Weighted meta paths and networking embedding for patent technology trade recommendations among subjects
Most patent technology recommendations are based on link prediction of a homogeneous trade network and multiple-attribute matching. We constructed a heterogeneous information network (HIN) with four types of nodes and seven types of relations; designed a heterogeneous relation traversal algorithm ba...
Saved in:
Published in | Knowledge-based systems Vol. 184; p. 104899 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.11.2019
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Most patent technology recommendations are based on link prediction of a homogeneous trade network and multiple-attribute matching. We constructed a heterogeneous information network (HIN) with four types of nodes and seven types of relations; designed a heterogeneous relation traversal algorithm based on the meta paths and meta structures inspired by the depth first search (DFS) strategy; obtained subject-relation sequences; and then calculated the weight of each meta path and meta structure through logistic regression. Using the relation sequence corpus of the weighted meta paths and meta structures among subjects, the patent technology trade recommendation model based on network embedding (PSR-vec) was proposed. The model was trained by using the Skip-gram method to obtain a vector-space representation for all subjects. Finally, the recommendation target was achieved by measuring the cosine similarity of the subject vectors. Through empirical research on the electronic information patent data, we observed that the PSR-vec model with weighted meta paths and meta structures was more precise than that with a single meta path or meta structure, which indicated that the patent technology trade was influenced by multiple factors. Second, the PSR-vec model combining weighted meta paths and meta structures was more precise than the unweighted model, which reflected more differences in multiple factors affecting trade. Third, compared to Deep Walk, Node2vec, Metapath2vec, and GraphSAGE methods, the PSR-vec model had a higher precision of up to 80%. Eventually, the recommendation subjects of PSR-vec included the holding relation, the supply relation, and the loose relation, which increased the diversity of the recommendation results. Our research thus provided a decision-making method for effective docking among patent technology trade subjects.
•A meta path and network embedding method of patent technology trade was innovatively proposed in HIN.•Inspired by the DFS, the traversal methods were designed in a HIN to calculate the meta paths.•The recommendation performance of weighted PSR-vec was found to be better than that of the other methods. |
---|---|
AbstractList | Most patent technology recommendations are based on link prediction of a homogeneous trade network and multiple-attribute matching. We constructed a heterogeneous information network (HIN) with four types of nodes and seven types of relations; designed a heterogeneous relation traversal algorithm based on the meta paths and meta structures inspired by the depth first search (DFS) strategy; obtained subject-relation sequences; and then calculated the weight of each meta path and meta structure through logistic regression. Using the relation sequence corpus of the weighted meta paths and meta structures among subjects, the patent technology trade recommendation model based on network embedding (PSR-vec) was proposed. The model was trained by using the Skip-gram method to obtain a vector-space representation for all subjects. Finally, the recommendation target was achieved by measuring the cosine similarity of the subject vectors. Through empirical research on the electronic information patent data, we observed that the PSR-vec model with weighted meta paths and meta structures was more precise than that with a single meta path or meta structure, which indicated that the patent technology trade was influenced by multiple factors. Second, the PSR-vec model combining weighted meta paths and meta structures was more precise than the unweighted model, which reflected more differences in multiple factors affecting trade. Third, compared to Deep Walk, Node2vec, Metapath2vec, and GraphSAGE methods, the PSR-vec model had a higher precision of up to 80%. Eventually, the recommendation subjects of PSR-vec included the holding relation, the supply relation, and the loose relation, which increased the diversity of the recommendation results. Our research thus provided a decision-making method for effective docking among patent technology trade subjects. Most patent technology recommendations are based on link prediction of a homogeneous trade network and multiple-attribute matching. We constructed a heterogeneous information network (HIN) with four types of nodes and seven types of relations; designed a heterogeneous relation traversal algorithm based on the meta paths and meta structures inspired by the depth first search (DFS) strategy; obtained subject-relation sequences; and then calculated the weight of each meta path and meta structure through logistic regression. Using the relation sequence corpus of the weighted meta paths and meta structures among subjects, the patent technology trade recommendation model based on network embedding (PSR-vec) was proposed. The model was trained by using the Skip-gram method to obtain a vector-space representation for all subjects. Finally, the recommendation target was achieved by measuring the cosine similarity of the subject vectors. Through empirical research on the electronic information patent data, we observed that the PSR-vec model with weighted meta paths and meta structures was more precise than that with a single meta path or meta structure, which indicated that the patent technology trade was influenced by multiple factors. Second, the PSR-vec model combining weighted meta paths and meta structures was more precise than the unweighted model, which reflected more differences in multiple factors affecting trade. Third, compared to Deep Walk, Node2vec, Metapath2vec, and GraphSAGE methods, the PSR-vec model had a higher precision of up to 80%. Eventually, the recommendation subjects of PSR-vec included the holding relation, the supply relation, and the loose relation, which increased the diversity of the recommendation results. Our research thus provided a decision-making method for effective docking among patent technology trade subjects. •A meta path and network embedding method of patent technology trade was innovatively proposed in HIN.•Inspired by the DFS, the traversal methods were designed in a HIN to calculate the meta paths.•The recommendation performance of weighted PSR-vec was found to be better than that of the other methods. |
