Quantifying the classification of exoplanets: in search for the right habitability metric

What is habitability? Can we quantify it? What do we mean under the term habitable or potentially habitable planet? With estimates of the number of planets in our Galaxy alone running into billions, possibly a number greater than the number of stars, it is high time to start characterizing them, sor...

Full description

Saved in:
Bibliographic Details
Published inThe European physical journal. ST, Special topics Vol. 230; no. 10; pp. 2207 - 2220
Main Authors Safonova, Margarita, Mathur, Archana, Basak, Suryoday, Bora, Kakoli, Agrawal, Surbhi
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract What is habitability? Can we quantify it? What do we mean under the term habitable or potentially habitable planet? With estimates of the number of planets in our Galaxy alone running into billions, possibly a number greater than the number of stars, it is high time to start characterizing them, sorting them into classes/types just like stars, to better understand their formation paths, their properties and, ultimately, their ability to beget or sustain life. After all, we do have life thriving on one of these billions of planets, why not on others? Which planets are better suited for life and which ones are definitely not worth spending expensive telescope time on? We need to find sort of quick assessment score, a metric, using which we can make a list of promising planets and dedicate our efforts to them. Exoplanetary habitability is a transdisciplinary subject integrating astrophysics, astrobiology, planetary science, and even terrestrial environmental sciences. It became a challenging problem in astroinformatics, an emerging area in computational astronomy. Here, we review the existing metrics of habitability and the new classification schemes (machine learning (ML), neural networks, activation functions) of extrasolar planets, and provide an exposition of the use of computational intelligence techniques to evaluate habitability scores and to automate the process of classification of exoplanets. We examine how solving convex optimization techniques, as in computing new metrics such as Cobb–Douglas habitability score (CDHS) and constant elasticity earth similarity approach (CEESA), cross-validates ML-based classification of exoplanets. Despite the recent criticism of exoplanetary habitability ranking, we are sure that this field has to continue and evolve to use all available machinery of astroinformatics, artificial intelligence (AI) and machine learning. It might actually develop into a sort of same scale as stellar types in astronomy, to be used as a quick tool of screening exoplanets in important characteristics in search for potentially habitable planets (PHPs), or Earth-like planets, for detailed follow-up targets.
AbstractList What is habitability? Can we quantify it? What do we mean under the term habitable or potentially habitable planet? With estimates of the number of planets in our Galaxy alone running into billions, possibly a number greater than the number of stars, it is high time to start characterizing them, sorting them into classes/types just like stars, to better understand their formation paths, their properties and, ultimately, their ability to beget or sustain life. After all, we do have life thriving on one of these billions of planets, why not on others? Which planets are better suited for life and which ones are definitely not worth spending expensive telescope time on? We need to find sort of quick assessment score, a metric, using which we can make a list of promising planets and dedicate our efforts to them. Exoplanetary habitability is a transdisciplinary subject integrating astrophysics, astrobiology, planetary science, and even terrestrial environmental sciences. It became a challenging problem in astroinformatics, an emerging area in computational astronomy. Here, we review the existing metrics of habitability and the new classification schemes (machine learning (ML), neural networks, activation functions) of extrasolar planets, and provide an exposition of the use of computational intelligence techniques to evaluate habitability scores and to automate the process of classification of exoplanets. We examine how solving convex optimization techniques, as in computing new metrics such as Cobb–Douglas habitability score (CDHS) and constant elasticity earth similarity approach (CEESA), cross-validates ML-based classification of exoplanets. Despite the recent criticism of exoplanetary habitability ranking, we are sure that this field has to continue and evolve to use all available machinery of astroinformatics, artificial intelligence (AI) and machine learning. It might actually develop into a sort of same scale as stellar types in astronomy, to be used as a quick tool of screening exoplanets in important characteristics in search for potentially habitable planets (PHPs), or Earth-like planets, for detailed follow-up targets.
