Effect of morphology and non-metal doping (P and S) on the activity of graphitic carbon nitride toward photoelectrochemical water oxidation

The production of molecular hydrogen by photoelectrochemical dissociation (PEC) of water is a promising technique, which allows the direct transformation of solar energy into hydrogen, an energy vector acclaimed by the scientific community and policymakers. Hydrogen stores solar energy and will help...

Full description

Saved in:
Bibliographic Details
Published inSolar energy materials and solar cells Vol. 232; p. 111326
Main Authors Aboubakr, Ahmed Esmail A., El Rouby, Waleed M.A., Khan, Malik Dilshad, Revaprasadu, Neerish, Millet, Pierre
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.10.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The production of molecular hydrogen by photoelectrochemical dissociation (PEC) of water is a promising technique, which allows the direct transformation of solar energy into hydrogen, an energy vector acclaimed by the scientific community and policymakers. Hydrogen stores solar energy and will help overcome the energy crisis and associated environmental problems. Currently, the design and development of innovative photocatalysts with strong photoelectrochemical activity remain a major challenge, and the subject of intense research activity within the international scientific community. Here we describe the synthesis and photoelectrochemical properties of one-dimensional nanostructures of graphitic carbon nitride (1D-gC3N4) doped with phosphorus or sulfur (1D-P-gC3N4 &1D-S-gC3N4, respectively). A new synthesis method using supramolecular melamine, ammonium dihydrogen phosphate, and tri-thiocyanuric acid as precursors has been developed. The samples were characterized by powder-X Ray diffraction (p-XRD), X-Ray spectroscopy (EDS), transmission electron microscopy (TEM), Ultraviolet–visible (UV–Vis) spectroscopy, Fourier transform infrared spectra (FT-IR) and photoluminescence (PL) analysis. The activity towards the photo-oxidation of water was studied by linear scanning voltammetry (LSV). Compared to 3D material, the activity was found to be significantly improved, thanks in particular to the 1D morphology of gC3N4. It was further strengthened by doping with phosphorus and sulfur. The photo-oxidation mechanism of water was analyzed by photoelectrochemical impedance spectroscopy (PEIS). The measurements show that the resistance to charge transfer at the electrode/electrolyte interface can be greatly reduced by controlling the morphology of gC3N4, and that doping with phosphorus and sulfur also plays a positive role. The PEIS analysis makes it possible to demonstrate that the lifetime of the photo-generated electrons in 1D-gC3N4 is increased compared to 3D-gC3N4, and that doping with phosphorus or sulfur further improves it. The width of the forbidden bands and the position of the valence and conduction bands of the different materials were determined by Mott - Schottky type measurements. [Display omitted] •1D-gC3N4 doped with phosphorus and sulfur (1D-P-gC3N4 &1D-S-gC3N4) were prepared.•Electron-hole separation was enhanced after doping as compared to pristine 1D-gC3N4.•PEIS analysis exhibited improved charge transfer across solid/electrolyte interface after doping.•Mott – Schottky measurements were carried out to determine the band structures.•Hybrids showed higher photo-oxidation properties relevant to pristine 1D-gC3N4.
AbstractList The production of molecular hydrogen by photoelectrochemical dissociation (PEC) of water is a promising technique, which allows the direct transformation of solar energy into hydrogen, an energy vector acclaimed by the scientific community and policymakers. Hydrogen stores solar energy and will help overcome the energy crisis and associated environmental problems. Currently, the design and development of innovative photocatalysts with strong photoelectrochemical activity remain a major challenge, and the subject of intense research activity within the international scientific community. Here we describe the synthesis and photoelectrochemical properties of one-dimensional nanostructures of graphitic carbon nitride (1D-gC3N4) doped with phosphorus or sulfur (1D-P-gC3N4 &1D-S-gC3N4, respectively). A new synthesis method using supramolecular melamine, ammonium dihydrogen phosphate, and tri-thiocyanuric acid as precursors has been developed. The samples were characterized by powder-X Ray diffraction (p-XRD), X-Ray spectroscopy (EDS), transmission electron microscopy (TEM), Ultraviolet–visible (UV–Vis) spectroscopy, Fourier transform infrared spectra (FT-IR) and photoluminescence (PL) analysis. The activity towards the photo-oxidation of water was studied by linear scanning voltammetry (LSV). Compared to 3D material, the activity was found to be significantly improved, thanks in particular to the 1D morphology of gC3N4. It was further strengthened by doping with phosphorus and sulfur. The photo-oxidation mechanism of water was analyzed by photoelectrochemical impedance spectroscopy (PEIS). The measurements show that the resistance to charge transfer at the electrode/electrolyte interface can be greatly reduced by controlling the morphology of gC3N4, and that doping with phosphorus and sulfur also plays a positive role. The PEIS analysis makes it possible to demonstrate that the lifetime of the photo-generated electrons in 1D-gC3N4 is increased compared to 3D-gC3N4, and that doping with phosphorus or sulfur further improves it. The width of the forbidden bands and the position of the valence and conduction bands of the different materials were determined by Mott - Schottky type measurements. [Display omitted] •1D-gC3N4 doped with phosphorus and sulfur (1D-P-gC3N4 &1D-S-gC3N4) were prepared.•Electron-hole separation was enhanced after doping as compared to pristine 1D-gC3N4.•PEIS analysis exhibited improved charge transfer across solid/electrolyte interface after doping.•Mott – Schottky measurements were carried out to determine the band structures.•Hybrids showed higher photo-oxidation properties relevant to pristine 1D-gC3N4.
The production of molecular hydrogen by photoelectrochemical dissociation (PEC) of water is a promising technique, which allows the direct transformation of solar energy into hydrogen, an energy vector acclaimed by the scientific community and policymakers. Hydrogen stores solar energy and will help overcome the energy crisis and associated environmental problems. Currently, the design and development of innovative photocatalysts with strong photoelectrochemical activity remain a major challenge, and the subject of intense research activity within the international scientific community. Here we describe the synthesis and photoelectrochemical properties of one-dimensional nanostructures of graphitic carbon nitride (1D-gC3N4) doped with phosphorus or sulfur (1D-P-gC3N4 &1D-S-gC3N4, respectively). A new synthesis method using supramolecular melamine, ammonium dihydrogen phosphate, and tri-thiocyanuric acid as precursors has been developed. The samples were characterized by powder-X Ray diffraction (p-XRD), X-Ray spectroscopy (EDS), transmission electron microscopy (TEM), Ultraviolet–visible (UV–Vis) spectroscopy, Fourier transform infrared spectra (FT-IR) and photoluminescence (PL) analysis. The activity towards the photo-oxidation of water was studied by linear scanning voltammetry (LSV). Compared to 3D material, the activity was found to be significantly improved, thanks in particular to the 1D morphology of gC3N4. It was further strengthened by doping with phosphorus and sulfur. The photo-oxidation mechanism of water was analyzed by photoelectrochemical impedance spectroscopy (PEIS). The measurements show that the resistance to charge transfer at the electrode/electrolyte interface can be greatly reduced by controlling the morphology of gC3N4, and that doping with phosphorus and sulfur also plays a positive role. The PEIS analysis makes it possible to demonstrate that the lifetime of the photo-generated electrons in 1D-gC3N4 is increased compared to 3D-gC3N4, and that doping with phosphorus or sulfur further improves it. The width of the forbidden bands and the position of the valence and conduction bands of the different materials were determined by Mott - Schottky type measurements.
ArticleNumber 111326
Author El Rouby, Waleed M.A.
Millet, Pierre
Khan, Malik Dilshad
Aboubakr, Ahmed Esmail A.