ArticleNumber | 104899 |
Author | He, Xi-jun Dong, Yanbo Zhen, Zhou Meng, Xue Jiang, Guo-rui Ma, Shan Wu, Yu-ying |
Author_xml | – sequence: 1 givenname: Xi-jun surname: He fullname: He, Xi-jun organization: College of Economics and Management, Beijing University of Technology, No. 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China – sequence: 2 givenname: Yanbo surname: Dong fullname: Dong, Yanbo email: dyb@emails.bjut.edu.cn organization: College of Economics and Management, Beijing University of Technology, No. 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China – sequence: 3 givenname: Zhou surname: Zhen fullname: Zhen, Zhou organization: School of Management, Capital Normal University, No. 105, North Road, West Third Ring Road, Beijing 100048, China – sequence: 4 givenname: Yu-ying surname: Wu fullname: Wu, Yu-ying organization: College of Economics and Management, Beijing University of Technology, No. 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China – sequence: 5 givenname: Guo-rui surname: Jiang fullname: Jiang, Guo-rui organization: College of Economics and Management, Beijing University of Technology, No. 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China – sequence: 6 givenname: Xue surname: Meng fullname: Meng, Xue organization: College of Economics and Management, Beijing University of Technology, No. 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China – sequence: 7 givenname: Shan surname: Ma fullname: Ma, Shan organization: College of Economics and Management, Beijing University of Technology, No. 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China |
BookMark | eNqFkMtKAzEUhoMoWKtv4GLA9dRc5hYXghRvILhRXIZMcqbNtJPUJFX69qaOKxe6Sgj_9-ec7wQdWmcBoXOCZwST6rKfrawLuzCjmPD0VDScH6AJaWqa1wXmh2iCeYnzGpfkGJ2E0GOMKSXNBC3ewCyWEXQ2QJTZRsZlyKTVmYX46fzK2EUGQwta72-d8_sI2JhFUEvr1m6xy6KXGjIPyg0DWC2jcTaVDC4RYdv2oGI4RUedXAc4-zmn6PXu9mX-kD893z_Ob55yxVgR87qVhGnVtIpVgEtZVWVR11LLBrquVLgrK85lQxiTNeko7RjRXFKgJS3blGdTdDH2brx730KIondbb9OXgjJSUF5xXKTU1ZhS3oXgoRPKxO-50y5mLQgWe7GiF6NYsRcrRrEJLn7BG28G6Xf_YdcjBmn9DwNeBGXAKtAmqYtCO_N3wRc2Vpk3 |
CitedBy_id | crossref_primary_10_1145_3645057_3645061 crossref_primary_10_1016_j_cie_2023_109327 crossref_primary_10_1109_ACCESS_2021_3110200 crossref_primary_10_1007_s11192_021_04180_x crossref_primary_10_1016_j_techfore_2022_121912 crossref_primary_10_1109_ACCESS_2021_3075675 crossref_primary_10_1177_01655515211023937 crossref_primary_10_1007_s10660_020_09441_0 crossref_primary_10_1038_s41598_023_28766_y |
Cites_doi | 10.1007/s11192-016-1951-0 10.1007/s10844-017-0444-9 10.1016/j.respol.2014.10.001 10.1016/j.ins.2018.04.019 10.1016/j.physa.2018.09.062 10.1109/TKDE.2018.2807452 10.3389/fgene.2018.00248 10.1016/j.respol.2011.08.002 10.1007/s10115-016-0925-0 10.1109/ACCESS.2017.2726339 10.1007/s10489-017-1044-7 10.1109/TVT.2016.2525726 10.1016/j.techfore.2017.08.005 10.1109/TKDE.2018.2833443 10.1016/0048-7333(87)90025-4 10.1093/bioinformatics/btx160 10.14778/3402707.3402736 10.1016/j.ins.2018.01.019 10.1016/j.artmed.2017.03.002 10.1007/s10961-012-9252-0 10.1109/ACCESS.2017.2751682 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier Science Ltd. Nov 15, 2019 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Nov 15, 2019 |
DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
DOI | 10.1016/j.knosys.2019.104899 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-7409 |
ExternalDocumentID | 10_1016_j_knosys_2019_104899 S0950705119303600 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW SSH UHS WUQ 7SC 8FD E3H EFKBS F2A JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c334t-7ba13dc8bc36e05a665477ada8eff5c0f5699a8133a71f22f31d9a2e2525b05a3 |
IEDL.DBID | .~1 |
ISSN | 0950-7051 |
IngestDate | Fri Jul 25 04:50:23 EDT 2025 Thu Apr 24 22:54:14 EDT 2025 Tue Jul 01 04:37:57 EDT 2025 Fri Feb 23 02:18:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Trade recommendation Network embedding Heterogeneous information network Patent technology |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-7ba13dc8bc36e05a665477ada8eff5c0f5699a8133a71f22f31d9a2e2525b05a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2314296904 |
PQPubID | 2035257 |
ParticipantIDs | proquest_journals_2314296904 crossref_citationtrail_10_1016_j_knosys_2019_104899 crossref_primary_10_1016_j_knosys_2019_104899 elsevier_sciencedirect_doi_10_1016_j_knosys_2019_104899 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-15 |