Author Basak, Suryoday
Mathur, Archana
Agrawal, Surbhi
Safonova, Margarita
Bora, Kakoli
Author_xml – sequence: 1
  givenname: Margarita
  surname: Safonova
  fullname: Safonova, Margarita
  email: margarita.safonova@iiap.res.in
  organization: Indian Institute of Astrophysics
– sequence: 2
  givenname: Archana
  surname: Mathur
  fullname: Mathur, Archana
  organization: Department of Information Science and Engineering, Nitte Meenakshi Institute of Technology
– sequence: 3
  givenname: Suryoday
  surname: Basak
  fullname: Basak, Suryoday
  organization: Department of Computer Science and Engineering, Penn State University
– sequence: 4
  givenname: Kakoli
  surname: Bora
  fullname: Bora, Kakoli
  organization: Department of Information Science and Engineering, PES University South Campus
– sequence: 5
  givenname: Surbhi
  surname: Agrawal
  fullname: Agrawal, Surbhi
  organization: Department of Computer Science and Engineering, IIIT
BookMark eNqNkMtKAzEUhoNUsK0-gwHXY5PJZVLBhRRvUBBBF65CZpp0UqaZMUnB9ulNO4rgRhdJDuH_knO-ERi41mkAzjG6xJiiie5WYRIwLgjNUI4zlDac7Y7AEE8ZzjhFePBdE8ZOwCiEFUKM51MyBG_PG-WiNVvrljDWGlaNCsEaW6loWwdbA_VH2zXK6RiuoHUwaOWrGprWH_LeLusIa1XamFZj4xaudfS2OgXHRjVBn32dY_B6d_sye8jmT_ePs5t5VhFCYyYEUwItco4XVZkLblBJmVY50pyWBSe8ZAYxjBeCFZRQxRUVRbqiiPKSckPG4KJ_t_Pt-0aHKFftxrv0pcxZQQQXec5T6rpPVb4NwWsjq9TwfsTolW0kRnJvU-5tyt6mTCLlwabcJb74xXferpXf_oMUPRkS4Zba__T3F_oJ75WQYw
CitedBy_id crossref_primary_10_1140_epjs_s11734_021_00275_x
crossref_primary_10_1051_0004_6361_202346332
crossref_primary_10_1093_mnras_stae1758
crossref_primary_10_3847_PSJ_ad53c3
Cites_doi 10.1146/annurev-earth-060115-012355
10.1063/1.5028373
10.1038/192440a0
10.1038/ncomms15766
10.1016/j.ascom.2016.08.001
10.1080/00033793600200301
10.1038/s41550-020-1069-4
10.1088/0004-637X/764/1/105
10.1088/0004-637X/814/2/91
10.17632/c37bvvxp3z.8
10.1063/1.5120831
10.3847/1538-4357/ab1d52
10.3847/1538-4357/aadf31
10.1038/21811
10.1029/2018JE005802
10.1109/ICACCI.2018.8554460
10.1017/S1473550417000349
10.1007/BF01207646
10.1016/j.ascom.2019.100335
10.1017/S1473550415000208
10.1126/science.1065998
10.1089/ast.2013.1088
10.1051/0004-6361:20077939
10.3847/1538-3881/abc418
10.1089/ast.2015.1324
10.1038/nature10092
10.1007/s10509-017-3131-y
10.3389/fspas.2020.00007
10.1093/mnras/stx1910
10.3390/challe5010159
10.1073/pnas.1111694108
10.1017/S1473550414000196
10.1186/s13677-015-0050-8
10.1073/pnas.1611843113
10.1006/icar.1993.1010
10.1073/pnas.1319909110
10.1007/s10489-020-01892-0
10.3390/challe5020284
10.2307/1927286
10.1089/ast.2010.0592
10.1038/ngeo2412
10.1016/j.ascom.2018.03.003
10.1017/S1473550417000118
10.1038/s41550-017-0042
10.3847/1538-3881/ab88b0
10.1016/j.epsl.2016.02.035
10.1038/s41550-018-0411-6
10.1073/pnas.0409574102
10.1086/666325
10.1038/35084155
10.1038/s41467-020-17330-1
10.1073/pnas.1406545111
10.1038/nature26144
10.3847/1538-4357/ab822d
10.1088/0067-0049/204/2/24
10.1073/pnas.1205223109
10.1126/sciadv.aao5747
10.1073/pnas.1907871116
10.1073/pnas.1711842115
10.1016/S0893-6080(05)80129-7
10.1140/epjst/e2020-000098-9
ContentType Journal Article
Copyright The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2021
The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
DOI 10.1140/epjs/s11734-021-00211-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1951-6401
EndPage 2220
ExternalDocumentID 10_1140_epjs_s11734_021_00211_z
GroupedDBID -5F
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
123
199
1N0
203
29G
29~
2J2
2JY
2KG
2KM
2LR
30V
4.4
406
408
40D
40E
67Z
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFFNX
AFQWF
AFWTZ
AFZKB
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHSBF
AHYZX
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IKXTQ
IWAJR
IXC
IXD
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9T
PF0
QOS
R89
RED
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
2JN
AAPKM
AAYXX
ABBRH
ABDBE
AFDZB
AFOHR
AHPBZ
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c334t-885a80d261dcb286f0b45ea20e64b7636b5f0511d857434a6a4875f04046b46f3
IEDL.DBID U2A
ISSN 1951-6355
IngestDate Fri Jul 25 05:11:51 EDT 2025
Thu Apr 24 23:10:05 EDT 2025
Tue Jul 01 02:33:00 EDT 2025
Fri Feb 21 02:48:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-885a80d261dcb286f0b45ea20e64b7636b5f0511d857434a6a4875f04046b46f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2573868226
PQPubID 2044459
PageCount 14
ParticipantIDs proquest_journals_2573868226
crossref_citationtrail_10_1140_epjs_s11734_021_00211_z
crossref_primary_10_1140_epjs_s11734_021_00211_z