Revaprasadu, Neerish
Author_xml – sequence: 1
  givenname: Ahmed Esmail A.
  surname: Aboubakr
  fullname: Aboubakr, Ahmed Esmail A.
  organization: Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Taiwan
– sequence: 2
  givenname: Waleed M.A.
  surname: El Rouby
  fullname: El Rouby, Waleed M.A.
  email: waleedmohamedali@psas.bsu.edu.eg
  organization: Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, 62511, Beni-Suef, Egypt
– sequence: 3
  givenname: Malik Dilshad
  surname: Khan
  fullname: Khan, Malik Dilshad
  organization: Department of Chemistry, University of Zululand, Private Bag X1001, Kwadlangezwa, 3886, South Africa
– sequence: 4
  givenname: Neerish
  surname: Revaprasadu
  fullname: Revaprasadu, Neerish
  organization: Department of Chemistry, University of Zululand, Private Bag X1001, Kwadlangezwa, 3886, South Africa
– sequence: 5
  givenname: Pierre
  orcidid: 0000-0002-0224-9868
  surname: Millet
  fullname: Millet, Pierre
  email: pierre.millet@universite-paris-saclay.fr
  organization: Paris-Saclay University, ICMMO-Eriée, UMR CNRS 8182, 91405, Orsay, France
BookMark eNqFkM1q3DAUhUVJoZM0b9CFoJtk4al-PJbcRSGEpAkEWmizFnek6xkNtuTKys88Q1-6mrirLNqVQJzvHO53TI5CDEjIB86WnPHm0245xX6AvBRM8CXnXIrmDVlwrdpKylYfkQVrhaqYqPU7cjxNO8aYaGS9IL-vug5tprGjQ0zjNvZxs6cQHC0b1YAZeuri6MOGnn1_-f9xTmOgeYsUbPaPPu8P8CbBuPXZW2ohrUsg-Jy8Q5rjEyRHS3OO2JepFO0WB29L8RNkTDQ-ewfZx_CevO2gn_D073tC7q-vfl7eVHffvt5eXtxVVso6V9pZicDqjkFj5RqlWinQKNe1QGwEg5XizjZcO6XBWiuUAy4VtEpCp1coT8jHuXdM8dcDTtns4kMKZdKIlRZa1i1XJVXPKZviNCXszJj8AGlvODMH7WZnZu3moN3M2gv2-RVmfX45Lyfw_f_gLzOM5fxHj8lM1mOw6Hwq6oyL_t8FfwDXHKVm
CitedBy_id crossref_primary_10_1016_j_solener_2022_04_039
crossref_primary_10_1016_j_envres_2024_120314
crossref_primary_10_1021_acsaem_3c01992
crossref_primary_10_1016_j_jpcs_2023_111242
crossref_primary_10_1039_D3RA02011H
crossref_primary_10_1016_j_solidstatesciences_2024_107757
crossref_primary_10_1039_D3SE00780D
crossref_primary_10_1039_D4MH00020J
crossref_primary_10_1021_acsaem_3c02208
crossref_primary_10_1016_j_jece_2025_115945
crossref_primary_10_1039_D3YA00506B
crossref_primary_10_1039_D2NJ06154F
crossref_primary_10_1063_5_0205461
crossref_primary_10_1039_D2NJ00393G
crossref_primary_10_1016_j_micromeso_2023_112733
crossref_primary_10_1016_j_nanoms_2024_10_014
crossref_primary_10_1016_j_chemosphere_2023_138068
crossref_primary_10_1016_j_optmat_2024_114849
Cites_doi 10.1039/C9CY00209J
10.1016/j.apcatb.2018.09.037
10.1016/j.ijhydene.2019.05.089
10.1016/j.solener.2020.09.008
10.1016/j.apcatb.2014.01.046
10.1016/j.apcatb.2016.03.055
10.1039/C8NA00264A
10.1002/adma.201601567
10.1039/c2ta00672c
10.1039/df9470100011
10.1016/j.materresbull.2013.06.002
10.1016/j.ijhydene.2019.08.220
10.1016/j.apcatb.2017.04.009
10.1016/S1872-2067(19)63355-3
10.1016/j.jphotochem.2018.07.011
10.1016/j.jphotochemrev.2014.04.002
10.1021/ja808329f
10.1016/S0013-4686(02)00444-9
10.1016/j.carbon.2015.12.098
10.1016/j.cej.2019.05.175
10.1016/j.cej.2017.05.179
10.1002/anie.201101182
10.1002/smll.201603938
10.1016/j.jcat.2017.06.006
10.1002/anie.201508505
10.1016/j.cattod.2019.01.034
10.1039/c3ta13291a
10.1021/ja073668n
10.1016/j.solener.2016.11.052
10.1016/j.apcatb.2014.03.010
10.1021/ja809307s
10.1038/nmat2317
10.1039/c2ta00933a
10.1039/C6TA04711D
10.1021/acsomega.8b00847
10.1016/j.electacta.2020.135882
10.1016/j.solener.2019.09.052
10.1016/j.rser.2018.03.079
10.1016/j.apcatb.2013.08.007
10.1039/C4TA05292G
10.1016/j.apsusc.2015.03.086
10.1007/s10853-018-2925-9
10.1016/j.apsusc.2019.144419
10.1016/j.ijhydene.2019.01.274
10.1016/j.apcatb.2017.03.028
10.1039/C7EE02444D
10.1021/ja101749y
10.1002/anie.201710873
10.1039/C7TA03777E
10.1016/j.matlet.2017.03.005
10.1039/9781839163791-00181
10.1039/D0NR00652A
10.1021/acssuschemeng.7b00559
10.1039/c3ta15358d
10.1088/1361-6463/aa604c
10.1016/j.ijhydene.2018.11.214
10.1038/srep35768
10.1007/s10853-017-1506-7
10.1016/j.apcatb.2013.10.029
10.1039/C7RA01036B
10.1016/j.apsusc.2018.01.091
10.1039/b718969a
10.1002/solr.202000168
10.1016/j.nanoen.2015.01.043
10.1149/2162-8777/ab7884
10.1021/acs.inorgchem.8b01517
10.1179/175355508X266872
10.1016/j.apsusc.2016.06.180
10.1016/j.apcatb.2014.09.020
10.1039/c2jm32053c
10.1002/anie.201802014
10.1021/acsami.5b04947
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Oct 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Oct 2021
DBID AAYXX
CITATION
7SP
7ST
7TB
7U5
8FD
C1K
FR3
L7M
SOI
DOI 10.1016/j.solmat.2021.111326
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3398
ExternalDocumentID 10_1016_j_solmat_2021_111326
S0927024821003688
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABNUV
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SCB
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSR
SSZ
T5K
TWZ
WH7
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SP
7ST
7TB
7U5
8FD
C1K
EFKBS
FR3
L7M
SOI
ID FETCH-LOGICAL-c334t-8dc3ea04f0a6c3be3757a8e3b42ee620a571dc618d78accc27da137a973af85e3
IEDL.DBID .~1
ISSN 0927-0248
IngestDate Wed Aug 13 06:42:52 EDT 2025
Tue Jul 01 01:20:09 EDT 2025
Thu Apr 24 23:10:29 EDT 2025
Fri Feb 23 02:41:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Water splitting
Morphology effect
Photoanode
Photoelectrochemical impedance spectroscopy
P and S doped Graphitic carbon nitride
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-8dc3ea04f0a6c3be3757a8e3b42ee620a571dc618d78accc27da137a973af85e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0224-9868
PQID 2582834917
PQPubID 2045398
ParticipantIDs proquest_journals_2582834917
crossref_primary_10_1016_j_solmat_2021_111326
crossref_citationtrail_10_1016_j_solmat_2021_111326
elsevier_sciencedirect_doi_10_1016_j_solmat_2021_111326
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Solar energy materials and solar cells
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Liu, Yang, Li, Chen, Li, Tang (bib4) 2017; 326
Seo, Nishiyama, Yamada, Domen (bib11) 2018; 57
Jiang, Yuan, Zeng, Chen, Wu, Liang, Zhang, Wang, Wang (bib42) 2017; 5
Kern, Sastrawan, Ferber, Stangl, Luther (bib72) 2002; 47
El Rouby, Aboubakr, Khan, Farghali, Millet, Revaprasadu (bib8) 2020; 211
Tonda, Kumar, Kandula, Shanker (bib25) 2014; 2
Rafieh, Ekanayake, Tan, Lim (bib73) 2017; 141
Liu, Chen, Li, Peng, Xiong (bib67) 2017; 211
Fu, Chang, Tian, Xi, Dong (bib20) 2013; 1
Wang, Liu, Liu, Han, Hu, Yang, Xu, Li, Jia, Li (bib32) 2018; 57
Fan, Wang, Gao, Xie, Zhang, Meng, Gong, Guo, Huang, He (bib56) 2019; 335
Gao, Liu, Liu, Si, Xue (bib27) 2016; 6
Bai, Zong, Li, Liu, Liu, Zhu (bib52) 2014; 147
Nayak, Pradhan, Parida (bib66) 2018; 57
Zhang, Tian, Duan, Sun, Shen, Shao, Wang (bib22) 2020; 12
Randles (bib64) 1947; 1
Wang, Zhao, Zhang, Fang, Zhou, Yuan, Zhang, Chen (bib24) 2018; 440
Alam, Kumar, Kar, Thakur, Zeng, Cui, Shankar (bib70) 2019; 1
Pareek, Quamara (bib71) 2018; 53
Han, Yuan, Yao, Xi, Liu, Dong (bib62) 2019; 54