PublicationDateYYYYMMDD | 2019-11-15 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Knowledge-based systems |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Liang, Li, He (b20) 2018; 48 Shi, Liu, Zhuang (b44) 2016; 49 Meng, Jiang, Xu (b17) 2016; 65 Paggi, Soriano, Lara (b21) 2018; 451 Fang, Yang (b37) 2017 Fagerberg (b63) 1987; 169 Ma, Zhang (b8) 2017; 25 Sun, Han, Zhao (b15) 2009 He, Zhang, Wu (b23) 2019; 39 Deng, Jin, Han (b32) 2013; 33 Kani, Motohashi (b4) 2012; 41 Kralj, Marko, Lavrac (b19) 2018; 50 Zhu, Zhang, Zhang (b42) 2017 Huang, Wang, Li (b69) 2017 Jeong, Lee, Kim (b5) 2013; 38 Xiong, Yang (b36) 2016; 35 Bi, Liu (b24) 2017 Li, Wang, Yang (b54) 2017 Jiang, Yang (b38) 2017; 81 Luo, Zhao, Zhou (b13) 2017; 573 Wang, Lin (b35) 2017 Cao, Zheng, Shi (b67) 2016 Hu, Wang, Xie (b39) 2017; 99 Hosseini, Chen, Wu (b60) 2018 Xie, Chen, Ye (b51) 2018 He, Dong, Wu (b7) 2019; 514 Cao, Dong, Yang (b43) 2016; 39 Sun, Han, Yan (b40) 2011; 11 Guo, Zhu, Qu (b27) 2018; 436 Cai, Zheng, Chang (b68) 2018; 30 Li, Zhang, Wang (b14) 2017; 11 Sun, Liu (b62) 2016; 108 Yuan, He, Han (b59) 2018 Zhu, Bing, Min (b46) 2018; 9 Wang, Cui, Zhu (b58) 2016 Zhao, Yao, Li (b26) 2017 Chang, Han, Tang (b56) 2015 Gupta, Kumar, Bhasker (b49) 2016; 9 Shi, Hu, Zhao, Yu (b25) 2019; 31 Zhai, Xing, Zhang (b33) 2016; 39 Huang, Zheng, Cheng (b53) 2016 Liu, Pan, Pan (b30) 2018; 34 Hu, Wang, Xie (b45) 2017 Wu, Zhang, He (b12) 2018 Shi, Zhang, Luo (b66) 2015 Xia, Yang, Cheng (b29) 2018; 37 Zhou, Huang, Sun (b52) 2017 Ma, Liu (b6) 2017; 38 Sun, Liu (b1) 2016; 108 Chen, Sun (b64) 2017 Huang, Mamoulis (b50) 2017 Liang, Chen, Wu (b41) 2016 Nandanwar, Moroney, Murty (b48) 2018 KIBO (b2) 2014 Yang, Kim (b3) 2008; 21 Dang, Gong (b11) 2013; 31 Fu, Yuan, Duan (b55) 2019 Zhang, Chen, Zhu (b10) 2018; 36 Zong, Kim, Ngo (b18) 2017; 33 Wang, Chen, Zhu (b34) 2017 Shi, Zhou, Kong (b47) 2012 Zhu, Qin, Li (b28) 2015; 31 Han, Sun, Yan (b16) 2010 Xiong, Yang, Gao (b31) 2017; 36 Wang, Zhang, Hou (b57) 2017 Sun, Grimes (b9) 2017; 125 Xiang, Liu, Zhou (b61) 2018 Shi, Zhang, Luo (b22) 2015 Jensen, Palangkaraya, Webster (b65) 2015; 44 Cai (10.1016/j.knosys.2019.104899_b68) 2018; 30 Ma (10.1016/j.knosys.2019.104899_b6) 2017; 38 Yang (10.1016/j.knosys.2019.104899_b3) 2008; 21 Cao (10.1016/j.knosys.2019.104899_b67) 2016 Shi (10.1016/j.knosys.2019.104899_b44) 2016; 49 Meng (10.1016/j.knosys.2019.104899_b17) 2016; 65 Luo (10.1016/j.knosys.2019.104899_b13) 2017; 573 Hu (10.1016/j.knosys.2019.104899_b45) 2017 Zhang (10.1016/j.knosys.2019.104899_b10) 2018; 36 Zhu (10.1016/j.knosys.2019.104899_b46) 2018; 9 Liang (10.1016/j.knosys.2019.104899_b20) 2018; 48 Huang (10.1016/j.knosys.2019.104899_b69) 2017 Ma (10.1016/j.knosys.2019.104899_b8) 2017; 25 Jeong (10.1016/j.knosys.2019.104899_b5) 2013; 38 Zhao (10.1016/j.knosys.2019.104899_b26) 2017 Wu (10.1016/j.knosys.2019.104899_b12) 2018 Shi (10.1016/j.knosys.2019.104899_b22) 2015 Guo (10.1016/j.knosys.2019.104899_b27) 2018; 436 Nandanwar (10.1016/j.knosys.2019.104899_b48) 2018 Sun (10.1016/j.knosys.2019.104899_b62) 2016; 108 Xie (10.1016/j.knosys.2019.104899_b51) 2018 Sun (10.1016/j.knosys.2019.104899_b1) 2016; 108 Xiong (10.1016/j.knosys.2019.104899_b31) 2017; 36 Liu (10.1016/j.knosys.2019.104899_b30) 2018; 34 Shi (10.1016/j.knosys.2019.104899_b66) 2015 Zhu (10.1016/j.knosys.2019.104899_b28) 2015; 31 Zhou (10.1016/j.knosys.2019.104899_b52) 2017 Fang (10.1016/j.knosys.2019.104899_b37) 2017 Zhu (10.1016/j.knosys.2019.104899_b42) 2017 Wang (10.1016/j.knosys.2019.104899_b57) 2017 Paggi (10.1016/j.knosys.2019.104899_b21) 2018; 451 Hosseini (10.1016/j.knosys.2019.104899_b60) 2018 Zong (10.1016/j.knosys.2019.104899_b18) 2017; 33 Jensen (10.1016/j.knosys.2019.104899_b65) 2015; 44 Hu (10.1016/j.knosys.2019.104899_b39) 2017; 99 Xia (10.1016/j.knosys.2019.104899_b29) 2018; 37 Wang (10.1016/j.knosys.2019.104899_b34) 2017 Fagerberg (10.1016/j.knosys.2019.104899_b63) 1987; 169 Sun (10.1016/j.knosys.2019.104899_b9) 2017; 125 Sun (10.1016/j.knosys.2019.104899_b40) 2011; 11 Chang (10.1016/j.knosys.2019.104899_b56) 2015 Dang (10.1016/j.knosys.2019.104899_b11) 2013; 31 Shi (10.1016/j.knosys.2019.104899_b25) 2019; 31 Zhai (10.1016/j.knosys.2019.104899_b33) 2016; 39 Liang (10.1016/j.knosys.2019.104899_b41) 2016 Wang (10.1016/j.knosys.2019.104899_b58) 2016 Xiong (10.1016/j.knosys.2019.104899_b36) 2016; 35 Han (10.1016/j.knosys.2019.104899_b16) 2010 Shi (10.1016/j.knosys.2019.104899_b47) 2012 Li (10.1016/j.knosys.2019.104899_b14) 2017; 11 Kralj (10.1016/j.knosys.2019.104899_b19) 2018; 50 Huang (10.1016/j.knosys.2019.104899_b53) 2016 Deng (10.1016/j.knosys.2019.104899_b32) 2013; 33 Yuan (10.1016/j.knosys.2019.104899_b59) 2018 Sun (10.1016/j.knosys.2019.104899_b15) 2009 KIBO (10.1016/j.knosys.2019.104899_b2) 2014 Kani (10.1016/j.knosys.2019.104899_b4) 2012; 41 Gupta (10.1016/j.knosys.2019.104899_b49) 2016; 9 Fu (10.1016/j.knosys.2019.104899_b55) 2019 Wang (10.1016/j.knosys.2019.104899_b35) 2017 Li (10.1016/j.knosys.2019.104899_b54) 2017 He (10.1016/j.knosys.2019.104899_b23) 2019; 39 Bi (10.1016/j.knosys.2019.104899_b24) 2017 Jiang (10.1016/j.knosys.2019.104899_b38) 2017; 81 Chen (10.1016/j.knosys.2019.104899_b64) 2017 Huang (10.1016/j.knosys.2019.104899_b50) 2017 Xiang (10.1016/j.knosys.2019.104899_b61) 2018 He (10.1016/j.knosys.2019.104899_b7) 2019; 514 Cao (10.1016/j.knosys.2019.104899_b43) 2016; 39 |
References_xml | – start-page: 1 year: 2018 end-page: 7 ident: b61 article-title: Feature Propagation on Graph: A New Perspective to Graph Representation Learning – start-page: 1595 year: 2017 end-page: 1604 ident: b52 article-title: DMSS: A Robust Deep Meta Structure Based Similarity Measure in Heterogeneous Information Networks – start-page: 24 year: 2017 end-page: 32 ident: b24 article-title: Study on the method of aggregation and service recommendation of digital resource based on domain ontology publication-title: J. China Soc. Sci. Tech. Inf. – start-page: 1225 year: 2016 end-page: 1234 ident: b58 article-title: Structural deep network embedding publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 9 start-page: 248 year: 2018 end-page: 258 ident: b46 article-title: Prediction of drug-gene interaction by using metapath2vec publication-title: Front. Genet. – volume: 31 start-page: 357 year: 2019 end-page: 370 ident: b25 article-title: Heterogeneous information network embedding for recommendation publication-title: IEEE Trans. Knowl. Data Eng. – volume: 37 start-page: 48 year: 2018 end-page: 57 ident: b29 article-title: Study of a group recommendation model of integrating context information in a mobile environment—empirical analysis based on user APP behavior data publication-title: J. China Soc. Sci. Tech. Inf. – volume: 