springer_journals_10_1140_epjs_s11734_021_00211_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210900
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 9
  year: 2021
  text: 20210900
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The European physical journal. ST, Special topics
PublicationTitleAbbrev Eur. Phys. J. Spec. Top
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References A.J. Sternfeld, La Nature, Masson et Cie (eds.), Paris, No. 2956, 1–12 (1935) (in French)
MurakamiMHiroseKYurimotoHNakashimaSTakafujiNScience2002295556118852002Sci...295.1885M
P. Dayal, M. Ward, C. Cockell, Preprint arXiv:1606.09224 (2016)
SafonovaMMurthyJShchekinovYAInt. J. Astrobiol.201615932016IJAsB..15...93S
Haqq-MisraJKopparapuRWolfEInt. J. Astrobiol.201817177862018IJAsB..17...77H
StevensonDJNature200141268432142192001Natur.412..214S
Rodríguez-MozosJMRMoyaAMon. Not. R. Astron. Soc.20174714462846362017MNRAS.471.4628R
J.M. Kashyap, M. Safonova, S.B. Gudennavar, ESI and MSI data sets 2, Mendeley Data, v8 (2020). https://doi.org/10.17632/c37bvvxp3z.8
IrwinLNMéndezAFairénAGSchulze-MakuchDChallenges201451592014Chall...5..159I
StevensonDSLargeSInt. J. Astrobiol.20171832042082019IJAsB..18..204S
A. Méndez, in Proceedings of sixth astrobiology science conference, Houston, TX, USA, 26–29 April 2010
SpiegelDSTurnerELProc. Natl. Acad. Sci.20121093954002012PNAS..109..395S
BrysonSKunimotoMKopparapuRKCoughlinJLBoruckiWJAstron. J.2021161362021AJ....161...36B
GlaserDMHartnettHEDeschSJAstrophys. J.2020893215384357
AtriDSocJRInterface20161320160459
SahaSSarkarJDwivediADwivediNNarasimhamurthyAMRanjanRJ. Cloud Comput.201651123
SaleseFPondrelliMNeesemanASchmidtGOriGGJ. Geophys. Res. Planets20191243743952019JGRE..124..374S
DickeRHNature19611924404411961Natur.192..440D
WordsworthRDThe climate of early marsAnnu. Rev. Earth Planet. Sci.2016443812016AREPS..44..381W
S. Saha, A. Mathur, K. Bora, S. Basak, S. Agrawal, in Proc. 2018 international conference on advances in computing, communications and informatics (ICACCI), pp. 1781–1786 (2018), Bangalore. https://doi.org/10.1109/ICACCI.2018.8554460
MoronoYItoMHoshinoTNat. Commun.202011136262020NatCo..11.3626M
UnterbornCTNat. Astron.201822972018NatAs...2..297U
AbramovOMojzsisSJEarth Planet. Sci. Lett.20164421082016E&PSL.442..108A
SwiftJJJohnsonJAMortonTDAstrophys. J.201376411052013ApJ...764..105S
LuoWCangXHowardANat. Commun.20178157662017NatCo...815766L
R. Yedida S. Saha, A novel adaptive learning rate scheduler for deep neural networks. Preprint arXiv:1902.07399 (2019)
MatsuuraMZijlstraAAMolsterFJAstrophys. J.2004604791799
SchwietermanEWReinhardCTOlsonSLHarmanCELyonsTWAstrophys. J.2019878192019ApJ...878...19S
McCollomTMProc. Natl. Acad. Sci.20111134913965139702016PNAS..11313965M
BatalhaNMRoweJFBrysonSTAstrophys. J. Suppl.2013204242013ApJS..204...24B
ZhangYGGajjarVFosterGAstrophys. J.20188661492018ApJ...866..149Z
CardenasRPerezNMartinez-FriasJMartinOChallenges201452842014Chall...5..284C
YedidaRSahaSPrashanthTAppl. Intell.202010.1007/s10489-020-01892-0
T.E. Morris, Princ. Planet. Biol. Lecture Notes, Ch. 5 (1999), http://www.planetarybiology.com. Accessed 5 Feb 2018
SeagerSHuangJPetkowskiJJNat. Astron.202048028062020NatAs...4..802S
LimbachMATurnerELProc. Natl. Acad. Sci.2015112202015PNAS..112...20L
WitzanyGFront. Astron. Space Sci.20207710.3389/fspas.2020.000072020FrASS...7....7W
SumiTKamiyaKBennettDPNature20114733492011Natur.473..349S
M. Safonova, C. Sivaram, in Planet Formation and Panspermia. New Prospects for the Movement of Life through Space, [PNSP, Volume in the series Astrobiology Perspectives on Life of the Universe, Series Eds: R. Gordon & J. Seckbach, 2021] B. Vukotić, ed. by J. Seckbach, R. Gordon (2021) (ISBN: 9781119640394)
SahaSBasakSSafonovaMBoraKAgrawalSSarkarPMurthyJAstron. Comput.2018231412018A&C....23..141S
KleinFGrozevaNGSeewaldJSProc. Natl. Acad. Sci.20191163617666176722019PNAS..11617666K
Krissansen-TottonJOlsonSCatlingDCSci. Adv.20184eaao57472018SciA....4.5747K
BalakrishnanHNKathpaliaASahaSNagarajNChaos Interdiscip. J. Nonlinear Sci.201929113125
StephanieLOEdwardWSChristopherTRAstrophys. J.2012858L14
von BlohWBounamaCCuntzMAstron. Astrophys.200747613652007A&A...476.1365V
D. Misra, in Proc. 31st British machine vision conference (BMVC), (2020)
Bar-OnYMPhillipsRMiloRProc. Natl. Acad. Sci.20181156506
TurnbullMCGlassmanTRobergeAPubl. Astron. Soc. Pac. PASP20121244182012PASP..124..418T
McColleyGAnn. Sci.19361385430
SpearJRWalkerJJMcCollomTMPaceNRProc. Natl. Acad. Sci.2005102255525602005PNAS..102.2555S
BarnesRMeadowsVSEvansNAstrophys. J.2015814912015ApJ...814...91B
BBC News, Tardigrades: ‘Water Bears’ Stuck on the Moon after Crash (2019), https://www.bbc.com/news/newsbeat-49265125. Accessed 17 Sept 2019
KastingJFWhitmireDPReynoldsRTIcarus19931011081993Icar..101..108K