Li, Fang, Zhang, Bi, He, Wang, Su (bib30) 2016; 4
Zhu, Ren, Yuan (bib13) 2015; 7
Bai, Wang, Wang, Yao, Zhu (bib39) 2014; 152
Hong, Xia, Wang, Xu (bib29) 2012; 22
Ge, Han, Xiao, Guo, Li (bib12) 2013; 48
Tahir, Cao, Butt, Idrees, Mahmood, Ali, Aslam, Tanveer, Rizwan, Mahmood (bib36) 2013; 1
Antuch, El Rouby, Millet (bib63) 2019; 44
Nakamura, Okamoto, Osawa, Irie, Hashimoto (bib7) 2007; 129
El Rouby, Antuch, You, Millet (bib60) 2020; 339
Elmacı, Ertürk, Sevim, Metin (bib16) 2019; 44
El Rouby, Farghali (bib6) 2018; 364
van de Krol, Liang, Schoonman (bib58) 2008; 18
Fu, Zhu, Jiang, Cheng, You, Yu (bib68) 2017; 13
El Rouby, Antuch, You, Beaunier, Millet (bib59) 2019; 44
Hong, Liu, Shi, Lin, Sheng, Zhang, Wang, Chen (bib18) 2019; 44
Farghali, El-Dek, Elbakkay, El Rouby (bib57) 2020; 9
Chai, Yan, Wang, Ren, Zhu (bib31) 2017; 391
Bakr, El Rouby, Khan, Farghali, Xulu, Revaprasadu (bib21) 2019; 193
Nayak, Parida (bib65) 2018; 3
Huang, Song, Pan, Wang, Zhang, Zou, Mi, Zhang, Wang (bib54) 2015; 12
Zhou, Zhang, Liu, Fan, Wang, Wang, Ren, Wang, Li, Shi (bib46) 2015; 3
Wang, Maeda, Thomas, Takanabe, Xin, Carlsson, Domen, Antonietti (bib35) 2009; 8
Cao, Liu, Yuan, Zhang, Liao, Fang, Loo, Sum, Xue (bib53) 2014; 147
Dong, Wang, Zhang, Chen, Liu, Wang (bib34) 2017; 196
Baliarsingh, Mohapatra, Parida (bib50) 2013; 1
Zhu, Xia, Ho, Yu (bib45) 2015; 344
Zhang, Tian, Zhou, Sun, Tade, Wang (bib17) 2018; 223
Wang, Maeda, Chen, Takanabe, Domen, Hou, Fu, Antonietti (bib14) 2009; 131
Di, Zhu, Cheng, Yu, Xu (bib51) 2017; 352
Dong, Zhang, Pan, Qiu (bib15) 2014; 20
Zhang, Mori, Ye, Antonietti (bib26) 2010; 132
You, Dou, Chen, Zheng, Zhang (bib55) 2017; 7
Wang, Long, Wang, Yuan, Ignaszak, Fang, Wilkinson (bib2) 2018; 11
Wu, Zhang, He, Wang, Wang, Gong (bib49) 2019; 241
Nada, El Rouby, Bekheet, Antuch, Weber, Miele, Viter, Roualdes, Millet, Bechelany (bib61) 2020; 505
Child, Koskinen, Linnanen, Breyer (bib1) 2018; 91
El Rouby, Aboubakr, You, Millet (bib10) 2021
Guo, Deng, Li, Jiang, Tian, Pan, Fu (bib33) 2016; 55
Li, Yan, Zeng, Luo, Luo, Liu, Guo, Guo (bib41) 2014; 156
Aboubakr, El Rouby, Khan, Farghali, Revaprasadu (bib5) 2019
Li, Cheng, Fang, Fu, Wang (bib9) 2020; 4
Zhang, Savateev, Zhao, Li, Antonietti (bib48) 2017; 5
Kang, Yang, Yin, Kang, Wang, Liu, Cheng (bib44) 2016; 28
Chong, Chen, Han, Wang, Feng, Li, Li, Wang (bib40) 2019; 40
Bai, Li, Zhang, Zhang, Wang, Xu, Zhu (bib69) 2019; 9
Khedr, Bahgat, Rouby (bib3) 2008; 23
Huang, Li, Li, Zhang, Chen, Liu, Liu, Lv, Liu (bib47) 2019; 374
El Rouby, Comesaña-Hermo, Testa-Anta, Carbó-Argibay, Salgueiriño, Pérez-Lorenzo, Correa-Duarte (bib37) 2017; 50
Sagara, Kamimura, Tsubota, Ohno (bib28) 2016; 192
Lan, Wang, Chen, Au, Yin (bib43) 2016; 100
Zhang, Bai, Liu, Wang, Zhu (bib23) 2015; 164
Wang, Wang, Antonietti (bib38) 2012; 51
Zhang, Thomas, Antonietti, Wang (bib19) 2008; 131
Zhu (10.1016/j.solmat.2021.111326_bib13) 2015; 7
Elmacı (10.1016/j.solmat.2021.111326_bib16) 2019; 44
Child (10.1016/j.solmat.2021.111326_bib1) 2018; 91
Lan (10.1016/j.solmat.2021.111326_bib43) 2016; 100
van de Krol (10.1016/j.solmat.2021.111326_bib58) 2008; 18
Antuch (10.1016/j.solmat.2021.111326_bib63) 2019; 44
Sagara (10.1016/j.solmat.2021.111326_bib28) 2016; 192
Di (10.1016/j.solmat.2021.111326_bib51) 2017; 352
Ge (10.1016/j.solmat.2021.111326_bib12) 2013; 48
Fu (10.1016/j.solmat.2021.111326_bib20) 2013; 1
Wang (10.1016/j.solmat.2021.111326_bib14) 2009; 131
Fan (10.1016/j.solmat.2021.111326_bib56) 2019; 335
Bai (10.1016/j.solmat.2021.111326_bib52) 2014; 147
Farghali (10.1016/j.solmat.2021.111326_bib57) 2020; 9
Wang (10.1016/j.solmat.2021.111326_bib35) 2009; 8
Huang (10.1016/j.solmat.2021.111326_bib47) 2019; 374
Pareek (10.1016/j.solmat.2021.111326_bib71) 2018; 53
Zhang (10.1016/j.solmat.2021.111326_bib22) 2020; 12
Dong (10.1016/j.solmat.2021.111326_bib15) 2014; 20
Bai (10.1016/j.solmat.2021.111326_bib39) 2014; 152
El Rouby (10.1016/j.solmat.2021.111326_bib37) 2017; 50
El Rouby (10.1016/j.solmat.2021.111326_bib60) 2020; 339
Dong (10.1016/j.solmat.2021.111326_bib34) 2017; 196
Cao (10.1016/j.solmat.2021.111326_bib53) 2014; 147
Seo (10.1016/j.solmat.2021.111326_bib11) 2018; 57
El Rouby (10.1016/j.solmat.2021.111326_bib6) 2018; 364
Baliarsingh (10.1016/j.solmat.2021.111326_bib50) 2013; 1
Li (10.1016/j.solmat.2021.111326_bib41) 2014; 156
Tonda (10.1016/j.solmat.2021.111326_bib25) 2014; 2
Bai (10.1016/j.solmat.2021.111326_bib69) 2019; 9
Bakr (10.1016/j.solmat.2021.111326_bib21) 2019; 193
You (10.1016/j.solmat.2021.111326_bib55) 2017; 7
Khedr (10.1016/j.solmat.2021.111326_bib3) 2008; 23
Wang (10.1016/j.solmat.2021.111326_bib24) 2018; 440
El Rouby (10.1016/j.solmat.2021.111326_bib10) 2021
El Rouby (10.1016/j.solmat.2021.111326_bib59) 2019; 44
Zhang (10.1016/j.solmat.2021.111326_bib19) 2008; 131
Guo (10.1016/j.solmat.2021.111326_bib33) 2016; 55
Zhang (10.1016/j.solmat.2021.111326_bib26) 2010; 132
Chai (10.1016/j.solmat.2021.111326_bib31) 2017; 391
Zhu (10.1016/j.solmat.2021.111326_bib45) 2015; 344
Li (10.1016/j.solmat.2021.111326_bib9) 2020; 4
Gao (10.1016/j.solmat.2021.111326_bib27) 2016; 6
Aboubakr (10.1016/j.solmat.2021.111326_bib5) 2019
Liu (10.1016/j.solmat.2021.111326_bib67) 2017; 211
Alam (10.1016/j.solmat.2021.111326_bib70) 2019; 1
Li (10.1016/j.solmat.2021.111326_bib30) 2016; 4
Huang (10.1016/j.solmat.2021.111326_bib54) 2015; 12
Nayak (10.1016/j.solmat.2021.111326_bib66) 2018; 57
Zhang (10.1016/j.solmat.2021.111326_bib17) 2018; 223
Kern (10.1016/j.solmat.2021.111326_bib72) 2002; 47
Wu (10.1016/j.solmat.2021.111326_bib49) 2019; 241
Wang (10.1016/j.solmat.2021.111326_bib2) 2018; 11
Zhang (10.1016/j.solmat.2021.111326_bib23) 2015; 164
Fu (10.1016/j.solmat.2021.111326_bib68) 2017; 13
Randles (10.1016/j.solmat.2021.111326_bib64) 1947; 1
Zhou (10.1016/j.solmat.2021.111326_bib46) 2015; 3
Jiang (10.1016/j.solmat.2021.111326_bib42) 2017; 5
El Rouby (10.1016/j.solmat.2021.111326_bib8) 2020; 211
Hong (10.1016/j.solmat.2021.111326_bib18) 2019; 44
Zhang (10.1016/j.solmat.2021.111326_bib48) 2017; 5
Nakamura (10.1016/j.solmat.2021.111326_bib7) 2007; 129
Hong (10.1016/j.solmat.2021.111326_bib29) 2012; 22
Kang (10.1016/j.solmat.2021.111326_bib44) 2016; 28
Wang (10.1016/j.solmat.2021.111326_bib32) 2018; 57
Nada (10.1016/j.solmat.2021.111326_bib61) 2020; 505
Liu (10.1016/j.solmat.2021.111326_bib4) 2017; 326
Han (10.1016/j.solmat.2021.111326_bib62) 2019; 54
Nayak (10.1016/j.solmat.2021.111326_bib65) 2018; 3
Rafieh (10.1016/j.solmat.2021.111326_bib73) 2017; 141
Wang (10.1016/j.solmat.2021.111326_bib38) 2012; 51
Chong (10.1016/j.solmat.2021.111326_bib40) 2019; 40
Tahir (10.1016/j.solmat.2021.111326_bib36) 2013; 1
References_xml – volume: 57
  start-page: 8396
  year: 2018
  end-page: 8415
  ident: bib11
  article-title: Visible‐light‐responsive photoanodes for highly active, stable water oxidation
  publication-title: Angew. Chem. Int. Ed.