50 start-page: 29 year: 2018 end-page: 61 ident: b19 article-title: HINMINE: Heterogeneous information network mining with information retrieval heuristics publication-title: J. Intell. Inf. Syst. – start-page: 99 year: 2017 end-page: 105 ident: b37 article-title: User interest recommendation by combining contextual relations on the social media publication-title: Libr. Inf. Serv. – start-page: 414 year: 2018 end-page: 422 ident: b48 article-title: Fusing diversity in recommendations in heterogeneous information networks publication-title: Proceedings of WSDM’18. February 59 – volume: 99 start-page: 1 year: 2017 ident: b39 article-title: Semantic preference-based personalized recommendation on heterogeneous information network publication-title: IEEE Access – volume: 125 start-page: 125 year: 2017 end-page: 136 ident: b9 article-title: The actors and relations in evolving networks: The determinants of inter-regional technology transaction in China publication-title: Technol. Forecast. Soc. Change – volume: 35 start-page: 549 year: 2016 end-page: 560 ident: b36 article-title: Personalized information recommendation research based on combined condition in folksonomies publication-title: J. China Soc. Sci. Tech. Inf. – start-page: 1011 year: 2017 end-page: 1023 ident: b34 article-title: Personalized recommendation of crowd-funding campaigns: A bipartite graph approach for sparse data publication-title: Syst. Eng. Theory Pract. – start-page: 1 year: 2019 end-page: 10 ident: b55 article-title: Representation Learning for Heterogeneous Information Networks via Embedding Events – volume: 9 start-page: 23 year: 2016 end-page: 42 ident: b49 article-title: Personalized item ranking from implicit user feedback: A heterogeneous information network approach publication-title: Pac. Asia J. Assoc. Inf. Syst. – volume: 44 start-page: 340 year: 2015 end-page: 356 ident: b65 article-title: Trust and the market for technology publication-title: Res. Policy – year: 2016 ident: b67 article-title: Link prediction in schema-rich heterogeneous information network publication-title: Advances in Knowledge Discovery and Data Mining – year: 2018 ident: b59 article-title: User behavior prediction via heterogeneous information preserving network embedding publication-title: Future Gener. Comput. Syst. – volume: 11 start-page: 2995 year: 2017 end-page: 3005 ident: b14 article-title: The method of personalized learning materials recommendation based on multidimensional feature difference publication-title: Syst. Eng. Theory Pract. – volume: 48 start-page: 1111 year: 2018 end-page: 1127 ident: b20 article-title: Supervised ranking framework for relation prediction in heterogeneous information networks publication-title: Appl. Intell. – volume: 39 start-page: 475 year: 2019 end-page: 484 ident: b23 article-title: Technology demand recognition model based on semantic similarity under the supply-demand matching perspective publication-title: Syst. Eng. Theory Pract. – volume: 169 start-page: 87 year: 1987 end-page: 99 ident: b63 article-title: A technology gap approach to why growth rates differ publication-title: Res. Policy – volume: 11 start-page: 992 year: 2011 end-page: 1003 ident: b40 article-title: Pathsim: meta path-based top-k similarity search in heterogeneous information networks publication-title: Proc. VLDB Endowment – start-page: 1 year: 2016 end-page: 10 ident: b53 article-title: Meta Structure: Computing Relevance in Large Heterogeneous Information Networks – start-page: 635 year: 2017 end-page: 644 ident: b26 article-title: Meta-graph based recommendation fusion over heterogeneous information networks publication-title: KDD’17: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. August 1317 – start-page: 19773 year: 2017 end-page: 19781 ident: b45 article-title: Semantic preference-based personalized recommendation on heterogeneous information network publication-title: IEEE Access – volume: 38 start-page: 65 year: 2017 end-page: 76 ident: b6 article-title: Research on the evolution of technology transfer network in new energy fields based on patent licensing publication-title: Sci. Sci. Manage. S. T. – volume: 39 start-page: 106 year: 2016 end-page: 110 ident: b33 article-title: Research on mobile E-commerce collaborative filtering recommendation based on context clustering optimization publication-title: Inf. Stud. Theory Appl. – start-page: 1251 year: 2010 end-page: 1252 ident: b16 article-title: Mining knowledge from databases: an information network analysis approach publication-title: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data. June 6-10 – volume: 21 start-page: 205227 year: 2008 ident: b3 article-title: The study on tech transfer problems of R&D institutions publication-title: Korean J. Bus. Adm. – volume: 514 start-page: 443 year: 2019 end-page: 457 ident: b7 article-title: Factors affecting evolution of the interprovincial technology patent trade networks in China based on exponential random graph models publication-title: Physica A – volume: 38 start-page: 251 year: 2013 end-page: 272 ident: b5 article-title: Licensing versus selling in transactions for exploiting patented technological knowledge assets in the markets for technology publication-title: J. Technol. Transfer – volume: 36 start-page: 916 year: 2017 end-page: 929 ident: b31 article-title: Personalized recommendation research based on user interest topic model publication-title: J. China Soc. Sci. Tech. Inf. – start-page: 404 year: 2018 end-page: 420 ident: b51 article-title: A Weighted Meta-Graph based Approach for Mobile Application Recommendation on Heterogeneous Information Networks, ICSOC 2018 – start-page: 453 year: 2015 end-page: 462 ident: b66 article-title: Semantic path based personalized recommendation on weighted heterogeneous information networks publication-title: CIKM’15: ACM International on Conference on Information and Knowledge Management – volume: 65 start-page: 9982 year: 2016 end-page: 9993 