Effect of morphology and non-metal doping (P and S) on the activity of graphitic carbon nitride toward photoelectrochemical water oxidation
The production of molecular hydrogen by photoelectrochemical dissociation (PEC) of water is a promising technique, which allows the direct transformation of solar energy into hydrogen, an energy vector acclaimed by the scientific community and policymakers. Hydrogen stores solar energy and will help...
Saved in:
Published in | Solar energy materials and solar cells Vol. 232; p. 111326 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.10.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The production of molecular hydrogen by photoelectrochemical dissociation (PEC) of water is a promising technique, which allows the direct transformation of solar energy into hydrogen, an energy vector acclaimed by the scientific community and policymakers. Hydrogen stores solar energy and will help overcome the energy crisis and associated environmental problems. Currently, the design and development of innovative photocatalysts with strong photoelectrochemical activity remain a major challenge, and the subject of intense research activity within the international scientific community. Here we describe the synthesis and photoelectrochemical properties of one-dimensional nanostructures of graphitic carbon nitride (1D-gC3N4) doped with phosphorus or sulfur (1D-P-gC3N4 &1D-S-gC3N4, respectively). A new synthesis method using supramolecular melamine, ammonium dihydrogen phosphate, and tri-thiocyanuric acid as precursors has been developed. The samples were characterized by powder-X Ray diffraction (p-XRD), X-Ray spectroscopy (EDS), transmission electron microscopy (TEM), Ultraviolet–visible (UV–Vis) spectroscopy, Fourier transform infrared spectra (FT-IR) and photoluminescence (PL) analysis. The activity towards the photo-oxidation of water was studied by linear scanning voltammetry (LSV). Compared to 3D material, the activity was found to be significantly improved, thanks in particular to the 1D morphology of gC3N4. It was further strengthened by doping with phosphorus and sulfur. The photo-oxidation mechanism of water was analyzed by photoelectrochemical impedance spectroscopy (PEIS). The measurements show that the resistance to charge transfer at the electrode/electrolyte interface can be greatly reduced by controlling the morphology of gC3N4, and that doping with phosphorus and sulfur also plays a positive role. The PEIS analysis makes it possible to demonstrate that the lifetime of the photo-generated electrons in 1D-gC3N4 is increased compared to 3D-gC3N4, and that doping with phosphorus or sulfur further improves it. The width of the forbidden bands and the position of the valence and conduction bands of the different materials were determined by Mott - Schottky type measurements.
[Display omitted]
•1D-gC3N4 doped with phosphorus and sulfur (1D-P-gC3N4 &1D-S-gC3N4) were prepared.•Electron-hole separation was enhanced after doping as compared to pristine 1D-gC3N4.•PEIS analysis exhibited improved charge transfer across solid/electrolyte interface after doping.•Mott – Schottky measurements were carried out to determine the band structures.•Hybrids showed higher photo-oxidation properties relevant to pristine 1D-gC3N4. |
---|---|
AbstractList | The production of molecular hydrogen by photoelectrochemical dissociation (PEC) of water is a promising technique, which allows the direct transformation of solar energy into hydrogen, an energy vector acclaimed by the scientific community and policymakers. Hydrogen stores solar energy and will help overcome the energy crisis and associated environmental problems. Currently, the design and development of innovative photocatalysts with strong photoelectrochemical activity remain a major challenge, and the subject of intense research activity within the international scientific community. Here we describe the synthesis and photoelectrochemical properties of one-dimensional nanostructures of graphitic carbon nitride (1D-gC3N4) doped with phosphorus or sulfur (1D-P-gC3N4 &1D-S-gC3N4, respectively). A new synthesis method using supramolecular melamine, ammonium dihydrogen phosphate, and tri-thiocyanuric acid as precursors has been developed. The samples were characterized by powder-X Ray diffraction (p-XRD), X-Ray spectroscopy (EDS), transmission electron microscopy (TEM), Ultraviolet–visible (UV–Vis) spectroscopy, Fourier transform infrared spectra (FT-IR) and photoluminescence (PL) analysis. The activity towards the photo-oxidation of water was studied by linear scanning voltammetry (LSV). Compared to 3D material, the activity was found to be significantly improved, thanks in particular to the 1D morphology of gC3N4. It was further strengthened by doping with phosphorus and sulfur. The photo-oxidation mechanism of water was analyzed by photoelectrochemical impedance spectroscopy (PEIS). The measurements show that the resistance to charge transfer at the electrode/electrolyte interface can be greatly reduced by controlling the morphology of gC3N4, and that doping with phosphorus and sulfur also plays a positive role. The PEIS analysis makes it possible to demonstrate that the lifetime of the photo-generated electrons in 1D-gC3N4 is increased compared to 3D-gC3N4, and that doping with phosphorus or sulfur further improves it. The width of the forbidden bands and the position of the valence and conduction bands of the different materials were determined by Mott - Schottky type measurements.
[Display omitted]
•1D-gC3N4 doped with phosphorus and sulfur (1D-P-gC3N4 &1D-S-gC3N4) were prepared.•Electron-hole separation was enhanced after doping as compared to pristine 1D-gC3N4.•PEIS analysis exhibited improved charge transfer across solid/electrolyte interface after doping.•Mott – Schottky measurements were carried out to determine the band structures.•Hybrids showed higher photo-oxidation properties relevant to pristine 1D-gC3N4. The production of molecular hydrogen by photoelectrochemical dissociation (PEC) of water is a promising technique, which allows the direct transformation of solar energy into hydrogen, an energy vector acclaimed by the scientific community and policymakers. Hydrogen stores solar energy and will help overcome the energy crisis and associated environmental problems. Currently, the design and development of innovative photocatalysts with strong photoelectrochemical activity remain a major challenge, and the subject of intense research activity within the international scientific community. Here we describe the synthesis and photoelectrochemical properties of one-dimensional nanostructures of graphitic carbon nitride (1D-gC3N4) doped with phosphorus or sulfur (1D-P-gC3N4 &1D-S-gC3N4, respectively). A new synthesis method using supramolecular melamine, ammonium dihydrogen phosphate, and tri-thiocyanuric acid as precursors has been developed. The samples were characterized by powder-X Ray diffraction (p-XRD), X-Ray spectroscopy (EDS), transmission electron microscopy (TEM), Ultraviolet–visible (UV–Vis) spectroscopy, Fourier transform infrared spectra (FT-IR) and photoluminescence (PL) analysis. The activity towards the photo-oxidation of water was studied by linear scanning voltammetry (LSV). Compared to 3D material, the activity was found to be significantly improved, thanks in particular to the 1D morphology of gC3N4. It was further strengthened by doping with phosphorus and sulfur. The photo-oxidation mechanism of water was analyzed by photoelectrochemical impedance spectroscopy (PEIS). The measurements show that the resistance to charge transfer at the electrode/electrolyte interface can be greatly reduced by controlling the morphology of gC3N4, and that doping with phosphorus and sulfur also plays a positive role. The PEIS analysis makes it possible to demonstrate that the lifetime of the photo-generated electrons in 1D-gC3N4 is increased compared to 3D-gC3N4, and that doping with phosphorus or sulfur further improves it. The width of the forbidden bands and the position of the valence and conduction bands of the different materials were determined by Mott - Schottky type measurements. |
