Quantifying the classification of exoplanets: in search for the right habitability metric
What is habitability? Can we quantify it? What do we mean under the term habitable or potentially habitable planet? With estimates of the number of planets in our Galaxy alone running into billions, possibly a number greater than the number of stars, it is high time to start characterizing them, sor...
Saved in:
Published in | The European physical journal. ST, Special topics Vol. 230; no. 10; pp. 2207 - 2220 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | What is habitability? Can we quantify it? What do we mean under the term habitable or potentially habitable planet? With estimates of the number of planets in our Galaxy alone running into billions, possibly a number greater than the number of stars, it is high time to start characterizing them, sorting them into classes/types just like stars, to better understand their formation paths, their properties and, ultimately, their ability to beget or sustain life. After all, we do have life thriving on one of these billions of planets, why not on others? Which planets are better suited for life and which ones are definitely not worth spending expensive telescope time on? We need to find sort of quick assessment score, a metric, using which we can make a list of promising planets and dedicate our efforts to them. Exoplanetary habitability is a transdisciplinary subject integrating astrophysics, astrobiology, planetary science, and even terrestrial environmental sciences. It became a challenging problem in astroinformatics, an emerging area in computational astronomy. Here, we review the existing metrics of habitability and the new classification schemes (machine learning (ML), neural networks, activation functions) of extrasolar planets, and provide an exposition of the use of computational intelligence techniques to evaluate habitability scores and to automate the process of classification of exoplanets. We examine how solving convex optimization techniques, as in computing new metrics such as Cobb–Douglas habitability score (CDHS) and constant elasticity earth similarity approach (CEESA), cross-validates ML-based classification of exoplanets. Despite the recent criticism of exoplanetary habitability ranking, we are sure that this field has to continue and evolve to use all available machinery of astroinformatics, artificial intelligence (AI) and machine learning. It might actually develop into a sort of same scale as stellar types in astronomy, to be used as a quick tool of screening exoplanets in important characteristics in search for potentially habitable planets (PHPs), or Earth-like planets, for detailed follow-up targets. |
---|---|
AbstractList | What is habitability? Can we quantify it? What do we mean under the term habitable or potentially habitable planet? With estimates of the number of planets in our Galaxy alone running into billions, possibly a number greater than the number of stars, it is high time to start characterizing them, sorting them into classes/types just like stars, to better understand their formation paths, their properties and, ultimately, their ability to beget or sustain life. After all, we do have life thriving on one of these billions of planets, why not on others? Which planets are better suited for life and which ones are definitely not worth spending expensive telescope time on? We need to find sort of quick assessment score, a metric, using which we can make a list of promising planets and dedicate our efforts to them. Exoplanetary habitability is a transdisciplinary subject integrating astrophysics, astrobiology, planetary science, and even terrestrial environmental sciences. It became a challenging problem in astroinformatics, an emerging area in computational astronomy. Here, we review the existing metrics of habitability and the new classification schemes (machine learning (ML), neural networks, activation functions) of extrasolar planets, and provide an exposition of the use of computational intelligence techniques to evaluate habitability scores and to automate the process of classification of exoplanets. We examine how solving convex optimization techniques, as in computing new metrics such as Cobb–Douglas habitability score (CDHS) and constant elasticity earth similarity approach (CEESA), cross-validates ML-based classification of exoplanets. Despite the recent criticism of exoplanetary habitability ranking, we are sure that this field has to continue and evolve to use all available machinery of astroinformatics, artificial intelligence (AI) and machine learning. It might actually develop into a sort of same scale as stellar types in astronomy, to be used as a quick tool of screening exoplanets in important characteristics in search for potentially habitable planets (PHPs), or Earth-like planets, for detailed follow-up targets. |