ident: b17 article-title: User association in heterogeneous networks: A social interaction approach publication-title: IEEE Trans. Veh. Technol. – volume: 573 start-page: 1 year: 2017 end-page: 13 ident: b13 article-title: A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information publication-title: Nature Commun. – start-page: 163 year: 2017 end-page: 179 ident: b54 article-title: PPNE: Property preserving network embedding publication-title: 22nd International Conference: Database Systems for Advanced Applications. March 27-30 – volume: 108 start-page: 201 year: 2016 end-page: 220 ident: b62 article-title: Proximity effect, preferential attachment and path dependence in inter-regional network: a case of China’s technology transaction publication-title: Scientometrics – start-page: 565 year: 2009 end-page: 576 ident: b15 article-title: Rankclus: integrating clustering with ranking for heterogeneous information network analysis publication-title: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. March 24-26 – start-page: 1 year: 2017 end-page: 9 ident: b57 article-title: SHINE: Signed Heterogeneous Information Network Embedding for Sentiment Link Prediction – start-page: 119 year: 2015 end-page: 128 ident: b56 article-title: Heterogeneous network embedding via deep architectures publication-title: KDD’15: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. August 1114 – volume: 31 start-page: 1590 year: 2013 end-page: 1600 ident: b11 article-title: Impact of multidimensional proximities on cross region technology innovation cooperation: empirical analysis based on Chinese coinvent patent data publication-title: Stud. Sci. Sci. – volume: 33 start-page: 2337 year: 2017 end-page: 2344 ident: b18 article-title: Meta structure: Computing relevance in large heterogeneous information networks heterogeneous networks of biomedical linked data to predict novel drugtarget associations publication-title: Bioinformatics – start-page: 371 year: 2016 end-page: 386 ident: b41 article-title: Meta-path based service recommendation in heterogeneous information networks publication-title: International Conference on Service-Oriented Computing, Vol. 9936 – start-page: 295 year: 2017 end-page: 304 ident: b64 article-title: Task-guided and path-augmented heterogeneous network embedding for author identification publication-title: WSDM’17 Proceedings of the Tenth ACM International Conference. February 06-10 – volume: 49 start-page: 1 year: 2016 end-page: 25 ident: b44 article-title: Integrating heterogeneous information via flexible regularization framework for recommendation publication-title: Knowl. Inf. Syst. – start-page: 453 year: 2015 end-page: 462 ident: b22 article-title: Semantic path based personalized recommendation on weighted heterogeneous information networks publication-title: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. October 1923 – volume: 34 start-page: 85 year: 2018 end-page: 87 ident: b30 article-title: Personalized recommendation of simrank algorithms based on fusion of time influences publication-title: Stat. Decis. – start-page: 79 year: 2018 end-page: 85 ident: b12 article-title: Prediction of transaction opportunities among technology supply and demand subjects in patent transfer networks of new energy field publication-title: J. Intell. – start-page: 91 year: 2017 end-page: 99 ident: b35 article-title: Research on collaborative filtering method based on trust and the change of user’s interest publication-title: J. China Soc. Sci. Tech. Inf. – volume: 41 start-page: 226235 year: 2012 ident: b4 article-title: Understanding the technology market for patent: New insights from licensing survey of Japanese firms publication-title: Res. Policy – volume: 33 start-page: 2945 year: 2013 end-page: 2953 ident: b32 article-title: Improved collaborative filtering model based on context clustering and user ranking publication-title: Syst. Eng. Theory Pract. – volume: 451 start-page: 271 year: 2018 end-page: 294 ident: b21 article-title: A Multi-agent system for minimizing information indeterminacy within information fusion scenarios in peer-to-peer networks with limited resources publication-title: Inform. Sci. – volume: 81 start-page: 63 year: 2017 end-page: 77 ident: b38 article-title: User recommendation in healthcare social media by assessing user similarity in heterogeneous network publication-title: Artif. Intell. Med. – volume: 31 start-page: 13 year: 2015 end-page: 19 ident: b28 article-title: Research on collaborative filtering personalized recommendation method based on user classification publication-title: Data Anal. Knowl. Discov. – volume: 25 start-page: 187 year: 2017 end-page: 196 ident: b8 article-title: Strategy of entering into networks of transfer enterprise, network structure and level of knowledge publication-title: Chin. J. Manage. Sci. – volume: 36 start-page: 1897 year: 2018 end-page: 1913 ident: b10 article-title: Industry university research institute collaboration and the evolution of innovation ability of innovators in later - development countries - Evidence from the China’s highspeed rail industry publication-title: Stud. Sci. Sci. – start-page: 378 year: 2017 end-page: 387 ident: b69 article-title: HEMnet: Integration of electronic medical records with molecular interaction networks and domain knowledge for survival analysis publication-title: ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics. Boston, Massachusetts, USA, August 20-23, 2017 – year: 2014 ident: b2 article-title: Vitalizing Technology Transfer via Technology Financing – start-page: 15283 year: 2017 end-page: 15299 ident: b42 article-title: CHRS: Cold start recommendation across multiple heterogeneous information networks publication-title: IEEE Access – start-page: 1 year: 2018 end-page: 9 ident: b60 article-title: HeteroMed: Heterogeneous Information Network for Medical Diagnosis – volume: 30 start-page: 1616 year: 2018 end-page: 1637 ident: b68 article-title: A comprehensive