ArticleNumber | 111326 |
Author | El Rouby, Waleed M.A. Millet, Pierre Khan, Malik Dilshad Aboubakr, Ahmed Esmail A. Revaprasadu, Neerish |
Author_xml | – sequence: 1 givenname: Ahmed Esmail A. surname: Aboubakr fullname: Aboubakr, Ahmed Esmail A. organization: Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Taiwan – sequence: 2 givenname: Waleed M.A. surname: El Rouby fullname: El Rouby, Waleed M.A. email: waleedmohamedali@psas.bsu.edu.eg organization: Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, 62511, Beni-Suef, Egypt – sequence: 3 givenname: Malik Dilshad surname: Khan fullname: Khan, Malik Dilshad organization: Department of Chemistry, University of Zululand, Private Bag X1001, Kwadlangezwa, 3886, South Africa – sequence: 4 givenname: Neerish surname: Revaprasadu fullname: Revaprasadu, Neerish organization: Department of Chemistry, University of Zululand, Private Bag X1001, Kwadlangezwa, 3886, South Africa – sequence: 5 givenname: Pierre orcidid: 0000-0002-0224-9868 surname: Millet fullname: Millet, Pierre email: pierre.millet@universite-paris-saclay.fr organization: Paris-Saclay University, ICMMO-Eriée, UMR CNRS 8182, 91405, Orsay, France |
BookMark | eNqFkM1q3DAUhUVJoZM0b9CFoJtk4al-PJbcRSGEpAkEWmizFnek6xkNtuTKys88Q1-6mrirLNqVQJzvHO53TI5CDEjIB86WnPHm0245xX6AvBRM8CXnXIrmDVlwrdpKylYfkQVrhaqYqPU7cjxNO8aYaGS9IL-vug5tprGjQ0zjNvZxs6cQHC0b1YAZeuri6MOGnn1_-f9xTmOgeYsUbPaPPu8P8CbBuPXZW2ohrUsg-Jy8Q5rjEyRHS3OO2JepFO0WB29L8RNkTDQ-ewfZx_CevO2gn_D073tC7q-vfl7eVHffvt5eXtxVVso6V9pZicDqjkFj5RqlWinQKNe1QGwEg5XizjZcO6XBWiuUAy4VtEpCp1coT8jHuXdM8dcDTtns4kMKZdKIlRZa1i1XJVXPKZviNCXszJj8AGlvODMH7WZnZu3moN3M2gv2-RVmfX45Lyfw_f_gLzOM5fxHj8lM1mOw6Hwq6oyL_t8FfwDXHKVm |
CitedBy_id | crossref_primary_10_1016_j_solener_2022_04_039 crossref_primary_10_1016_j_envres_2024_120314 crossref_primary_10_1021_acsaem_3c01992 crossref_primary_10_1016_j_jpcs_2023_111242 crossref_primary_10_1039_D3RA02011H crossref_primary_10_1016_j_solidstatesciences_2024_107757 crossref_primary_10_1039_D3SE00780D crossref_primary_10_1039_D4MH00020J crossref_primary_10_1021_acsaem_3c02208 crossref_primary_10_1016_j_jece_2025_115945 crossref_primary_10_1039_D3YA00506B crossref_primary_10_1039_D2NJ06154F crossref_primary_10_1063_5_0205461 crossref_primary_10_1039_D2NJ00393G crossref_primary_10_1016_j_micromeso_2023_112733 crossref_primary_10_1016_j_nanoms_2024_10_014 crossref_primary_10_1016_j_chemosphere_2023_138068 crossref_primary_10_1016_j_optmat_2024_114849 |
Cites_doi | 10.1039/C9CY00209J 10.1016/j.apcatb.2018.09.037 10.1016/j.ijhydene.2019.05.089 10.1016/j.solener.2020.09.008 10.1016/j.apcatb.2014.01.046 10.1016/j.apcatb.2016.03.055 10.1039/C8NA00264A 10.1002/adma.201601567 10.1039/c2ta00672c 10.1039/df9470100011 10.1016/j.materresbull.2013.06.002 10.1016/j.ijhydene.2019.08.220 10.1016/j.apcatb.2017.04.009 10.1016/S1872-2067(19)63355-3 10.1016/j.jphotochem.2018.07.011 10.1016/j.jphotochemrev.2014.04.002 10.1021/ja808329f 10.1016/S0013-4686(02)00444-9 10.1016/j.carbon.2015.12.098 10.1016/j.cej.2019.05.175 10.1016/j.cej.2017.05.179 10.1002/anie.201101182 10.1002/smll.201603938 10.1016/j.jcat.2017.06.006 10.1002/anie.201508505 10.1016/j.cattod.2019.01.034 10.1039/c3ta13291a 10.1021/ja073668n 10.1016/j.solener.2016.11.052 10.1016/j.apcatb.2014.03.010 10.1021/ja809307s 10.1038/nmat2317 10.1039/c2ta00933a 10.1039/C6TA04711D 10.1021/acsomega.8b00847 10.1016/j.electacta.2020.135882 10.1016/j.solener.2019.09.052 10.1016/j.rser.2018.03.079 10.1016/j.apcatb.2013.08.007 10.1039/C4TA05292G 10.1016/j.apsusc.2015.03.086 10.1007/s10853-018-2925-9 10.1016/j.apsusc.2019.144419 10.1016/j.ijhydene.2019.01.274 10.1016/j.apcatb.2017.03.028 10.1039/C7EE02444D 10.1021/ja101749y 10.1002/anie.201710873 10.1039/C7TA03777E 10.1016/j.matlet.2017.03.005 10.1039/9781839163791-00181 10.1039/D0NR00652A 10.1021/acssuschemeng.7b00559 10.1039/c3ta15358d 10.1088/1361-6463/aa604c 10.1016/j.ijhydene.2018.11.214 10.1038/srep35768 10.1007/s10853-017-1506-7 10.1016/j.apcatb.2013.10.029 10.1039/C7RA01036B 10.1016/j.apsusc.2018.01.091 10.1039/b718969a 10.1002/solr.202000168 10.1016/j.nanoen.2015.01.043 10.1149/2162-8777/ab7884 10.1021/acs.inorgchem.8b01517 10.1179/175355508X266872 10.1016/j.apsusc.2016.06.180 10.1016/j.apcatb.2014.09.020 10.1039/c2jm32053c 10.1002/anie.201802014 10.1021/acsami.5b04947 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Oct 2021 |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Oct 2021 |
DBID | AAYXX CITATION 7SP 7ST 7TB 7U5 8FD C1K FR3 L7M SOI |
DOI | 10.1016/j.solmat.2021.111326 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3398 |
ExternalDocumentID | 10_1016_j_solmat_2021_111326 S0927024821003688 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 6OB 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AAXUO ABFNM ABMAC ABNUV ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 LY7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SAC SCB SDF SDG SDP SES SET SEW SMS SPC SPCBC SPD SSG SSK SSM SSR SSZ T5K TWZ WH7 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SP 7ST 7TB 7U5 8FD C1K EFKBS FR3 L7M SOI |
ID | FETCH-LOGICAL-c334t-8dc3ea04f0a6c3be3757a8e3b42ee620a571dc618d78accc27da137a973af85e3 |
IEDL.DBID | .~1 |
ISSN | 0927-0248 |
IngestDate | Wed Aug 13 06:42:52 EDT 2025 Tue Jul 01 01:20:09 EDT 2025 Thu Apr 24 23:10:29 EDT 2025 Fri Feb 23 02:41:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Water splitting Morphology effect Photoanode Photoelectrochemical impedance spectroscopy P and S doped Graphitic carbon nitride |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-8dc3ea04f0a6c3be3757a8e3b42ee620a571dc618d78accc27da137a973af85e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0224-9868 |
PQID | 2582834917 |
PQPubID | 2045398 |
