DFT investigation on the electronic, optical and thermoelectric properties of novel half-Heusler compounds ScAuX (X = Si, Ge, Sn, Pb) for energy harvesting technologies
We have made systematic effort to investigate the structural, electronic, optical, and thermoelectric properties of Scandium–Gold-based HH compounds ScAuX (X = Si, Ge, Sn, Pb) using FP-LAPW method in the frame work of DFT and semi-classical Boltzmann equations using the constant relaxation time appr...
Saved in:
Published in | European physical journal plus Vol. 136; no. 10; p. 1091 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We have made systematic effort to investigate the structural, electronic, optical, and thermoelectric properties of Scandium–Gold-based HH compounds ScAuX (X = Si, Ge, Sn, Pb) using FP-LAPW method in the frame work of DFT and semi-classical Boltzmann equations using the constant relaxation time approximation as instigated in Wien2K code. The energy versus volume curves show that the explored compounds are observed to be stable in cubic non-magnetic phase. Electronic band structures as well as DOS plots predict that all explored compounds are indirect semiconductor in nature with TB-mBJ method, having energy gaps less than 0.5 eV, which gives a prediction for them to use as promising candidates for optoelectronic as well as solar cell devices. We can observe a very good optical response for these compounds because of its narrow band gap, predicting its application in photovoltaic applications. Transport properties results predict that these compounds can be used as good thermoelectric material as they have a high figure of merit value at room temperature and it increases with temperature upto 1200 K. The factor figure of mérit (ZT) takes a maximum value of 0.82, 0.72, 0.69 and 0.80 at T = 1200 K for ScAuX (X = Si, Ge, Sn, Pb). We have used ideal p-type or n-type levels to attain optimum ZT from the computed power factor as a function of carrier concentration and chemical potential, and this will provide experimentalists with guidance to find suitable compositions to synthesize thermoelectric materials with higher performance. |
---|---|
AbstractList | We have made systematic effort to investigate the structural, electronic, optical, and thermoelectric properties of Scandium–Gold-based HH compounds ScAuX (X = Si, Ge, Sn, Pb) using FP-LAPW method in the frame work of DFT and semi-classical Boltzmann equations using the constant relaxation time approximation as instigated in Wien2K code. The energy versus volume curves show that the explored compounds are observed to be stable in cubic non-magnetic phase. Electronic band structures as well as DOS plots predict that all explored compounds are indirect semiconductor in nature with TB-mBJ method, having energy gaps less than 0.5 eV, which gives a prediction for them to use as promising candidates for optoelectronic as well as solar cell devices. We can observe a very good optical response for these compounds because of its narrow band gap, predicting its application in photovoltaic applications. Transport properties results predict that these compounds can be used as good thermoelectric material as they have a high figure of merit value at room temperature and it increases with temperature upto 1200 K. The factor figure of mérit (ZT) takes a maximum value of 0.82, 0.72, 0.69 and 0.80 at T = 1200 K for ScAuX (X = Si, Ge, Sn, Pb). We have used ideal p-type or n-type levels to attain optimum ZT from the computed power factor as a function of carrier concentration and chemical potential, and this will provide experimentalists with guidance to find suitable compositions to synthesize thermoelectric materials with higher performance. We have made systematic effort to investigate the structural, electronic, optical, and thermoelectric properties