings resistant to degradation by molten CMAS: part II, interactions with sand and fly ash publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.13209 – volume: 556 start-page: 12 year: 2013 ident: 10.1016/j.corsci.2020.108832_bib0245 article-title: Synthesis and characterization of LTCC composites based on the spodumene/anorthite crystallizable glass publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2012.12.126 – volume: 42 start-page: 13704 year: 2016 ident: 10.1016/j.corsci.2020.108832_bib0105 article-title: Synthesis of yttria by aqueous sol-gel route to develop anti-CMAS coatings for the protection of EBPVD thermal barriers publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.05.169 – volume: 143 start-page: 210 year: 1999 ident: 10.1016/j.corsci.2020.108832_bib0195 article-title: Crystal growth and defects structure of Al3+-doped rutile publication-title: J. Solid State Chem. doi: 10.1006/jssc.1998.8088 – volume: 38 start-page: 1897 year: 2018 ident: 10.1016/j.corsci.2020.108832_bib0125 article-title: Calcium-magnesium-alumino-silicate induced degradation and failure of La2(Zr0.7Ce0.3)2O7/YSZ double-ceramic-layer thermal barrier coatings prepared by electron beam-physical vapor deposition publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2017.10.057 – volume: 49 start-page: 1290 year: 2009 ident: 10.1016/j.corsci.2020.108832_bib0220 article-title: Thermodynamic modelling of the Al2O3–Ti2O3–TiO2 system and its applications to the Fe–Al–Ti–O inclusion diagram publication-title: ISIJ Int. doi: 10.2355/isijinternational.49.1290 – volume: 112 start-page: 762 year: 2008 ident: 10.1016/j.corsci.2020.108832_bib0230 article-title: Early stages of oxidation of Ti3AlC2 ceramics publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2008.06.038 – volume: 35 start-page: 681 year: 2015 ident: 10.1016/j.corsci.2020.108832_bib0130 article-title: Effects of cation substitution and temperature on the interaction between thermal barrier oxides and molten CMAS publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2014.09.006 – volume: 59 start-page: 4116 year: 2011 ident: 10.1016/j.corsci.2020.108832_bib0210 article-title: Microstructural evolution during high-temperature oxidation of Ti2AlC ceramics publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.03.035 – volume: 45 start-page: 7627 year: 2019 ident: 10.1016/j.corsci.2020.108832_bib0175 article-title: Ti2AlC MAX phase for resistance against CMAS attack to thermal barrier coatings publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.01.059 – volume: 24 start-page: 2420 year: 2011 ident: 10.1016/j.corsci.2020.108832_bib0240 article-title: Reactive wetting of polycrystalline TiC by molten Zr55Cu30Al10Ni5 metallic glass alloy publication-title: J. Mater. Res. doi: 10.1557/jmr.2009.0260 – volume: 53 start-page: 1029 year: 2005 ident: 10.1016/j.corsci.2020.108832_bib0015 article-title: A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate (CMAS) infiltration publication-title: Acta Mater. doi: 10.1016/j.actamat.2004.11.028 – volume: 154 start-page: 111 year: 2019 ident: 10.1016/j.corsci.2020.108832_bib0120 article-title: CMAS resistance characteristics of LaPO4/YSZ thermal barrier coatings at 1250 °C–1350 °C publication-title: Corros. Sci. doi: 10.1016/j.corsci.2019.04.014 – volume: 138 start-page: 103 year: 2018 ident: 10.1016/j.corsci.2020.108832_bib0190 article-title: High-temperature wettability and interactions between Hf-containing NbSi-based alloys and Y2O3 ceramics with various microstructures publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.10.060 – volume: 140 year: 2018 ident: 10.1016/j.corsci.2020.108832_bib0150 article-title: Molten particulate impact on tailored thermal barrier coatings for gas turbine engine publication-title: J. Eng. Gas