ParticipantIDs | proquest_journals_2582834917 crossref_primary_10_1016_j_solmat_2021_111326 crossref_citationtrail_10_1016_j_solmat_2021_111326 elsevier_sciencedirect_doi_10_1016_j_solmat_2021_111326 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2021 2021-10-00 20211001 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Solar energy materials and solar cells |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Liu, Yang, Li, Chen, Li, Tang (bib4) 2017; 326 Seo, Nishiyama, Yamada, Domen (bib11) 2018; 57 Jiang, Yuan, Zeng, Chen, Wu, Liang, Zhang, Wang, Wang (bib42) 2017; 5 Kern, Sastrawan, Ferber, Stangl, Luther (bib72) 2002; 47 El Rouby, Aboubakr, Khan, Farghali, Millet, Revaprasadu (bib8) 2020; 211 Tonda, Kumar, Kandula, Shanker (bib25) 2014; 2 Rafieh, Ekanayake, Tan, Lim (bib73) 2017; 141 Liu, Chen, Li, Peng, Xiong (bib67) 2017; 211 Fu, Chang, Tian, Xi, Dong (bib20) 2013; 1 Wang, Liu, Liu, Han, Hu, Yang, Xu, Li, Jia, Li (bib32) 2018; 57 Fan, Wang, Gao, Xie, Zhang, Meng, Gong, Guo, Huang, He (bib56) 2019; 335 Gao, Liu, Liu, Si, Xue (bib27) 2016; 6 Bai, Zong, Li, Liu, Liu, Zhu (bib52) 2014; 147 Nayak, Pradhan, Parida (bib66) 2018; 57 Zhang, Tian, Duan, Sun, Shen, Shao, Wang (bib22) 2020; 12 Randles (bib64) 1947; 1 Wang, Zhao, Zhang, Fang, Zhou, Yuan, Zhang, Chen (bib24) 2018; 440 Alam, Kumar, Kar, Thakur, Zeng, Cui, Shankar (bib70) 2019; 1 Pareek, Quamara (bib71) 2018; 53 Han, Yuan, Yao, Xi, Liu, Dong (bib62) 2019; 54 Li, Fang, Zhang, Bi, He, Wang, Su (bib30) 2016; 4 Zhu, Ren, Yuan (bib13) 2015; 7 Bai, Wang, Wang, Yao, Zhu (bib39) 2014; 152 Hong, Xia, Wang, Xu (bib29) 2012; 22 Ge, Han, Xiao, Guo, Li (bib12) 2013; 48 Tahir, Cao, Butt, Idrees, Mahmood, Ali, Aslam, Tanveer, Rizwan, Mahmood (bib36) 2013; 1 Antuch, El Rouby, Millet (bib63) 2019; 44 Nakamura, Okamoto, Osawa, Irie, Hashimoto (bib7) 2007; 129 El Rouby, Antuch, You, Millet (bib60) 2020; 339 Elmacı, Ertürk, Sevim, Metin (bib16) 2019; 44 El Rouby, Farghali (bib6) 2018; 364 van de Krol, Liang, Schoonman (bib58) 2008; 18 Fu, Zhu, Jiang, Cheng, You, Yu (bib68) 2017; 13 El Rouby, Antuch, You, Beaunier, Millet (bib59) 2019; 44 Hong, Liu, Shi, Lin, Sheng, Zhang, Wang, Chen (bib18) 2019; 44 Farghali, El-Dek, Elbakkay, El Rouby (bib57) 2020; 9 Chai, Yan, Wang, Ren, Zhu (bib31) 2017; 391 Bakr, El Rouby, Khan, Farghali, Xulu, Revaprasadu (bib21) 2019; 193 Nayak, Parida (bib65) 2018; 3 Huang, Song, Pan, Wang, Zhang, Zou, Mi, Zhang, Wang (bib54) 2015; 12 Zhou, Zhang, Liu, Fan, Wang, Wang, Ren, Wang, Li, Shi (bib46) 2015; 3 Wang, Maeda, Thomas, Takanabe, Xin, Carlsson, Domen, Antonietti (bib35) 2009; 8 Cao, Liu, Yuan, Zhang, Liao, Fang, Loo, Sum, Xue (bib53) 2014; 147 Dong, Wang, Zhang, Chen, Liu, Wang (bib34) 2017; 196 Baliarsingh, Mohapatra, Parida (bib50) 2013; 1 Zhu, Xia, Ho, Yu (bib45) 2015; 344 Zhang, Tian, Zhou, Sun, Tade, Wang (bib17) 2018; 223 Wang, Maeda, Chen, Takanabe, Domen, Hou, Fu, Antonietti (bib14) 2009; 131 Di, Zhu, Cheng, Yu, Xu (bib51) 2017; 352 Dong, Zhang, Pan, Qiu (bib15) 2014; 20 Zhang, Mori, Ye, Antonietti (bib26) 2010; 132 You, Dou, Chen, Zheng, Zhang (bib55) 2017; 7 Wang, Long, Wang, Yuan, Ignaszak, Fang, Wilkinson (bib2) 2018; 11 Wu, Zhang, He, Wang, Wang, Gong (bib49) 2019; 241 Nada, El Rouby, Bekheet, Antuch, Weber, Miele, Viter, Roualdes, Millet, Bechelany (bib61) 2020; 505 Child, Koskinen, Linnanen, Breyer (bib1) 2018; 91 El Rouby, Aboubakr, You, Millet (bib10) 2021 Guo, Deng, Li, Jiang, Tian, Pan, Fu (bib33) 2016; 55 Li, Yan, Zeng, Luo, Luo, Liu, Guo, Guo (bib41) 2014; 156 Aboubakr, El Rouby, Khan, Farghali, Revaprasadu (bib5) 2019 Li, Cheng, Fang, Fu, Wang (bib9) 2020; 4 Zhang, Savateev, Zhao, Li, Antonietti (bib48) 2017; 5 Kang, Yang, Yin, Kang, Wang, Liu, Cheng (bib44) 2016; 28 Chong, Chen, Han, Wang, Feng, Li, Li, Wang (bib40) 2019; 40 Bai, Li, Zhang, Zhang, Wang, Xu, Zhu (bib69) 2019; 9 Khedr, Bahgat, Rouby (bib3) 2008; 23 Huang, Li, Li, Zhang, Chen, Liu, Liu, Lv, Liu (bib47) 2019; 374 El Rouby, Comesaña-Hermo, Testa-Anta, Carbó-Argibay, Salgueiriño, Pérez-Lorenzo, Correa-Duarte (bib37) 2017; 50 Sagara, Kamimura, Tsubota, Ohno (bib28) 2016; 192 Lan, Wang, Chen, Au, Yin (bib43) 2016; 100 Zhang, Bai, Liu, Wang, Zhu (bib23) 2015; 164 Wang, Wang, Antonietti (bib38) 2012; 51 Zhang, Thomas, Antonietti, Wang (bib19) 2008; 131 Zhu (10.1016/j.solmat.2021.111326_bib13) 2015; 7 Elmacı (10.1016/j.solmat.2021.111326_bib16) 2019; 44 Child (10.1016/j.solmat.2021.111326_bib1) 2018; 91 Lan (10.1016/j.solmat.2021.111326_bib43) 2016; 100 van de Krol (10.1016/j.solmat.2021.111326_bib58) 2008; 18 Antuch (10.1016/j.solmat.2021.111326_bib63) 2019; 44 Sagara (10.1016/j.solmat.2021.111326_bib28) 2016; 192 Di (10.1016/j.solmat.2021.111326_bib51) 2017; 352 Ge (10.1016/j.solmat.2021.111326_bib12) 2013; 48 Fu (10.1016/j.solmat.2021.111326_bib20) 2013; 1 Wang (10.1016/j.solmat.2021.111326_bib14) 2009; 131 Fan (10.1016/j.solmat.2021.111326_bib56) 2019; 335 Bai (10.1016/j.solmat.2021.111326_bib52) 2014; 147 Farghali (10.1016/j.solmat.2021.111326_bib57) 2020; 9 Wang (10.1016/j.solmat.2021.111326_bib35) 2009; 8 Huang (10.1016/j.solmat.2021.111326_bib47) 2019; 374 Pareek (10.1016/j.solmat.2021.111326_bib71) 2018; 53 Zhang (10.1016/j.solmat.2021.111326_bib22) 2020; 12 Dong (10.1016/j.solmat.2021.111326_bib15) 2014; 20 Bai (10.1016/j.solmat.2021.111326_bib39) 2014; 152 El Rouby (10.1016/j.solmat.2021.111326_bib37) 2017; 50 El Rouby (10.1016/j.solmat.2021.111326_bib60) 2020; 339 Dong (10.1016/j.solmat.2021.111326_bib34) 2017; 196 Cao (10.1016/j.solmat.2021.111326_bib53) 2014; 147 Seo (10.1016/j.solmat.2021.111326_bib11) 2018; 57 El Rouby (10.1016/j.solmat.2021.111326_bib6) 2018; 364 Baliarsingh (10.1016/j.solmat.2021.111326_bib50) 2013; 1 Li (10.1016/j.solmat.2021.111326_bib41) 2014; 156 Tonda (10.1016/j.solmat.2021.111326_bib25) 2014; 2 Bai (10.1016/j.solmat.2021.111326_bib69) 2019; 9 Bakr (10.1016/j.solmat.2021.111326_bib21) 2019; 193 You (10.1016/j.solmat.2021.111326_bib55) 2017; 7 Khedr (10.1016/j.solmat.2021.111326_bib3) 2008; 23 Wang (10.1016/j.solmat.2021.111326_bib24) 2018; 440 El Rouby (10.1016/j.solmat.2021.111326_bib10) 2021 El Rouby (10.1016/j.solmat.2021.111326_bib59) 2019; 44 Zhang (10.1016/j.solmat.2021.111326_bib19) 2008; 131 Guo (10.1016/j.solmat.2021.111326_bib33) 2016; 55 Zhang (10.1016/j.solmat.2021.111326_bib26) 2010; 132 Chai (10.1016/j.solmat.2021.111326_bib31) 2017; 391 Zhu (10.1016/j.solmat.2021.111326_bib45) 2015; 344 Li (10.1016/j.solmat.2021.111326_bib9) 2020; 4 Gao (10.1016/j.solmat.2021.111326_bib27) 2016; 6 Aboubakr (10.1016/j.solmat.2021.111326_bib5) 2019 Liu (10.1016/j.solmat.2021.111326_bib67) 2017; 211 Alam (10.1016/j.solmat.2021.111326_bib70) 2019; 1 Li (10.1016/j.solmat.2021.111326_bib30) 2016; 4 Huang (10.1016/j.solmat.2021.111326_bib54) 2015; 12 Nayak (10.1016/j.solmat.2021.111326_bib66) 2018; 57 Zhang (10.1016/j.solmat.2021.111326_bib17) 2018; 223 Kern (10.1016/j.solmat.2021.111326_bib72) 2002; 47 Wu (10.1016/j.solmat.2021.111326_bib49) 2019; 241 Wang (10.1016/j.solmat.2021.111326_bib2) 2018; 11 Zhang (10.1016/j.solmat.2021.111326_bib23) 2015; 164 Fu (10.1016/j.solmat.2021.111326_bib68) 2017; 13 Randles (10.1016/j.solmat.2021.111326_bib64) 1947; 1 Zhou (10.1016/j.solmat.2021.111326_bib46) 2015; 3 Jiang (10.1016/j.solmat.2021.111326_bib42) 2017; 5 El Rouby (10.1016/j.solmat.2021.111326_bib8) 2020; 211 Hong (10.1016/j.solmat.2021.111326_bib18) 2019; 44 Zhang (10.1016/j.solmat.2021.111326_bib48) 2017; 5 Nakamura (10.1016/j.solmat.2021.111326_bib7) 2007; 129 Hong (10.1016/j.solmat.2021.111326_bib29) 2012; 22 Kang (10.1016/j.solmat.2021.111326_bib44) 2016; 28 Wang (10.1016/j.solmat.2021.111326_bib32) 2018; 57 Nada (10.1016/j.solmat.2021.111326_bib61) 2020; 505 Liu (10.1016/j.solmat.2021.111326_bib4) 2017; 326 Han (10.1016/j.solmat.2021.111326_bib62) 2019; 54 Nayak (10.1016/j.solmat.2021.111326_bib65) 2018; 3 Rafieh (10.1016/j.solmat.2021.111326_bib73) 2017; 141 Wang (10.1016/j.solmat.2021.111326_bib38) 2012; 51 Chong (10.1016/j.solmat.2021.111326_bib40) 2019; 40 Tahir (10.1016/j.solmat.2021.111326_bib36) 2013; 1 |