– volume: 223
  start-page: 2
  year: 2018
  end-page: 9
  ident: bib17
  article-title: Monodisperse Co
  publication-title: Appl. Catal. B Environ.
– volume: 193
  start-page: 403
  year: 2019
  end-page: 412
  ident: bib21
  article-title: Synthesis and characterization of Z-scheme α-Fe
  publication-title: Sol. Energy
– volume: 3
  start-page: 3862
  year: 2015
  end-page: 3867
  ident: bib46
  article-title: Brand new P-doped gC 3 N 4: enhanced photocatalytic activity for H
  publication-title: J. Mater. Chem.
– volume: 22
  start-page: 15006
  year: 2012
  end-page: 15012
  ident: bib29
  article-title: Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light
  publication-title: J. Mater. Chem.
– volume: 241
  start-page: 159
  year: 2019
  end-page: 166
  ident: bib49
  article-title: In-situ construction of coral-like porous P-doped g-C3N4 tubes with hybrid 1D/2D architecture and high efficient photocatalytic hydrogen evolution
  publication-title: Appl. Catal. B Environ.
– volume: 9
  year: 2020
  ident: bib57
  article-title: Synergistic effect of high-performance N, S–TiO
  publication-title: ECS Journal of Solid State Science and Technology
– volume: 8
  start-page: 76
  year: 2009
  ident: bib35
  article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light
  publication-title: Nat. Mater.
– volume: 339
  start-page: 135882
  year: 2020
  ident: bib60
  article-title: Surface sensitization of TiO
  publication-title: Electrochim. Acta
– volume: 156
  start-page: 141
  year: 2014
  end-page: 152
  ident: bib41
  article-title: Fabrication of H
  publication-title: Appl. Catal. B Environ.
– volume: 57
  start-page: 8646
  year: 2018
  end-page: 8661
  ident: bib66
  article-title: Topotactic transformation of solvated MgCr-LDH nanosheets to highly efficient porous MgO/MgCr
  publication-title: Inorg. Chem.
– volume: 147
  start-page: 940
  year: 2014
  end-page: 946
  ident: bib53
  article-title: Solar-to-fuels conversion over In
  publication-title: Appl. Catal. B Environ.
– volume: 505
  start-page: 144419
  year: 2020
  ident: bib61
  article-title: Highly textured boron/nitrogen co-doped TiO
  publication-title: Appl. Surf. Sci.
– volume: 164
  start-page: 77
  year: 2015
  end-page: 81
  ident: bib23
  article-title: Enhanced catalytic activity of potassium-doped graphitic carbon nitride induced by lower valence position
  publication-title: Appl. Catal. B Environ.
– volume: 91
  start-page: 321
  year: 2018
  end-page: 334
  ident: bib1
  article-title: Sustainability guardrails for energy scenarios of the global energy transition
  publication-title: Renew. Sustain. Energy Rev.
– volume: 1
  start-page: 11
  year: 1947
  end-page: 19
  ident: bib64
  article-title: Kinetics of rapid electrode reactions
  publication-title: Discuss. Faraday Soc.
– volume: 44
  start-page: 17995
  year: 2019
  end-page: 18006
  ident: bib16
  article-title: MnO
  publication-title: Int. J. Hydrogen Energy
– volume: 47
  start-page: 4213
  year: 2002
  end-page: 4225
  ident: bib72
  article-title: Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions
  publication-title: Electrochim. Acta
– volume: 12
  start-page: 6937
  year: 2020
  end-page: 6952
  ident: bib22
  article-title: Functional carbon nitride materials for water oxidation: from heteroatom doping to interface engineering
  publication-title: Nanoscale
– volume: 7
  start-page: 15842
  year: 2017
  end-page: 15850
  ident: bib55
  article-title: Graphitic carbon nitride with S and O codoping for enhanced visible light photocatalytic performance
  publication-title: RSC Adv.
– volume: 132
  start-page: 6294
  year: 2010
  end-page: 6295
  ident: bib26
  article-title: Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation
  publication-title: J. Am. Chem. Soc.
– volume: 211
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib67
  article-title: Enhanced photocatalytic conversion of greenhouse gas CO
  publication-title: Appl. Catal. B Environ.
– volume: 352
  start-page: 532
  year: 2017
  end-page: 541
  ident: bib51
  article-title: A direct Z-scheme g-C
  publication-title: J. Catal.
– volume: 23
  start-page: 27
  year: 2008
  end-page: 32
  ident: bib3
  article-title: Synthesis, magnetic properties and photocatalytic activity of CuFe
  publication-title: Mater. Technol.
– volume: 3
  start-page: 7324
  year: 2018
  end-page: 7343
  ident: bib65
  article-title: Dynamics of charge-transfer behavior in a plasmon-induced quasi-type-II p–n/n–n dual heterojunction in Ag@ Ag
  publication-title: ACS Omega
– volume: 131
  start-page: 1680
  year: 2009
  end-page: 1681
  ident: bib14
  article-title: Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 1680
  year: 2019
  end-page: 1690
  ident: bib69
  article-title: Carbon nitride nested tubes with graphene as a dual electron mediator in Z-scheme photocatalytic deoxynivalenol degradation
  publication-title: Catalysis Science & Technology
– volume: 53
  start-page: 604
  year: 2018
  end-page: 612
  ident: bib71
  article-title: Dielectric and optical properties of graphitic carbon nitride–titanium dioxide nanocomposite with enhanced charge separation
  publication-title: J. Mater. Sci.
– volume: 147
  start-page: 82
  year: 2014
  end-page: 91
  ident: bib52
  article-title: Enhancement of visible photocatalytic activity via Ag@ C3N4 core–shell plasmonic composite
  publication-title: Appl. Catal. B Environ.
– volume: 335
  start-page: 423
  year: 2019
  end-page: 428
  ident: bib56
  article-title: Layered double hydroxides decorated graphic carbon nitride film as efficient photoanodes for photoelectrochemical water splitting
  publication-title: Catal. Today
– volume: 54
  start-page: 1593
  year: 2019
  end-page: 1605
  ident: bib62
  article-title: Synergistic effects of phosphorous/sulfur co-doping and morphological regulation for enhanced photocatalytic performance of graphitic carbon nitride nanosheets
  publication-title: J. Mater. Sci.