StevensonDJNature1999400321999Natur.400...32S
RocherLPuranas1986WiesbadenOtto HarrassowitzISBN 978-3447025225
LoebAInt. J. Astrobiol.2014133373392014IJAsB..13..337L
BoraKSahaSAgrawalSSafonovaMRouthSNarasimhamurthyAAstron. Comput.2016171291432016A&C....17..129B
PathakJWiknerAFussellRChaos Interdiscip. J. Nonlinear Sci.2018284041101
OnofriSde VeraJ-PAstrobiology2015151210522015AsBio..15.1052O
CitronRMangaMHemingwayDNature20185556432018Natur.555..643C
G.A. Tikhov, Priroda (Leningrad) 46(2), 3–6 (1947) (in Russian)
LibbyWFLife on Jupiter?Orig. Life Evol. Biosph.19745483486
BasakSSahaSMathurABoraKMakhijaSSafonovaMAgrawalSAstron. Comput.202030100335
Schulze-MakuchDMéndezAFairénAGAstrobiology20111110412011AsBio..11.1041S
HellerRArmstrongJAstrobiology20141450662014AsBio..14...50H
S.J. Desch, S. Kane, C.M. Lisse, et al., A white paper for the the “Astrobiology Science Strategy for the Search for Life in the Universe” program by the National Academy of Sciences. Preprint arXiv:1801.06935v1 (2018)
PetiguraEAHowardAWMarcyGWProc. Natl. Acad. Sci.20131104819273192782013PNAS..11019273P
KashyapJMGudennavarSBDoshiUSafonovaMAstrophys. Space Sci.201736281462017Ap&SS.362..146K
KunimotoMMatthewsJMAstron. J.202015962482020AJ....159..248K
SahaSNagarajNMathurAYedidaRSnehaHREur. Phys. J. Spec. Top.202022926292738
G. Ginde, S. Saha, A. Mathur, S. Venkatagiri, S. Vadakkepat, A. Narasimhamurthy, B.S. Daya Sagar, J. Scientometr. 107(1), 1–51 (2016)
MinaiAWilliamsRNeural Netw.19936845853
Martín-TorresFZorzanoM-PValentín-SerranoPNat. Geosci.201583573612015NatGe...8..357M
P. Ramachandran, B. Zoph, Q. Le, Preprint arxiv:1710.05941 (2017)
SchrödingerEWhat is life? The physical aspect of the living cell1944CambridgeCambridge University Press1254.01052
OzeCJonesLCGoldsmithJIRosenbauerRJProc. Natl. Acad. Sci.20121092597502012PNAS..109.9750O
ArrowKJCheneryHBMinhasBSSolowRMRev. Econ. Stat.196143225
TaskerETanJHengKKaneSSpiegeDLthe ELSI Origins Network Planetary Diversity WorkshopNat. Astron.201710042
Y. Wang, Y. Liu, F. Tian, Y. Hu, Y. Huang, Preprint arXiv:1710.01405 (2017)
R Cardenas (211_CR39) 2014; 5
R Citron (211_CR54) 2018; 555
E Schrödinger (211_CR13) 1944
DS Stevenson (211_CR75) 2017; 18
A Minai (211_CR77) 1993; 6
CT Unterborn (211_CR48) 2018; 2
F Salese (211_CR59) 2019; 124
R Heller (211_CR47) 2014; 14
DM Glaser (211_CR52) 2020; 893
S Saha (211_CR67) 2016; 5
211_CR50
A Loeb (211_CR28) 2014; 13
O Abramov (211_CR53) 2016; 442
R Barnes (211_CR36) 2015; 814
JF Kasting (211_CR43) 1993; 101
YG Zhang (211_CR2) 2018; 866
211_CR51
W von Bloh (211_CR64) 2007; 476
LN Irwin (211_CR63) 2014; 5
S Seager (211_CR16) 2020; 4
J Pathak (211_CR1) 2018; 28
DS Spiegel (211_CR22) 2012; 109
J Haqq-Misra (211_CR29) 2018; 17
S Onofri (211_CR57) 2015; 15
M Murakami (211_CR17) 2002; 295
JJ Swift (211_CR23) 2013; 764
T Sumi (211_CR10) 2011; 473
211_CR61
JMR Rodríguez-Mozos (211_CR65) 2017; 471
YM Bar-On (211_CR49) 2018; 115
211_CR21
NM Batalha (211_CR3) 2013; 204
C Oze (211_CR32) 2012; 109
211_CR62
DJ Stevenson (211_CR44) 1999; 400
R Yedida (211_CR72) 2020
J Krissansen-Totton (211_CR34) 2018; 4
211_CR66
K Bora (211_CR40) 2016; 17
211_CR27
M Safonova (211_CR11) 2016; 15
WF Libby (211_CR15) 1974; 5
Y Morono (211_CR20) 2020; 11
E Tasker (211_CR42) 2017; 1
211_CR9
211_CR8
W Luo (211_CR55) 2017; 8
211_CR70
L Rocher (211_CR6) 1986
M Matsuura (211_CR12) 2004; 604
KJ Arrow (211_CR69) 1961; 43
S Saha (211_CR71) 2020; 229
211_CR74
G McColley (211_CR7) 1936; 1
HN Balakrishnan (211_CR73) 2019; 29
211_CR79
F Klein (211_CR31) 2019; 116
211_CR78
EA Petigura (211_CR4) 2013; 110
RH Dicke (211_CR26) 1961; 192
JR Spear (211_CR19) 2005; 102
211_CR38
S Bryson (211_CR25) 2021; 161
LO Stephanie (211_CR33) 2012; 858
D Atri (211_CR18) 2016; 13
JM Kashyap (211_CR37) 2017; 362
MC Turnbull (211_CR5) 2012; 124
G Witzany (211_CR14) 2020; 7
S Basak (211_CR68) 2020; 30
TM McCollom (211_CR30) 2011; 113
DJ Stevenson (211_CR56) 2001; 412
EW Schwieterman (211_CR76) 2019; 878
M Kunimoto (211_CR24) 2020; 159
MA Limbach (211_CR45) 2015; 112
RD Wordsworth (211_CR60) 2016; 44
F Martín-Torres (211_CR58) 2015; 8
S Saha (211_CR41) 2018; 23
211_CR46
D Schulze-Makuch (211_CR35) 2011; 11
References_xml – reference: BrysonSKunimotoMKopparapuRKCoughlinJLBoruckiWJAstron. J.2021161362021AJ....161...36B
– reference: OzeCJonesLCGoldsmithJIRosenbauerRJProc. Natl. Acad. Sci.20121092597502012PNAS..109.9750O
– reference: SchrödingerEWhat is life? The physical aspect of the living cell1944CambridgeCambridge University Press1254.01052
– reference: TaskerETanJHengKKaneSSpiegeDLthe ELSI Origins Network Planetary Diversity WorkshopNat. Astron.201710042
– reference: T.E. Morris, Princ. Planet. Biol. Lecture Notes, Ch. 5 (1999), http://www.planetarybiology.com. Accessed 5 Feb 2018
– reference: LuoWCangXHowardANat. Commun.20178157662017NatCo...815766L