Author | Basak, Suryoday Mathur, Archana Agrawal, Surbhi Safonova, Margarita Bora, Kakoli |
Author_xml | – sequence: 1 givenname: Margarita surname: Safonova fullname: Safonova, Margarita email: margarita.safonova@iiap.res.in organization: Indian Institute of Astrophysics – sequence: 2 givenname: Archana surname: Mathur fullname: Mathur, Archana organization: Department of Information Science and Engineering, Nitte Meenakshi Institute of Technology – sequence: 3 givenname: Suryoday surname: Basak fullname: Basak, Suryoday organization: Department of Computer Science and Engineering, Penn State University – sequence: 4 givenname: Kakoli surname: Bora fullname: Bora, Kakoli organization: Department of Information Science and Engineering, PES University South Campus – sequence: 5 givenname: Surbhi surname: Agrawal fullname: Agrawal, Surbhi organization: Department of Computer Science and Engineering, IIIT |
BookMark | eNqNkMtKAzEUhoNUsK0-gwHXY5PJZVLBhRRvUBBBF65CZpp0UqaZMUnB9ulNO4rgRhdJDuH_knO-ERi41mkAzjG6xJiiie5WYRIwLgjNUI4zlDac7Y7AEE8ZzjhFePBdE8ZOwCiEFUKM51MyBG_PG-WiNVvrljDWGlaNCsEaW6loWwdbA_VH2zXK6RiuoHUwaOWrGprWH_LeLusIa1XamFZj4xaudfS2OgXHRjVBn32dY_B6d_sye8jmT_ePs5t5VhFCYyYEUwItco4XVZkLblBJmVY50pyWBSe8ZAYxjBeCFZRQxRUVRbqiiPKSckPG4KJ_t_Pt-0aHKFftxrv0pcxZQQQXec5T6rpPVb4NwWsjq9TwfsTolW0kRnJvU-5tyt6mTCLlwabcJb74xXferpXf_oMUPRkS4Zba__T3F_oJ75WQYw |
CitedBy_id | crossref_primary_10_1140_epjs_s11734_021_00275_x crossref_primary_10_1051_0004_6361_202346332 crossref_primary_10_1093_mnras_stae1758 crossref_primary_10_3847_PSJ_ad53c3 |
Cites_doi | 10.1146/annurev-earth-060115-012355 10.1063/1.5028373 10.1038/192440a0 10.1038/ncomms15766 10.1016/j.ascom.2016.08.001 10.1080/00033793600200301 10.1038/s41550-020-1069-4 10.1088/0004-637X/764/1/105 10.1088/0004-637X/814/2/91 10.17632/c37bvvxp3z.8 10.1063/1.5120831 10.3847/1538-4357/ab1d52 10.3847/1538-4357/aadf31 10.1038/21811 10.1029/2018JE005802 10.1109/ICACCI.2018.8554460 10.1017/S1473550417000349 10.1007/BF01207646 10.1016/j.ascom.2019.100335 10.1017/S1473550415000208 10.1126/science.1065998 10.1089/ast.2013.1088 10.1051/0004-6361:20077939 10.3847/1538-3881/abc418 10.1089/ast.2015.1324 10.1038/nature10092 10.1007/s10509-017-3131-y 10.3389/fspas.2020.00007 10.1093/mnras/stx1910 10.3390/challe5010159 10.1073/pnas.1111694108 10.1017/S1473550414000196 10.1186/s13677-015-0050-8 10.1073/pnas.1611843113 10.1006/icar.1993.1010 10.1073/pnas.1319909110 10.1007/s10489-020-01892-0 10.3390/challe5020284 10.2307/1927286 10.1089/ast.2010.0592 10.1038/ngeo2412 10.1016/j.ascom.2018.03.003 10.1017/S1473550417000118 10.1038/s41550-017-0042 10.3847/1538-3881/ab88b0 10.1016/j.epsl.2016.02.035 10.1038/s41550-018-0411-6 10.1073/pnas.0409574102 10.1086/666325 10.1038/35084155 10.1038/s41467-020-17330-1 10.1073/pnas.1406545111 10.1038/nature26144 10.3847/1538-4357/ab822d 10.1088/0067-0049/204/2/24 10.1073/pnas.1205223109 10.1126/sciadv.aao5747 10.1073/pnas.1907871116 10.1073/pnas.1711842115 10.1016/S0893-6080(05)80129-7 10.1140/epjst/e2020-000098-9 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2021 The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
DBID | AAYXX CITATION |
DOI | 10.1140/epjs/s11734-021-00211-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1951-6401 |
EndPage | 2220 |
ExternalDocumentID | 10_1140_epjs_s11734_021_00211_z |
GroupedDBID | -5F -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 123 199 1N0 203 29G 29~ 2J2 2JY 2KG 2KM 2LR 30V 4.4 406 408 40D 40E 67Z 6NX 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAYIU AAYQN ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHIR ADINQ ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFFNX AFQWF AFWTZ AFZKB AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHSBF AHYZX AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CSCUP DDRTE DNIVK DPUIP EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HLICF HMJXF HRMNR HVGLF HZ~ IKXTQ IWAJR IXC IXD IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J P9T PF0 QOS R89 RED RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z83 Z85 Z88 ZMTXR 2JN AAPKM AAYXX ABBRH ABDBE AFDZB AFOHR AHPBZ ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c334t-885a80d261dcb286f0b45ea20e64b7636b5f0511d857434a6a4875f04046b46f3 |
IEDL.DBID | U2A |
ISSN | 1951-6355 |
IngestDate | Fri Jul 25 05:11:51 EDT 2025 Thu Apr 24 23:10:05 EDT 2025 Tue Jul 01 02:33:00 EDT 2025 Fri Feb 21 02:48:26 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-885a80d261dcb286f0b45ea20e64b7636b5f0511d857434a6a4875f04046b46f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2573868226 |