– volume: 2
  start-page: 6772
  year: 2014
  end-page: 6780
  ident: bib25
  article-title: Fe-doped and-mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight
  publication-title: J. Mater. Chem.
– volume: 40
  start-page: 959
  year: 2019
  end-page: 968
  ident: bib40
  article-title: CdS-modified one-dimensional g-C3N4 porous nanotubes for efficient visible-light photocatalytic conversion
  publication-title: Chin. J. Catal.
– volume: 28
  start-page: 6471
  year: 2016
  end-page: 6477
  ident: bib44
  article-title: Selective breaking of hydrogen bonds of layered carbon nitride for visible light photocatalysis
  publication-title: Adv. Mater.
– volume: 129
  start-page: 9596
  year: 2007
  end-page: 9597
  ident: bib7
  article-title: Design of all-inorganic molecular-based photocatalysts sensitive to visible light: Ti (IV)− O− Ce (III) bimetallic assemblies on mesoporous silica
  publication-title: J. Am. Chem. Soc.
– volume: 374
  start-page: 242
  year: 2019
  end-page: 253
  ident: bib47
  article-title: An efficient metal-free phosphorus and oxygen co-doped g-C3N4 photocatalyst with enhanced visible light photocatalytic activity for the degradation of fluoroquinolone antibiotics
  publication-title: Chem. Eng. J.
– volume: 100
  start-page: 81
  year: 2016
  end-page: 89
  ident: bib43
  article-title: Phosphorous-modified bulk graphitic carbon nitride: facile preparation and application as an acid-base bifunctional and efficient catalyst for CO
  publication-title: Carbon
– volume: 1
  start-page: 13949
  year: 2013
  end-page: 13955
  ident: bib36
  article-title: Tubular graphitic-C
  publication-title: J. Mater. Chem.
– volume: 50
  start-page: 144002
  year: 2017
  ident: bib37
  article-title: Au-decorated sodium titanate nanotubes as high-performance selective photocatalysts for pollutant degradation
  publication-title: J. Phys. Appl. Phys.
– volume: 57
  start-page: 5765
  year: 2018
  end-page: 5771
  ident: bib32
  article-title: Carbon quantum dot implanted graphite carbon nitride nanotubes: excellent charge separation and enhanced photocatalytic hydrogen evolution
  publication-title: Angew. Chem. Int. Ed.
– volume: 326
  start-page: 603
  year: 2017
  end-page: 611
  ident: bib4
  article-title: An in situ transformation approach for fabrication of BiVO
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 646
  year: 2015
  end-page: 656
  ident: bib54
  article-title: Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution
  publication-title: Nanomater. Energy
– volume: 4
  start-page: 12402
  year: 2016
  end-page: 12406
  ident: bib30
  article-title: Sulfur-doped covalent triazine-based frameworks for enhanced photocatalytic hydrogen evolution from water under visible light
  publication-title: J. Mater. Chem.
– volume: 51
  start-page: 68
  year: 2012
  end-page: 89
  ident: bib38
  article-title: Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry
  publication-title: Angew. Chem. Int. Ed.
– start-page: 181
  year: 2021
  end-page: 212
  ident: bib10
  article-title: Role of photosensitizers in enhancing the performance of nanocrystalline TiO
  publication-title: Nanoscience
– volume: 1
  start-page: 1460
  year: 2019
  end-page: 1471
  ident: bib70
  article-title: Enhanced charge separation in g-C
  publication-title: Nanoscale Advances
– volume: 192
  start-page: 193
  year: 2016
  end-page: 198
  ident: bib28
  article-title: Photoelectrochemical CO
  publication-title: Appl. Catal. B Environ.
– volume: 344
  start-page: 188
  year: 2015
  end-page: 195
  ident: bib45
  article-title: Isoelectric point and adsorption activity of porous g-C
  publication-title: Appl. Surf. Sci.
– volume: 391
  start-page: 376
  year: 2017
  end-page: 383
  ident: bib31
  article-title: Enhanced visible light photocatalytic degradation of Rhodamine B over phosphorus doped graphitic carbon nitride
  publication-title: Appl. Surf. Sci.
– start-page: 145100
  year: 2019
  ident: bib5
  article-title: ZnCr-CO
  publication-title: Appl. Surf. Sci.
– volume: 4
  start-page: 2000168
  year: 2020
  ident: bib9
  article-title: In situ synthesis of phosphorus‐doped polymeric carbon nitride sheets for photoelectrochemical water oxidation
  publication-title: Solar RRL
– volume: 5
  start-page: 12723
  year: 2017
  end-page: 12728
  ident: bib48
  article-title: Advancing the n→ π* electron transition of carbon nitride nanotubes for H 2 photosynthesis
  publication-title: J. Mater. Chem.
– volume: 44
  start-page: 30949
  year: 2019
  end-page: 30964
  ident: bib59
  article-title: Novel nano-architectured water splitting photoanodes based on TiO
  publication-title: Int. J. Hydrogen Energy
– volume: 141
  start-page: 249
  year: 2017
  end-page: 255
  ident: bib73
  article-title: Effects of ionic radii of co-dopants (Mg, Ca, Al and La) in TiO
  publication-title: Sol. Energy
– volume: 44
  start-page: 7194
  year: 2019
  end-page: 7204
  ident: bib18
  article-title: A direct one-step synthesis of ultrathin g-C3N4 nanosheets from thiourea for boosting solar photocatalytic H2 evolution
  publication-title: Int. J. Hydrogen Energy
– volume: 364
  start-page: 740
  year: 2018
  end-page: 749
  ident: bib6
  article-title: Titania morphologies modified gold nanoparticles for highly catalytic photoelectrochemical water splitting
  publication-title: J. Photochem. Photobiol. Chem.
– volume: 11
  start-page: 258
  year: 2018
  end-page: 275
  ident: bib2
  article-title: Unlocking the door to highly active ORR catalysts for PEMFC applications: polyhedron-engineered Pt-based nanocrystals
  publication-title: Energy Environ. Sci.
– volume: 55
  start-page: 1830
  year: 2016
  end-page: 1834
  ident: bib33
  article-title: Phosphorus‐doped carbon nitride tubes with a layered micro‐nanostructure for enhanced visible‐light photocatalytic hydrogen evolution
  publication-title: Angew. Chem. Int. Ed.
– volume: 44
  start-page: 9970
  year: 2019
  end-page: 9977
  ident: bib63
  article-title: A comparison of water photo-oxidation and photo-reduction using photoelectrodes surface-modified by deposition of co-catalysts: insights from photo-electrochemical impedance spectroscopy
  publication-title: Int. J. Hydrogen Energy
– volume: 131
  start-page: 50
  year: 2008
  end-page: 51
  ident: bib19
  article-title: Activation of carbon nitride solids by protonation: morphology changes, enhanced ionic conductivity, and photoconduction experiments
  publication-title: J. Am. Chem. Soc.
– volume: 152
  start-page: 262
  year: 2014
  end-page: 270
  ident: bib39
  article-title: Enhanced oxidation ability of g-C
  publication-title: Appl. Catal. B Environ.
– volume: 48
  start-page: 3919
  year: 2013
  end-page: 3925
  ident: bib12
  article-title: Enhanced visible light photocatalytic hydrogen evolution of sulfur-doped polymeric g-C
  publication-title: Mater. Res. Bull.
– volume: 20
  start-page: 33
  year: 2014
  end-page: 50
  ident: bib15
  article-title: A fantastic graphitic carbon nitride (g-C
  publication-title: J. Photochem. Photobiol. C Photochem. Rev.
– volume: 5
  start-page: 5831
  year: 2017
  end-page: 5841
  ident: bib42
  article-title: Phosphorus-and sulfur-codoped g-C3N4: facile preparation, mechanism insight, and application as efficient photocatalyst for tetracycline and methyl orange degradation under visible light irradiation
  publication-title: ACS Sustain. Chem. Eng.
– volume: 1
  start-page: 3083
  year: 2013
  end-page: 3090
  ident: bib20
  article-title: Novel C
  publication-title: J. Mater. Chem.
– volume: 13
  start-page: 1603938
  year: 2017
  ident: bib68
  article-title: Hierarchical porous O‐doped g‐C
  publication-title: Small
– volume: 440
  start-page: 258
  year: 2018
  end-page: 265
  ident: bib24
  article-title: One-pot synthesis of K-doped g-C3N4 nanosheets with enhanced photocatalytic hydrogen production under visible-light irradiation
  publication-title: Appl. Surf. Sci.