– reference: SchwietermanEWReinhardCTOlsonSLHarmanCELyonsTWAstrophys. J.2019878192019ApJ...878...19S
– reference: BarnesRMeadowsVSEvansNAstrophys. J.2015814912015ApJ...814...91B
– reference: Bar-OnYMPhillipsRMiloRProc. Natl. Acad. Sci.20181156506
– reference: StevensonDJNature200141268432142192001Natur.412..214S
– reference: HellerRArmstrongJAstrobiology20141450662014AsBio..14...50H
– reference: StevensonDJNature1999400321999Natur.400...32S
– reference: BatalhaNMRoweJFBrysonSTAstrophys. J. Suppl.2013204242013ApJS..204...24B
– reference: SpiegelDSTurnerELProc. Natl. Acad. Sci.20121093954002012PNAS..109..395S
– reference: BalakrishnanHNKathpaliaASahaSNagarajNChaos Interdiscip. J. Nonlinear Sci.201929113125
– reference: J.M. Kashyap, M. Safonova, S.B. Gudennavar, ESI and MSI data sets 2, Mendeley Data, v8 (2020). https://doi.org/10.17632/c37bvvxp3z.8
– reference: von BlohWBounamaCCuntzMAstron. Astrophys.200747613652007A&A...476.1365V
– reference: MinaiAWilliamsRNeural Netw.19936845853
– reference: Krissansen-TottonJOlsonSCatlingDCSci. Adv.20184eaao57472018SciA....4.5747K
– reference: G. Ginde, S. Saha, A. Mathur, S. Venkatagiri, S. Vadakkepat, A. Narasimhamurthy, B.S. Daya Sagar, J. Scientometr. 107(1), 1–51 (2016)
– reference: AtriDSocJRInterface20161320160459
– reference: S.J. Desch, S. Kane, C.M. Lisse, et al., A white paper for the the “Astrobiology Science Strategy for the Search for Life in the Universe” program by the National Academy of Sciences. Preprint arXiv:1801.06935v1 (2018)
– reference: MoronoYItoMHoshinoTNat. Commun.202011136262020NatCo..11.3626M
– reference: SafonovaMMurthyJShchekinovYAInt. J. Astrobiol.201615932016IJAsB..15...93S
– reference: McCollomTMProc. Natl. Acad. Sci.20111134913965139702016PNAS..11313965M
– reference: G.A. Tikhov, Priroda (Leningrad) 46(2), 3–6 (1947) (in Russian)
– reference: A. Méndez, in Proceedings of sixth astrobiology science conference, Houston, TX, USA, 26–29 April 2010
– reference: LoebAInt. J. Astrobiol.2014133373392014IJAsB..13..337L
– reference: Rodríguez-MozosJMRMoyaAMon. Not. R. Astron. Soc.20174714462846362017MNRAS.471.4628R
– reference: KastingJFWhitmireDPReynoldsRTIcarus19931011081993Icar..101..108K
– reference: StevensonDSLargeSInt. J. Astrobiol.20171832042082019IJAsB..18..204S
– reference: AbramovOMojzsisSJEarth Planet. Sci. Lett.20164421082016E&PSL.442..108A
– reference: SeagerSHuangJPetkowskiJJNat. Astron.202048028062020NatAs...4..802S
– reference: McColleyGAnn. Sci.19361385430
– reference: Schulze-MakuchDMéndezAFairénAGAstrobiology20111110412011AsBio..11.1041S
– reference: GlaserDMHartnettHEDeschSJAstrophys. J.2020893215384357
– reference: SumiTKamiyaKBennettDPNature20114733492011Natur.473..349S
– reference: StephanieLOEdwardWSChristopherTRAstrophys. J.2012858L14
– reference: PetiguraEAHowardAWMarcyGWProc. Natl. Acad. Sci.20131104819273192782013PNAS..11019273P
– reference: BBC News, Tardigrades: ‘Water Bears’ Stuck on the Moon after Crash (2019), https://www.bbc.com/news/newsbeat-49265125. Accessed 17 Sept 2019
– reference: M. Safonova, C. Sivaram, in Planet Formation and Panspermia. New Prospects for the Movement of Life through Space, [PNSP, Volume in the series Astrobiology Perspectives on Life of the Universe, Series Eds: R. Gordon & J. Seckbach, 2021] B. Vukotić, ed. by J. Seckbach, R. Gordon (2021) (ISBN: 9781119640394)
– reference: P. Dayal, M. Ward, C. Cockell, Preprint arXiv:1606.09224 (2016)
– reference: LibbyWFLife on Jupiter?Orig. Life Evol. Biosph.19745483486
– reference: BoraKSahaSAgrawalSSafonovaMRouthSNarasimhamurthyAAstron. Comput.2016171291432016A&C....17..129B
– reference: CardenasRPerezNMartinez-FriasJMartinOChallenges201452842014Chall...5..284C
– reference: KleinFGrozevaNGSeewaldJSProc. Natl. Acad. Sci.20191163617666176722019PNAS..11617666K
– reference: SahaSSarkarJDwivediADwivediNNarasimhamurthyAMRanjanRJ. Cloud Comput.201651123
– reference: SahaSNagarajNMathurAYedidaRSnehaHREur. Phys. J. Spec. Top.202022926292738
– reference: Y. Wang, Y. Liu, F. Tian, Y. Hu, Y. Huang, Preprint arXiv:1710.01405 (2017)
– reference: P. Ramachandran, B. Zoph, Q. Le, Preprint arxiv:1710.05941 (2017)
– reference: SpearJRWalkerJJMcCollomTMPaceNRProc. Natl. Acad. Sci.2005102255525602005PNAS..102.2555S
– reference: CitronRMangaMHemingwayDNature20185556432018Natur.555..643C
– reference: KashyapJMGudennavarSBDoshiUSafonovaMAstrophys. Space Sci.201736281462017Ap&SS.362..146K
– reference: RocherLPuranas1986WiesbadenOtto HarrassowitzISBN 978-3447025225
– reference: UnterbornCTNat. Astron.201822972018NatAs...2..297U
– reference: WordsworthRDThe climate of early marsAnnu. Rev. Earth Planet. Sci.2016443812016AREPS..44..381W
– reference: Haqq-MisraJKopparapuRWolfEInt. J. Astrobiol.201817177862018IJAsB..17...77H