of Scandium–Gold-based HH compounds ScAuX (X = Si, Ge, Sn, Pb) using FP-LAPW method in the frame work of DFT and semi-classical Boltzmann equations using the constant relaxation time approximation as instigated in Wien2K code. The energy versus volume curves show that the explored compounds are observed to be stable in cubic non-magnetic phase. Electronic band structures as well as DOS plots predict that all explored compounds are indirect semiconductor in nature with TB-mBJ method, having energy gaps less than 0.5 eV, which gives a prediction for them to use as promising candidates for optoelectronic as well as solar cell devices. We can observe a very good optical response for these compounds because of its narrow band gap, predicting its application in photovoltaic applications. Transport properties results predict that these compounds can be used as good thermoelectric material as they have a high figure of merit value at room temperature and it increases with temperature upto 1200 K. The factor figure of mérit (ZT) takes a maximum value of 0.82, 0.72, 0.69 and 0.80 at T = 1200 K for ScAuX (X = Si, Ge, Sn, Pb). We have used ideal p-type or n-type levels to attain optimum ZT from the computed power factor as a function of carrier concentration and chemical potential, and this will provide experimentalists with guidance to find suitable compositions to synthesize thermoelectric materials with higher performance. |
ArticleNumber | 1091 |
Author | Dey, Aditya Ahmad, Sajad Sharma, Ramesh Abraham, Jisha Annie |
Author_xml | – sequence: 1 givenname: Jisha Annie surname: Abraham fullname: Abraham, Jisha Annie organization: Department of Physics, National Defence Academy – sequence: 2 givenname: Ramesh surname: Sharma fullname: Sharma, Ramesh email: sharmadft@gmail.com organization: Department of Applied Science, Feroze Gandhi Institute of Engineering and Technology – sequence: 3 givenname: Sajad surname: Ahmad fullname: Ahmad, Sajad email: sajad54453@gmail.com organization: Department of Physics, Barkatullah University, Department of Physics, Govt M.A.M College – sequence: 4 givenname: Aditya surname: Dey fullname: Dey, Aditya organization: Department of Physics, Indian Institute of Technology Patna |
BookMark | eNqNkc1q3DAQx0VJoek2z9CBXlpYJ5Ylfx1yCGmTFAINbAq5Ca089mrxSq4kB3LrtW_RF-hL9FH6JJHXhZZcWqEZCWZ-MyP9X5IDYw0S8pqmx5Ty9ASH7XDiKWNFmqQZjTb58hk5zGidJjnn_OCv-wty5P02jYvXlNf8kPx4f3EL2tyjD7qTQVsDcYcNAvaogrNGqyXYIWgle5CmmWJuZ-eoVjA4O6ALGj3YFoy9xx42sm-TKxx9jw6U3Q12NI2HlTob735-f3v36-u302grvYRLXMLKLOFm_Q5a6wANuu4hVnD7kUwHAdXG2N52scUr8ryVvcej3-eCfL74cHt-lVx_uvx4fnadKMZ4SCrG67JlDJmUOS0lparMsrxY8zqTLC-ahpUl8oyvecGyVLY1Y7lq1wVveFVVyBbkzVw3vu7LGAcRWzs6E1uKrKZ1yfIqugU5nbOUs947bIXSYf-HwUndC5qKSSQxiSRmkUSUR-xFEhNfPuEHp3fSPfwHWc2kj4Tp0P2Z71_oI3T_r-M |
CitedBy_id | crossref_primary_10_1016_j_mseb_2024_117338 crossref_primary_10_1039_D3RA08317A crossref_primary_10_1016_j_ssc_2025_115875 crossref_primary_10_1007_s11082_023_06045_4 crossref_primary_10_1007_s11082_024_06891_w crossref_primary_10_1142_S0217979223501631 crossref_primary_10_1002_qua_27482 crossref_primary_10_1088_1402_4896_ad9961 crossref_primary_10_26565_2312_4334_2024_1_26 crossref_primary_10_1016_j_physb_2024_415783 crossref_primary_10_1140_epjp_s13360_023_04315_4 crossref_primary_10_1016_j_cjph_2023_10_021 crossref_primary_10_1142_S0217979225500523 crossref_primary_10_1016_j_ssc_2024_115803 crossref_primary_10_1007_s11082_022_03780_y crossref_primary_10_1140_epjp_s13360_023_03915_4 crossref_primary_10_1007_s10904_024_03115_2 crossref_primary_10_1016_j_inoche_2024_112206 |