– volume: 7
  start-page: 16850
  year: 2015
  end-page: 16856
  ident: bib13
  article-title: Mesoporous phosphorus-doped g-C
  publication-title: ACS Appl. Mater. Interfaces
– volume: 211
  start-page: 478
  year: 2020
  end-page: 487
  ident: bib8
  article-title: Synthesis and characterization of Bi-doped g-C
  publication-title: Sol. Energy
– volume: 6
  start-page: 35768
  year: 2016
  ident: bib27
  article-title: Atomically thin B doped gC
  publication-title: Sci. Rep.
– volume: 196
  start-page: 100
  year: 2017
  end-page: 103
  ident: bib34
  article-title: Morphological control of tubular g-C3N4 and their visible-light photocatalytic properties
  publication-title: Mater. Lett.
– volume: 1
  start-page: 4236
  year: 2013
  end-page: 4243
  ident: bib50
  article-title: Design and development of a visible light harvesting Ni–Zn/Cr–CO
  publication-title: J. Mater. Chem.
– volume: 18
  start-page: 2311
  year: 2008
  end-page: 2320
  ident: bib58
  article-title: Solar hydrogen production with nanostructured metal oxides
  publication-title: J. Mater. Chem.
– volume: 9
  start-page: 1680
  year: 2019
  ident: 10.1016/j.solmat.2021.111326_bib69
  article-title: Carbon nitride nested tubes with graphene as a dual electron mediator in Z-scheme photocatalytic deoxynivalenol degradation
  publication-title: Catalysis Science & Technology
  doi: 10.1039/C9CY00209J
– volume: 241
  start-page: 159
  year: 2019
  ident: 10.1016/j.solmat.2021.111326_bib49
  article-title: In-situ construction of coral-like porous P-doped g-C3N4 tubes with hybrid 1D/2D architecture and high efficient photocatalytic hydrogen evolution
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.09.037
– volume: 44
  start-page: 17995
  issue: 33
  year: 2019
  ident: 10.1016/j.solmat.2021.111326_bib16
  article-title: MnO2 nanowires anchored on mesoporous graphitic carbon nitride (MnO2@ mpg-C3N4) as a highly efficient electrocatalyst for the oxygen evolution reaction
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.05.089
– volume: 211
  start-page: 478
  year: 2020
  ident: 10.1016/j.solmat.2021.111326_bib8
  article-title: Synthesis and characterization of Bi-doped g-C3N4 for photoelectrochemical water oxidation
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.09.008
– volume: 152
  start-page: 262
  year: 2014
  ident: 10.1016/j.solmat.2021.111326_bib39
  article-title: Enhanced oxidation ability of g-C3N4 photocatalyst via C60 modification
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2014.01.046
– volume: 192
  start-page: 193
  year: 2016
  ident: 10.1016/j.solmat.2021.111326_bib28
  article-title: Photoelectrochemical CO2 reduction by a p-type boron-doped g-C3N4 electrode under visible light
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.03.055
– volume: 1
  start-page: 1460
  year: 2019
  ident: 10.1016/j.solmat.2021.111326_bib70
  article-title: Enhanced charge separation in g-C3N4–BiOI heterostructures for visible light driven photoelectrochemical water splitting
  publication-title: Nanoscale Advances
  doi: 10.1039/C8NA00264A
– volume: 28
  start-page: 6471
  year: 2016
  ident: 10.1016/j.solmat.2021.111326_bib44
  article-title: Selective breaking of hydrogen bonds of layered carbon nitride for visible light photocatalysis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601567
– volume: 1
  start-page: 3083
  year: 2013
  ident: 10.1016/j.solmat.2021.111326_bib20
  article-title: Novel C3N4–CdS composite photocatalysts with organic–inorganic heterojunctions: in situ synthesis, exceptional activity, high stability and photocatalytic mechanism
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2ta00672c
– volume: 1
  start-page: 11
  year: 1947
  ident: 10.1016/j.solmat.2021.111326_bib64
  article-title: Kinetics of rapid electrode reactions
  publication-title: Discuss. Faraday Soc.
  doi: 10.1039/df9470100011
– volume: 48
  start-page: 3919
  year: 2013
  ident: 10.1016/j.solmat.2021.111326_bib12
  article-title: Enhanced visible light photocatalytic hydrogen evolution of sulfur-doped polymeric g-C3N4 photocatalysts
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2013.06.002
– volume: 44
  start-page: 30949
  year: 2019
  ident: 10.1016/j.solmat.2021.111326_bib59
  article-title: Novel nano-architectured water splitting photoanodes based on TiO2-nanorod mats surface sensitized by ZIF-67 coatings
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.08.220
– volume: 211
  start-page: 1
  year: 2017
  ident: 10.1016/j.solmat.2021.111326_bib67
  article-title: Enhanced photocatalytic conversion of greenhouse gas CO2 into solar fuels over g-C3N4 nanotubes with decorated transparent ZIF-8 nanoclusters
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.04.009
– volume: 40
  start-page: 959
  year: 2019
  ident: 10.1016/j.solmat.2021.111326_bib40
  article-title: CdS-modified one-dimensional g-C3N4 porous nanotubes for efficient visible-light photocatalytic conversion
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(19)63355-3
– volume: 364
  start-page: 740
  year: 2018
  ident: 10.1016/j.solmat.2021.111326_bib6
  article-title: Titania morphologies modified gold nanoparticles for highly catalytic photoelectrochemical water splitting
  publication-title: J. Photochem. Photobiol. Chem.
  doi: 10.1016/j.jphotochem.2018.07.011
– volume: 20
  start-page: 33
  year: 2014
  ident: 10.1016/j.solmat.2021.111326_bib15
  article-title: A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties
  publication-title: J. Photochem. Photobiol. C Photochem. Rev.
  doi: 10.1016/j.jphotochemrev.2014.04.002
– volume: 131
  start-page: 50
  year: 2008
  ident: 10.1016/j.solmat.2021.111326_bib19
  article-title: Activation of carbon nitride solids by protonation: morphology changes, enhanced ionic conductivity, and photoconduction experiments
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja808329f
– volume: 47
  start-page: 4213
  year: 2002
  ident: 10.1016/j.solmat.2021.111326_bib72
  article-title: Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(02)00444-9
– volume: 100
  start-page: 81
  year: 2016
  ident: 10.1016/j.solmat.2021.111326_bib43
  article-title: Phosphorous-modified bulk graphitic carbon nitride: facile preparation and application as an acid-base bifunctional and efficient catalyst for CO2 cycloaddition with epoxides
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.12.098
– volume: 374
  start-page: 242
  year: 2019
  ident: 10.1016/j.solmat.2021.111326_bib47
  article-title: An efficient metal-free phosphorus and oxygen co-doped g-C3N4 photocatalyst with enhanced visible light photocatalytic activity for the degradation of fluoroquinolone antibiotics
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.05.175
– volume: 326
  start-page: 603
  year: 2017
  ident: 10.1016/j.solmat.2021.111326_bib4
  article-title: An in situ transformation approach for fabrication of BiVO4/WO3 heterojunction photoanode with high photoelectrochemical activity
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.05.179
– volume: 51
  start-page: 68
  year: 2012
  ident: 10.1016/j.solmat.2021.111326_bib38
  article-title: Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201101182
– volume: 13
  start-page: 1603938
  year: 2017
  ident: 10.1016/j.solmat.2021.111326_bib68
  article-title: Hierarchical porous O‐doped g‐C3N4 with enhanced photocatalytic CO2 reduction activity
  publication-title: Small
  doi: 10.1002/smll.201603938
– volume: 352
  start-page: 532
  year: 2017
  ident: 10.1016/j.solmat.2021.111326_bib51
  article-title: A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2017.06.006
– volume: 55
  start-page: 1830
  year: 2016
  ident: 10.1016/j.solmat.2021.111326_bib33
  article-title: Phosphorus‐doped carbon nitride tubes with a layered micro‐nanostructure for enhanced visible‐light photocatalytic hydrogen evolution
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201508505
– volume: 335
  start-page: 423
  year: 2019
  ident: 10.1016/j.solmat.2021.111326_bib56
  article-title: Layered double hydroxides decorated graphic carbon nitride film as efficient photoanodes for photoelectrochemical water splitting
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2019.01.034
– volume: 1
  start-page: 13949
  year: 2013
  ident: 10.1016/j.solmat.2021.111326_bib36
  article-title: Tubular graphitic-C3N4: a prospective material for energy storage and green photocatalysis
  publication-title: J. Mater. Chem.