References_xml | – volume: 57 start-page: 8396 year: 2018 end-page: 8415 ident: bib11 article-title: Visible‐light‐responsive photoanodes for highly active, stable water oxidation publication-title: Angew. Chem. Int. Ed. – volume: 223 start-page: 2 year: 2018 end-page: 9 ident: bib17 article-title: Monodisperse Co publication-title: Appl. Catal. B Environ. – volume: 193 start-page: 403 year: 2019 end-page: 412 ident: bib21 article-title: Synthesis and characterization of Z-scheme α-Fe publication-title: Sol. Energy – volume: 3 start-page: 3862 year: 2015 end-page: 3867 ident: bib46 article-title: Brand new P-doped gC 3 N 4: enhanced photocatalytic activity for H publication-title: J. Mater. Chem. – volume: 22 start-page: 15006 year: 2012 end-page: 15012 ident: bib29 article-title: Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light publication-title: J. Mater. Chem. – volume: 241 start-page: 159 year: 2019 end-page: 166 ident: bib49 article-title: In-situ construction of coral-like porous P-doped g-C3N4 tubes with hybrid 1D/2D architecture and high efficient photocatalytic hydrogen evolution publication-title: Appl. Catal. B Environ. – volume: 9 year: 2020 ident: bib57 article-title: Synergistic effect of high-performance N, S–TiO publication-title: ECS Journal of Solid State Science and Technology – volume: 8 start-page: 76 year: 2009 ident: bib35 article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light publication-title: Nat. Mater. – volume: 339 start-page: 135882 year: 2020 ident: bib60 article-title: Surface sensitization of TiO publication-title: Electrochim. Acta – volume: 156 start-page: 141 year: 2014 end-page: 152 ident: bib41 article-title: Fabrication of H publication-title: Appl. Catal. B Environ. – volume: 57 start-page: 8646 year: 2018 end-page: 8661 ident: bib66 article-title: Topotactic transformation of solvated MgCr-LDH nanosheets to highly efficient porous MgO/MgCr publication-title: Inorg. Chem. – volume: 147 start-page: 940 year: 2014 end-page: 946 ident: bib53 article-title: Solar-to-fuels conversion over In publication-title: Appl. Catal. B Environ. – volume: 505 start-page: 144419 year: 2020 ident: bib61 article-title: Highly textured boron/nitrogen co-doped TiO publication-title: Appl. Surf. Sci. – volume: 164 start-page: 77 year: 2015 end-page: 81 ident: bib23 article-title: Enhanced catalytic activity of potassium-doped graphitic carbon nitride induced by lower valence position publication-title: Appl. Catal. B Environ. – volume: 91 start-page: 321 year: 2018 end-page: 334 ident: bib1 article-title: Sustainability guardrails for energy scenarios of the global energy transition publication-title: Renew. Sustain. Energy Rev. – volume: 1 start-page: 11 year: 1947 end-page: 19 ident: bib64 article-title: Kinetics of rapid electrode reactions publication-title: Discuss. Faraday Soc. – volume: 44 start-page: 17995 year: 2019 end-page: 18006 ident: bib16 article-title: MnO publication-title: Int. J. Hydrogen Energy – volume: 47 start-page: 4213 year: 2002 end-page: 4225 ident: bib72 article-title: Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions publication-title: Electrochim. Acta – volume: 12 start-page: 6937 year: 2020 end-page: 6952 ident: bib22 article-title: Functional carbon nitride materials for water oxidation: from heteroatom doping to interface engineering publication-title: Nanoscale – volume: 7 start-page: 15842 year: 2017 end-page: 15850 ident: bib55 article-title: Graphitic carbon nitride with S and O codoping for enhanced visible light photocatalytic performance publication-title: RSC Adv. – volume: 132 start-page: 6294 year: 2010 end-page: 6295 ident: bib26 article-title: Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation publication-title: J. Am. Chem. Soc. – volume: 211 start-page: 1 year: 2017 end-page: 10 ident: bib67 article-title: Enhanced photocatalytic conversion of greenhouse gas CO publication-title: Appl. Catal. B Environ. – volume: 352 start-page: 532 year: 2017 end-page: 541 ident: bib51 article-title: A direct Z-scheme g-C publication-title: J. Catal. – volume: 23 start-page: 27 year: 2008 end-page: 32 ident: bib3 article-title: Synthesis, magnetic properties and photocatalytic activity of CuFe publication-title: Mater. Technol. – volume: 3 start-page: 7324 year: 2018 end-page: 7343 ident: bib65 article-title: Dynamics of charge-transfer behavior in a plasmon-induced quasi-type-II p–n/n–n dual heterojunction in Ag@ Ag publication-title: ACS Omega – volume: 131 start-page: 1680 year: 2009 end-page: 1681 ident: bib14 article-title: Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 1680 year: 2019 end-page: 1690 ident: bib69 article-title: Carbon nitride nested tubes with graphene as a dual electron mediator in Z-scheme photocatalytic deoxynivalenol degradation publication-title: Catalysis Science & Technology – volume: 53 start-page: 604 year: 2018 end-page: 612 ident: bib71 article-title: Dielectric and optical properties of graphitic carbon nitride–titanium dioxide nanocomposite with enhanced charge separation publication-title: J. Mater. Sci. – volume: 147 start-page: 82 year: 2014 end-page: 91 ident: bib52 article-title: Enhancement of visible photocatalytic activity via Ag@ C3N4 core–shell plasmonic composite publication-title: Appl. Catal. B Environ. – volume: 335 start-page: 423 year: 2019 end-page: 428 ident: bib56 article-title: Layered double hydroxides decorated graphic carbon nitride film as efficient photoanodes for photoelectrochemical water splitting publication-title: Catal. Today – volume: 54 start-page: 1593 year: 2019 end-page: 1605 ident: bib62 article-title: Synergistic effects of phosphorous/sulfur co-doping and morphological regulation for enhanced photocatalytic performance of graphitic carbon nitride nanosheets publication-title: J. Mater. Sci. – volume: 2 start-page: 6772 year: 2014 end-page: 6780 ident: bib25 article-title: Fe-doped and-mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight publication-title: J. Mater. Chem. – volume: 40 start-page: 959 year: 2019 end-page: 968 ident: bib40 article-title: CdS-modified one-dimensional g-C3N4 porous nanotubes for efficient visible-light photocatalytic conversion publication-title: Chin. J. Catal. – volume: 28 start-page: 6471 year: 2016 end-page: 6477 ident: bib44 article-title: Selective breaking of hydrogen bonds of layered carbon nitride for visible light photocatalysis publication-title: Adv. Mater. – volume: 129 start-page: 9596 year: 2007 end-page: 9597 ident: bib7 article-title: Design of all-inorganic molecular-based photocatalysts sensitive to visible light: Ti (IV)− O− Ce (III) bimetallic assemblies on mesoporous silica publication-title: J. Am. Chem. Soc. – volume: 374 start-page: 242 year: 2019 end-page: 253 ident: bib47 article-title: An efficient metal-free phosphorus and oxygen co-doped g-C3N4 photocatalyst with enhanced visible light photocatalytic activity for the degradation of fluoroquinolone antibiotics publication-title: Chem. Eng. J. – volume: 100 start-page: 81 year: 2016 end-page: 89 ident: bib43 article-title: Phosphorous-modified bulk graphitic carbon nitride: facile preparation and application as an acid-base bifunctional and efficient catalyst for CO publication-title: Carbon – volume: 1 start-page: 13949 year: 2013 end-page: 13955 ident: bib36 article-title: Tubular graphitic-C publication-title: J. Mater. Chem. – volume: 50 start-page: 144002 year: 2017 ident: bib37 article-title: Au-decorated sodium titanate nanotubes as high-performance selective photocatalysts for pollutant degradation publication-title: J. Phys. Appl. Phys. – volume: 57 start-page: 5765 year: 2018 end-page: 5771 ident: bib32 article-title: Carbon quantum dot implanted graphite carbon nitride nanotubes: excellent charge separation and enhanced photocatalytic hydrogen evolution publication-title: Angew. Chem. Int. Ed. – volume: 326 start-page: 603 year: 2017 end-page: 611 ident: bib4 article-title: An in situ transformation approach for fabrication of BiVO publication-title: Chem. Eng. J. – volume: 12 start-page: 646 year: 2015 end-page: 656 ident: bib54 article-title: Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution publication-title: Nanomater. Energy – volume: 4 start-page: 12402 year: 2016 end-page: 12406 ident: bib30 article-title: Sulfur-doped covalent triazine-based frameworks for enhanced photocatalytic hydrogen evolution from water under visible light publication-title: J. Mater. Chem. – volume: 51 start-page: 68 year: 2012 end-page: 89 ident: bib38 article-title: Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry publication-title: Angew. Chem. Int. Ed. – start-page: 181 year: 2021 end-page: 212 ident: bib10 article-title: Role of photosensitizers in enhancing the performance of nanocrystalline TiO publication-title: Nanoscience – volume: 1 start-page: 1460 year: 2019 end-page: 1471 ident: bib70 article-title: Enhanced charge separation in g-C publication-title: Nanoscale Advances – volume: 192 start-page: 193 year: 2016 end-page: 198 ident: bib28 article-title: Photoelectrochemical CO publication-title: Appl. Catal. B Environ. – volume: 344 start-page: 188 year: 2015 end-page: 195 ident: bib45 article-title: Isoelectric point and adsorption activity of porous g-C publication-title: Appl. Surf. Sci. – volume: 391 start-page: 376 year: 2017 end-page: 383 ident: bib31 article-title: Enhanced visible light photocatalytic degradation of Rhodamine B over phosphorus doped graphitic carbon nitride publication-title: Appl. Surf. Sci. – start-page: 145100 year: 2019 ident: bib5 article-title: ZnCr-CO publication-title: Appl. Surf. Sci. – volume: 4 start-page: 2000168 year: 2020 ident: bib9 article-title: In situ synthesis of phosphorus‐doped polymeric carbon nitride sheets for photoelectrochemical water oxidation publication-title: Solar RRL – volume: 5 start-page: 12723 year: 2017 end-page: 12728 ident: bib48 article-title: Advancing the n→ π* electron transition of carbon nitride nanotubes for H 2 photosynthesis publication-title: J. Mater. Chem. – volume: 44 start-page: 30949 year: 2019 end-page: 30964 ident: bib59 article-title: Novel nano-architectured water splitting photoanodes based on TiO publication-title: Int. J. Hydrogen Energy – volume: 141 start-page: 249 year: 2017 end-page: 255 ident: bib73 article-title: Effects of ionic radii of co-dopants (Mg, Ca, Al and La) in TiO publication-title: Sol. Energy – volume: 44 start-page: 7194 year: 2019 end-page: 7204 ident: bib18 article-title: A direct one-step synthesis of ultrathin g-C3N4 nanosheets from thiourea for boosting solar photocatalytic H2 evolution publication-title: Int. J. Hydrogen Energy – volume: 364 start-page: 740 year: 2018 end-page: 749 ident: bib6 article-title: Titania morphologies modified gold nanoparticles for highly catalytic photoelectrochemical water splitting publication-title: J. Photochem. Photobiol. Chem. – volume: 11 start-page: 258 year: 2018 end-page: 275 ident: bib2 article-title: Unlocking the door to highly active ORR catalysts for PEMFC applications: polyhedron-engineered Pt-based nanocrystals publication-title: Energy Environ. Sci. – volume: 55 start-page: 1830 year: 2016 end-page: 1834 ident: bib33 article-title: Phosphorus‐doped carbon nitride tubes with a layered micro‐nanostructure for enhanced visible‐light photocatalytic hydrogen evolution publication-title: Angew. Chem. Int. Ed. – volume: 44 start-page: 9970 year: 2019 end-page: 9977 ident: bib63 article-title: A comparison of water photo-oxidation and photo-reduction using photoelectrodes surface-modified by deposition of co-catalysts: insights from photo-electrochemical impedance spectroscopy publication-title: Int. J. Hydrogen Energy – volume: 131 start-page: 50 year: 2008 end-page: 51 ident: bib19 article-title: Activation of carbon nitride solids by protonation: morphology changes, enhanced ionic conductivity, and photoconduction experiments publication-title: J. Am. Chem. Soc. – volume: 152 start-page: 262 year: 2014 end-page: 270 ident: bib39 article-title: Enhanced oxidation ability of g-C publication-title: Appl. Catal. B Environ. – volume: 48 start-page: 3919 year: 2013 end-page: 3925 ident: bib12 article-title: Enhanced visible light photocatalytic hydrogen evolution of sulfur-doped polymeric g-C publication-title: Mater. Res. Bull. – volume: 20 start-page: 33 year: 2014 end-page: 50 ident: bib15 article-title: A fantastic graphitic carbon nitride (g-C publication-title: J. Photochem. Photobiol. C Photochem. Rev. – volume: 5 start-page: 5831 year: 2017 end-page: 5841 ident: bib42 article-title: Phosphorus-and sulfur-codoped g-C3N4: facile preparation, mechanism insight, and application as efficient photocatalyst for tetracycline and methyl orange degradation under visible light irradiation publication-title: ACS Sustain. Chem. Eng. – volume: 1 start-page: 3083 year: 2013 end-page: 3090 ident: bib20 article-title: Novel C publication-title: J. Mater. Chem. – volume: 13 start-page: 1603938 year: 2017 ident: bib68 article-title: Hierarchical porous O‐doped g‐C publication-title: Small – volume: 440 start-page: 258 year: 2018 end-page: 265 ident: bib24 article-title: One-pot synthesis of K-doped g-C3N4 nanosheets with enhanced photocatalytic hydrogen production under visible-light irradiation publication-title: Appl. Surf. Sci. – volume: 7 start-page: 16850 year: 2015 end-page: 16856 ident: bib13 article-title: Mesoporous phosphorus-doped g-C publication-title: ACS Appl. Mater. Interfaces – volume: 211 start-page: 478 year: 2020 end-page: 487 ident: bib8 article-title: Synthesis and characterization of Bi-doped g-C publication-title: Sol. Energy – volume: 6 start-page: 35768 year: 2016 ident: bib27 article-title: Atomically thin B doped gC publication-title: Sci. Rep. – volume: 196 start-page: 100 year: 2017 end-page: 103 ident: bib34 article-title: Morphological control of tubular g-C3N4 and their visible-light photocatalytic properties publication-title: Mater. Lett. – volume: 1 start-page: 4236 year: 2013 end-page: 4243 ident: bib50 article-title: Design and development of a visible light harvesting Ni–Zn/Cr–CO publication-title: J. Mater. Chem. – volume: 18 start-page: 2311 year: 2008 end-page: 2320 ident: bib58 article-title: Solar hydrogen production with nanostructured metal oxides publication-title: J. Mater. Chem. – volume: 9 start-page: 1680 year: 2019 ident: 10.1016/j.solmat.2021.111326_bib69 article-title: Carbon nitride nested tubes with graphene as a dual electron mediator in Z-scheme photocatalytic deoxynivalenol degradation publication-title: Catalysis Science & Technology doi: 10.1039/C9CY00209J – volume: 241 start-page: 159 year: 2019 ident: 10.1016/j.solmat.2021.111326_bib49 article-title: In-situ construction of coral-like porous P-doped g-C3N4 tubes with