survey of graph embedding: Problems, techniques and applications publication-title: IEEE Trans. Knowl. Data Eng. – volume: 436 start-page: 56 year: 2018 end-page: 73 ident: b27 article-title: PCCF: Periodic and continual temporal co-factorization for recommender systems publication-title: Inform. Sci. – start-page: 1552 year: 2012 end-page: 1555 ident: b47 article-title: HeteRecom: A semantic-based recommendation system in heterogeneous networks publication-title: KDD’12: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. August 1216 – volume: 108 start-page: 201 year: 2016 end-page: 220 ident: b1 article-title: Proximity effect, preferential attachment and path dependence in inter-regional network: a case of China’s technology transaction publication-title: Scientometrics – volume: 39 start-page: 675 year: 2016 end-page: 684 ident: b43 article-title: POI recommendation based on meta-path in LBSN publication-title: Chinese J. Comput. – start-page: 1 year: 2017 end-page: 9 ident: b50 article-title: Heterogeneous Information Network Embedding for Meta Path based Proximity – volume: 9 start-page: 23 issue: 2 year: 2016 ident: 10.1016/j.knosys.2019.104899_b49 article-title: Personalized item ranking from implicit user feedback: A heterogeneous information network approach publication-title: Pac. Asia J. Assoc. Inf. Syst. – start-page: 371 year: 2016 ident: 10.1016/j.knosys.2019.104899_b41 article-title: Meta-path based service recommendation in heterogeneous information networks – volume: 99 start-page: 1 year: 2017 ident: 10.1016/j.knosys.2019.104899_b39 article-title: Semantic preference-based personalized recommendation on heterogeneous information network publication-title: IEEE Access – volume: 108 start-page: 201 issue: 1 year: 2016 ident: 10.1016/j.knosys.2019.104899_b62 article-title: Proximity effect, preferential attachment and path dependence in inter-regional network: a case of China’s technology transaction publication-title: Scientometrics doi: 10.1007/s11192-016-1951-0 – volume: 50 start-page: 29 issue: 1 year: 2018 ident: 10.1016/j.knosys.2019.104899_b19 article-title: HINMINE: Heterogeneous information network mining with information retrieval heuristics publication-title: J. Intell. Inf. Syst. doi: 10.1007/s10844-017-0444-9 – volume: 44 start-page: 340 issue: 2 year: 2015 ident: 10.1016/j.knosys.2019.104899_b65 article-title: Trust and the market for technology publication-title: Res. Policy doi: 10.1016/j.respol.2014.10.001 – volume: 451 start-page: 271 year: 2018 ident: 10.1016/j.knosys.2019.104899_b21 article-title: A Multi-agent system for minimizing information indeterminacy within information fusion scenarios in peer-to-peer networks with limited resources publication-title: Inform. Sci. doi: 10.1016/j.ins.2018.04.019 – volume: 514 start-page: 443 issue: 15 year: 2019 ident: 10.1016/j.knosys.2019.104899_b7 article-title: Factors affecting evolution of the interprovincial technology patent trade networks in China based on exponential random graph models publication-title: Physica A doi: 10.1016/j.physa.2018.09.062 – volume: 35 start-page: 549 issue: 5 year: 2016 ident: 10.1016/j.knosys.2019.104899_b36 article-title: Personalized information recommendation research based on combined condition in folksonomies publication-title: J. China Soc. Sci. Tech. Inf. – volume: 30 start-page: 1616 issue: 9 year: 2018 ident: 10.1016/j.knosys.2019.104899_b68 article-title: A comprehensive survey of graph embedding: Problems, techniques and applications publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2018.2807452 – start-page: 1 year: 2017 ident: 10.1016/j.knosys.2019.104899_b50 – start-page: 99 issue: 21 year: 2017 ident: 10.1016/j.knosys.2019.104899_b37 article-title: User interest recommendation by combining contextual relations on the social media publication-title: Libr. Inf. Serv. – start-page: 404 year: 2018 ident: 10.1016/j.knosys.2019.104899_b51 – start-page: 635 year: 2017 ident: 10.1016/j.knosys.2019.104899_b26 article-title: Meta-graph based recommendation fusion over heterogeneous information networks – volume: 9 start-page: 248 year: 2018 ident: 10.1016/j.knosys.2019.104899_b46 article-title: Prediction of drug-gene interaction by using metapath2vec publication-title: Front. Genet. doi: 10.3389/fgene.2018.00248 – start-page: 1225 year: 2016 ident: 10.1016/j.knosys.2019.104899_b58 article-title: Structural deep network embedding – start-page: 1595 year: 2017 ident: 10.1016/j.knosys.2019.104899_b52 – start-page: 1251 year: 2010 ident: 10.1016/j.knosys.2019.104899_b16 article-title: Mining knowledge from databases: an information network analysis approach – year: 2018 ident: 10.1016/j.knosys.2019.104899_b59 article-title: User behavior prediction via heterogeneous information preserving network embedding publication-title: Future Gener. Comput. Syst. – volume: 108 start-page: 201 issue: 1 year: 2016 ident: 10.1016/j.knosys.2019.104899_b1 article-title: Proximity effect, preferential attachment and path dependence in inter-regional network: a case of China’s technology transaction publication-title: Scientometrics doi: 10.1007/s11192-016-1951-0 – volume: 41 start-page: 226235 issue: 1 year: 2012 ident: 10.1016/j.knosys.2019.104899_b4 article-title: Understanding the technology market for patent: New insights from licensing survey of Japanese firms publication-title: Res. Policy doi: 10.1016/j.respol.2011.08.002 – start-page: 24 issue: 05 year: 2017 ident: 10.1016/j.knosys.2019.104899_b24 article-title: Study on the method of aggregation and service recommendation of digital resource based on domain ontology publication-title: J. China Soc. Sci. Tech. Inf. – volume: 39 start-page: 106 issue: 8 year: 2016 ident: 10.1016/j.knosys.2019.104899_b33 article-title: Research on mobile E-commerce collaborative filtering recommendation based on context clustering optimization publication-title: Inf. Stud. Theory Appl. – start-page: 163 year: 2017 ident: 