PQPubID | 2044459 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2573868226 crossref_citationtrail_10_1140_epjs_s11734_021_00211_z crossref_primary_10_1140_epjs_s11734_021_00211_z springer_journals_10_1140_epjs_s11734_021_00211_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210900 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 9 year: 2021 text: 20210900 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The European physical journal. ST, Special topics |
PublicationTitleAbbrev | Eur. Phys. J. Spec. Top |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | A.J. Sternfeld, La Nature, Masson et Cie (eds.), Paris, No. 2956, 1–12 (1935) (in French) MurakamiMHiroseKYurimotoHNakashimaSTakafujiNScience2002295556118852002Sci...295.1885M P. Dayal, M. Ward, C. Cockell, Preprint arXiv:1606.09224 (2016) SafonovaMMurthyJShchekinovYAInt. J. Astrobiol.201615932016IJAsB..15...93S Haqq-MisraJKopparapuRWolfEInt. J. Astrobiol.201817177862018IJAsB..17...77H StevensonDJNature200141268432142192001Natur.412..214S Rodríguez-MozosJMRMoyaAMon. Not. R. Astron. Soc.20174714462846362017MNRAS.471.4628R J.M. Kashyap, M. Safonova, S.B. Gudennavar, ESI and MSI data sets 2, Mendeley Data, v8 (2020). https://doi.org/10.17632/c37bvvxp3z.8 IrwinLNMéndezAFairénAGSchulze-MakuchDChallenges201451592014Chall...5..159I StevensonDSLargeSInt. J. Astrobiol.20171832042082019IJAsB..18..204S A. Méndez, in Proceedings of sixth astrobiology science conference, Houston, TX, USA, 26–29 April 2010 SpiegelDSTurnerELProc. Natl. Acad. Sci.20121093954002012PNAS..109..395S BrysonSKunimotoMKopparapuRKCoughlinJLBoruckiWJAstron. J.2021161362021AJ....161...36B GlaserDMHartnettHEDeschSJAstrophys. J.2020893215384357 AtriDSocJRInterface20161320160459 SahaSSarkarJDwivediADwivediNNarasimhamurthyAMRanjanRJ. Cloud Comput.201651123 SaleseFPondrelliMNeesemanASchmidtGOriGGJ. Geophys. Res. Planets20191243743952019JGRE..124..374S DickeRHNature19611924404411961Natur.192..440D WordsworthRDThe climate of early marsAnnu. Rev. Earth Planet. Sci.2016443812016AREPS..44..381W S. Saha, A. Mathur, K. Bora, S. Basak, S. Agrawal, in Proc. 2018 international conference on advances in computing, communications and informatics (ICACCI), pp. 1781–1786 (2018), Bangalore. https://doi.org/10.1109/ICACCI.2018.8554460 MoronoYItoMHoshinoTNat. Commun.202011136262020NatCo..11.3626M UnterbornCTNat. Astron.201822972018NatAs...2..297U AbramovOMojzsisSJEarth Planet. Sci. Lett.20164421082016E&PSL.442..108A SwiftJJJohnsonJAMortonTDAstrophys. J.201376411052013ApJ...764..105S LuoWCangXHowardANat. Commun.20178157662017NatCo...815766L R. Yedida S. Saha, A novel adaptive learning rate scheduler for deep neural networks. Preprint arXiv:1902.07399 (2019) MatsuuraMZijlstraAAMolsterFJAstrophys. J.2004604791799 SchwietermanEWReinhardCTOlsonSLHarmanCELyonsTWAstrophys. J.2019878192019ApJ...878...19S McCollomTMProc. Natl. Acad. Sci.20111134913965139702016PNAS..11313965M BatalhaNMRoweJFBrysonSTAstrophys. J. Suppl.2013204242013ApJS..204...24B ZhangYGGajjarVFosterGAstrophys. J.20188661492018ApJ...866..149Z CardenasRPerezNMartinez-FriasJMartinOChallenges201452842014Chall...5..284C YedidaRSahaSPrashanthTAppl. Intell.202010.1007/s10489-020-01892-0 T.E. Morris, Princ. Planet. Biol. Lecture Notes, Ch. 5 (1999), http://www.planetarybiology.com. Accessed 5 Feb 2018 SeagerSHuangJPetkowskiJJNat. Astron.202048028062020NatAs...4..802S LimbachMATurnerELProc. Natl. Acad. Sci.2015112202015PNAS..112...20L WitzanyGFront. Astron. Space Sci.20207710.3389/fspas.2020.000072020FrASS...7....7W SumiTKamiyaKBennettDPNature20114733492011Natur.473..349S M. Safonova, C. Sivaram, in Planet Formation and Panspermia. New Prospects for the Movement of Life through Space, [PNSP, Volume in the series Astrobiology Perspectives on Life of the Universe, Series Eds: R. Gordon & J. Seckbach, 2021] B. Vukotić, ed. by J. Seckbach, R. Gordon (2021) (ISBN: 9781119640394) SahaSBasakSSafonovaMBoraKAgrawalSSarkarPMurthyJAstron. Comput.2018231412018A&C....23..141S KleinFGrozevaNGSeewaldJSProc. Natl. Acad. Sci.20191163617666176722019PNAS..11617666K Krissansen-TottonJOlsonSCatlingDCSci. Adv.20184eaao57472018SciA....4.5747K BalakrishnanHNKathpaliaASahaSNagarajNChaos Interdiscip. J. Nonlinear Sci.201929113125 StephanieLOEdwardWSChristopherTRAstrophys. J.2012858L14 von BlohWBounamaCCuntzMAstron. Astrophys.200747613652007A&A...476.1365V D. Misra, in Proc. 31st British machine vision conference (BMVC), (2020) Bar-OnYMPhillipsRMiloRProc. Natl. Acad. Sci.20181156506 TurnbullMCGlassmanTRobergeAPubl. Astron. Soc. Pac. PASP20121244182012PASP..124..418T McColleyGAnn. Sci.19361385430 