hybrid 1D/2D architecture and high efficient photocatalytic hydrogen evolution publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.09.037 – volume: 44 start-page: 17995 issue: 33 year: 2019 ident: 10.1016/j.solmat.2021.111326_bib16 article-title: MnO2 nanowires anchored on mesoporous graphitic carbon nitride (MnO2@ mpg-C3N4) as a highly efficient electrocatalyst for the oxygen evolution reaction publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.05.089 – volume: 211 start-page: 478 year: 2020 ident: 10.1016/j.solmat.2021.111326_bib8 article-title: Synthesis and characterization of Bi-doped g-C3N4 for photoelectrochemical water oxidation publication-title: Sol. Energy doi: 10.1016/j.solener.2020.09.008 – volume: 152 start-page: 262 year: 2014 ident: 10.1016/j.solmat.2021.111326_bib39 article-title: Enhanced oxidation ability of g-C3N4 photocatalyst via C60 modification publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2014.01.046 – volume: 192 start-page: 193 year: 2016 ident: 10.1016/j.solmat.2021.111326_bib28 article-title: Photoelectrochemical CO2 reduction by a p-type boron-doped g-C3N4 electrode under visible light publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.03.055 – volume: 1 start-page: 1460 year: 2019 ident: 10.1016/j.solmat.2021.111326_bib70 article-title: Enhanced charge separation in g-C3N4–BiOI heterostructures for visible light driven photoelectrochemical water splitting publication-title: Nanoscale Advances doi: 10.1039/C8NA00264A – volume: 28 start-page: 6471 year: 2016 ident: 10.1016/j.solmat.2021.111326_bib44 article-title: Selective breaking of hydrogen bonds of layered carbon nitride for visible light photocatalysis publication-title: Adv. Mater. doi: 10.1002/adma.201601567 – volume: 1 start-page: 3083 year: 2013 ident: 10.1016/j.solmat.2021.111326_bib20 article-title: Novel C3N4–CdS composite photocatalysts with organic–inorganic heterojunctions: in situ synthesis, exceptional activity, high stability and photocatalytic mechanism publication-title: J. Mater. Chem. doi: 10.1039/c2ta00672c – volume: 1 start-page: 11 year: 1947 ident: 10.1016/j.solmat.2021.111326_bib64 article-title: Kinetics of rapid electrode reactions publication-title: Discuss. Faraday Soc. doi: 10.1039/df9470100011 – volume: 48 start-page: 3919 year: 2013 ident: 10.1016/j.solmat.2021.111326_bib12 article-title: Enhanced visible light photocatalytic hydrogen evolution of sulfur-doped polymeric g-C3N4 photocatalysts publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2013.06.002 – volume: 44 start-page: 30949 year: 2019 ident: 10.1016/j.solmat.2021.111326_bib59 article-title: Novel nano-architectured water splitting photoanodes based on TiO2-nanorod mats surface sensitized by ZIF-67 coatings publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.08.220 – volume: 211 start-page: 1 year: 2017 ident: 10.1016/j.solmat.2021.111326_bib67 article-title: Enhanced photocatalytic conversion of greenhouse gas CO2 into solar fuels over g-C3N4 nanotubes with decorated transparent ZIF-8 nanoclusters publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.04.009 – volume: 40 start-page: 959 year: 2019 ident: 10.1016/j.solmat.2021.111326_bib40 article-title: CdS-modified one-dimensional g-C3N4 porous nanotubes for efficient visible-light photocatalytic conversion publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(19)63355-3 – volume: 364 start-page: 740 year: 2018 ident: 10.1016/j.solmat.2021.111326_bib6 article-title: Titania morphologies modified gold nanoparticles for highly catalytic photoelectrochemical water splitting publication-title: J. Photochem. Photobiol. Chem. doi: 10.1016/j.jphotochem.2018.07.011 – volume: 20 start-page: 33 year: 2014 ident: 10.1016/j.solmat.2021.111326_bib15 article-title: A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties publication-title: J. Photochem. Photobiol. C Photochem. Rev. doi: 10.1016/j.jphotochemrev.2014.04.002 – volume: 131 start-page: 50 year: 2008 ident: 10.1016/j.solmat.2021.111326_bib19 article-title: Activation of carbon nitride solids by protonation: morphology changes, enhanced ionic conductivity, and photoconduction experiments publication-title: J. Am. Chem. Soc. doi: 10.1021/ja808329f – volume: 47 start-page: 4213 year: 2002 ident: 10.1016/j.solmat.2021.111326_bib72 article-title: Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(02)00444-9 – volume: 100 start-page: 81 year: 2016 ident: 10.1016/j.solmat.2021.111326_bib43 article-title: Phosphorous-modified bulk graphitic carbon nitride: facile preparation and application as an acid-base bifunctional and efficient catalyst for CO2 cycloaddition with epoxides publication-title: Carbon doi: 10.1016/j.carbon.2015.12.098 – volume: 374 start-page: 242 year: 2019 ident: 10.1016/j.solmat.2021.111326_bib47 article-title: An efficient metal-free phosphorus and oxygen co-doped g-C3N4 photocatalyst with enhanced visible light photocatalytic activity for the degradation of fluoroquinolone antibiotics publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.05.175 – volume: 326 start-page: 603 year: 2017 ident: 10.1016/j.solmat.2021.111326_bib4 article-title: An in situ transformation approach for fabrication of BiVO4/WO3 heterojunction photoanode with high photoelectrochemical activity publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.05.179 – volume: 51 start-page: 68 year: 2012 ident: 10.1016/j.solmat.2021.111326_bib38 article-title: Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201101182 – volume: 13 start-page: 1603938 year: 2017 ident: 10.1016/j.solmat.2021.111326_bib68 article-title: Hierarchical porous O‐doped g‐C3N4 with enhanced photocatalytic CO2 reduction activity publication-title: Small doi: 10.1002/smll.201603938 – volume: 352 start-page: 532 year: 2017 ident: 10.1016/j.solmat.2021.111326_bib51 article-title: A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance publication-title: J. Catal. doi: 10.1016/j.jcat.2017.06.006 – volume: 55 start-page: 1830 year: 2016 ident: 10.1016/j.solmat.2021.111326_bib33 article-title: Phosphorus‐doped carbon nitride tubes with a layered micro‐nanostructure for enhanced visible‐light photocatalytic hydrogen evolution publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201508505 – volume: 335 start-page: 423 year: 2019 ident: 10.1016/j.solmat.2021.111326_bib56 article-title: Layered double hydroxides decorated graphic carbon nitride film as efficient photoanodes for photoelectrochemical water splitting publication-title: Catal. Today doi: 10.1016/j.cattod.2019.01.034 – volume: 1 start-page: 13949 year: 2013 ident: 10.1016/j.solmat.2021.111326_bib36 article-title: Tubular graphitic-C3N4: a prospective material for energy storage and green photocatalysis publication-title: J. Mater. Chem. doi: 10.1039/c3ta13291a – volume: 129 start-page: 9596 year: 2007 ident: 10.1016/j.solmat.2021.111326_bib7 article-title: Design of all-inorganic molecular-based photocatalysts sensitive to visible light: Ti (IV)− O− Ce (III) bimetallic assemblies on mesoporous silica publication-title: J. Am. Chem. Soc. doi: 10.1021/ja073668n – volume: 141 start-page: 249 year: 2017 ident: 10.1016/j.solmat.2021.111326_bib73 article-title: Effects of ionic radii of co-dopants (Mg, Ca, Al and La) in TiO2 on performance of dye-sensitized solar cells publication-title: Sol. Energy