  doi: 10.1039/c3ta13291a
– volume: 129
  start-page: 9596
  year: 2007
  ident: 10.1016/j.solmat.2021.111326_bib7
  article-title: Design of all-inorganic molecular-based photocatalysts sensitive to visible light: Ti (IV)− O− Ce (III) bimetallic assemblies on mesoporous silica
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja073668n
– volume: 141
  start-page: 249
  year: 2017
  ident: 10.1016/j.solmat.2021.111326_bib73
  article-title: Effects of ionic radii of co-dopants (Mg, Ca, Al and La) in TiO2 on performance of dye-sensitized solar cells
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.11.052
– volume: 156
  start-page: 141
  year: 2014
  ident: 10.1016/j.solmat.2021.111326_bib41
  article-title: Fabrication of H3PW12O40-doped carbon nitride nanotubes by one-step hydrothermal treatment strategy and their efficient visible-light photocatalytic activity toward representative aqueous persistent organic pollutants degradation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2014.03.010
– volume: 131
  start-page: 1680
  year: 2009
  ident: 10.1016/j.solmat.2021.111326_bib14
  article-title: Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809307s
– volume: 8
  start-page: 76
  year: 2009
  ident: 10.1016/j.solmat.2021.111326_bib35
  article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2317
– volume: 1
  start-page: 4236
  year: 2013
  ident: 10.1016/j.solmat.2021.111326_bib50
  article-title: Design and development of a visible light harvesting Ni–Zn/Cr–CO3 2− LDH system for hydrogen evolution
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2ta00933a
– volume: 4
  start-page: 12402
  year: 2016
  ident: 10.1016/j.solmat.2021.111326_bib30
  article-title: Sulfur-doped covalent triazine-based frameworks for enhanced photocatalytic hydrogen evolution from water under visible light
  publication-title: J. Mater. Chem.
  doi: 10.1039/C6TA04711D
– volume: 3
  start-page: 7324
  year: 2018
  ident: 10.1016/j.solmat.2021.111326_bib65
  article-title: Dynamics of charge-transfer behavior in a plasmon-induced quasi-type-II p–n/n–n dual heterojunction in Ag@ Ag3PO4/g-C3N4/NiFe LDH nanocomposites for photocatalytic Cr (VI) reduction and phenol oxidation
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b00847
– volume: 339
  start-page: 135882
  year: 2020
  ident: 10.1016/j.solmat.2021.111326_bib60
  article-title: Surface sensitization of TiO2 nanorod mats by electrodeposition of ZIF-67 for water photo-oxidation
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.135882
– volume: 193
  start-page: 403
  year: 2019
  ident: 10.1016/j.solmat.2021.111326_bib21
  article-title: Synthesis and characterization of Z-scheme α-Fe2O3 NTs/ruptured tubular g-C3N4 for enhanced photoelectrochemical water oxidation
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.09.052
– volume: 91
  start-page: 321
  year: 2018
  ident: 10.1016/j.solmat.2021.111326_bib1
  article-title: Sustainability guardrails for energy scenarios of the global energy transition
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.03.079
– volume: 147
  start-page: 82
  year: 2014
  ident: 10.1016/j.solmat.2021.111326_bib52
  article-title: Enhancement of visible photocatalytic activity via Ag@ C3N4 core–shell plasmonic composite
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2013.08.007
– volume: 3
  start-page: 3862
  year: 2015
  ident: 10.1016/j.solmat.2021.111326_bib46
  article-title: Brand new P-doped gC 3 N 4: enhanced photocatalytic activity for H2 evolution and Rhodamine B degradation under visible light
  publication-title: J. Mater. Chem.
  doi: 10.1039/C4TA05292G
– volume: 344
  start-page: 188
  year: 2015
  ident: 10.1016/j.solmat.2021.111326_bib45
  article-title: Isoelectric point and adsorption activity of porous g-C3N4
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.03.086
– volume: 54
  start-page: 1593
  year: 2019
  ident: 10.1016/j.solmat.2021.111326_bib62
  article-title: Synergistic effects of phosphorous/sulfur co-doping and morphological regulation for enhanced photocatalytic performance of graphitic carbon nitride nanosheets
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-018-2925-9
– volume: 505
  start-page: 144419
  year: 2020
  ident: 10.1016/j.solmat.2021.111326_bib61
  article-title: Highly textured boron/nitrogen co-doped TiO2 with honeycomb structure showing enhanced visible-light photoelectrocatalytic activity
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.144419
– volume: 44
  start-page: 7194
  year: 2019
  ident: 10.1016/j.solmat.2021.111326_bib18
  article-title: A direct one-step synthesis of ultrathin g-C3N4 nanosheets from thiourea for boosting solar photocatalytic H2 evolution
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.01.274
– volume: 223
  start-page: 2
  year: 2018
  ident: 10.1016/j.solmat.2021.111326_bib17
  article-title: Monodisperse Co3O4 quantum dots on porous carbon nitride nanosheets for enhanced visible-light-driven water oxidation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.03.028
– volume: 11
  start-page: 258
  year: 2018
  ident: 10.1016/j.solmat.2021.111326_bib2
  article-title: Unlocking the door to highly active ORR catalysts for PEMFC applications: polyhedron-engineered Pt-based nanocrystals
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02444D
– volume: 132
  start-page: 6294
  year: 2010
  ident: 10.1016/j.solmat.2021.111326_bib26
  article-title: Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja101749y
– volume: 57
  start-page: 8396
  year: 2018
  ident: 10.1016/j.solmat.2021.111326_bib11
  article-title: Visible‐light‐responsive photoanodes for highly active, stable water oxidation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201710873
– volume: 5
  start-page: 12723
  year: 2017
  ident: 10.1016/j.solmat.2021.111326_bib48
  article-title: Advancing the n→ π* electron transition of carbon nitride nanotubes for H 2 photosynthesis
  publication-title: J. Mater. Chem.
  doi: 10.1039/C7TA03777E
– volume: 196
  start-page: 100
  year: 2017
  ident: 10.1016/j.solmat.2021.111326_bib34
  article-title: Morphological control of tubular g-C3N4 and their visible-light photocatalytic properties
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2017.03.005
– start-page: 181
  year: 2021
  ident: 10.1016/j.solmat.2021.111326_bib10
  article-title: Role of photosensitizers in enhancing the performance of nanocrystalline TiO2 for photoelectrochemical water splitting
  publication-title: Nanoscience
  doi: 10.1039/9781839163791-00181
– volume: 12
  start-page: 6937
  year: 2020
  ident: 10.1016/j.solmat.2021.111326_bib22
  article-title: Functional carbon nitride materials for water oxidation: from heteroatom doping to interface engineering
  publication-title: Nanoscale
  doi: 10.1039/D0NR00652A
– volume: 5
  start-page: 5831
  year: 2017
  ident: 10.1016/j.solmat.2021.111326_bib42
  article-title: Phosphorus-and sulfur-codoped g-C3N4: facile preparation, mechanism insight, and application as efficient photocatalyst for tetracycline and methyl orange degradation under visible light irradiation
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b00559
– volume: 2
  start-page: 6772
  year: 2014
  ident: 10.1016/j.solmat.2021.111326_bib25
  article-title: Fe-doped and-mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight
  publication-title: J. Mater. Chem.
  doi: 10.1039/c3ta15358d
– volume: 50
  start-page: 144002
  year: 2017
  ident: 10.1016/j.solmat.2021.111326_bib37
  article-title: Au-decorated sodium titanate nanotubes as high-performance selective photocatalysts for pollutant degradation
  publication-title: J. Phys. Appl. Phys.
  doi: 10.1088/1361-6463/aa604c
– volume: 44
  start-page: 9970
  year: 2019
  ident: 10.1016/j.solmat.2021.111326_bib63
  article-title: A comparison of water photo-oxidation and photo-reduction using photoelectrodes surface-modified by deposition of co-catalysts: insights from photo-electrochemical impedance spectroscopy
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.11.214
– volume: 6
  start-page: 35768
  year: 2016
  ident: 10.1016/j.solmat.2021.111326_bib27
  article-title: Atomically thin B doped gC3N4 nanosheets: high-temperature ferromagnetism and calculated half-metallicity
  publication-title: Sci. Rep.
  doi: 10.1038/srep35768
– volume: 53
  start-page: 604
  year: 2018
  ident: 10.1016/j.solmat.2021.111326_bib71
  article-title: Dielectric and optical properties of graphitic carbon nitride–titanium dioxide nanocomposite with enhanced charge separation
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-017-1506-7
– volume: 147
  start-page: 940
  year: 2014
  ident: 10.1016/j.solmat.2021.111326_bib53
  article-title: Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2013.10.029
– volume: 7
  start-page: 15842
  year: 2017
  ident: 10.1016/j.solmat.2021.111326_bib55
  article-title: Graphitic carbon nitride with S and O codoping for enhanced visible light photocatalytic performance
  publication-title: RSC Adv.