SpearJRWalkerJJMcCollomTMPaceNRProc. Natl. Acad. Sci.2005102255525602005PNAS..102.2555S BarnesRMeadowsVSEvansNAstrophys. J.2015814912015ApJ...814...91B BBC News, Tardigrades: ‘Water Bears’ Stuck on the Moon after Crash (2019), https://www.bbc.com/news/newsbeat-49265125. Accessed 17 Sept 2019 KastingJFWhitmireDPReynoldsRTIcarus19931011081993Icar..101..108K StevensonDJNature1999400321999Natur.400...32S RocherLPuranas1986WiesbadenOtto HarrassowitzISBN 978-3447025225 LoebAInt. J. Astrobiol.2014133373392014IJAsB..13..337L BoraKSahaSAgrawalSSafonovaMRouthSNarasimhamurthyAAstron. Comput.2016171291432016A&C....17..129B PathakJWiknerAFussellRChaos Interdiscip. J. Nonlinear Sci.2018284041101 OnofriSde VeraJ-PAstrobiology2015151210522015AsBio..15.1052O CitronRMangaMHemingwayDNature20185556432018Natur.555..643C G.A. Tikhov, Priroda (Leningrad) 46(2), 3–6 (1947) (in Russian) LibbyWFLife on Jupiter?Orig. Life Evol. Biosph.19745483486 BasakSSahaSMathurABoraKMakhijaSSafonovaMAgrawalSAstron. Comput.202030100335 Schulze-MakuchDMéndezAFairénAGAstrobiology20111110412011AsBio..11.1041S HellerRArmstrongJAstrobiology20141450662014AsBio..14...50H S.J. Desch, S. Kane, C.M. Lisse, et al., A white paper for the the “Astrobiology Science Strategy for the Search for Life in the Universe” program by the National Academy of Sciences. Preprint arXiv:1801.06935v1 (2018) PetiguraEAHowardAWMarcyGWProc. Natl. Acad. Sci.20131104819273192782013PNAS..11019273P KashyapJMGudennavarSBDoshiUSafonovaMAstrophys. Space Sci.201736281462017Ap&SS.362..146K KunimotoMMatthewsJMAstron. J.202015962482020AJ....159..248K SahaSNagarajNMathurAYedidaRSnehaHREur. Phys. J. Spec. Top.202022926292738 G. Ginde, S. Saha, A. Mathur, S. Venkatagiri, S. Vadakkepat, A. Narasimhamurthy, B.S. Daya Sagar, J. Scientometr. 107(1), 1–51 (2016) MinaiAWilliamsRNeural Netw.19936845853 Martín-TorresFZorzanoM-PValentín-SerranoPNat. Geosci.201583573612015NatGe...8..357M P. Ramachandran, B. Zoph, Q. Le, Preprint arxiv:1710.05941 (2017) SchrödingerEWhat is life? The physical aspect of the living cell1944CambridgeCambridge University Press1254.01052 OzeCJonesLCGoldsmithJIRosenbauerRJProc. Natl. Acad. Sci.20121092597502012PNAS..109.9750O ArrowKJCheneryHBMinhasBSSolowRMRev. Econ. Stat.196143225 TaskerETanJHengKKaneSSpiegeDLthe ELSI Origins Network Planetary Diversity WorkshopNat. Astron.201710042 Y. Wang, Y. Liu, F. Tian, Y. Hu, Y. Huang, Preprint arXiv:1710.01405 (2017) R Cardenas (211_CR39) 2014; 5 R Citron (211_CR54) 2018; 555 E Schrödinger (211_CR13) 1944 DS Stevenson (211_CR75) 2017; 18 A Minai (211_CR77) 1993; 6 CT Unterborn (211_CR48) 2018; 2 F Salese (211_CR59) 2019; 124 R Heller (211_CR47) 2014; 14 DM Glaser (211_CR52) 2020; 893 S Saha (211_CR67) 2016; 5 211_CR50 A Loeb (211_CR28) 2014; 13 O Abramov (211_CR53) 2016; 442 R Barnes (211_CR36) 2015; 814 JF Kasting (211_CR43) 1993; 101 YG Zhang (211_CR2) 2018; 866 211_CR51 W von Bloh (211_CR64) 2007; 476 LN Irwin (211_CR63) 2014; 5 S Seager (211_CR16) 2020; 4 J Pathak (211_CR1) 2018; 28 DS Spiegel (211_CR22) 2012; 109 J Haqq-Misra (211_CR29) 2018; 17 S Onofri (211_CR57) 2015; 15 M Murakami (211_CR17) 2002; 295 JJ Swift (211_CR23) 2013; 764 T Sumi (211_CR10) 2011; 473 211_CR61 JMR Rodríguez-Mozos (211_CR65) 2017; 471 YM Bar-On (211_CR49) 2018; 115 211_CR21 NM Batalha (211_CR3) 2013; 204 C Oze (211_CR32) 2012; 109 211_CR62 DJ Stevenson (211_CR44) 1999; 400 R Yedida (211_CR72) 2020 J Krissansen-Totton (211_CR34) 2018; 4 211_CR66 K Bora (211_CR40) 2016; 17 211_CR27 M Safonova (211_CR11) 2016; 15 WF Libby (211_CR15) 1974; 5 Y Morono (211_CR20) 2020; 11 E Tasker (211_CR42) 2017; 1 211_CR9 211_CR8 W Luo (211_CR55) 2017; 8 211_CR70 L Rocher (211_CR6) 1986 M Matsuura (211_CR12) 2004; 604 KJ Arrow (211_CR69) 1961; 43 S Saha (211_CR71) 2020; 229 211_CR74 G McColley (211_CR7) 1936; 1 HN Balakrishnan (211_CR73) 2019; 29 211_CR79 F Klein (211_CR31) 2019; 116 211_CR78 EA Petigura (211_CR4) 2013; 110 RH Dicke (211_CR26) 1961; 192 JR Spear (211_CR19) 2005; 102 211_CR38 S Bryson (211_CR25) 2021; 161 LO Stephanie (211_CR33) 2012; 858 D Atri (211_CR18) 2016; 13 JM Kashyap (211_CR37) 2017; 362 MC Turnbull (211_CR5) 2012; 124 G Witzany (211_CR14) 2020; 7 S Basak (211_CR68) 2020; 30 TM McCollom (211_CR30) 2011; 113 DJ Stevenson (211_CR56) 2001; 412 EW Schwieterman (211_CR76) 2019; 878 M Kunimoto (211_CR24) 2020; 159 MA Limbach (211_CR45) 2015; 112 RD Wordsworth (211_CR60) 2016; 44 F Martín-Torres (211_CR58) 2015; 8 S Saha (211_CR41) 2018; 23 211_CR46 D Schulze-Makuch (211_CR35) 2011; 11 |