– reference: Martín-TorresFZorzanoM-PValentín-SerranoPNat. Geosci.201583573612015NatGe...8..357M
– reference: S. Saha, A. Mathur, K. Bora, S. Basak, S. Agrawal, in Proc. 2018 international conference on advances in computing, communications and informatics (ICACCI), pp. 1781–1786 (2018), Bangalore. https://doi.org/10.1109/ICACCI.2018.8554460
– reference: YedidaRSahaSPrashanthTAppl. Intell.202010.1007/s10489-020-01892-0
– reference: ArrowKJCheneryHBMinhasBSSolowRMRev. Econ. Stat.196143225
– reference: SwiftJJJohnsonJAMortonTDAstrophys. J.201376411052013ApJ...764..105S
– reference: DickeRHNature19611924404411961Natur.192..440D
– reference: SaleseFPondrelliMNeesemanASchmidtGOriGGJ. Geophys. Res. Planets20191243743952019JGRE..124..374S
– reference: MatsuuraMZijlstraAAMolsterFJAstrophys. J.2004604791799
– reference: R. Yedida S. Saha, A novel adaptive learning rate scheduler for deep neural networks. Preprint arXiv:1902.07399 (2019)
– reference: TurnbullMCGlassmanTRobergeAPubl. Astron. Soc. Pac. PASP20121244182012PASP..124..418T
– reference: SahaSBasakSSafonovaMBoraKAgrawalSSarkarPMurthyJAstron. Comput.2018231412018A&C....23..141S
– reference: PathakJWiknerAFussellRChaos Interdiscip. J. Nonlinear Sci.2018284041101
– reference: OnofriSde VeraJ-PAstrobiology2015151210522015AsBio..15.1052O
– reference: WitzanyGFront. Astron. Space Sci.20207710.3389/fspas.2020.000072020FrASS...7....7W
– reference: BasakSSahaSMathurABoraKMakhijaSSafonovaMAgrawalSAstron. Comput.202030100335
– reference: ZhangYGGajjarVFosterGAstrophys. J.20188661492018ApJ...866..149Z
– reference: KunimotoMMatthewsJMAstron. J.202015962482020AJ....159..248K
– reference: IrwinLNMéndezAFairénAGSchulze-MakuchDChallenges201451592014Chall...5..159I
– reference: LimbachMATurnerELProc. Natl. Acad. Sci.2015112202015PNAS..112...20L
– reference: MurakamiMHiroseKYurimotoHNakashimaSTakafujiNScience2002295556118852002Sci...295.1885M
– reference: D. Misra, in Proc. 31st British machine vision conference (BMVC), (2020)
– reference: A.J. Sternfeld, La Nature, Masson et Cie (eds.), Paris, No. 2956, 1–12 (1935) (in French)
– volume: 858
  start-page: L14
  year: 2012
  ident: 211_CR33
  publication-title: Astrophys. J.
– volume: 44
  start-page: 381
  year: 2016
  ident: 211_CR60
  publication-title: Annu. Rev. Earth Planet. Sci.
  doi: 10.1146/annurev-earth-060115-012355
– volume: 28
  start-page: 041101
  issue: 4
  year: 2018
  ident: 211_CR1
  publication-title: Chaos Interdiscip. J. Nonlinear Sci.
  doi: 10.1063/1.5028373
– volume: 192
  start-page: 440
  year: 1961
  ident: 211_CR26
  publication-title: Nature
  doi: 10.1038/192440a0
– volume-title: What is life? The physical aspect of the living cell
  year: 1944
  ident: 211_CR13
– volume: 8
  start-page: 15766
  year: 2017
  ident: 211_CR55
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15766
– volume: 17
  start-page: 129
  year: 2016
  ident: 211_CR40
  publication-title: Astron. Comput.
  doi: 10.1016/j.ascom.2016.08.001
– volume: 1
  start-page: 385
  year: 1936
  ident: 211_CR7
  publication-title: Ann. Sci.
  doi: 10.1080/00033793600200301
– volume: 4
  start-page: 802
  year: 2020
  ident: 211_CR16
  publication-title: Nat. Astron.
  doi: 10.1038/s41550-020-1069-4
– volume: 764
  start-page: 105
  issue: 1
  year: 2013
  ident: 211_CR23
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/764/1/105
– volume: 814
  start-page: 91
  year: 2015
  ident: 211_CR36
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/814/2/91
– ident: 211_CR62
  doi: 10.17632/c37bvvxp3z.8
– ident: 211_CR66
– volume: 29
  start-page: 113125
  year: 2019
  ident: 211_CR73
  publication-title: Chaos Interdiscip. J. Nonlinear Sci.
  doi: 10.1063/1.5120831
– volume: 878
  start-page: 19
  year: 2019
  ident: 211_CR76
  publication-title: Astrophys. J.
  doi: 10.3847/1538-4357/ab1d52
– volume: 866
  start-page: 149
  year: 2018
  ident: 211_CR2
  publication-title: Astrophys. J.
  doi: 10.3847/1538-4357/aadf31
– volume: 400
  start-page: 32
  year: 1999
  ident: 211_CR44
  publication-title: Nature
  doi: 10.1038/21811
– volume: 124
  start-page: 374
  year: 2019
  ident: 211_CR59
  publication-title: J. Geophys. Res. Planets
  doi: 10.1029/2018JE005802
– ident: 211_CR70
  doi: 10.1109/ICACCI.2018.8554460
– volume: 18
  start-page: 204
  issue: 3
  year: 2017
  ident: 211_CR75
  publication-title: Int. J. Astrobiol.
  doi: 10.1017/S1473550417000349
– volume: 5
  start-page: 483
  year: 1974
  ident: 211_CR15
  publication-title: Orig. Life Evol. Biosph.
  doi: 10.1007/BF01207646
– ident: 211_CR21
– volume: 30
  start-page: 100335
  year: 2020
  ident: 211_CR68
  publication-title: Astron. Comput.
  doi: 10.1016/j.ascom.2019.100335
– volume: 15
  start-page: 93
  year: 2016
  ident: 211_CR11
  publication-title: Int. J. Astrobiol.