Cites_doi | 10.1103/PhysRevB.72.094409 10.1103/PhysRevLett.77.3865 10.2174/1874476110902010027 10.1016/j.cpc.2006.03.007 10.1039/C9TC00570F 10.1016/j.rinp.2018.11.079 10.1209/0295-5075/117/47002 10.1016/j.actamat.2017.06.011 10.1016/j.jallcom.2018.01.330 10.1016/j.enconman.2009.02.015 10.1103/PhysRevB.81.075208 10.1177/1045389X06063906 10.1016/j.mtcomm.2020.101647 10.1080/14786435.2020.1839138 10.1016/j.jallcom.2015.12.139 10.1039/C7TA00920H 10.1039/c2ee22248e 10.1016/j.jallcom.2017.11.022 10.1063/1.4939887 10.1088/2053-1591/abf6fd 10.1016/j.jallcom.2018.05.257 10.1063/1.5143990 10.1016/j.progsolidstchem.2011.02.001 10.1016/j.rser.2013.12.053 10.1016/j.solidstatesciences.2008.12.007 10.1016/j.physb.2020.412172 10.1103/PhysRevLett.102.226401 10.1063/1.3592834 10.1088/0953-8984/15/4/304 10.24425/amm.2020.131748 10.1073/pnas.30.9.244 10.2478/s13536-012-0047-7 10.1016/j.cpc.2006.03.005 10.1016/j.jallcom.2019.152596 10.1007/s11664-009-0680-z 10.1016/j.cocom.2020.e00532 10.1016/j.jallcom.2019.01.050 10.1209/0295-5075/104/27001 10.1103/PhysRevB.83.085204 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021 The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
DBID | AAYXX CITATION 8FE 8FG AEUYN AFKRA ARAPS BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO HCIFZ P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1140/epjp/s13360-021-02021-7 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central Korea SciTech Collection (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection Earth, Atmospheric & Aquatic Science Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2190-5444 |
ExternalDocumentID | 10_1140_epjp_s13360_021_02021_7 |
GroupedDBID | -5F -5G -BR -EM -~C 06D 0R~ 203 29~ 2JN 2KG 30V 4.4 406 408 8UJ 95. 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABHLI ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACREN ACZOJ ADHHG ADINQ ADKNI ADKPE ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEUYN AEVLU AEXYK AFBBN AFKRA AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS ARMRJ AXYYD AYJHY BENPR BGLVJ BGNMA BHPHI BKSAR CCPQU CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI ESBYG FERAY FFXSO FIGPU FNLPD FRRFC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HCIFZ HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O93 O9J P9T PCBAR PT4 RID RLLFE ROL RSV S27 S3B SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z7S Z7Y ZMTXR ~A9 2VQ AAAVM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADQRH AEBTG AEKMD AEZWR AFDZB AFHIU AFOHR AGJBK AHPBZ AHSBF AHWEU AIXLP AJBLW ATHPR AYFIA CITATION EJD FINBP FSGXE O9- PHGZM PHGZT S1Z 8FE 8FG ABRTQ DWQXO P62 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c334t-83497f33e3aa517a11c72256b492a356dd377e424b46320af9335cfb64d4888e3 |
IEDL.DBID | BENPR |
ISSN | 2190-5444 |
IngestDate | Fri Jul 25 20:18:44 EDT 2025 Tue Jul 01 02:42:25 EDT 2025 Thu Apr 24 23:02:46 EDT 2025 Fri Feb 21 02:47:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-83497f33e3aa517a11c72256b492a356dd377e424b46320af9335cfb64d4888e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2919735897 |
PQPubID | 2044220 |
ParticipantIDs | proquest_journals_2919735897 crossref_citationtrail_10_1140_epjp_s13360_021_02021_7 crossref_primary_10_1140_epjp_s13360_021_02021_7 springer_journals_10_1140_epjp_s13360_021_02021_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | European physical journal plus |
PublicationTitleAbbrev | Eur. Phys. J. Plus |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | BaranowskiLLSnyderGJTobererESEnergy Environ. Sci.20125905510.1039/c2ee22248e OuardiSShekharCFecherGHKozinaXStryganyukGFelserCUedaSKobayashiKAppl. Phys. Lett.2011982119012011ApPhL..98u1901O10.1063/1.3592834 P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, Wien2K, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties, edited by K. Schwarz (Techn. Universität Wien, Wien, Austria, 2001) SodanoHASimmersGEDereuxRInmanDJJ. Intell. Mater. Syst. Struct.200718310.1177/1045389X06063906 GrafTFelserCParkinSSPProg. Solid State Chem.20113915010.1016/j.progsolidstchem.2011.02.001 YangJStablerFJ. Electron. Mater.20093812452009JEMat..38.1245Y10.1007/s11664-009-0680-z KievenDKlenkRNaghaviSFelserCGruhnTPhys. Rev. B2010810752082010PhRvB..81g5208K10.1103/PhysRevB.81.075208 JoshiHRaiDPThapaRKAIP Conf. Proc.2018194211056 ShrivastavaDSanyalSPJ. Alloys Compd.201978431910.1016/j.jallcom.2019.01.050 GuoSDJ. Alloys Compd.201666312810.1016/j.jallcom.2015.12.139 WuGYuXBInt. J. Pavem. Res. Technol.20125311 BabuKEVeeraiahASwamyDTVeeraiahVMater. Sci.