References_xml | – reference: BrysonSKunimotoMKopparapuRKCoughlinJLBoruckiWJAstron. J.2021161362021AJ....161...36B – reference: OzeCJonesLCGoldsmithJIRosenbauerRJProc. Natl. Acad. Sci.20121092597502012PNAS..109.9750O – reference: SchrödingerEWhat is life? The physical aspect of the living cell1944CambridgeCambridge University Press1254.01052 – reference: TaskerETanJHengKKaneSSpiegeDLthe ELSI Origins Network Planetary Diversity WorkshopNat. Astron.201710042 – reference: T.E. Morris, Princ. Planet. Biol. Lecture Notes, Ch. 5 (1999), http://www.planetarybiology.com. Accessed 5 Feb 2018 – reference: LuoWCangXHowardANat. Commun.20178157662017NatCo...815766L – reference: SchwietermanEWReinhardCTOlsonSLHarmanCELyonsTWAstrophys. J.2019878192019ApJ...878...19S – reference: BarnesRMeadowsVSEvansNAstrophys. J.2015814912015ApJ...814...91B – reference: Bar-OnYMPhillipsRMiloRProc. Natl. Acad. Sci.20181156506 – reference: StevensonDJNature200141268432142192001Natur.412..214S – reference: HellerRArmstrongJAstrobiology20141450662014AsBio..14...50H – reference: StevensonDJNature1999400321999Natur.400...32S – reference: BatalhaNMRoweJFBrysonSTAstrophys. J. Suppl.2013204242013ApJS..204...24B – reference: SpiegelDSTurnerELProc. Natl. Acad. Sci.20121093954002012PNAS..109..395S – reference: BalakrishnanHNKathpaliaASahaSNagarajNChaos Interdiscip. J. Nonlinear Sci.201929113125 – reference: J.M. Kashyap, M. Safonova, S.B. Gudennavar, ESI and MSI data sets 2, Mendeley Data, v8 (2020). https://doi.org/10.17632/c37bvvxp3z.8 – reference: von BlohWBounamaCCuntzMAstron. Astrophys.200747613652007A&A...476.1365V – reference: MinaiAWilliamsRNeural Netw.19936845853 – reference: Krissansen-TottonJOlsonSCatlingDCSci. Adv.20184eaao57472018SciA....4.5747K – reference: G. Ginde, S. Saha, A. Mathur, S. Venkatagiri, S. Vadakkepat, A. Narasimhamurthy, B.S. Daya Sagar, J. Scientometr. 107(1), 1–51 (2016) – reference: AtriDSocJRInterface20161320160459 – reference: S.J. Desch, S. Kane, C.M. Lisse, et al., A white paper for the the “Astrobiology Science Strategy for the Search for Life in the Universe” program by the National Academy of Sciences. Preprint arXiv:1801.06935v1 (2018) – reference: MoronoYItoMHoshinoTNat. Commun.202011136262020NatCo..11.3626M – reference: SafonovaMMurthyJShchekinovYAInt. J. Astrobiol.201615932016IJAsB..15...93S – reference: McCollomTMProc. Natl. Acad. Sci.20111134913965139702016PNAS..11313965M – reference: G.A. Tikhov, Priroda (Leningrad) 46(2), 3–6 (1947) (in Russian) – reference: A. Méndez, in Proceedings of sixth astrobiology science conference, Houston, TX, USA, 26–29 April 2010 – reference: LoebAInt. J. Astrobiol.2014133373392014IJAsB..13..337L – reference: Rodríguez-MozosJMRMoyaAMon. Not. R. Astron. Soc.20174714462846362017MNRAS.471.4628R – reference: KastingJFWhitmireDPReynoldsRTIcarus19931011081993Icar..101..108K – reference: StevensonDSLargeSInt. J. Astrobiol.20171832042082019IJAsB..18..204S – reference: AbramovOMojzsisSJEarth Planet. Sci. Lett.20164421082016E&PSL.442..108A – reference: SeagerSHuangJPetkowskiJJNat. Astron.202048028062020NatAs...4..802S – reference: McColleyGAnn. Sci.19361385430 – reference: Schulze-MakuchDMéndezAFairénAGAstrobiology20111110412011AsBio..11.1041S – reference: GlaserDMHartnettHEDeschSJAstrophys. J.2020893215384357 – reference: SumiTKamiyaKBennettDPNature20114733492011Natur.473..349S – reference: StephanieLOEdwardWSChristopherTRAstrophys. J.2012858L14 – reference: PetiguraEAHowardAWMarcyGWProc. Natl. Acad. Sci.20131104819273192782013PNAS..11019273P – reference: BBC News, Tardigrades: ‘Water Bears’ Stuck on the Moon after Crash (2019), https://www.bbc.com/news/newsbeat-49265125. Accessed 17 Sept 2019 – reference: M. Safonova, C. Sivaram, in Planet Formation and Panspermia. New Prospects for the Movement of Life through Space, [PNSP, Volume in the series Astrobiology Perspectives on Life of the Universe, Series Eds: R. Gordon & J. Seckbach, 2021] B. Vukotić, ed. by J. Seckbach, R. Gordon (2021) (ISBN: 9781119640394) – reference: P. Dayal, M. Ward, C. Cockell, Preprint arXiv:1606.09224 (2016) – reference: LibbyWFLife on Jupiter?Orig. Life Evol. Biosph.19745483486 – reference: BoraKSahaSAgrawalSSafonovaMRouthSNarasimhamurthyAAstron. Comput.2016171291432016A&C....17..129B – reference: CardenasRPerezNMartinez-FriasJMartinOChallenges201452842014Chall...5..284C – reference: KleinFGrozevaNGSeewaldJSProc. Natl. Acad. Sci.20191163617666176722019PNAS..11617666K – reference: SahaSSarkarJDwivediADwivediNNarasimhamurthyAMRanjanRJ. Cloud Comput.201651123 – reference: SahaSNagarajNMathurAYedidaRSnehaHREur. Phys. J. Spec. Top.202022926292738 – reference: Y. Wang, Y. Liu, F. Tian, Y. Hu, Y. Huang, Preprint arXiv:1710.01405 (2017) – reference: P. Ramachandran, B. Zoph, Q. Le, Preprint arxiv:1710.05941 (2017) – reference: SpearJRWalkerJJMcCollomTMPaceNRProc. Natl. Acad. Sci.2005102255525602005PNAS..102.2555S – reference: CitronRMangaMHemingwayDNature20185556432018Natur.555..643C – reference: KashyapJMGudennavarSBDoshiUSafonovaMAstrophys. Space Sci.201736281462017Ap&SS.362..146K – reference: RocherLPuranas1986WiesbadenOtto HarrassowitzISBN 978-3447025225 – reference: UnterbornCTNat. Astron.201822972018NatAs...2..297U – reference: WordsworthRDThe climate of early marsAnnu. Rev. Earth Planet. Sci.2016443812016AREPS..44..381W – reference: Haqq-MisraJKopparapuRWolfEInt. J. Astrobiol.201817177862018IJAsB..17...77H – reference: Martín-TorresFZorzanoM-PValentín-SerranoPNat. Geosci.201583573612015NatGe...8..357M – reference: S. Saha, A. Mathur, K. Bora, S. Basak, S. Agrawal, in Proc. 2018 international conference on advances in computing, communications and informatics (ICACCI), pp. 1781–1786 (2018), Bangalore. https://doi.org/10.1109/ICACCI.2018.8554460 – reference: YedidaRSahaSPrashanthTAppl. Intell.202010.1007/s10489-020-01892-0 – reference: ArrowKJCheneryHBMinhasBSSolowRMRev. Econ. Stat.196143225 – reference: SwiftJJJohnsonJAMortonTDAstrophys. J.201376411052013ApJ...764..105S – reference: DickeRHNature19611924404411961Natur.192..440D – reference: SaleseFPondrelliMNeesemanASchmidtGOriGGJ. Geophys. Res. Planets20191243743952019JGRE..124..374S – reference: MatsuuraMZijlstraAAMolsterFJAstrophys. J.2004604791799 – reference: R. Yedida S. Saha, A novel adaptive learning rate scheduler for deep neural networks. Preprint arXiv:1902.07399 (2019) – reference: TurnbullMCGlassmanTRobergeAPubl. Astron. Soc. Pac. PASP20121244182012PASP..124..418T – reference: SahaSBasakSSafonovaMBoraKAgrawalSSarkarPMurthyJAstron. Comput.2018231412018A&C....23..141S – reference: PathakJWiknerAFussellRChaos Interdiscip. J. Nonlinear Sci.2018284041101 – reference: OnofriSde VeraJ-PAstrobiology2015151210522015AsBio..15.1052O – reference: WitzanyGFront. Astron. Space Sci.20207710.3389/fspas.2020.000072020FrASS...7....7W – reference: BasakSSahaSMathurABoraKMakhijaSSafonovaMAgrawalSAstron. Comput.202030100335 – reference: ZhangYGGajjarVFosterGAstrophys. J.20188661492018ApJ...866..149Z – reference: KunimotoMMatthewsJMAstron. J.202015962482020AJ....159..248K – reference: IrwinLNMéndezAFairénAGSchulze-MakuchDChallenges201451592014Chall...5..159I – reference: LimbachMATurnerELProc. Natl. Acad. Sci.2015112202015PNAS..112...20L – reference: MurakamiMHiroseKYurimotoHNakashimaSTakafujiNScience2002295556118852002Sci...295.1885M – reference: D. Misra, in Proc. 31st British machine vision conference (BMVC), (2020) – reference: A.J. Sternfeld, La Nature, Masson et Cie (eds.), Paris, No. 2956, 1–12 (1935) (in French) – volume: 858 start-page: L14 year: 2012 ident: 211_CR33 publication-title: Astrophys. J. – volume: 44 start-page: 381 year: 2016 ident: 211_CR60 publication-title: Annu. Rev. Earth Planet. Sci. doi: 10.1146/annurev-earth-060115-012355 – volume: 28 start-page: 041101 issue: 4 year: 2018 ident: 211_CR1 publication-title: Chaos Interdiscip. J. Nonlinear Sci. doi: 10.1063/1.5028373 – volume: 192 start-page: 440 year: 1961 ident: 211_CR26 publication-title: Nature doi: 10.1038/192440a0 – volume-title: What is life? The physical aspect of the living cell year: 1944 ident: 211_CR13 – volume: 8 start-page: 15766 year: 2017 ident: 211_CR55 publication-title: Nat. Commun. doi: 10.1038/ncomms15766 – volume: 17 start-page: 129 year: 2016 ident: 211_CR40 publication-title: Astron. Comput. doi: 10.1016/j.ascom.2016.08.001 – volume: 1 start-page: 385 year: 1936 ident: 211_CR7 publication-title: Ann. Sci. doi: 10.1080/00033793600200301 – volume: 4 start-page: 802 year: 2020 ident: 211_CR16 publication-title: Nat. Astron. doi: 10.1038/s41550-020-1069-4 – volume: 764 start-page: 105 issue: 1 year: 2013 ident: 211_CR23 publication-title: Astrophys. J. doi: 10.1088/0004-637X/764/1/105 – volume: 814 start-page: 91 year: 2015 ident: 211_CR36 publication-title: Astrophys. J. doi: 10.1088/0004-637X/814/2/91 – ident: 211_CR62 doi: 10.17632/c37bvvxp3z.8 – ident: 211_CR66 – volume: 29 start-page: 113125 year: 2019 ident: 211_CR73 publication-title: Chaos Interdiscip. J. Nonlinear Sci. doi: 10.1063/1.5120831 – volume: 878 start-page: 19 year: 2019 ident: 211_CR76 publication-title: Astrophys. J. doi: 10.3847/1538-4357/ab1d52 – volume: 866 start-page: 149 year: 2018 ident: 211_CR2 publication-title: Astrophys. J. doi: 10.3847/1538-4357/aadf31 – volume: 400 start-page: 32 year: 1999 ident: 211_CR44 publication-title: Nature doi: 10.1038/21811 – volume: 124 start-page: 374 year: 2019 ident: 211_CR59 publication-title: J. Geophys. Res. Planets doi: 10.1029/2018JE005802 – ident: 211_CR70 doi: 10.1109/ICACCI.2018.8554460 – volume: 18 start-page: 204 issue: 3 year: 2017 ident: 211_CR75 publication-title: Int. J. Astrobiol. doi: 10.1017/S1473550417000349 – volume: 5 start-page: 483 year: 1974 ident: 211_CR15 publication-title: Orig. Life Evol. Biosph. doi: 10.1007/BF01207646 – ident: 211_CR21 – volume: 30 start-page: 100335 year: 2020 ident: 211_CR68 publication-title: Astron. Comput. doi: 10.1016/j.ascom.2019.100335 – volume: 15 start-page: 93 year: 2016 ident: 211_CR11 publication-title: Int. J. Astrobiol. doi: 10.1017/S1473550415000208 – volume: 295 start-page: 1885 issue: 5561 year: 2002 ident: 211_CR17 publication-title: Science doi: 10.1126/science.1065998 – volume: 14 start-page: 50 year: 2014 ident: 211_CR47 publication-title: Astrobiology doi: 10.1089/ast.2013.1088 – volume: 476 start-page: 1365 year: 2007 ident: 211_CR64 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361:20077939 – volume: 161 start-page: 36 year: 2021 ident: 211_CR25 publication-title: Astron. J. doi: 10.3847/1538-3881/abc418 – volume: 15 start-page: 1052 issue: 12 year: 2015 ident: 211_CR57 publication-title: Astrobiology doi: 10.1089/ast.2015.1324 – volume: 473 start-page: 349 year: 2011 ident: 211_CR10 publication-title: Nature doi: 10.1038/nature10092 – volume: 362 start-page: 146 issue: 8 year: 2017 ident: 211_CR37 publication-title: Astrophys. Space Sci. doi: 10.1007/s10509-017-3131-y – volume: 7 start-page: 7 year: 2020 ident: 211_CR14 publication-title: Front. Astron. Space Sci. doi: 10.3389/fspas.2020.00007 – volume: 471 start-page: 4628 issue: 4 year: 2017 ident: 211_CR65 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/stx1910 – volume: 5 start-page: 159 year: 2014 ident: 211_CR63 publication-title: Challenges doi: 10.3390/challe5010159 – volume-title: Puranas year: 1986 ident: 211_CR6 – volume: 109 start-page: 395 year: 2012 ident: 211_CR22 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1111694108 – volume: 13 start-page: 337 year: 2014 ident: 211_CR28 publication-title: Int. J. Astrobiol. doi: 10.1017/S1473550414000196 – volume: 5 start-page: 1 issue: 1 year: 2016 ident: 211_CR67 publication-title: J. Cloud Comput. doi: 10.1186/s13677-015-0050-8 – volume: 113 start-page: 13965 issue: 49 year: 2011 ident: 211_CR30 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1611843113 – volume: 101 start-page: 108 year: 1993 ident: 211_CR43 publication-title: Icarus doi: 10.1006/icar.1993.1010 – volume: 110 start-page: 19273 issue: 48 year: 2013 ident: 211_CR4 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1319909110 – ident: 211_CR46 – year: 2020 ident: 211_CR72 publication-title: Appl. Intell. doi: 10.1007/s10489-020-01892-0 – volume: 5 start-page: 284 year: 2014 ident: 211_CR39 publication-title: Challenges doi: 10.3390/challe5020284 – volume: 43 start-page: 225 year: 1961 ident: 211_CR69 publication-title: Rev. Econ. Stat. doi: 10.2307/1927286 – volume: 11 start-page: 1041 year: 2011 ident: 211_CR35 publication-title: Astrobiology doi: 10.1089/ast.2010.0592 – ident: 211_CR51 – volume: 8 start-page: 357 year: 2015 ident: 211_CR58 publication-title: Nat. Geosci. doi: 10.1038/ngeo2412 – ident: 211_CR9 – volume: 23 start-page: 141 year: 2018 ident: 211_CR41 publication-title: Astron. Comput. doi: 10.1016/j.ascom.2018.03.003 – ident: 211_CR78 – ident: 211_CR74 – volume: 17 start-page: 77 issue: 1 year: 2018 ident: 211_CR29 publication-title: Int. J. Astrobiol. doi: 10.1017/S1473550417000118 – volume: 1 start-page: 0042 year: 2017 ident: 211_CR42 publication-title: Nat. Astron. doi: 10.1038/s41550-017-0042 – volume: 159 start-page: 248 issue: 6 year: 2020 ident: 211_CR24 publication-title: Astron. J. doi: 10.3847/1538-3881/ab88b0 – volume: 442 start-page: 108 year: 2016 ident: 211_CR53 publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2016.02.035 – volume: 2 start-page: 297 year: 2018 ident: 211_CR48 publication-title: Nat. Astron. doi: 10.1038/s41550-018-0411-6 – volume: 102 start-page: 2555 year: 2005 ident: 211_CR19 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0409574102 – volume: 124 start-page: 418 year: 2012 ident: 211_CR5 publication-title: Publ. Astron. Soc. Pac. PASP doi: 10.1086/666325 – volume: 412 start-page: 214 issue: 6843 year: 2001 ident: 211_CR56 publication-title: Nature doi: 10.1038/35084155 – volume: 11 start-page: 3626 issue: 1 year: 2020 ident: 211_CR20 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17330-1 – ident: 211_CR38 – ident: 211_CR8 – ident: 211_CR50 – volume: 112 start-page: 20 year: 2015 ident: 211_CR45 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1406545111 – volume: 555 start-page: 643 year: 2018 ident: 211_CR54 publication-title: Nature doi: 10.1038/nature26144 – ident: 211_CR79 – volume: 893 start-page: 1538 issue: 2 year: 2020 ident: 211_CR52 publication-title: Astrophys. J. doi: 10.3847/1538-4357/ab822d – volume: 204 start-page: 24 year: 2013 ident: 211_CR3 publication-title: Astrophys. J. Suppl. doi: 10.1088/0067-0049/204/2/24 – volume: 604 start-page: 91 issue: 7 year: 2004 ident: 211_CR12 publication-title: Astrophys. J. – volume: 109 start-page: 9750 issue: 25 year: 2012 ident: 211_CR32 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1205223109 – volume: 4 start-page: eaao5747 year: 2018 ident: 211_CR34 publication-title: Sci. Adv. doi: 10.1126/sciadv.aao5747 – volume: 116 start-page: 17666 issue: 36 year: 2019 ident: 211_CR31 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1907871116 – volume: 115 start-page: 6506 year: 2018 ident: 211_CR49 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1711842115 – ident: 211_CR27 – volume: 6 start-page: 845 year: 1993 ident: 211_CR77 publication-title: Neural Netw. doi: 10.1016/S0893-6080(05)80129-7 – ident: 211_CR61 – volume: 229 start-page: 2629 year: 2020 ident: 211_CR71 publication-title: Eur. Phys. J. Spec. Top. doi: 10.1140/epjst/e2020-000098-9 – volume: 13 start-page: 20160459 year: 2016 ident: 211_CR18 publication-title: Interface |
SSID | ssj0056293 |
Score | 2.3310275 |
Snippet | What is habitability? Can we quantify it? What do we mean under the term habitable or potentially habitable planet? With estimates of the number of planets in... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2207 |
SubjectTerms | Artificial intelligence Astrobiology Astronomy Astrophysics Atomic Classical and Continuum Physics Classification Computational geometry Condensed Matter Physics Convexity Extrasolar planets Habitability Machine learning Machine Learning and Astronomy Materials Science Measurement Science and Instrumentation Modeling Molecular Neural networks Optical and Plasma Physics Optimization Optimization techniques Physics Physics and Astronomy Planet detection Regular Article Terrestrial planets |
Title | Quantifying the classification of exoplanets: in search for the right habitability metric |
URI | https://link.springer.com/article/10.1140/epjs/s11734-021-00211-z https://www.proquest.com/docview/2573868226 |
Volume | 230 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA66Ifgi_sTpHHnwtSxt06z1bcjmUBQEB9tTaNIEFN2G7UD313uXtk59UPC5zT18udx91365I-TcV1bbyPS8hNnM472Qe7G2iWeMCWIofBKd4X3n2zsxGvPrSTT5OuoL1e71L0kXqct-tqxrFk95N_d9NIe6AsxOvrfaJM0IC3hw5XHQr4MwZHXXb9fHKfKYUytp1y-GviemNdv88YPU5Z3hLtmpCCPtlzu8RzbMbJ9sOeGmzg_I9H6Zot4HbytRIHNUIx1G_Y-DnM4tNW_zBUpai_yCPs5o6dsUyKp731XnFNt1F2XL7nf6glO29CEZDwcPlyOvGpfg6TDkhRfHURqzDEqiTKsgFpYpHpk0YEZwBWFEqMjCEfSzOALawFORYrFi4RRzobiw4RFpzOYzc0xoloYqYSb08VOjECwFrFSvx8AwMCaTtYiosZK66iWOIy2eZXnPmUkEWZYgS8BXOpDlqkXY58JF2U7j7yXtejNkdb5yCYEmjAWQG9Eifr1B68d_mDz5x5pTsh04b0F5WZs0itelOQM-UqgOafavpjeDjvPAD4Rw2c4 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-EL2IT1yfOXgtm7ZpmvUmoqyPXRBcWE-hSRNQdHexXdD99c6kra-Dgucmc_iSzHzTfJkh5DjUzrjEpkGHuTzgacwDaVwnsNZGEhKfjsnxvXOvL7oDfjVMhl9bfaHavbmS9J66qmfL2nbyWLSLMERzqCvA6BQGs3myCIxAopprEJ02Thiiuq-3G2IXeYyptbTrF0PfA9Mn2_xxQerjzsUaWa0JIz2tVnidzNnRBlnywk1TbJL722mGeh98rUSBzFGDdBj1Px5yOnbUvo4nKGktixP6MKLV3qZAVv14n51TLNddViW73-gzdtkyW2RwcX531g3qdgmBiWNeBlImmWQ5pES50ZEUjmme2CxiVnANbkToxMERDHOZAG3gmcgwWXFwirnQXLh4myyMxiO7Q2iexbrDbBzir0YhWAZY6TRlYBgYk81bRDRYKVPXEseWFk-qeufMFIKsKpAV4Ks8yGrWIuxj4qQqp_H3lP1mMVR9vgoFjiaWAsiNaJGwWaDPz3-Y3P3HnCOy3L3r3aiby_71HlmJ_M5Bqdk-WShfpvYAuEmpD_0ufAcW2tst |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0BFYgL6geIBUp94BqtnTjeLDcErIC2Kyp1peVkxY4tgdrsigQJ-PXMOElX5cBKnGPPYTyeeRO_mQE4EsZbn7pBNOS-iOQgkVFm_TByzsUZJj5DW1C988-xupjIq2k6XYHzrhYmsN27J8mmpoG6NJV1f174trct77v5XdWvhCDRxDGgSCWi51X4gD5ZkHFP4pPOIWOED713BU2Up_ja0rzeEPR_kFogz1ePpSEGjT7CVgse2Ulz2p9gxZWfYT2QOG31BW5-PeTE_aHKJYbAjlmCxsQFCupnM8_c42xO9Na6Oma3JWvsnCFwDetDps6odXfdtO9-Yn9p4pbdhsno_PfpRdSOTohsksg6yrI0z3iB6VFhTZwpz41MXR5zp6RBl6JM6vE6iiJLEULIXOWUuHi80VIZqXyyA2vlrHS7wIo8MUPuEkG_HZXiOerKDAYcBSN6ckUPVKcrbdu-4jTe4o9uap65JiXrRska9auDkvVzD_i_jfOmtcbyLQfdYej2rlUanU6SKQQ6qgeiO6DF5yUi996x5xtsXJ-N9I_L8fd92IyD4RDr7ADW6vsH9xVhSm0OgxG-AM8a32k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+the+classification+of+exoplanets%3A+in+search+for+the+right+habitability+metric&rft.jtitle=The+European+physical+journal.+ST%2C+Special+topics&rft.au=Safonova+Margarita&rft.au=Mathur+Archana&rft.au=Basak+Suryoday&rft.au=Bora+Kakoli&rft.date=2021-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1951-6355&rft.eissn=1951-6401&rft.volume=230&rft.issue=10&rft.spage=2207&rft.epage=2220&rft_id=info:doi/10.1140%2Fepjs%2Fs11734-021-00211-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1951-6355&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1951-6355&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1951-6355&client=summon |