  doi: 10.1017/S1473550415000208
– volume: 295
  start-page: 1885
  issue: 5561
  year: 2002
  ident: 211_CR17
  publication-title: Science
  doi: 10.1126/science.1065998
– volume: 14
  start-page: 50
  year: 2014
  ident: 211_CR47
  publication-title: Astrobiology
  doi: 10.1089/ast.2013.1088
– volume: 476
  start-page: 1365
  year: 2007
  ident: 211_CR64
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:20077939
– volume: 161
  start-page: 36
  year: 2021
  ident: 211_CR25
  publication-title: Astron. J.
  doi: 10.3847/1538-3881/abc418
– volume: 15
  start-page: 1052
  issue: 12
  year: 2015
  ident: 211_CR57
  publication-title: Astrobiology
  doi: 10.1089/ast.2015.1324
– volume: 473
  start-page: 349
  year: 2011
  ident: 211_CR10
  publication-title: Nature
  doi: 10.1038/nature10092
– volume: 362
  start-page: 146
  issue: 8
  year: 2017
  ident: 211_CR37
  publication-title: Astrophys. Space Sci.
  doi: 10.1007/s10509-017-3131-y
– volume: 7
  start-page: 7
  year: 2020
  ident: 211_CR14
  publication-title: Front. Astron. Space Sci.
  doi: 10.3389/fspas.2020.00007
– volume: 471
  start-page: 4628
  issue: 4
  year: 2017
  ident: 211_CR65
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stx1910
– volume: 5
  start-page: 159
  year: 2014
  ident: 211_CR63
  publication-title: Challenges
  doi: 10.3390/challe5010159
– volume-title: Puranas
  year: 1986
  ident: 211_CR6
– volume: 109
  start-page: 395
  year: 2012
  ident: 211_CR22
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1111694108
– volume: 13
  start-page: 337
  year: 2014
  ident: 211_CR28
  publication-title: Int. J. Astrobiol.
  doi: 10.1017/S1473550414000196
– volume: 5
  start-page: 1
  issue: 1
  year: 2016
  ident: 211_CR67
  publication-title: J. Cloud Comput.
  doi: 10.1186/s13677-015-0050-8
– volume: 113
  start-page: 13965
  issue: 49
  year: 2011
  ident: 211_CR30
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1611843113
– volume: 101
  start-page: 108
  year: 1993
  ident: 211_CR43
  publication-title: Icarus
  doi: 10.1006/icar.1993.1010
– volume: 110
  start-page: 19273
  issue: 48
  year: 2013
  ident: 211_CR4
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1319909110
– ident: 211_CR46
– year: 2020
  ident: 211_CR72
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01892-0
– volume: 5
  start-page: 284
  year: 2014
  ident: 211_CR39
  publication-title: Challenges
  doi: 10.3390/challe5020284
– volume: 43
  start-page: 225
  year: 1961
  ident: 211_CR69
  publication-title: Rev. Econ. Stat.
  doi: 10.2307/1927286
– volume: 11
  start-page: 1041
  year: 2011
  ident: 211_CR35
  publication-title: Astrobiology
  doi: 10.1089/ast.2010.0592
– ident: 211_CR51
– volume: 8
  start-page: 357
  year: 2015
  ident: 211_CR58
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2412
– ident: 211_CR9
– volume: 23
  start-page: 141
  year: 2018
  ident: 211_CR41
  publication-title: Astron. Comput.
  doi: 10.1016/j.ascom.2018.03.003
– ident: 211_CR78
– ident: 211_CR74
– volume: 17
  start-page: 77
  issue: 1
  year: 2018
  ident: 211_CR29
  publication-title: Int. J. Astrobiol.
  doi: 10.1017/S1473550417000118
– volume: 1
  start-page: 0042
  year: 2017
  ident: 211_CR42
  publication-title: Nat. Astron.
  doi: 10.1038/s41550-017-0042
– volume: 159
  start-page: 248
  issue: 6
  year: 2020
  ident: 211_CR24
  publication-title: Astron. J.
  doi: 10.3847/1538-3881/ab88b0
– volume: 442
  start-page: 108
  year: 2016
  ident: 211_CR53
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2016.02.035
– volume: 2
  start-page: 297
  year: 2018
  ident: 211_CR48
  publication-title: Nat. Astron.
  doi: 10.1038/s41550-018-0411-6
– volume: 102
  start-page: 2555
  year: 2005
  ident: 211_CR19
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0409574102
– volume: 124
  start-page: 418
  year: 2012
  ident: 211_CR5
  publication-title: Publ. Astron. Soc. Pac. PASP
  doi: 10.1086/666325
– volume: 412
  start-page: 214
  issue: 6843
  year: 2001
  ident: 211_CR56
  publication-title: Nature
  doi: 10.1038/35084155
– volume: 11
  start-page: 3626
  issue: 1
  year: 2020
  ident: 211_CR20
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17330-1
– ident: 211_CR38
– ident: 211_CR8
– ident: 211_CR50
– volume: 112
  start-page: 20
  year: 2015
  ident: 211_CR45
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1406545111
– volume: 555
  start-page: 643
  year: 2018
  ident: 211_CR54
  publication-title: Nature
  doi: 10.1038/nature26144
– ident: 211_CR79
– volume: 893
  start-page: 1538
  issue: 2
  year: 2020
  ident: 211_CR52
  publication-title: Astrophys. J.
  doi: 10.3847/1538-4357/ab822d
– volume: 204
  start-page: 24
  year: 2013
  ident: 211_CR3
  publication-title: Astrophys. J. Suppl.
  doi: 10.1088/0067-0049/204/2/24
– volume: 604
  start-page: 91
  issue: 7
  year: 2004
  ident: 211_CR12
  publication-title: Astrophys. J.