doi: 10.1016/j.solener.2016.11.052 – volume: 156 start-page: 141 year: 2014 ident: 10.1016/j.solmat.2021.111326_bib41 article-title: Fabrication of H3PW12O40-doped carbon nitride nanotubes by one-step hydrothermal treatment strategy and their efficient visible-light photocatalytic activity toward representative aqueous persistent organic pollutants degradation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2014.03.010 – volume: 131 start-page: 1680 year: 2009 ident: 10.1016/j.solmat.2021.111326_bib14 article-title: Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809307s – volume: 8 start-page: 76 year: 2009 ident: 10.1016/j.solmat.2021.111326_bib35 article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light publication-title: Nat. Mater. doi: 10.1038/nmat2317 – volume: 1 start-page: 4236 year: 2013 ident: 10.1016/j.solmat.2021.111326_bib50 article-title: Design and development of a visible light harvesting Ni–Zn/Cr–CO3 2− LDH system for hydrogen evolution publication-title: J. Mater. Chem. doi: 10.1039/c2ta00933a – volume: 4 start-page: 12402 year: 2016 ident: 10.1016/j.solmat.2021.111326_bib30 article-title: Sulfur-doped covalent triazine-based frameworks for enhanced photocatalytic hydrogen evolution from water under visible light publication-title: J. Mater. Chem. doi: 10.1039/C6TA04711D – volume: 3 start-page: 7324 year: 2018 ident: 10.1016/j.solmat.2021.111326_bib65 article-title: Dynamics of charge-transfer behavior in a plasmon-induced quasi-type-II p–n/n–n dual heterojunction in Ag@ Ag3PO4/g-C3N4/NiFe LDH nanocomposites for photocatalytic Cr (VI) reduction and phenol oxidation publication-title: ACS Omega doi: 10.1021/acsomega.8b00847 – volume: 339 start-page: 135882 year: 2020 ident: 10.1016/j.solmat.2021.111326_bib60 article-title: Surface sensitization of TiO2 nanorod mats by electrodeposition of ZIF-67 for water photo-oxidation publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.135882 – volume: 193 start-page: 403 year: 2019 ident: 10.1016/j.solmat.2021.111326_bib21 article-title: Synthesis and characterization of Z-scheme α-Fe2O3 NTs/ruptured tubular g-C3N4 for enhanced photoelectrochemical water oxidation publication-title: Sol. Energy doi: 10.1016/j.solener.2019.09.052 – volume: 91 start-page: 321 year: 2018 ident: 10.1016/j.solmat.2021.111326_bib1 article-title: Sustainability guardrails for energy scenarios of the global energy transition publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.03.079 – volume: 147 start-page: 82 year: 2014 ident: 10.1016/j.solmat.2021.111326_bib52 article-title: Enhancement of visible photocatalytic activity via Ag@ C3N4 core–shell plasmonic composite publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2013.08.007 – volume: 3 start-page: 3862 year: 2015 ident: 10.1016/j.solmat.2021.111326_bib46 article-title: Brand new P-doped gC 3 N 4: enhanced photocatalytic activity for H2 evolution and Rhodamine B degradation under visible light publication-title: J. Mater. Chem. doi: 10.1039/C4TA05292G – volume: 344 start-page: 188 year: 2015 ident: 10.1016/j.solmat.2021.111326_bib45 article-title: Isoelectric point and adsorption activity of porous g-C3N4 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.03.086 – volume: 54 start-page: 1593 year: 2019 ident: 10.1016/j.solmat.2021.111326_bib62 article-title: Synergistic effects of phosphorous/sulfur co-doping and morphological regulation for enhanced photocatalytic performance of graphitic carbon nitride nanosheets publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-2925-9 – volume: 505 start-page: 144419 year: 2020 ident: 10.1016/j.solmat.2021.111326_bib61 article-title: Highly textured boron/nitrogen co-doped TiO2 with honeycomb structure showing enhanced visible-light photoelectrocatalytic activity publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.144419 – volume: 44 start-page: 7194 year: 2019 ident: 10.1016/j.solmat.2021.111326_bib18 article-title: A direct one-step synthesis of ultrathin g-C3N4 nanosheets from thiourea for boosting solar photocatalytic H2 evolution publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.01.274 – volume: 223 start-page: 2 year: 2018 ident: 10.1016/j.solmat.2021.111326_bib17 article-title: Monodisperse Co3O4 quantum dots on porous carbon nitride nanosheets for enhanced visible-light-driven water oxidation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.03.028 – volume: 11 start-page: 258 year: 2018 ident: 10.1016/j.solmat.2021.111326_bib2 article-title: Unlocking the door to highly active ORR catalysts for PEMFC applications: polyhedron-engineered Pt-based nanocrystals publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02444D – volume: 132 start-page: 6294 year: 2010 ident: 10.1016/j.solmat.2021.111326_bib26 article-title: Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja101749y – volume: 57 start-page: 8396 year: 2018 ident: 10.1016/j.solmat.2021.111326_bib11 article-title: Visible‐light‐responsive photoanodes for highly active, stable water oxidation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201710873 – volume: 5 start-page: 12723 year: 2017 ident: 10.1016/j.solmat.2021.111326_bib48 article-title: Advancing the n→ π* electron transition of carbon nitride nanotubes for H 2 photosynthesis publication-title: J. Mater. Chem. doi: 10.1039/C7TA03777E – volume: 196 start-page: 100 year: 2017 ident: 10.1016/j.solmat.2021.111326_bib34 article-title: Morphological control of tubular g-C3N4 and their visible-light photocatalytic properties publication-title: Mater. Lett. doi: 10.1016/j.matlet.2017.03.005 – start-page: 181 year: 2021 ident: 10.1016/j.solmat.2021.111326_bib10 article-title: Role of photosensitizers in enhancing the performance of nanocrystalline TiO2 for photoelectrochemical water splitting publication-title: Nanoscience doi: 10.1039/9781839163791-00181 – volume: 12 start-page: 6937 year: 2020 ident: 10.1016/j.solmat.2021.111326_bib22 article-title: Functional carbon nitride materials for water oxidation: from heteroatom doping to interface engineering publication-title: Nanoscale doi: 10.1039/D0NR00652A – volume: 5 start-page: 5831 year: 2017 ident: 10.1016/j.solmat.2021.111326_bib42 article-title: Phosphorus-and sulfur-codoped g-C3N4: facile preparation, mechanism insight, and application as efficient photocatalyst for tetracycline and methyl orange degradation under visible light irradiation publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b00559 – volume: 2 start-page: 6772 year: 2014 ident: 10.1016/j.solmat.2021.111326_bib25 article-title: Fe-doped and-mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight publication-title: J. Mater. Chem. doi: 10.1039/c3ta15358d – volume: 50 start-page: 144002 year: 2017 ident: 10.1016/j.solmat.2021.111326_bib37 article-title: Au-decorated sodium titanate nanotubes as high-performance selective photocatalysts for pollutant degradation publication-title: J. Phys. Appl. Phys. doi: 10.1088/1361-6463/aa604c – volume: 44 start-page: 9970 year: 2019 ident: 10.1016/j.solmat.2021.111326_bib63 article-title: A comparison of water photo-oxidation and photo-reduction using photoelectrodes surface-modified by deposition of co-catalysts: insights from photo-electrochemical impedance spectroscopy publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.11.214 – volume: 6 start-page: 35768 year: 