Turbines Power doi: 10.1115/1.4037599 – volume: 58 start-page: 227 year: 2008 ident: 10.1016/j.corsci.2020.108832_bib0235 article-title: A first-principles investigation of the phase stability of Ti2AlC with Al vacancies publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2007.09.048 – volume: 35 start-page: 440 year: 2019 ident: 10.1016/j.corsci.2020.108832_bib0135 article-title: Comparison of CMAS corrosion and sintering induced microstructural characteristics of APS thermal barrier coatings publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2018.09.046 – volume: 52 start-page: 355 year: 2012 ident: 10.1016/j.corsci.2020.108832_bib0255 article-title: Modelling viscosities of CaO–MgO–Al2O3–SiO2 molten slags publication-title: ISIJ Int. doi: 10.2355/isijinternational.52.355 – volume: 55 start-page: 6734 year: 2007 ident: 10.1016/j.corsci.2020.108832_bib0085 article-title: Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits publication-title: Acta Mater. doi: 10.1016/j.actamat.2007.08.028 |
SSID | ssj0002010 |
Score | 2.403428 |
Snippet | •Bi-layered oxide scales were developed by pre-oxidizing Ti2AlC bulk at different temperatures.•Molten CMAS corrosion behavior on scales at 1523 K was studied... Failure of thermal barrier coatings (TBCs) caused by glassy deposits mostly composed of calcium-magnesium-aluminium-silicate (CMAS) has become an urgent issue.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 108832 |
SubjectTerms | Aluminum titanates Calcium magnesium silicates Calcium-magnesium-aluminium-silicate (CMAS) Contact angle Diffusion layers Diffusion rate High temperature Oxidation Oxidation resistance Scale (corrosion) Sessile drop method Thermal barrier coatings Thermal barrier coatings (TBCs) Ti2AlC Wettability Wetting |
Title | High-temperature CMAS resistance performance of Ti2AlC oxide scales |
URI | https://dx.doi.org/10.1016/j.corsci.2020.108832 https://www.proquest.com/docview/2449987015 |
Volume | 174 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DL3oQf-J0jhy8xnVp0h_HUhxT2S5u0FtI0gQmYxtugif_dvPa1KkgA48tSWhfXl_el77vC0K3AZesX8IWmLaGsET2ieJSkjANWWyNpUEC5OTROBpO2WPBixbKGy4MlFX62F_H9Cpa-zs9b83eajYDji9IISUFdX4axkEBDHYWg5fffWzLPOBvbx2NAwKtG_pcVePlAJ4b2qFEWhXbJSH9a3n6Fair1WdwjI582oiz-slOUMssTtHhNzHBM5RDyQYBqSmvk4zzUfaMHZyGFNG9F15tSQJ4afFkRrN5jpfvs9LgtZsrsz5H08H9JB8Sf0QC0WHINiTljKqEB8ooYJWWNigjrhIVAa4zyoGZ1DLNI-PSPCkjOKDRJFqlWrr5sdaGF2hvsVyYS4R5yUurHHxQOqlUAaOSch1TbRiVNOJtFDaWEdrrh8MxFnPRFIq9iNqeAuwpanu2Efnqtar1M3a0jxujix9-IFyI39Gz08yR8N_hWrjkxeHJ2OU8V_8e-BodwFVdWNZBe5vXN3PjMpGN6lau1kX72cPTcPwJljHcag |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHNSD8RlR1D143VC23bYcSSMBeVyEhNumu91NMASIYOLPd6fd4iMxJF7b7qadnX47XzvzDcCjx9OgleEnMGU0DeK0RSVPU-q3_SAy2jAvxuLk0TjsTYPnGZ9VIClrYTCt0mF_gek5WrsjTWfN5no-xxpflEKKZ8z6qR95swOooToVr0Kt0x_0xjtAxh--BSB7FAeUFXR5mpfleHZ2SxRZnm8X--yvHeoXVucbUPcUTlzkSDrFzZ1BRS_P4fibnuAFJJi1QVFtykklk2TUeSGWUWOUaB-NrL_qBMjKkMmcdRYJWX3MM002drn05hKm3adJ0qOuSwJVvh9saZsHTMbck1piYWlmvCzkMpYhUjstLZ9pm0DxUNtIL01D7NGoYyXbKrVLZIzxr6C6XC31NRCe8cxIyyCkinNhwDBjXEVM6YClLOR18EvLCOUkxLGTxUKUuWKvorCnQHuKwp51oLtR60JCY8_1UWl08cMVhEX5PSMb5RoJ9ypuhI1fLKWMbNhz8--JH-CwNxkNxbA_HtzCEZ4p8swaUN2-ves7G5hs5b1zvE8yrN8b |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-temperature+CMAS+resistance+performance+of+Ti2AlC+oxide+scales&rft.jtitle=Corrosion+science&rft.au=Jing%2C+Jing&rft.au=Li%2C+Jimeng&rft.au=He%2C+Zhe&rft.au=He%2C+Jian&rft.date=2020-09-01&rft.issn=0010-938X&rft.volume=174&rft.spage=108832&rft_id=info:doi/10.1016%2Fj.corsci.2020.108832&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_corsci_2020_108832 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-938X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-938X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-938X&client=summon |