-Poland2012303592012MatSP..30..359E10.2478/s13536-012-0047-7 Enamullah, S. C. Lee, J. Alloys Compd. (2018), Doi: https://doi.org/10.1016/j.jallcom.2018.01.330 HanYChenZKuangMLiuZWangXWangXResults Phys.2019124354462019ResPh..12..435H10.1016/j.rinp.2018.11.079 PanYNikitinAMBayTVHuangYKPaulsenCYanBHde VisserAEuro. Phys. Lett.2013104270012013EL....10427001P10.1209/0295-5075/104/27001 AdavbieleAJ. Energy Technol. Policy201331633 ChenJLiHDingBHouZLiuEXiXGuanghengWWangWAppl. Phys. Lett.20201161019022020ApPhL.116j1902C10.1063/1.5143990 CiesielskiKSynoradzkiKWolanskaIStachowiakPKepinskiLJezowskiATolinskiTKaczorowskiDJ. Alloys Compd.202081615259610.1016/j.jallcom.2019.152596 DingGGaoGYYuLNiYYaoKJ. App. Phys.20161190251052016JAP...119b5105D10.1063/1.4939887 Cha EnamullahP-RJ. Mater. Chem. C20197766410.1039/C9TC00570F GofrykKKaczorowskiDPlackowskiTPhys. Rev. B2005720944092005PhRvB..72i4409G10.1103/PhysRevB.72.094409 OestreichJProbstURichardtFBucherEJ. Phys. Condens. Matter.2003156352003JPCM...15..635O10.1088/0953-8984/15/4/304 Vikram, J. Kangsabanik, Enamullah and A. Alam, J. Mater. Chem.A, 2017, 5, 6131 TavassoliAFailamaniFGrytsivARoglGHeinrichPMllerHBauerEZehetbauerMRoglPActa Mater.20171352632017AcMat.135..263T10.1016/j.actamat.2017.06.011 MurnaghanFDProc. Natl. Acad. Sci. USA1944302441944PNAS...30..244M10.1073/pnas.30.9.244 PerdewJPBurkeKErnzerhofMPhys. Rev. Lett.19967738651996PhRvL..77.3865P10.1103/PhysRevLett.77.3865 KaurKEurophys. Lett.2017117470022017EL....11747002K10.1209/0295-5075/117/47002 YuCChauKTEnergy Convers. Manag.200950150610.1016/j.enconman.2009.02.015 WiniarskiMJBilinskaKCiesielskiKKaczorowskiDJ. Alloys Compd.201876290190510.1016/j.jallcom.2018.05.257 KaraHUpadhyayMKOzdoganKJ. Alloys Compd.201873595010.1016/j.jallcom.2017.11.022 Enamullah, S. K. Sharma, K. Ansari, Physica B, 2020, 588, 412172 HarmeningTEckertHPottgenRSolid State Sci.2009119002009SSSci..11..900H10.1016/j.solidstatesciences.2008.12.007 SadeghiMZelatiABoochaniAArmanAMirzaeiSMater. Res. Express202180463022021MRE.....8d6302S10.1088/2053-1591/abf6fd ParsamehrSBoochaniAAmiriMSolaymaniSSartipiENaderiSAminianAPhil. Mag.20211013693862021PMag..101..369P10.1080/14786435.2020.1839138 TranTBlahaPPhy. Rev. Lett.20091022264012009PhRvL.102v6401T10.1103/PhysRevLett.102.226401 Ambrosch-DraxlCSofoJOComput. Phys. Commun.200617512006CoPhC.175....1A10.1016/j.cpc.2006.03.005 ParsamehrSBoochaniASartipiEAmiriMSolaymaniSNaderiSAminianAArch. Metall. Mater.2020651459 MadsenGKHSinghDJComput. Phys. Commun.2006175672006CoPhC.175...67M10.1016/j.cpc.2006.03.007 ZhengXFLiuCXYanYYWangQRenew. Sustain. Energy Rev.20143248610.1016/j.rser.2013.12.053 DeyASharmaRDarSAMat. Today Commun.20202510164710.1016/j.mtcomm.2020.101647 HeuslerFVerhandl. DPG19035219 LeeMPoudeuPMahantiSDPhys. Rev. B2011830852042011PhRvB..83h5204L10.1103/PhysRevB.83.085204 IsmailBIAhmedWHRecent Patents Electr. Eng.200922710.2174/1874476110902010027 DeyASharmaRDarSAWaniIHComput Condens. Matt.202126e0053210.1016/j.cocom.2020.e00532 G Ding (2021_CR26) 2016; 119 Y Pan (2021_CR21) 2013; 104 K Ciesielski (2021_CR19) 2020; 816 A Dey (2021_CR31) 2020; 25 D Kieven (2021_CR13) 2010; 81 P-R Cha Enamullah (2021_CR2) 2019; 7 Y Han (2021_CR28) 2019; 12 H Joshi (2021_CR30) 2018; 1942 A Dey (2021_CR32) 2021; 26 A Tavassoli (2021_CR18) 2017; 135 K Gofryk (2021_CR24) 2005; 72 2021_CR36 K Kaur (2021_CR3) 2017; 117 T Graf (2021_CR16) 2011; 39 2021_CR11 JP Perdew (2021_CR37) 