2016 ident: 10.1016/j.solmat.2021.111326_bib27 article-title: Atomically thin B doped gC3N4 nanosheets: high-temperature ferromagnetism and calculated half-metallicity publication-title: Sci. Rep. doi: 10.1038/srep35768 – volume: 53 start-page: 604 year: 2018 ident: 10.1016/j.solmat.2021.111326_bib71 article-title: Dielectric and optical properties of graphitic carbon nitride–titanium dioxide nanocomposite with enhanced charge separation publication-title: J. Mater. Sci. doi: 10.1007/s10853-017-1506-7 – volume: 147 start-page: 940 year: 2014 ident: 10.1016/j.solmat.2021.111326_bib53 article-title: Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2013.10.029 – volume: 7 start-page: 15842 year: 2017 ident: 10.1016/j.solmat.2021.111326_bib55 article-title: Graphitic carbon nitride with S and O codoping for enhanced visible light photocatalytic performance publication-title: RSC Adv. doi: 10.1039/C7RA01036B – volume: 440 start-page: 258 year: 2018 ident: 10.1016/j.solmat.2021.111326_bib24 article-title: One-pot synthesis of K-doped g-C3N4 nanosheets with enhanced photocatalytic hydrogen production under visible-light irradiation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.01.091 – volume: 18 start-page: 2311 year: 2008 ident: 10.1016/j.solmat.2021.111326_bib58 article-title: Solar hydrogen production with nanostructured metal oxides publication-title: J. Mater. Chem. doi: 10.1039/b718969a – volume: 4 start-page: 2000168 year: 2020 ident: 10.1016/j.solmat.2021.111326_bib9 article-title: In situ synthesis of phosphorus‐doped polymeric carbon nitride sheets for photoelectrochemical water oxidation publication-title: Solar RRL doi: 10.1002/solr.202000168 – volume: 12 start-page: 646 year: 2015 ident: 10.1016/j.solmat.2021.111326_bib54 article-title: Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2015.01.043 – volume: 9 year: 2020 ident: 10.1016/j.solmat.2021.111326_bib57 article-title: Synergistic effect of high-performance N, S–TiO2/N, S–rgo nanocomposites for photoelectrochemical water oxidation publication-title: ECS Journal of Solid State Science and Technology doi: 10.1149/2162-8777/ab7884 – volume: 57 start-page: 8646 year: 2018 ident: 10.1016/j.solmat.2021.111326_bib66 article-title: Topotactic transformation of solvated MgCr-LDH nanosheets to highly efficient porous MgO/MgCr2O4 nanocomposite for photocatalytic H2 evolution publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b01517 – volume: 23 start-page: 27 year: 2008 ident: 10.1016/j.solmat.2021.111326_bib3 article-title: Synthesis, magnetic properties and photocatalytic activity of CuFe2O4/MgFe2O4 and MgFe2O4/CuFe2O4 core/shell nanoparticles publication-title: Mater. Technol. doi: 10.1179/175355508X266872 – volume: 391 start-page: 376 year: 2017 ident: 10.1016/j.solmat.2021.111326_bib31 article-title: Enhanced visible light photocatalytic degradation of Rhodamine B over phosphorus doped graphitic carbon nitride publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.06.180 – start-page: 145100 year: 2019 ident: 10.1016/j.solmat.2021.111326_bib5 article-title: ZnCr-CO3 LDH/Ruptured tubular g-C3N4 composite with increased specific surface area for enhanced photoelectrochemical water splitting publication-title: Appl. Surf. Sci. – volume: 164 start-page: 77 year: 2015 ident: 10.1016/j.solmat.2021.111326_bib23 article-title: Enhanced catalytic activity of potassium-doped graphitic carbon nitride induced by lower valence position publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2014.09.020 – volume: 22 start-page: 15006 year: 2012 ident: 10.1016/j.solmat.2021.111326_bib29 article-title: Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light publication-title: J. Mater. Chem. doi: 10.1039/c2jm32053c – volume: 57 start-page: 5765 year: 2018 ident: 10.1016/j.solmat.2021.111326_bib32 article-title: Carbon quantum dot implanted graphite carbon nitride nanotubes: excellent charge separation and enhanced photocatalytic hydrogen evolution publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201802014 – volume: 7 start-page: 16850 year: 2015 ident: 10.1016/j.solmat.2021.111326_bib13 article-title: Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b04947 |
SSID | ssj0002634 |
Score | 2.4768949 |
Snippet | The production of molecular hydrogen by photoelectrochemical dissociation (PEC) of water is a promising technique, which allows the direct transformation of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 111326 |
SubjectTerms | Ammonium Ammonium dihydrogen phosphate Carbon Carbon nitride Charge transfer Conduction bands Doping Energy Forbidden bands Fourier analysis Fourier transforms Hydrogen Hydrogen-based energy Infrared analysis Infrared spectra Infrared spectroscopy Melamine Morphology Morphology effect Oxidation P and S doped Graphitic carbon nitride Phosphorus Photoanode Photoelectrochemical impedance spectroscopy Photoluminescence Photons Photooxidation Solar energy Spectrum analysis Sulfur Synthesis Transmission electron microscopy Water splitting X-ray diffraction X-ray spectroscopy |
Title | Effect of morphology and non-metal doping (P and S) on the activity of graphitic carbon nitride toward photoelectrochemical water oxidation |
URI | https://dx.doi.org/10.1016/j.solmat.2021.111326 https://www.proquest.com/docview/2582834917 |
Volume | 232 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7LetGD-MTnkoMHPcRtm7RpjiIuq-IiqOAtpEkKK-5W1oqe_AP-aSdp6gtE8NgwCe3MZDLTzDeD0B6PC80zYYhINSNMlZooLRQBahEbYUSpHN75YpQNb9jZbXrbQcctFsalVQbb39h0b63DSD9ws_8wHvevIuGwVCyHoAXMcO4Av4xxp-WHr59pHknmb5YdMXHULXzO53iBeMEvhCgxiQ99z_Xst-Pph6H2p89gCS0GtxEfNW-2jDp2uoIWvhQTXEVvTSFiXJV4UgH3_P9yrKYGQ4RPJha8bGw8PArvX_rxqwNcTTF4gNihG1wTCTfZl7B2OXFYq1kBBLDpZ2Njce0zbDGsXFehe44O5QbwM7isM1y9jJsWTWvoZnByfTwkodUC0ZSymuRGU6siVkYq07SwlKdc5ZYWLLE2SyKV8tjoLM4Nz5XWOuFGxZQrwakq89TSddSFj7EbCJeaWytSy9MyZVy4knfMFLo0FNRCRHQT0ZbDUoc65K4dxr1sE87uZCMX6eQiG7lsIvIx66Gpw_EHPW-FJ7_pk4Sj4o-ZO62sZdjPjzJxt4uUQWy79e-Ft9G8e2oyAXdQt5492V3waOqi51W2h-aOTs-Ho3c4Z_mI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB7R5UB7QLSA2EKLDz3AwWwSO3F8XKGi5W9VCZC4WY7tSItgg7ap2nfgpRk7DgIkhNSrM2MlM_Z4Jp75BuCHSCsjCmmpzA2nXNeGaiM1RWqZWmllrX298_m0mFzxk-v8egkO-1oYn1YZbX9n04O1jiOjKM3R_Ww2ukikr6XiJQYtaIbL8gMse3SqfADL4-PTyfTJIGdFuFz29NQz9BV0Ic0LNYyuIQaKWXoQ2q4Xb51Qr2x1OICO1mA1eo5k3L3cZ1hy8y_w6Rme4Do8dFjEpKnJXYMCDL_MiZ5bgkE-vXPoaBMbKqTI3q8wfrFPmjlBJ5D4AgffR8IzBxRrnxZHjF5USID7fjGzjrQhyZbgzG0TG-iYiDhA_qLXuiDNv1nXpWkDro5-Xh5OaOy2QA1jvKWlNczphNeJLgyrHBO50KVjFc-cK7JE5yK1pkhLK0ptjMmE1SkTWgqm6zJ3bBMG-DFuC0hthHMydyKvUSHSo95xW5naMlwZMmFDYL2ElYlQ5L4jxq3qc85uVKcX5fWiOr0MgT5x3XdQHO_Qi1556sWSUnhavMO50-taxS39W2X-gpFxDG-__vfEu7AyuTw_U2fH09Nt-OifdImBOzBoF3_cN3Rw2up7XMCPvdf8OQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+morphology+and+non-metal+doping+%28P+and+S%29+on+the+activity+of+graphitic+carbon+nitride+toward+photoelectrochemical+water+oxidation&rft.jtitle=Solar+energy+materials+and+solar+cells&rft.au=A+Aboubakr%2C+Ahmed+Esmail&rft.au=El+Rouby%2C+Waleed+MA&rft.au=Khan%2C+Malik+Dilshad&rft.au=Revaprasadu%2C+Neerish&rft.date=2021-10-01&rft.pub=Elsevier+BV&rft.issn=0927-0248&rft.volume=232&rft.spage=1&rft_id=info:doi/10.1016%2Fj.solmat.2021.111326&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0248&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0248&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0248&client=summon |