  doi: 10.1039/C7RA01036B
– volume: 440
  start-page: 258
  year: 2018
  ident: 10.1016/j.solmat.2021.111326_bib24
  article-title: One-pot synthesis of K-doped g-C3N4 nanosheets with enhanced photocatalytic hydrogen production under visible-light irradiation
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.01.091
– volume: 18
  start-page: 2311
  year: 2008
  ident: 10.1016/j.solmat.2021.111326_bib58
  article-title: Solar hydrogen production with nanostructured metal oxides
  publication-title: J. Mater. Chem.
  doi: 10.1039/b718969a
– volume: 4
  start-page: 2000168
  year: 2020
  ident: 10.1016/j.solmat.2021.111326_bib9
  article-title: In situ synthesis of phosphorus‐doped polymeric carbon nitride sheets for photoelectrochemical water oxidation
  publication-title: Solar RRL
  doi: 10.1002/solr.202000168
– volume: 12
  start-page: 646
  year: 2015
  ident: 10.1016/j.solmat.2021.111326_bib54
  article-title: Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution
  publication-title: Nanomater. Energy
  doi: 10.1016/j.nanoen.2015.01.043
– volume: 9
  year: 2020
  ident: 10.1016/j.solmat.2021.111326_bib57
  article-title: Synergistic effect of high-performance N, S–TiO2/N, S–rgo nanocomposites for photoelectrochemical water oxidation
  publication-title: ECS Journal of Solid State Science and Technology
  doi: 10.1149/2162-8777/ab7884
– volume: 57
  start-page: 8646
  year: 2018
  ident: 10.1016/j.solmat.2021.111326_bib66
  article-title: Topotactic transformation of solvated MgCr-LDH nanosheets to highly efficient porous MgO/MgCr2O4 nanocomposite for photocatalytic H2 evolution
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.8b01517
– volume: 23
  start-page: 27
  year: 2008
  ident: 10.1016/j.solmat.2021.111326_bib3
  article-title: Synthesis, magnetic properties and photocatalytic activity of CuFe2O4/MgFe2O4 and MgFe2O4/CuFe2O4 core/shell nanoparticles
  publication-title: Mater. Technol.
  doi: 10.1179/175355508X266872
– volume: 391
  start-page: 376
  year: 2017
  ident: 10.1016/j.solmat.2021.111326_bib31
  article-title: Enhanced visible light photocatalytic degradation of Rhodamine B over phosphorus doped graphitic carbon nitride
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.06.180
– start-page: 145100
  year: 2019
  ident: 10.1016/j.solmat.2021.111326_bib5
  article-title: ZnCr-CO3 LDH/Ruptured tubular g-C3N4 composite with increased specific surface area for enhanced photoelectrochemical water splitting
  publication-title: Appl. Surf. Sci.
– volume: 164
  start-page: 77
  year: 2015
  ident: 10.1016/j.solmat.2021.111326_bib23
  article-title: Enhanced catalytic activity of potassium-doped graphitic carbon nitride induced by lower valence position
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2014.09.020
– volume: 22
  start-page: 15006
  year: 2012
  ident: 10.1016/j.solmat.2021.111326_bib29
  article-title: Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm32053c
– volume: 57
  start-page: 5765
  year: 2018
  ident: 10.1016/j.solmat.2021.111326_bib32
  article-title: Carbon quantum dot implanted graphite carbon nitride nanotubes: excellent charge separation and enhanced photocatalytic hydrogen evolution
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201802014
– volume: 7
  start-page: 16850
  year: 2015
  ident: 10.1016/j.solmat.2021.111326_bib13
  article-title: Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b04947
SSID ssj0002634
Score 2.4768949
Snippet The production of molecular hydrogen by photoelectrochemical dissociation (PEC) of water is a promising technique, which allows the direct transformation of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111326
SubjectTerms Ammonium
Ammonium dihydrogen phosphate
Carbon
Carbon nitride
Charge transfer
Conduction bands
Doping
Energy
Forbidden bands
Fourier analysis
Fourier transforms
Hydrogen
Hydrogen-based energy
Infrared analysis
Infrared spectra
Infrared spectroscopy
Melamine
Morphology
Morphology effect
Oxidation
P and S doped Graphitic carbon nitride
Phosphorus
Photoanode
Photoelectrochemical impedance spectroscopy
Photoluminescence
Photons
Photooxidation
Solar energy
Spectrum analysis
Sulfur
Synthesis
Transmission electron microscopy
Water splitting
X-ray diffraction
X-ray spectroscopy
Title Effect of morphology and non-metal doping (P and S) on the activity of graphitic carbon nitride toward photoelectrochemical water oxidation
URI https://dx.doi.org/10.1016/j.solmat.2021.111326
https://www.proquest.com/docview/2582834917
Volume 232
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7LetGD-MTnkoMHPcRtm7RpjiIuq-IiqOAtpEkKK-5W1oqe_AP-aSdp6gtE8NgwCe3MZDLTzDeD0B6PC80zYYhINSNMlZooLRQBahEbYUSpHN75YpQNb9jZbXrbQcctFsalVQbb39h0b63DSD9ws_8wHvevIuGwVCyHoAXMcO4Av4xxp-WHr59pHknmb5YdMXHULXzO53iBeMEvhCgxiQ99z_Xst-Pph6H2p89gCS0GtxEfNW-2jDp2uoIWvhQTXEVvTSFiXJV4UgH3_P9yrKYGQ4RPJha8bGw8PArvX_rxqwNcTTF4gNihG1wTCTfZl7B2OXFYq1kBBLDpZ2Njce0zbDGsXFehe44O5QbwM7isM1y9jJsWTWvoZnByfTwkodUC0ZSymuRGU6siVkYq07SwlKdc5ZYWLLE2SyKV8tjoLM4Nz5XWOuFGxZQrwakq89TSddSFj7EbCJeaWytSy9MyZVy4knfMFLo0FNRCRHQT0ZbDUoc65K4dxr1sE87uZCMX6eQiG7lsIvIx66Gpw_EHPW-FJ7_pk4Sj4o-ZO62sZdjPjzJxt4uUQWy79e-Ft9G8e2oyAXdQt5492V3waOqi51W2h-aOTs-Ho3c4Z_mI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB7R5UB7QLSA2EKLDz3AwWwSO3F8XKGi5W9VCZC4WY7tSItgg7ap2nfgpRk7DgIkhNSrM2MlM_Z4Jp75BuCHSCsjCmmpzA2nXNeGaiM1RWqZWmllrX298_m0mFzxk-v8egkO-1oYn1YZbX9n04O1jiOjKM3R_Ww2ukikr6XiJQYtaIbL8gMse3SqfADL4-PTyfTJIGdFuFz29NQz9BV0Ic0LNYyuIQaKWXoQ2q4Xb51Qr2x1OICO1mA1eo5k3L3cZ1hy8y_w6Rme4Do8dFjEpKnJXYMCDL_MiZ5bgkE-vXPoaBMbKqTI3q8wfrFPmjlBJ5D4AgffR8IzBxRrnxZHjF5USID7fjGzjrQhyZbgzG0TG-iYiDhA_qLXuiDNv1nXpWkDro5-Xh5OaOy2QA1jvKWlNczphNeJLgyrHBO50KVjFc-cK7JE5yK1pkhLK0ptjMmE1SkTWgqm6zJ3bBMG-DFuC0hthHMydyKvUSHSo95xW5naMlwZMmFDYL2ElYlQ5L4jxq3qc85uVKcX5fWiOr0MgT5x3XdQHO_Qi1556sWSUnhavMO50-taxS39W2X-gpFxDG-__vfEu7AyuTw_U2fH09Nt-OifdImBOzBoF3_cN3Rw2up7XMCPvdf8OQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+morphology+and+non-metal+doping+%28P+and+S%29+on+the+activity+of+graphitic+carbon+nitride+toward+photoelectrochemical+water+oxidation&rft.jtitle=Solar+energy+materials+and+solar+cells&rft.au=A+Aboubakr%2C+Ahmed+Esmail&rft.au=El+Rouby%2C+Waleed+MA&rft.au=Khan%2C+Malik+Dilshad&rft.au=Revaprasadu%2C+Neerish&rft.date=2021-10-01&rft.pub=Elsevier+BV&rft.issn=0927-0248&rft.volume=232&rft.spage=1&rft_id=info:doi/10.1016%2Fj.solmat.2021.111326&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0248&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0248&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0248&client=summon