1996; 77 LL Baranowski (2021_CR7) 2012; 5 MJ Winiarski (2021_CR20) 2018; 762 M Lee (2021_CR25) 2011; 83 S Ouardi (2021_CR14) 2011; 98 BI Ismail (2021_CR6) 2009; 2 FD Murnaghan (2021_CR41) 1944; 30 GKH Madsen (2021_CR40) 2006; 175 C Yu (2021_CR4) 2009; 50 S Parsamehr (2021_CR35) 2021; 101 C Ambrosch-Draxl (2021_CR39) 2006; 175 G Wu (2021_CR5) 2012; 5 HA Sodano (2021_CR9) 2007; 18 J Chen (2021_CR22) 2020; 116 T Tran (2021_CR38) 2009; 102 J Oestreich (2021_CR42) 2003; 15 J Yang (2021_CR8) 2009; 38 KE Babu (2021_CR15) 2012; 30 H Kara (2021_CR43) 2018; 735 D Shrivastava (2021_CR44) 2019; 784 SD Guo (2021_CR17) 2016; 663 A Adavbiele (2021_CR10) 2013; 3 2021_CR23 F Heusler (2021_CR12) 1903; 5 T Harmening (2021_CR27) 2009; 11 XF Zheng (2021_CR1) 2014; 32 2021_CR29 M Sadeghi (2021_CR34) 2021; 8 S Parsamehr (2021_CR33) 2020; 65 |
References_xml | – reference: DingGGaoGYYuLNiYYaoKJ. App. Phys.20161190251052016JAP...119b5105D10.1063/1.4939887 – reference: BaranowskiLLSnyderGJTobererESEnergy Environ. Sci.20125905510.1039/c2ee22248e – reference: HeuslerFVerhandl. DPG19035219 – reference: BabuKEVeeraiahASwamyDTVeeraiahVMater. Sci.-Poland2012303592012MatSP..30..359E10.2478/s13536-012-0047-7 – reference: TavassoliAFailamaniFGrytsivARoglGHeinrichPMllerHBauerEZehetbauerMRoglPActa Mater.20171352632017AcMat.135..263T10.1016/j.actamat.2017.06.011 – reference: HarmeningTEckertHPottgenRSolid State Sci.2009119002009SSSci..11..900H10.1016/j.solidstatesciences.2008.12.007 – reference: MurnaghanFDProc. Natl. Acad. Sci. USA1944302441944PNAS...30..244M10.1073/pnas.30.9.244 – reference: P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, Wien2K, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties, edited by K. Schwarz (Techn. Universität Wien, Wien, Austria, 2001) – reference: LeeMPoudeuPMahantiSDPhys. Rev. B2011830852042011PhRvB..83h5204L10.1103/PhysRevB.83.085204 – reference: ShrivastavaDSanyalSPJ. Alloys Compd.201978431910.1016/j.jallcom.2019.01.050 – reference: Enamullah, S. C. Lee, J. Alloys Compd. (2018), Doi: https://doi.org/10.1016/j.jallcom.2018.01.330 – reference: CiesielskiKSynoradzkiKWolanskaIStachowiakPKepinskiLJezowskiATolinskiTKaczorowskiDJ. Alloys Compd.202081615259610.1016/j.jallcom.2019.152596 – reference: KaurKEurophys. Lett.2017117470022017EL....11747002K10.1209/0295-5075/117/47002 – reference: IsmailBIAhmedWHRecent Patents Electr. Eng.200922710.2174/1874476110902010027 – reference: AdavbieleAJ. Energy Technol. Policy201331633 – reference: ParsamehrSBoochaniASartipiEAmiriMSolaymaniSNaderiSAminianAArch. Metall. Mater.2020651459 – reference: YangJStablerFJ. Electron. Mater.20093812452009JEMat..38.1245Y10.1007/s11664-009-0680-z – reference: SadeghiMZelatiABoochaniAArmanAMirzaeiSMater. Res. Express202180463022021MRE.....8d6302S10.1088/2053-1591/abf6fd – reference: ParsamehrSBoochaniAAmiriMSolaymaniSSartipiENaderiSAminianAPhil. Mag.20211013693862021PMag..101..369P10.1080/14786435.2020.1839138 – reference: HanYChenZKuangMLiuZWangXWangXResults Phys.2019124354462019ResPh..12..435H10.1016/j.rinp.2018.11.079 – reference: KievenDKlenkRNaghaviSFelserCGruhnTPhys. Rev. B2010810752082010PhRvB..81g5208K10.1103/PhysRevB.81.075208 – reference: ChenJLiHDingBHouZLiuEXiXGuanghengWWangWAppl. Phys. Lett.20201161019022020ApPhL.116j1902C10.1063/1.5143990 – reference: Enamullah, S. K. Sharma, K. Ansari, Physica B, 2020, 588, 412172 – reference: GrafTFelserCParkinSSPProg. Solid State Chem.20113915010.1016/j.progsolidstchem.2011.02.001 – reference: GofrykKKaczorowskiDPlackowskiTPhys. Rev. B2005720944092005PhRvB..72i4409G10.1103/PhysRevB.72.094409 – reference: DeyASharmaRDarSAMat. Today Commun.20202510164710.1016/j.mtcomm.2020.101647 – reference: TranTBlahaPPhy. Rev. Lett.20091022264012009PhRvL.102v6401T10.1103/PhysRevLett.102.226401 – reference: GuoSDJ. Alloys Compd.201666312810.1016/j.jallcom.2015.12.139 – reference: JoshiHRaiDPThapaRKAIP Conf. Proc.2018194211056 – reference: WiniarskiMJBilinskaKCiesielskiKKaczorowskiDJ. Alloys Compd.201876290190510.1016/j.jallcom.2018.05.257 – reference: Ambrosch-DraxlCSofoJOComput. Phys. Commun.200617512006CoPhC.175....1A10.1016/j.cpc.2006.03.005 – reference: MadsenGKHSinghDJComput. Phys. Commun.2006175672006CoPhC.175...67M10.1016/j.cpc.2006.03.007 – reference: WuGYuXBInt. J. Pavem. Res. Technol.20125311 – reference: YuCChauKTEnergy Convers. Manag.200950150610.1016/j.enconman.2009.02.015 – reference: Vikram, J. Kangsabanik, Enamullah and A. Alam, J. Mater. Chem.A, 2017, 5, 6131 – reference: OuardiSShekharCFecherGHKozinaXStryganyukGFelserCUedaSKobayashiKAppl. Phys. Lett.2011982119012011ApPhL..98u1901O10.1063/1.3592834 – reference: ZhengXFLiuCXYanYYWangQRenew. Sustain. Energy Rev.20143248610.1016/j.rser.2013.12.053 – reference: PanYNikitinAMBayTVHuangYKPaulsenCYanBHde VisserAEuro. Phys. Lett.2013104270012013EL....10427001P10.1209/0295-5075/104/27001 – reference: SodanoHASimmersGEDereuxRInmanDJJ. Intell. Mater. Syst. Struct.200718310.1177/1045389X06063906 – reference: Cha EnamullahP-RJ. Mater. Chem. C20197766410.1039/C9TC00570F – reference: PerdewJPBurkeKErnzerhofMPhys. Rev. Lett.19967738651996PhRvL..77.3865P10.1103/PhysRevLett.77.3865 – reference: KaraHUpadhyayMKOzdoganKJ. Alloys Compd.201873595010.1016/j.jallcom.2017.11.022 – reference: DeyASharmaRDarSAWaniIHComput Condens. Matt.202126e0053210.1016/j.cocom.2020.e00532 – reference: OestreichJProbstURichardtFBucherEJ. Phys. Condens. Matter.2003156352003JPCM...15..635O10.1088/0953-8984/15/4/304 – volume: 72 start-page: 094409 year: 2005 ident: 2021_CR24 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.094409 – volume: 77 start-page: 3865 year: 1996 ident: 2021_CR37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 2 start-page: 27 year: 2009 ident: 2021_CR6 publication-title: Recent Patents Electr. Eng. doi: 10.2174/1874476110902010027 – volume: 175 start-page: 67 year: 2006 ident: 2021_CR40 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2006.03.007 – volume: 3 start-page: 16 year: 2013 ident: 2021_CR10 publication-title: J. Energy Technol. Policy – volume: 7 start-page: 7664 year: 2019 ident: 2021_CR2 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC00570F – volume: 12 start-page: 435 year: 2019 ident: 2021_CR28 publication-title: Results Phys. doi: 10.1016/j.rinp.2018.11.079 – volume: 117 start-page: 47002 year: 2017 ident: 2021_CR3 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/117/47002 – volume: 135 start-page: 263 year: 2017 ident: 2021_CR18 publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.06.011 – ident: 2021_CR23 doi: 10.1016/j.jallcom.2018.01.330 – volume: 50 start-page: 1506 year: 2009 ident: 2021_CR4 publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2009.02.015 – volume: 81 start-page: 075208 year: 2010 ident: 2021_CR13 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.075208 – volume: 18 start-page: 3 year: 2007 ident: 2021_CR9 publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X06063906 – volume: 25 start-page: 101647 year: 2020 ident: 2021_CR31 publication-title: Mat. Today Commun. doi: 10.1016/j.mtcomm.2020.101647 – ident: 2021_CR36 – volume: 101 start-page: 369 year: 2021 ident: 2021_CR35 publication-title: Phil. Mag. doi: 10.1080/14786435.2020.1839138 – volume: 663 start-page: 128 year: 2016 ident: 2021_CR17 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.12.139 – ident: 2021_CR11 doi: 10.1039/C7TA00920H – volume: 5 start-page: 9055 year: 2012 ident: 2021_CR7 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22248e – volume: 735 start-page: 950 year: 2018 ident: 2021_CR43 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.11.022 – volume: 119 start-page: 025105 year: 2016 ident: 2021_CR26 publication-title: J. App. Phys. doi: 10.1063/1.4939887 – volume: 8 start-page: 046302 year: 2021 ident: 2021_CR34 publication-title: Mater. Res. Express doi: 10.1088/2053-1591/abf6fd – volume: 762 start-page: 901 year: 2018 ident: 2021_CR20 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.05.257 – volume: 116 start-page: 101902 year: 2020 ident: 2021_CR22 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5143990 – volume: 39 start-page: 1 year: 2011 ident: 2021_CR16 publication-title: Prog. Solid State Chem. doi: 10.1016/j.progsolidstchem.2011.02.001 – volume: 32 start-page: 486 year: 2014 ident: 2021_CR1 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.12.053 – volume: 11 start-page: 900 year: 2009 ident: 2021_CR27 publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2008.12.007 – ident: 2021_CR29 doi: 10.1016/j.physb.2020.412172 – volume: 1942 start-page: 11056 year: 2018 ident: 2021_CR30 publication-title: AIP Conf. Proc. – volume: 102 start-page: 226401 year: 2009 ident: 2021_CR38 publication-title: Phy. Rev. Lett. doi: 10.1103/PhysRevLett.102.226401 – volume: 98 start-page: 211901 year: 2011 ident: 2021_CR14 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3592834 – volume: 15 start-page: 635 year: 2003 ident: 2021_CR42 publication-title: J. Phys. Condens. Matter. doi: 10.1088/0953-8984/15/4/304 – volume: 65 start-page: 459 issue: 1 year: 2020 ident: 2021_CR33 publication-title: Arch. Metall. Mater. doi: 10.24425/amm.2020.131748 – volume: 30 start-page: 244 year: 1944 ident: 2021_CR41 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.30.9.244 – volume: 30 start-page: 359 year: 2012 ident: 2021_CR15 publication-title: Mater. Sci.-Poland doi: 10.2478/s13536-012-0047-7 – volume: 5 start-page: 219 year: 1903 ident: 2021_CR12 publication-title: Verhandl. DPG – volume: 175 start-page: 1 year: 2006 ident: 2021_CR39 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2006.03.005 – volume: 816 start-page: 152596 year: 2020 ident: 2021_CR19 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.152596 – volume: 38 start-page: 1245 year: 2009 ident: 2021_CR8 publication-title: J. Electron. Mater. doi: 10.1007/s11664-009-0680-z – volume: 5 start-page: 311 year: 2012 ident: 2021_CR5 publication-title: Int. J. Pavem. Res. Technol. – volume: 26 start-page: e00532 year: 2021 ident: 2021_CR32 publication-title: Comput Condens. Matt. doi: 10.1016/j.cocom.2020.e00532 – volume: 784 start-page: 319 year: 2019 ident: 2021_CR44 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.01.050 – volume: 104 start-page: 27001 year: 2013 ident: 2021_CR21 publication-title: Euro. Phys. Lett. doi: 10.1209/0295-5075/104/27001 – volume: 83 start-page: 085204 year: 2011 ident: 2021_CR25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.085204 |
SSID | ssj0000491494 |
Score | 2.3306398 |
Snippet | We have made systematic effort to investigate the structural, electronic, optical, and thermoelectric properties of Scandium–Gold-based HH compounds ScAuX (X =... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1091 |
SubjectTerms | Alloys Applied and Technical Physics Approximation Atomic Carrier density Chemical potential Complex Systems Condensed Matter Physics Crystal structure Electrons Energy Energy gap Energy harvesting Figure of merit Germanium Investigations Lead Mathematical and Computational Physics Molecular Optical and Plasma Physics Optical properties Optoelectronic devices Photovoltaic cells Photovoltaics Physics Physics and Astronomy Power factor Regular Article Relaxation time Room temperature Scandium Scandium compounds Silicon Solar cells Theoretical Thermoelectric materials Tin Transport properties |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKKyQuFRQQLQXNoQeQNqoTO3F84LAqLKtKRUjblfZmOY4Di5YkSnY5c-UteAFeoo_SJ-nYSbrAgUpISS6jcaJ8_vlmPJ4h5ERIkxrt4sJwhgxwvdWBFMYGudQxDQs0OXzVkosPyXTOzxfx4vdSXy7afdiS9DN1l8-Wntr6S33aokmV0MDFFSDPwae4R_ZiZ8BjV55H41v3ChJf5P68j-j6h_6f69GWZP61L-qXm8lDst_zRBh3wD4iO7Y8IPd9vKZpH5NfbyeXsNzmyKhKwAvJHGzr2oygqr2nGnSZO1nzteqkSwO1c8I3LpsqVAWU1Te7gs96VQRTu2lXtgEXa-5KLrUwM-PN4urnq8X19x9v8J4tR_DejmBWjuBj9hqQ9oL1RwixhcZ_UvkJ1oPPHl_xhMwn7y7PpkFfeSEwjPF1kDIuRcGYZVrHodBhaAQO_CTjMtIsTvKcCWF5xDOesIjqQjIWmyJLeI4TQmrZU7JbVqV9RiBH_lZYR_OQSCRppmURUW4ot5QxnZlDkgz_X5k-LbmrjrFS3ZFpqhxwqgNOIWTKA6fEIaG3inWXmeNuleMBYNUP1VZFMpSCxalEcTiAvhXf0eTRf-g8Jw983_Mhgcdkd91s7AukNuvspe_EN5Fv9AQ priority: 102 providerName: Springer Nature |