10.1016/j.knosys.2019.104899_b54 article-title: PPNE: Property preserving network embedding – start-page: 565 year: 2009 ident: 10.1016/j.knosys.2019.104899_b15 article-title: Rankclus: integrating clustering with ranking for heterogeneous information network analysis – volume: 39 start-page: 675 issue: 4 year: 2016 ident: 10.1016/j.knosys.2019.104899_b43 article-title: POI recommendation based on meta-path in LBSN publication-title: Chinese J. Comput. – volume: 49 start-page: 1 issue: 3 year: 2016 ident: 10.1016/j.knosys.2019.104899_b44 article-title: Integrating heterogeneous information via flexible regularization framework for recommendation publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-016-0925-0 – start-page: 295 year: 2017 ident: 10.1016/j.knosys.2019.104899_b64 article-title: Task-guided and path-augmented heterogeneous network embedding for author identification – start-page: 15283 issue: 5 year: 2017 ident: 10.1016/j.knosys.2019.104899_b42 article-title: CHRS: Cold start recommendation across multiple heterogeneous information networks publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2726339 – start-page: 1552 year: 2012 ident: 10.1016/j.knosys.2019.104899_b47 article-title: HeteRecom: A semantic-based recommendation system in heterogeneous networks – volume: 31 start-page: 1590 issue: 10 year: 2013 ident: 10.1016/j.knosys.2019.104899_b11 article-title: Impact of multidimensional proximities on cross region technology innovation cooperation: empirical analysis based on Chinese coinvent patent data publication-title: Stud. Sci. Sci. – start-page: 453 year: 2015 ident: 10.1016/j.knosys.2019.104899_b22 article-title: Semantic path based personalized recommendation on weighted heterogeneous information networks – year: 2016 ident: 10.1016/j.knosys.2019.104899_b67 article-title: Link prediction in schema-rich heterogeneous information network – volume: 36 start-page: 916 issue: 9 year: 2017 ident: 10.1016/j.knosys.2019.104899_b31 article-title: Personalized recommendation research based on user interest topic model publication-title: J. China Soc. Sci. Tech. Inf. – start-page: 1 year: 2018 ident: 10.1016/j.knosys.2019.104899_b61 – volume: 11 start-page: 2995 issue: 37 year: 2017 ident: 10.1016/j.knosys.2019.104899_b14 article-title: The method of personalized learning materials recommendation based on multidimensional feature difference publication-title: Syst. Eng. Theory Pract. – start-page: 453 year: 2015 ident: 10.1016/j.knosys.2019.104899_b66 article-title: Semantic path based personalized recommendation on weighted heterogeneous information networks – volume: 48 start-page: 1111 issue: 5 year: 2018 ident: 10.1016/j.knosys.2019.104899_b20 article-title: Supervised ranking framework for relation prediction in heterogeneous information networks publication-title: Appl. Intell. doi: 10.1007/s10489-017-1044-7 – volume: 33 start-page: 2945 issue: 11 year: 2013 ident: 10.1016/j.knosys.2019.104899_b32 article-title: Improved collaborative filtering model based on context clustering and user ranking publication-title: Syst. Eng. Theory Pract. – start-page: 378 year: 2017 ident: 10.1016/j.knosys.2019.104899_b69 article-title: HEMnet: Integration of electronic medical records with molecular interaction networks and domain knowledge for survival analysis – volume: 31 start-page: 13 issue: 6 year: 2015 ident: 10.1016/j.knosys.2019.104899_b28 article-title: Research on collaborative filtering personalized recommendation method based on user classification publication-title: Data Anal. Knowl. Discov. – volume: 36 start-page: 1897 issue: 10 year: 2018 ident: 10.1016/j.knosys.2019.104899_b10 article-title: Industry university research institute collaboration and the evolution of innovation ability of innovators in later - development countries - Evidence from the China’s highspeed rail industry publication-title: Stud. Sci. Sci. – volume: 65 start-page: 9982 issue: 12 year: 2016 ident: 10.1016/j.knosys.2019.104899_b17 article-title: User association in heterogeneous networks: A social interaction approach publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2016.2525726 – volume: 125 start-page: 125 year: 2017 ident: 10.1016/j.knosys.2019.104899_b9 article-title: The actors and relations in evolving networks: The determinants of inter-regional technology transaction in China publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2017.08.005 – volume: 37 start-page: 48 issue: 04 year: 2018 ident: 10.1016/j.knosys.2019.104899_b29 article-title: Study of a group recommendation model of integrating context information in a mobile environment—empirical analysis based on user APP behavior data publication-title: J. China Soc. Sci. Tech. Inf. – volume: 31 start-page: 357 issue: 02 year: 2019 ident: 10.1016/j.knosys.2019.104899_b25 article-title: Heterogeneous information network embedding for recommendation publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2018.2833443 – volume: 169 start-page: 87 issue: 2–4 year: 1987 ident: 10.1016/j.knosys.2019.104899_b63 article-title: A technology gap approach to why growth rates differ publication-title: Res. Policy doi: 10.1016/0048-7333(87)90025-4 – volume: 39 start-page: 475 issue: 2 year: 2019 ident: 10.1016/j.knosys.2019.104899_b23 article-title: Technology demand recognition model based on semantic similarity under the supply-demand matching perspective publication-title: Syst. Eng. Theory Pract. – start-page: 1 year: 2019 ident: 10.1016/j.knosys.2019.104899_b55 – volume: 21 start-page: 205227 issue: 1 year: 2008 ident: 10.1016/j.knosys.2019.104899_b3 article-title: The study on tech transfer problems of R&D institutions publication-title: Korean J. Bus. Adm. – start-page: 1 year: 2016 ident: 10.1016/j.knosys.2019.104899_b53 – start-page: 79 issue: 5 year: 2018 ident: 10.1016/j.knosys.2019.104899_b12 article-title: Prediction of transaction opportunities among technology supply and demand subjects in patent transfer networks of new