– volume: 109
  start-page: 9750
  issue: 25
  year: 2012
  ident: 211_CR32
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1205223109
– volume: 4
  start-page: eaao5747
  year: 2018
  ident: 211_CR34
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aao5747
– volume: 116
  start-page: 17666
  issue: 36
  year: 2019
  ident: 211_CR31
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1907871116
– volume: 115
  start-page: 6506
  year: 2018
  ident: 211_CR49
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1711842115
– ident: 211_CR27
– volume: 6
  start-page: 845
  year: 1993
  ident: 211_CR77
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80129-7
– ident: 211_CR61
– volume: 229
  start-page: 2629
  year: 2020
  ident: 211_CR71
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjst/e2020-000098-9
– volume: 13
  start-page: 20160459
  year: 2016
  ident: 211_CR18
  publication-title: Interface
SSID ssj0056293
Score 2.3310275
Snippet What is habitability? Can we quantify it? What do we mean under the term habitable or potentially habitable planet? With estimates of the number of planets in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2207
SubjectTerms Artificial intelligence
Astrobiology
Astronomy
Astrophysics
Atomic
Classical and Continuum Physics
Classification
Computational geometry
Condensed Matter Physics
Convexity
Extrasolar planets
Habitability
Machine learning
Machine Learning and Astronomy
Materials Science
Measurement Science and Instrumentation
Modeling
Molecular
Neural networks
Optical and Plasma Physics
Optimization
Optimization techniques
Physics
Physics and Astronomy
Planet detection
Regular Article
Terrestrial planets
Title Quantifying the classification of exoplanets: in search for the right habitability metric
URI https://link.springer.com/article/10.1140/epjs/s11734-021-00211-z
https://www.proquest.com/docview/2573868226
Volume 230
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA66Ifgi_sTpHHnwtSxt06z1bcjmUBQEB9tTaNIEFN2G7UD313uXtk59UPC5zT18udx91365I-TcV1bbyPS8hNnM472Qe7G2iWeMCWIofBKd4X3n2zsxGvPrSTT5OuoL1e71L0kXqct-tqxrFk95N_d9NIe6AsxOvrfaJM0IC3hw5XHQr4MwZHXXb9fHKfKYUytp1y-GviemNdv88YPU5Z3hLtmpCCPtlzu8RzbMbJ9sOeGmzg_I9H6Zot4HbytRIHNUIx1G_Y-DnM4tNW_zBUpai_yCPs5o6dsUyKp731XnFNt1F2XL7nf6glO29CEZDwcPlyOvGpfg6TDkhRfHURqzDEqiTKsgFpYpHpk0YEZwBWFEqMjCEfSzOALawFORYrFi4RRzobiw4RFpzOYzc0xoloYqYSb08VOjECwFrFSvx8AwMCaTtYiosZK66iWOIy2eZXnPmUkEWZYgS8BXOpDlqkXY58JF2U7j7yXtejNkdb5yCYEmjAWQG9Eifr1B68d_mDz5x5pTsh04b0F5WZs0itelOQM-UqgOafavpjeDjvPAD4Rw2c4
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-EL2IT1yfOXgtm7ZpmvUmoqyPXRBcWE-hSRNQdHexXdD99c6kra-Dgucmc_iSzHzTfJkh5DjUzrjEpkGHuTzgacwDaVwnsNZGEhKfjsnxvXOvL7oDfjVMhl9bfaHavbmS9J66qmfL2nbyWLSLMERzqCvA6BQGs3myCIxAopprEJ02Thiiuq-3G2IXeYyptbTrF0PfA9Mn2_xxQerjzsUaWa0JIz2tVnidzNnRBlnywk1TbJL722mGeh98rUSBzFGDdBj1Px5yOnbUvo4nKGktixP6MKLV3qZAVv14n51TLNddViW73-gzdtkyW2RwcX531g3qdgmBiWNeBlImmWQ5pES50ZEUjmme2CxiVnANbkToxMERDHOZAG3gmcgwWXFwirnQXLh4myyMxiO7Q2iexbrDbBzir0YhWAZY6TRlYBgYk81bRDRYKVPXEseWFk-qeufMFIKsKpAV4Ks8yGrWIuxj4qQqp_H3lP1mMVR9vgoFjiaWAsiNaJGwWaDPz3-Y3P3HnCOy3L3r3aiby_71HlmJ_M5Bqdk-WShfpvYAuEmpD_0ufAcW2tst
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0BFYgL6geIBUp94BqtnTjeLDcErIC2Kyp1peVkxY4tgdrsigQJ-PXMOElX5cBKnGPPYTyeeRO_mQE4EsZbn7pBNOS-iOQgkVFm_TByzsUZJj5DW1C988-xupjIq2k6XYHzrhYmsN27J8mmpoG6NJV1f174trct77v5XdWvhCDRxDGgSCWi51X4gD5ZkHFP4pPOIWOED713BU2Up_ja0rzeEPR_kFogz1ePpSEGjT7CVgse2Ulz2p9gxZWfYT2QOG31BW5-PeTE_aHKJYbAjlmCxsQFCupnM8_c42xO9Na6Oma3JWvsnCFwDetDps6odXfdtO9-Yn9p4pbdhsno_PfpRdSOTohsksg6yrI0z3iB6VFhTZwpz41MXR5zp6RBl6JM6vE6iiJLEULIXOWUuHi80VIZqXyyA2vlrHS7wIo8MUPuEkG_HZXiOerKDAYcBSN6ckUPVKcrbdu-4jTe4o9uap65JiXrRska9auDkvVzD_i_jfOmtcbyLQfdYej2rlUanU6SKQQ6qgeiO6DF5yUi996x5xtsXJ-N9I_L8fd92IyD4RDr7ADW6vsH9xVhSm0OgxG-AM8a32k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+the+classification+of+exoplanets%3A+in+search+for+the+right+habitability+metric&rft.jtitle=The+European+physical+journal.+ST%2C+Special+topics&rft.au=Safonova+Margarita&rft.au=Mathur+Archana&rft.au=Basak+Suryoday&rft.au=Bora+Kakoli&rft.date=2021-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1951-6355&rft.eissn=1951-6401&rft.volume=230&rft.issue=10&rft.spage=2207&rft.epage=2220&rft_id=info:doi/10.1140%2Fepjs%2Fs11734-021-00211-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1951-6355&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1951-6355&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1951-6355&client=summon