Title | DFT investigation on the electronic, optical and thermoelectric properties of novel half-Heusler compounds ScAuX (X = Si, Ge, Sn, Pb) for energy harvesting technologies |
URI | https://link.springer.com/article/10.1140/epjp/s13360-021-02021-7 https://www.proquest.com/docview/2919735897 |
Volume | 136 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lj9MwELbYrZC4rHiKwlLNgQNIjZrEThwfEGqhaQWiWtGtVE6R4zhQ1E1C0nLmyn_hV_FLGOexERxYKY_DKE6Uzx5_Mx7PEPKcCxUoaeLCUENaON9KS3ClrURIz3ZSNDnqqiUfVv5yw95tvW3rcKvasMpOJ9aKOsmV8ZFPXOEITr1A8NfFN8tUjTKrq20JjRMyQBUcoPE1mM1XFx-vvSzIf9EEYG1gFxoTE118LSYVWma-bZnwBKRLeOV_T0s91_xnebSedcK75KylizBt8L1HbunsPrldh22q6gH59Ta8hF2fKiPPAA_kdNCXtxlDXtQOa5BZYmTlVd5IdwoK44svTVJVyFPI8u96D1_kPrWW-ljtdQkm5NxUXqpgrabHLbzY_v7x8xWe690YFnoM62wMF_FLQPILut5IiA2U9Rdln-HQee7xDQ_JJpxfvllabf0FS1HKDlZAmeAppZpK6TlcOo7iOPz9mAlXUs9PEsq5Zi6LmU9dW6aCUk-lsc8SVAuBpo_IaZZn-jGBBFlcqg3ZQzrhB7EUqWszZTNtUypjNSR-9_sj1SYnNzUy9lGzcdqODG5Rg1uEiEU1bhEfEvv6waLJz3HzI-cdvlE7YKuo715D4nSY9-Ibmnzy_yafkjt1L6tjAM_J6aE86mfIZQ7xiJwE4WJEBtNwNluZ--LT-_mo7cYo3bjTP9fh-G8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKEYIL4lfdUmAOIIG00SaxE8eHClWU7Zb-CGm30t6C4ziwaJuEZBfEjSvvgngonoSxkzSCAz1VSnKxPInyjcff2OMZQp5xoSIlTVwYWkgH51vpCK60kwoZuF6GLoetWnJyGk7O2Nt5MN8gv7qzMCassrOJ1lCnhTJr5CNfeILTIBL8VfnZMVWjzO5qV0KjUYsj_e0rumz17uE-4vvc98dvZq8nTltVwFGUspUTUSZ4RqmmUgYel56nOCp1mDDhSxqEaUo518xnCQup78oMXf5AZUnIUlT2SFOUe41cZ5QKM6Ki8cHFmg6ybXQ4WBtGhq7LSJefylGNfmDoOiYYAskZPvnfk2DPbP_ZjLVz3PgOud2SU9hrtOku2dD5PXLDBomq-j75uT-ewaJPzFHkgBcySOiL6QyhKO3yOMg8NW3VedG0LhSUZuW_MilcocggL77oJXyUy8yZ6HW91BWYAHdT56mGqdpbz-HF_Pf3H7t4TxdDONBDmOZDeJe8BKTaoO2xRRRQ2S_KP8Cq2yfANzwgZ1eCy0OymRe53iKQImfMtKGWSF7CKJEi812mXKZdSmWiBiTsfn-s2lTopiLHMm6OabuxwS1ucIsRsdjiFvMBcS86lk02kMu77HT4xq15qONemQfE6zDvmy8Ruf1_kU_Jzcns5Dg-Pjw9ekRuWY2z0Yc7ZHNVrfVjZFGr5IlVXSDvr3qs_AHnCi0P |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKEYgL4lcUCsyBA0gbbRI7cXzgsGq7LH9Vpe1Ke7McxymLliRKspy58ha8AC_RR-mTdOwkXcGBSkhJLqOxo4xjfx5_M0PIKy50opXlheEM6eF6qzzBtfEyoSI_yHHL4aqWfD6OZwv2YRktd8jREAvj2O7DkWQX02CzNBXtuMryPretPzbV12rc4PYq9j3LMUDMg09-g9zEHgM7uBfh5MrVgiAY9wGsZ3f9Q__PtWkLOP86I3VLz_QeudtjRph0Rr5PdkzxgNxy3E3dPCS_D6ensNrmyygLwAuBHWxr3IygrJzXGlSRWVn9reykKw2VdcjXNrMqlDkU5Xezhi9qnXszs2nWpgbLO7fllxqY68lmef7r9fLix8-3eM9XI3hnRjAvRnCSvgGEwGBcOCG2ULtXKs6gHfz32MUjspgenR7MvL4Kg6cpZa2XUCZ4TqmhSkUBV0GgOU4CccpEqGgUZxnl3LCQpSymoa9yQWmk8zRmGU4OiaGPyW5RFuYJgQyxXG4s5ENQESepEnnoM-0z41OqUr1H4uH7S92nKLeVMtayC5_2pTWc7Awn0WTSGU7yPeJfKVZdlo7rVfYHA8v-t21kKALBaZQIFAeD0bfia5p8-h86L8ntk8Op_PT--OMzcscNQ8cU3Ce7bb0xzxHxtOkLN54vASRN-zM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DFT+investigation+on+the+electronic%2C+optical+and+thermoelectric+properties+of+novel+half-Heusler+compounds+ScAuX+%28X%E2%80%89%3D%E2%80%89Si%2C+Ge%2C+Sn%2C+Pb%29+for+energy+harvesting+technologies&rft.jtitle=European+physical+journal+plus&rft.au=Abraham%2C+Jisha+Annie&rft.au=Sharma%2C+Ramesh&rft.au=Ahmad%2C+Sajad&rft.au=Dey%2C+Aditya&rft.date=2021-10-01&rft.pub=Springer+Nature+B.V&rft.eissn=2190-5444&rft.volume=136&rft.issue=10&rft.spage=1091&rft_id=info:doi/10.1140%2Fepjp%2Fs13360-021-02021-7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-5444&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-5444&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-5444&client=summon |