energy field publication-title: J. Intell. – volume: 33 start-page: 2337 issue: 15 year: 2017 ident: 10.1016/j.knosys.2019.104899_b18 article-title: Meta structure: Computing relevance in large heterogeneous information networks heterogeneous networks of biomedical linked data to predict novel drugtarget associations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx160 – volume: 11 start-page: 992 issue: 4 year: 2011 ident: 10.1016/j.knosys.2019.104899_b40 article-title: Pathsim: meta path-based top-k similarity search in heterogeneous information networks publication-title: Proc. VLDB Endowment doi: 10.14778/3402707.3402736 – volume: 25 start-page: 187 issue: 2 year: 2017 ident: 10.1016/j.knosys.2019.104899_b8 article-title: Strategy of entering into networks of transfer enterprise, network structure and level of knowledge publication-title: Chin. J. Manage. Sci. – volume: 436 start-page: 56 year: 2018 ident: 10.1016/j.knosys.2019.104899_b27 article-title: PCCF: Periodic and continual temporal co-factorization for recommender systems publication-title: Inform. Sci. doi: 10.1016/j.ins.2018.01.019 – start-page: 414 year: 2018 ident: 10.1016/j.knosys.2019.104899_b48 article-title: Fusing diversity in recommendations in heterogeneous information networks – volume: 34 start-page: 85 issue: 13 year: 2018 ident: 10.1016/j.knosys.2019.104899_b30 article-title: Personalized recommendation of simrank algorithms based on fusion of time influences publication-title: Stat. Decis. – volume: 81 start-page: 63 year: 2017 ident: 10.1016/j.knosys.2019.104899_b38 article-title: User recommendation in healthcare social media by assessing user similarity in heterogeneous network publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2017.03.002 – volume: 38 start-page: 65 issue: 6 year: 2017 ident: 10.1016/j.knosys.2019.104899_b6 article-title: Research on the evolution of technology transfer network in new energy fields based on patent licensing publication-title: Sci. Sci. Manage. S. T. – start-page: 1011 issue: 4 year: 2017 ident: 10.1016/j.knosys.2019.104899_b34 article-title: Personalized recommendation of crowd-funding campaigns: A bipartite graph approach for sparse data publication-title: Syst. Eng. Theory Pract. – start-page: 119 year: 2015 ident: 10.1016/j.knosys.2019.104899_b56 article-title: Heterogeneous network embedding via deep architectures – start-page: 1 year: 2017 ident: 10.1016/j.knosys.2019.104899_b57 – start-page: 91 issue: 02 year: 2017 ident: 10.1016/j.knosys.2019.104899_b35 article-title: Research on collaborative filtering method based on trust and the change of user’s interest publication-title: J. China Soc. Sci. Tech. Inf. – year: 2014 ident: 10.1016/j.knosys.2019.104899_b2 – volume: 38 start-page: 251 issue: 3 year: 2013 ident: 10.1016/j.knosys.2019.104899_b5 article-title: Licensing versus selling in transactions for exploiting patented technological knowledge assets in the markets for technology publication-title: J. Technol. Transfer doi: 10.1007/s10961-012-9252-0 – volume: 573 start-page: 1 issue: 8 year: 2017 ident: 10.1016/j.knosys.2019.104899_b13 article-title: A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information publication-title: Nature Commun. – start-page: 19773 issue: 5 year: 2017 ident: 10.1016/j.knosys.2019.104899_b45 article-title: Semantic preference-based personalized recommendation on heterogeneous information network publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2751682 – start-page: 1 year: 2018 ident: 10.1016/j.knosys.2019.104899_b60 |
SSID | ssj0002218 |
Score | 2.3304975 |
Snippet | Most patent technology recommendations are based on link prediction of a homogeneous trade network and multiple-attribute matching. We constructed a... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 104899 |
SubjectTerms | Algorithms Decision making Embedding Heterogeneous information network Network embedding Patent technology Trade recommendation |
Title | Weighted meta paths and networking embedding for patent technology trade recommendations among subjects |
URI | https://dx.doi.org/10.1016/j.knosys.2019.104899 https://www.proquest.com/docview/2314296904 |
Volume | 184 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LSsQwMIhevPgWH6vk4DVumzRpehRxWRW9qOitpMlEfGwVtx68-O1m2lRRBMFj28lQJpN5ZR6E7CmrBWQSWKWVZZmDiulUWgaKGyecT7zG2uGzczW-yk5u5M0MOexrYTCtMsr-Tqa30jq-GUZqDp_v7oYXwTgI_Ir3YCiGE_TbsyxHLt9__0rz4LyN8SEwQ-i-fK7N8Xqon6Zv2LQ7LfCyU7cdYH9VTz8Edat9RktkIZqN9KD7s2UyA_UKWexHMtB4QlfJ7XUb6gRHJ9AYivOGp9TUjtZdundQVBQmFThUWTQYrAgS9A5tPkPstHkxDih6ypMJxJlLAQlOJaLT1woDN9M1cjU6ujwcszhLgVkhsobllUmFs7qyQkEiTTt0ODfOaPBe2sRLVRRGB4_V5Knn3IvUFYYDl1xWAV6sk9n6qYYNQotgUUCA9SqBgCPTKlXWA2Ljwfi0m0T0JCxtbDSO8y4eyz6j7L7sCF8i4cuO8JuEfa567hpt_AGf97tTfmOYMuiCP1YO-s0s44EN30UaNLMqkmzr34i3yTw-YaViKgdktnl5hZ1gsjTVbsuTu2Tu4Ph0fP4B-UbuTw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxwxDI7QciiX0hcqj7Y5cI12JplkM0eEQEuBvQAqtyiTOBUtOyB2OPTf157JrNSqElKvE8caOYntOLY_xg5NsAoqDaKxJogqQiNsqYMAI31UMRXJUu3w5cLMb6qvt_p2gx2PtTCUVpl1_6DTe22dv0yzNKePd3fTK3QOcL_SOxip4QLv7ZvUnUpP2ObR2fl8sVbIUvZhPqIXNGGsoOvTvH62D6tf1Le7rOm90_ZNYP9pof7S1b0BOn3DXmfPkR8NP_eWbUD7jm2PqAw8H9L37Pu3PtoJkS-h85wgh1fct5G3Q8Y32ioOywYiWS2OPiuRoOnh3TrKzrsnH4HTZXm5hAy7hEwImIivnhuK3aw-sJvTk-vjuchwCiIoVXVi1vhSxWCboAwU2ve4wzMfvYWUdCiSNnXtLV5a_axMUiZVxtpLkFrqBunVDpu0Dy18ZLxGpwKQNpkCkEdlTWlCAuIm0f8Mu0yNInQh9xonyIt7NyaV_XCD4B0J3g2C32ViPetx6LXxAv1sXB33x55xaA5emHkwLqbLZxbHVYnG2dRFtfffjL-wV_Prywt3cbY432dbNEKFi6U-YJPu6Rk-oQfTNZ_zDv0NIZnxAA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weighted+meta+paths+and+networking+embedding+for+patent+technology+trade+recommendations+among+subjects&rft.jtitle=Knowledge-based+systems&rft.au=He%2C+Xi-jun&rft.au=Dong%2C+Yanbo&rft.au=Zhen%2C+Zhou&rft.au=Wu%2C+Yu-ying&rft.date=2019-11-15&rft.pub=Elsevier+Science+Ltd&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=184&rft.spage=1&rft_id=info:doi/10.1016%2Fj.knosys.2019.104899&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |