Weighted meta paths and networking embedding for patent technology trade recommendations among subjects

Most patent technology recommendations are based on link prediction of a homogeneous trade network and multiple-attribute matching. We constructed a heterogeneous information network (HIN) with four types of nodes and seven types of relations; designed a heterogeneous relation traversal algorithm ba...

Full description

Saved in:
Bibliographic Details
Published inKnowledge-based systems Vol. 184; p. 104899
Main Authors He, Xi-jun, Dong, Yanbo, Zhen, Zhou, Wu, Yu-ying, Jiang, Guo-rui, Meng, Xue, Ma, Shan
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.11.2019
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most patent technology recommendations are based on link prediction of a homogeneous trade network and multiple-attribute matching. We constructed a heterogeneous information network (HIN) with four types of nodes and seven types of relations; designed a heterogeneous relation traversal algorithm based on the meta paths and meta structures inspired by the depth first search (DFS) strategy; obtained subject-relation sequences; and then calculated the weight of each meta path and meta structure through logistic regression. Using the relation sequence corpus of the weighted meta paths and meta structures among subjects, the patent technology trade recommendation model based on network embedding (PSR-vec) was proposed. The model was trained by using the Skip-gram method to obtain a vector-space representation for all subjects. Finally, the recommendation target was achieved by measuring the cosine similarity of the subject vectors. Through empirical research on the electronic information patent data, we observed that the PSR-vec model with weighted meta paths and meta structures was more precise than that with a single meta path or meta structure, which indicated that the patent technology trade was influenced by multiple factors. Second, the PSR-vec model combining weighted meta paths and meta structures was more precise than the unweighted model, which reflected more differences in multiple factors affecting trade. Third, compared to Deep Walk, Node2vec, Metapath2vec, and GraphSAGE methods, the PSR-vec model had a higher precision of up to 80%. Eventually, the recommendation subjects of PSR-vec included the holding relation, the supply relation, and the loose relation, which increased the diversity of the recommendation results. Our research thus provided a decision-making method for effective docking among patent technology trade subjects. •A meta path and network embedding method of patent technology trade was innovatively proposed in HIN.•Inspired by the DFS, the traversal methods were designed in a HIN to calculate the meta paths.•The recommendation performance of weighted PSR-vec was found to be better than that of the other methods.
AbstractList Most patent technology recommendations are based on link prediction of a homogeneous trade network and multiple-attribute matching. We constructed a heterogeneous information network (HIN) with four types of nodes and seven types of relations; designed a heterogeneous relation traversal algorithm based on the meta paths and meta structures inspired by the depth first search (DFS) strategy; obtained subject-relation sequences; and then calculated the weight of each meta path and meta structure through logistic regression. Using the relation sequence corpus of the weighted meta paths and meta structures among subjects, the patent technology trade recommendation model based on network embedding (PSR-vec) was proposed. The model was trained by using the Skip-gram method to obtain a vector-space representation for all subjects. Finally, the recommendation target was achieved by measuring the cosine similarity of the subject vectors. Through empirical research on the electronic information patent data, we observed that the PSR-vec model with weighted meta paths and meta structures was more precise than that with a single meta path or meta structure, which indicated that the patent technology trade was influenced by multiple factors. Second, the PSR-vec model combining weighted meta paths and meta structures was more precise than the unweighted model, which reflected more differences in multiple factors affecting trade. Third, compared to Deep Walk, Node2vec, Metapath2vec, and GraphSAGE methods, the PSR-vec model had a higher precision of up to 80%. Eventually, the recommendation subjects of PSR-vec included the holding relation, the supply relation, and the loose relation, which increased the diversity of the recommendation results. Our research thus provided a decision-making method for effective docking among patent technology trade subjects.
Most patent technology recommendations are based on link prediction of a homogeneous trade network and multiple-attribute matching. We constructed a heterogeneous information network (HIN) with four types of nodes and seven types of relations; designed a heterogeneous relation traversal algorithm based on the meta paths and meta structures inspired by the depth first search (DFS) strategy; obtained subject-relation sequences; and then calculated the weight of each meta path and meta structure through logistic regression. Using the relation sequence corpus of the weighted meta paths and meta structures among subjects, the patent technology trade recommendation model based on network embedding (PSR-vec) was proposed. The model was trained by using the Skip-gram method to obtain a vector-space representation for all subjects. Finally, the recommendation target was achieved by measuring the cosine similarity of the subject vectors. Through empirical research on the electronic information patent data, we observed that the PSR-vec model with weighted meta paths and meta structures was more precise than that with a single meta path or meta structure, which indicated that the patent technology trade was influenced by multiple factors. Second, the PSR-vec model combining weighted meta paths and meta structures was more precise than the unweighted model, which reflected more differences in multiple factors affecting trade. Third, compared to Deep Walk, Node2vec, Metapath2vec, and GraphSAGE methods, the PSR-vec model had a higher precision of up to 80%. Eventually, the recommendation subjects of PSR-vec included the holding relation, the supply relation, and the loose relation, which increased the diversity of the recommendation results. Our research thus provided a decision-making method for effective docking among patent technology trade subjects. •A meta path and network embedding method of patent technology trade was innovatively proposed in HIN.•Inspired by the DFS, the traversal methods were designed in a HIN to calculate the meta paths.•The recommendation performance of weighted PSR-vec was found to be better than that of the other methods.
ArticleNumber 104899
Author He, Xi-jun
Dong, Yanbo
Zhen, Zhou
Meng, Xue
Jiang, Guo-rui
Ma, Shan
Wu, Yu-ying
Author_xml – sequence: 1
  givenname: Xi-jun
  surname: He
  fullname: He, Xi-jun
  organization: College of Economics and Management, Beijing University of Technology, No. 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
– sequence: 2
  givenname: Yanbo
  surname: Dong
  fullname: Dong, Yanbo
  email: dyb@emails.bjut.edu.cn
  organization: College of Economics and Management, Beijing University of Technology, No. 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
– sequence: 3
  givenname: Zhou
  surname: Zhen
  fullname: Zhen, Zhou
  organization: School of Management, Capital Normal University, No. 105, North Road, West Third Ring Road, Beijing 100048, China
– sequence: 4
  givenname: Yu-ying
  surname: Wu
  fullname: Wu, Yu-ying
  organization: College of Economics and Management, Beijing University of Technology, No. 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
– sequence: 5
  givenname: Guo-rui
  surname: Jiang
  fullname: Jiang, Guo-rui
  organization: College of Economics and Management, Beijing University of Technology, No. 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
– sequence: 6
  givenname: Xue
  surname: Meng
  fullname: Meng, Xue
  organization: College of Economics and Management, Beijing University of Technology, No. 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
– sequence: 7
  givenname: Shan
  surname: Ma
  fullname: Ma, Shan
  organization: College of Economics and Management, Beijing University of Technology, No. 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
BookMark eNqFkMtKAzEUhoMoWKtv4GLA9dRc5hYXghRvILhRXIZMcqbNtJPUJFX69qaOKxe6Sgj_9-ec7wQdWmcBoXOCZwST6rKfrawLuzCjmPD0VDScH6AJaWqa1wXmh2iCeYnzGpfkGJ2E0GOMKSXNBC3ewCyWEXQ2QJTZRsZlyKTVmYX46fzK2EUGQwta72-d8_sI2JhFUEvr1m6xy6KXGjIPyg0DWC2jcTaVDC4RYdv2oGI4RUedXAc4-zmn6PXu9mX-kD893z_Ob55yxVgR87qVhGnVtIpVgEtZVWVR11LLBrquVLgrK85lQxiTNeko7RjRXFKgJS3blGdTdDH2brx730KIondbb9OXgjJSUF5xXKTU1ZhS3oXgoRPKxO-50y5mLQgWe7GiF6NYsRcrRrEJLn7BG28G6Xf_YdcjBmn9DwNeBGXAKtAmqYtCO_N3wRc2Vpk3
CitedBy_id crossref_primary_10_1145_3645057_3645061
crossref_primary_10_1016_j_cie_2023_109327
crossref_primary_10_1109_ACCESS_2021_3110200
crossref_primary_10_1007_s11192_021_04180_x
crossref_primary_10_1016_j_techfore_2022_121912
crossref_primary_10_1109_ACCESS_2021_3075675
crossref_primary_10_1177_01655515211023937
crossref_primary_10_1007_s10660_020_09441_0
crossref_primary_10_1038_s41598_023_28766_y
Cites_doi 10.1007/s11192-016-1951-0
10.1007/s10844-017-0444-9
10.1016/j.respol.2014.10.001
10.1016/j.ins.2018.04.019
10.1016/j.physa.2018.09.062
10.1109/TKDE.2018.2807452
10.3389/fgene.2018.00248
10.1016/j.respol.2011.08.002
10.1007/s10115-016-0925-0
10.1109/ACCESS.2017.2726339
10.1007/s10489-017-1044-7
10.1109/TVT.2016.2525726
10.1016/j.techfore.2017.08.005
10.1109/TKDE.2018.2833443
10.1016/0048-7333(87)90025-4
10.1093/bioinformatics/btx160
10.14778/3402707.3402736
10.1016/j.ins.2018.01.019
10.1016/j.artmed.2017.03.002
10.1007/s10961-012-9252-0
10.1109/ACCESS.2017.2751682
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier Science Ltd. Nov 15, 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Nov 15, 2019
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2019.104899
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2019_104899
S0950705119303600
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
SSH
UHS
WUQ
7SC
8FD
E3H
EFKBS
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-7ba13dc8bc36e05a665477ada8eff5c0f5699a8133a71f22f31d9a2e2525b05a3
IEDL.DBID .~1
ISSN 0950-7051
IngestDate Fri Jul 25 04:50:23 EDT 2025
Thu Apr 24 22:54:14 EDT 2025
Tue Jul 01 04:37:57 EDT 2025
Fri Feb 23 02:18:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Trade recommendation
Network embedding
Heterogeneous information network
Patent technology
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-7ba13dc8bc36e05a665477ada8eff5c0f5699a8133a71f22f31d9a2e2525b05a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2314296904
PQPubID 2035257
ParticipantIDs proquest_journals_2314296904
crossref_citationtrail_10_1016_j_knosys_2019_104899
crossref_primary_10_1016_j_knosys_2019_104899
elsevier_sciencedirect_doi_10_1016_j_knosys_2019_104899
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-15
PublicationDateYYYYMMDD 2019-11-15
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2019
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Liang, Li, He (b20) 2018; 48
Shi, Liu, Zhuang (b44) 2016; 49
Meng, Jiang, Xu (b17) 2016; 65
Paggi, Soriano, Lara (b21) 2018; 451
Fang, Yang (b37) 2017
Fagerberg (b63) 1987; 169
Ma, Zhang (b8) 2017; 25
Sun, Han, Zhao (b15) 2009
He, Zhang, Wu (b23) 2019; 39
Deng, Jin, Han (b32) 2013; 33
Kani, Motohashi (b4) 2012; 41
Kralj, Marko, Lavrac (b19) 2018; 50
Zhu, Zhang, Zhang (b42) 2017
Huang, Wang, Li (b69) 2017
Jeong, Lee, Kim (b5) 2013; 38
Xiong, Yang (b36) 2016; 35
Bi, Liu (b24) 2017
Li, Wang, Yang (b54) 2017
Jiang, Yang (b38) 2017; 81
Luo, Zhao, Zhou (b13) 2017; 573
Wang, Lin (b35) 2017
Cao, Zheng, Shi (b67) 2016
Hu, Wang, Xie (b39) 2017; 99
Hosseini, Chen, Wu (b60) 2018
Xie, Chen, Ye (b51) 2018
He, Dong, Wu (b7) 2019; 514
Cao, Dong, Yang (b43) 2016; 39
Sun, Han, Yan (b40) 2011; 11
Guo, Zhu, Qu (b27) 2018; 436
Cai, Zheng, Chang (b68) 2018; 30
Li, Zhang, Wang (b14) 2017; 11
Sun, Liu (b62) 2016; 108
Yuan, He, Han (b59) 2018
Zhu, Bing, Min (b46) 2018; 9
Wang, Cui, Zhu (b58) 2016
Zhao, Yao, Li (b26) 2017
Chang, Han, Tang (b56) 2015
Gupta, Kumar, Bhasker (b49) 2016; 9
Shi, Hu, Zhao, Yu (b25) 2019; 31
Zhai, Xing, Zhang (b33) 2016; 39
Huang, Zheng, Cheng (b53) 2016
Liu, Pan, Pan (b30) 2018; 34
Hu, Wang, Xie (b45) 2017
Wu, Zhang, He (b12) 2018
Shi, Zhang, Luo (b66) 2015
Xia, Yang, Cheng (b29) 2018; 37
Zhou, Huang, Sun (b52) 2017
Ma, Liu (b6) 2017; 38
Sun, Liu (b1) 2016; 108
Chen, Sun (b64) 2017
Huang, Mamoulis (b50) 2017
Liang, Chen, Wu (b41) 2016
Nandanwar, Moroney, Murty (b48) 2018
KIBO (b2) 2014
Yang, Kim (b3) 2008; 21
Dang, Gong (b11) 2013; 31
Fu, Yuan, Duan (b55) 2019
Zhang, Chen, Zhu (b10) 2018; 36
Zong, Kim, Ngo (b18) 2017; 33
Wang, Chen, Zhu (b34) 2017
Shi, Zhou, Kong (b47) 2012
Zhu, Qin, Li (b28) 2015; 31
Han, Sun, Yan (b16) 2010
Xiong, Yang, Gao (b31) 2017; 36
Wang, Zhang, Hou (b57) 2017
Sun, Grimes (b9) 2017; 125
Xiang, Liu, Zhou (b61) 2018
Shi, Zhang, Luo (b22) 2015
Jensen, Palangkaraya, Webster (b65) 2015; 44
Cai (10.1016/j.knosys.2019.104899_b68) 2018; 30
Ma (10.1016/j.knosys.2019.104899_b6) 2017; 38
Yang (10.1016/j.knosys.2019.104899_b3) 2008; 21
Cao (10.1016/j.knosys.2019.104899_b67) 2016
Shi (10.1016/j.knosys.2019.104899_b44) 2016; 49
Meng (10.1016/j.knosys.2019.104899_b17) 2016; 65
Luo (10.1016/j.knosys.2019.104899_b13) 2017; 573
Hu (10.1016/j.knosys.2019.104899_b45) 2017
Zhang (10.1016/j.knosys.2019.104899_b10) 2018; 36
Zhu (10.1016/j.knosys.2019.104899_b46) 2018; 9
Liang (10.1016/j.knosys.2019.104899_b20) 2018; 48
Huang (10.1016/j.knosys.2019.104899_b69) 2017
Ma (10.1016/j.knosys.2019.104899_b8) 2017; 25
Jeong (10.1016/j.knosys.2019.104899_b5) 2013; 38
Zhao (10.1016/j.knosys.2019.104899_b26) 2017
Wu (10.1016/j.knosys.2019.104899_b12) 2018
Shi (10.1016/j.knosys.2019.104899_b22) 2015
Guo (10.1016/j.knosys.2019.104899_b27) 2018; 436
Nandanwar (10.1016/j.knosys.2019.104899_b48) 2018
Sun (10.1016/j.knosys.2019.104899_b62) 2016; 108
Xie (10.1016/j.knosys.2019.104899_b51) 2018
Sun (10.1016/j.knosys.2019.104899_b1) 2016; 108
Xiong (10.1016/j.knosys.2019.104899_b31) 2017; 36
Liu (10.1016/j.knosys.2019.104899_b30) 2018; 34
Shi (10.1016/j.knosys.2019.104899_b66) 2015
Zhu (10.1016/j.knosys.2019.104899_b28) 2015; 31
Zhou (10.1016/j.knosys.2019.104899_b52) 2017
Fang (10.1016/j.knosys.2019.104899_b37) 2017
Zhu (10.1016/j.knosys.2019.104899_b42) 2017
Wang (10.1016/j.knosys.2019.104899_b57) 2017
Paggi (10.1016/j.knosys.2019.104899_b21) 2018; 451
Hosseini (10.1016/j.knosys.2019.104899_b60) 2018
Zong (10.1016/j.knosys.2019.104899_b18) 2017; 33
Jensen (10.1016/j.knosys.2019.104899_b65) 2015; 44
Hu (10.1016/j.knosys.2019.104899_b39) 2017; 99
Xia (10.1016/j.knosys.2019.104899_b29) 2018; 37
Wang (10.1016/j.knosys.2019.104899_b34) 2017
Fagerberg (10.1016/j.knosys.2019.104899_b63) 1987; 169
Sun (10.1016/j.knosys.2019.104899_b9) 2017; 125
Sun (10.1016/j.knosys.2019.104899_b40) 2011; 11
Chang (10.1016/j.knosys.2019.104899_b56) 2015
Dang (10.1016/j.knosys.2019.104899_b11) 2013; 31
Shi (10.1016/j.knosys.2019.104899_b25) 2019; 31
Zhai (10.1016/j.knosys.2019.104899_b33) 2016; 39
Liang (10.1016/j.knosys.2019.104899_b41) 2016
Wang (10.1016/j.knosys.2019.104899_b58) 2016
Xiong (10.1016/j.knosys.2019.104899_b36) 2016; 35
Han (10.1016/j.knosys.2019.104899_b16) 2010
Shi (10.1016/j.knosys.2019.104899_b47) 2012
Li (10.1016/j.knosys.2019.104899_b14) 2017; 11
Kralj (10.1016/j.knosys.2019.104899_b19) 2018; 50
Huang (10.1016/j.knosys.2019.104899_b53) 2016
Deng (10.1016/j.knosys.2019.104899_b32) 2013; 33
Yuan (10.1016/j.knosys.2019.104899_b59) 2018
Sun (10.1016/j.knosys.2019.104899_b15) 2009
KIBO (10.1016/j.knosys.2019.104899_b2) 2014
Kani (10.1016/j.knosys.2019.104899_b4) 2012; 41
Gupta (10.1016/j.knosys.2019.104899_b49) 2016; 9
Fu (10.1016/j.knosys.2019.104899_b55) 2019
Wang (10.1016/j.knosys.2019.104899_b35) 2017
Li (10.1016/j.knosys.2019.104899_b54) 2017
He (10.1016/j.knosys.2019.104899_b23) 2019; 39
Bi (10.1016/j.knosys.2019.104899_b24) 2017
Jiang (10.1016/j.knosys.2019.104899_b38) 2017; 81
Chen (10.1016/j.knosys.2019.104899_b64) 2017
Huang (10.1016/j.knosys.2019.104899_b50) 2017
Xiang (10.1016/j.knosys.2019.104899_b61) 2018
He (10.1016/j.knosys.2019.104899_b7) 2019; 514
Cao (10.1016/j.knosys.2019.104899_b43) 2016; 39
References_xml – start-page: 1
  year: 2018
  end-page: 7
  ident: b61
  article-title: Feature Propagation on Graph: A New Perspective to Graph Representation Learning
– start-page: 1595
  year: 2017
  end-page: 1604
  ident: b52
  article-title: DMSS: A Robust Deep Meta Structure Based Similarity Measure in Heterogeneous Information Networks
– start-page: 24
  year: 2017
  end-page: 32
  ident: b24
  article-title: Study on the method of aggregation and service recommendation of digital resource based on domain ontology
  publication-title: J. China Soc. Sci. Tech. Inf.
– start-page: 1225
  year: 2016
  end-page: 1234
  ident: b58
  article-title: Structural deep network embedding
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 9
  start-page: 248
  year: 2018
  end-page: 258
  ident: b46
  article-title: Prediction of drug-gene interaction by using metapath2vec
  publication-title: Front. Genet.
– volume: 31
  start-page: 357
  year: 2019
  end-page: 370
  ident: b25
  article-title: Heterogeneous information network embedding for recommendation
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 37
  start-page: 48
  year: 2018
  end-page: 57
  ident: b29
  article-title: Study of a group recommendation model of integrating context information in a mobile environment—empirical analysis based on user APP behavior data
  publication-title: J. China Soc. Sci. Tech. Inf.
– volume: 50
  start-page: 29
  year: 2018
  end-page: 61
  ident: b19
  article-title: HINMINE: Heterogeneous information network mining with information retrieval heuristics
  publication-title: J. Intell. Inf. Syst.
– start-page: 99
  year: 2017
  end-page: 105
  ident: b37
  article-title: User interest recommendation by combining contextual relations on the social media
  publication-title: Libr. Inf. Serv.
– start-page: 414
  year: 2018
  end-page: 422
  ident: b48
  article-title: Fusing diversity in recommendations in heterogeneous information networks
  publication-title: Proceedings of WSDM’18. February 59
– volume: 99
  start-page: 1
  year: 2017
  ident: b39
  article-title: Semantic preference-based personalized recommendation on heterogeneous information network
  publication-title: IEEE Access
– volume: 125
  start-page: 125
  year: 2017
  end-page: 136
  ident: b9
  article-title: The actors and relations in evolving networks: The determinants of inter-regional technology transaction in China
  publication-title: Technol. Forecast. Soc. Change
– volume: 35
  start-page: 549
  year: 2016
  end-page: 560
  ident: b36
  article-title: Personalized information recommendation research based on combined condition in folksonomies
  publication-title: J. China Soc. Sci. Tech. Inf.
– start-page: 1011
  year: 2017
  end-page: 1023
  ident: b34
  article-title: Personalized recommendation of crowd-funding campaigns: A bipartite graph approach for sparse data
  publication-title: Syst. Eng. Theory Pract.
– start-page: 1
  year: 2019
  end-page: 10
  ident: b55
  article-title: Representation Learning for Heterogeneous Information Networks via Embedding Events
– volume: 9
  start-page: 23
  year: 2016
  end-page: 42
  ident: b49
  article-title: Personalized item ranking from implicit user feedback: A heterogeneous information network approach
  publication-title: Pac. Asia J. Assoc. Inf. Syst.
– volume: 44
  start-page: 340
  year: 2015
  end-page: 356
  ident: b65
  article-title: Trust and the market for technology
  publication-title: Res. Policy
– year: 2016
  ident: b67
  article-title: Link prediction in schema-rich heterogeneous information network
  publication-title: Advances in Knowledge Discovery and Data Mining
– year: 2018
  ident: b59
  article-title: User behavior prediction via heterogeneous information preserving network embedding
  publication-title: Future Gener. Comput. Syst.
– volume: 11
  start-page: 2995
  year: 2017
  end-page: 3005
  ident: b14
  article-title: The method of personalized learning materials recommendation based on multidimensional feature difference
  publication-title: Syst. Eng. Theory Pract.
– volume: 48
  start-page: 1111
  year: 2018
  end-page: 1127
  ident: b20
  article-title: Supervised ranking framework for relation prediction in heterogeneous information networks
  publication-title: Appl. Intell.
– volume: 39
  start-page: 475
  year: 2019
  end-page: 484
  ident: b23
  article-title: Technology demand recognition model based on semantic similarity under the supply-demand matching perspective
  publication-title: Syst. Eng. Theory Pract.
– volume: 169
  start-page: 87
  year: 1987
  end-page: 99
  ident: b63
  article-title: A technology gap approach to why growth rates differ
  publication-title: Res. Policy
– volume: 11
  start-page: 992
  year: 2011
  end-page: 1003
  ident: b40
  article-title: Pathsim: meta path-based top-k similarity search in heterogeneous information networks
  publication-title: Proc. VLDB Endowment
– start-page: 1
  year: 2016
  end-page: 10
  ident: b53
  article-title: Meta Structure: Computing Relevance in Large Heterogeneous Information Networks
– start-page: 635
  year: 2017
  end-page: 644
  ident: b26
  article-title: Meta-graph based recommendation fusion over heterogeneous information networks
  publication-title: KDD’17: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. August 1317
– start-page: 19773
  year: 2017
  end-page: 19781
  ident: b45
  article-title: Semantic preference-based personalized recommendation on heterogeneous information network
  publication-title: IEEE Access
– volume: 38
  start-page: 65
  year: 2017
  end-page: 76
  ident: b6
  article-title: Research on the evolution of technology transfer network in new energy fields based on patent licensing
  publication-title: Sci. Sci. Manage. S. T.
– volume: 39
  start-page: 106
  year: 2016
  end-page: 110
  ident: b33
  article-title: Research on mobile E-commerce collaborative filtering recommendation based on context clustering optimization
  publication-title: Inf. Stud. Theory Appl.
– start-page: 1251
  year: 2010
  end-page: 1252
  ident: b16
  article-title: Mining knowledge from databases: an information network analysis approach
  publication-title: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data. June 6-10
– volume: 21
  start-page: 205227
  year: 2008
  ident: b3
  article-title: The study on tech transfer problems of R&D institutions
  publication-title: Korean J. Bus. Adm.
– volume: 514
  start-page: 443
  year: 2019
  end-page: 457
  ident: b7
  article-title: Factors affecting evolution of the interprovincial technology patent trade networks in China based on exponential random graph models
  publication-title: Physica A
– volume: 38
  start-page: 251
  year: 2013
  end-page: 272
  ident: b5
  article-title: Licensing versus selling in transactions for exploiting patented technological knowledge assets in the markets for technology
  publication-title: J. Technol. Transfer
– volume: 36
  start-page: 916
  year: 2017
  end-page: 929
  ident: b31
  article-title: Personalized recommendation research based on user interest topic model
  publication-title: J. China Soc. Sci. Tech. Inf.
– start-page: 404
  year: 2018
  end-page: 420
  ident: b51
  article-title: A Weighted Meta-Graph based Approach for Mobile Application Recommendation on Heterogeneous Information Networks, ICSOC 2018
– start-page: 453
  year: 2015
  end-page: 462
  ident: b66
  article-title: Semantic path based personalized recommendation on weighted heterogeneous information networks
  publication-title: CIKM’15: ACM International on Conference on Information and Knowledge Management
– volume: 65
  start-page: 9982
  year: 2016
  end-page: 9993
  ident: b17
  article-title: User association in heterogeneous networks: A social interaction approach
  publication-title: IEEE Trans. Veh. Technol.
– volume: 573
  start-page: 1
  year: 2017
  end-page: 13
  ident: b13
  article-title: A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information
  publication-title: Nature Commun.
– start-page: 163
  year: 2017
  end-page: 179
  ident: b54
  article-title: PPNE: Property preserving network embedding
  publication-title: 22nd International Conference: Database Systems for Advanced Applications. March 27-30
– volume: 108
  start-page: 201
  year: 2016
  end-page: 220
  ident: b62
  article-title: Proximity effect, preferential attachment and path dependence in inter-regional network: a case of China’s technology transaction
  publication-title: Scientometrics
– start-page: 565
  year: 2009
  end-page: 576
  ident: b15
  article-title: Rankclus: integrating clustering with ranking for heterogeneous information network analysis
  publication-title: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. March 24-26
– start-page: 1
  year: 2017
  end-page: 9
  ident: b57
  article-title: SHINE: Signed Heterogeneous Information Network Embedding for Sentiment Link Prediction
– start-page: 119
  year: 2015
  end-page: 128
  ident: b56
  article-title: Heterogeneous network embedding via deep architectures
  publication-title: KDD’15: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. August 1114
– volume: 31
  start-page: 1590
  year: 2013
  end-page: 1600
  ident: b11
  article-title: Impact of multidimensional proximities on cross region technology innovation cooperation: empirical analysis based on Chinese coinvent patent data
  publication-title: Stud. Sci. Sci.
– volume: 33
  start-page: 2337
  year: 2017
  end-page: 2344
  ident: b18
  article-title: Meta structure: Computing relevance in large heterogeneous information networks heterogeneous networks of biomedical linked data to predict novel drugtarget associations
  publication-title: Bioinformatics
– start-page: 371
  year: 2016
  end-page: 386
  ident: b41
  article-title: Meta-path based service recommendation in heterogeneous information networks
  publication-title: International Conference on Service-Oriented Computing, Vol. 9936
– start-page: 295
  year: 2017
  end-page: 304
  ident: b64
  article-title: Task-guided and path-augmented heterogeneous network embedding for author identification
  publication-title: WSDM’17 Proceedings of the Tenth ACM International Conference. February 06-10
– volume: 49
  start-page: 1
  year: 2016
  end-page: 25
  ident: b44
  article-title: Integrating heterogeneous information via flexible regularization framework for recommendation
  publication-title: Knowl. Inf. Syst.
– start-page: 453
  year: 2015
  end-page: 462
  ident: b22
  article-title: Semantic path based personalized recommendation on weighted heterogeneous information networks
  publication-title: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. October 1923
– volume: 34
  start-page: 85
  year: 2018
  end-page: 87
  ident: b30
  article-title: Personalized recommendation of simrank algorithms based on fusion of time influences
  publication-title: Stat. Decis.
– start-page: 79
  year: 2018
  end-page: 85
  ident: b12
  article-title: Prediction of transaction opportunities among technology supply and demand subjects in patent transfer networks of new energy field
  publication-title: J. Intell.
– start-page: 91
  year: 2017
  end-page: 99
  ident: b35
  article-title: Research on collaborative filtering method based on trust and the change of user’s interest
  publication-title: J. China Soc. Sci. Tech. Inf.
– volume: 41
  start-page: 226235
  year: 2012
  ident: b4
  article-title: Understanding the technology market for patent: New insights from licensing survey of Japanese firms
  publication-title: Res. Policy
– volume: 33
  start-page: 2945
  year: 2013
  end-page: 2953
  ident: b32
  article-title: Improved collaborative filtering model based on context clustering and user ranking
  publication-title: Syst. Eng. Theory Pract.
– volume: 451
  start-page: 271
  year: 2018
  end-page: 294
  ident: b21
  article-title: A Multi-agent system for minimizing information indeterminacy within information fusion scenarios in peer-to-peer networks with limited resources
  publication-title: Inform. Sci.
– volume: 81
  start-page: 63
  year: 2017
  end-page: 77
  ident: b38
  article-title: User recommendation in healthcare social media by assessing user similarity in heterogeneous network
  publication-title: Artif. Intell. Med.
– volume: 31
  start-page: 13
  year: 2015
  end-page: 19
  ident: b28
  article-title: Research on collaborative filtering personalized recommendation method based on user classification
  publication-title: Data Anal. Knowl. Discov.
– volume: 25
  start-page: 187
  year: 2017
  end-page: 196
  ident: b8
  article-title: Strategy of entering into networks of transfer enterprise, network structure and level of knowledge
  publication-title: Chin. J. Manage. Sci.
– volume: 36
  start-page: 1897
  year: 2018
  end-page: 1913
  ident: b10
  article-title: Industry university research institute collaboration and the evolution of innovation ability of innovators in later - development countries - Evidence from the China’s highspeed rail industry
  publication-title: Stud. Sci. Sci.
– start-page: 378
  year: 2017
  end-page: 387
  ident: b69
  article-title: HEMnet: Integration of electronic medical records with molecular interaction networks and domain knowledge for survival analysis
  publication-title: ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics. Boston, Massachusetts, USA, August 20-23, 2017
– year: 2014
  ident: b2
  article-title: Vitalizing Technology Transfer via Technology Financing
– start-page: 15283
  year: 2017
  end-page: 15299
  ident: b42
  article-title: CHRS: Cold start recommendation across multiple heterogeneous information networks
  publication-title: IEEE Access
– start-page: 1
  year: 2018
  end-page: 9
  ident: b60
  article-title: HeteroMed: Heterogeneous Information Network for Medical Diagnosis
– volume: 30
  start-page: 1616
  year: 2018
  end-page: 1637
  ident: b68
  article-title: A comprehensive survey of graph embedding: Problems, techniques and applications
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 436
  start-page: 56
  year: 2018
  end-page: 73
  ident: b27
  article-title: PCCF: Periodic and continual temporal co-factorization for recommender systems
  publication-title: Inform. Sci.
– start-page: 1552
  year: 2012
  end-page: 1555
  ident: b47
  article-title: HeteRecom: A semantic-based recommendation system in heterogeneous networks
  publication-title: KDD’12: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. August 1216
– volume: 108
  start-page: 201
  year: 2016
  end-page: 220
  ident: b1
  article-title: Proximity effect, preferential attachment and path dependence in inter-regional network: a case of China’s technology transaction
  publication-title: Scientometrics
– volume: 39
  start-page: 675
  year: 2016
  end-page: 684
  ident: b43
  article-title: POI recommendation based on meta-path in LBSN
  publication-title: Chinese J. Comput.
– start-page: 1
  year: 2017
  end-page: 9
  ident: b50
  article-title: Heterogeneous Information Network Embedding for Meta Path based Proximity
– volume: 9
  start-page: 23
  issue: 2
  year: 2016
  ident: 10.1016/j.knosys.2019.104899_b49
  article-title: Personalized item ranking from implicit user feedback: A heterogeneous information network approach
  publication-title: Pac. Asia J. Assoc. Inf. Syst.
– start-page: 371
  year: 2016
  ident: 10.1016/j.knosys.2019.104899_b41
  article-title: Meta-path based service recommendation in heterogeneous information networks
– volume: 99
  start-page: 1
  year: 2017
  ident: 10.1016/j.knosys.2019.104899_b39
  article-title: Semantic preference-based personalized recommendation on heterogeneous information network
  publication-title: IEEE Access
– volume: 108
  start-page: 201
  issue: 1
  year: 2016
  ident: 10.1016/j.knosys.2019.104899_b62
  article-title: Proximity effect, preferential attachment and path dependence in inter-regional network: a case of China’s technology transaction
  publication-title: Scientometrics
  doi: 10.1007/s11192-016-1951-0
– volume: 50
  start-page: 29
  issue: 1
  year: 2018
  ident: 10.1016/j.knosys.2019.104899_b19
  article-title: HINMINE: Heterogeneous information network mining with information retrieval heuristics
  publication-title: J. Intell. Inf. Syst.
  doi: 10.1007/s10844-017-0444-9
– volume: 44
  start-page: 340
  issue: 2
  year: 2015
  ident: 10.1016/j.knosys.2019.104899_b65
  article-title: Trust and the market for technology
  publication-title: Res. Policy
  doi: 10.1016/j.respol.2014.10.001
– volume: 451
  start-page: 271
  year: 2018
  ident: 10.1016/j.knosys.2019.104899_b21
  article-title: A Multi-agent system for minimizing information indeterminacy within information fusion scenarios in peer-to-peer networks with limited resources
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.04.019
– volume: 514
  start-page: 443
  issue: 15
  year: 2019
  ident: 10.1016/j.knosys.2019.104899_b7
  article-title: Factors affecting evolution of the interprovincial technology patent trade networks in China based on exponential random graph models
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.09.062
– volume: 35
  start-page: 549
  issue: 5
  year: 2016
  ident: 10.1016/j.knosys.2019.104899_b36
  article-title: Personalized information recommendation research based on combined condition in folksonomies
  publication-title: J. China Soc. Sci. Tech. Inf.
– volume: 30
  start-page: 1616
  issue: 9
  year: 2018
  ident: 10.1016/j.knosys.2019.104899_b68
  article-title: A comprehensive survey of graph embedding: Problems, techniques and applications
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2807452
– start-page: 1
  year: 2017
  ident: 10.1016/j.knosys.2019.104899_b50
– start-page: 99
  issue: 21
  year: 2017
  ident: 10.1016/j.knosys.2019.104899_b37
  article-title: User interest recommendation by combining contextual relations on the social media
  publication-title: Libr. Inf. Serv.
– start-page: 404
  year: 2018
  ident: 10.1016/j.knosys.2019.104899_b51
– start-page: 635
  year: 2017
  ident: 10.1016/j.knosys.2019.104899_b26
  article-title: Meta-graph based recommendation fusion over heterogeneous information networks
– volume: 9
  start-page: 248
  year: 2018
  ident: 10.1016/j.knosys.2019.104899_b46
  article-title: Prediction of drug-gene interaction by using metapath2vec
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2018.00248
– start-page: 1225
  year: 2016
  ident: 10.1016/j.knosys.2019.104899_b58
  article-title: Structural deep network embedding
– start-page: 1595
  year: 2017
  ident: 10.1016/j.knosys.2019.104899_b52
– start-page: 1251
  year: 2010
  ident: 10.1016/j.knosys.2019.104899_b16
  article-title: Mining knowledge from databases: an information network analysis approach
– year: 2018
  ident: 10.1016/j.knosys.2019.104899_b59
  article-title: User behavior prediction via heterogeneous information preserving network embedding
  publication-title: Future Gener. Comput. Syst.
– volume: 108
  start-page: 201
  issue: 1
  year: 2016
  ident: 10.1016/j.knosys.2019.104899_b1
  article-title: Proximity effect, preferential attachment and path dependence in inter-regional network: a case of China’s technology transaction
  publication-title: Scientometrics
  doi: 10.1007/s11192-016-1951-0
– volume: 41
  start-page: 226235
  issue: 1
  year: 2012
  ident: 10.1016/j.knosys.2019.104899_b4
  article-title: Understanding the technology market for patent: New insights from licensing survey of Japanese firms
  publication-title: Res. Policy
  doi: 10.1016/j.respol.2011.08.002
– start-page: 24
  issue: 05
  year: 2017
  ident: 10.1016/j.knosys.2019.104899_b24
  article-title: Study on the method of aggregation and service recommendation of digital resource based on domain ontology
  publication-title: J. China Soc. Sci. Tech. Inf.
– volume: 39
  start-page: 106
  issue: 8
  year: 2016
  ident: 10.1016/j.knosys.2019.104899_b33
  article-title: Research on mobile E-commerce collaborative filtering recommendation based on context clustering optimization
  publication-title: Inf. Stud. Theory Appl.
– start-page: 163
  year: 2017
  ident: 10.1016/j.knosys.2019.104899_b54
  article-title: PPNE: Property preserving network embedding
– start-page: 565
  year: 2009
  ident: 10.1016/j.knosys.2019.104899_b15
  article-title: Rankclus: integrating clustering with ranking for heterogeneous information network analysis
– volume: 39
  start-page: 675
  issue: 4
  year: 2016
  ident: 10.1016/j.knosys.2019.104899_b43
  article-title: POI recommendation based on meta-path in LBSN
  publication-title: Chinese J. Comput.
– volume: 49
  start-page: 1
  issue: 3
  year: 2016
  ident: 10.1016/j.knosys.2019.104899_b44
  article-title: Integrating heterogeneous information via flexible regularization framework for recommendation
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-016-0925-0
– start-page: 295
  year: 2017
  ident: 10.1016/j.knosys.2019.104899_b64
  article-title: Task-guided and path-augmented heterogeneous network embedding for author identification
– start-page: 15283
  issue: 5
  year: 2017
  ident: 10.1016/j.knosys.2019.104899_b42
  article-title: CHRS: Cold start recommendation across multiple heterogeneous information networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2726339
– start-page: 1552
  year: 2012
  ident: 10.1016/j.knosys.2019.104899_b47
  article-title: HeteRecom: A semantic-based recommendation system in heterogeneous networks
– volume: 31
  start-page: 1590
  issue: 10
  year: 2013
  ident: 10.1016/j.knosys.2019.104899_b11
  article-title: Impact of multidimensional proximities on cross region technology innovation cooperation: empirical analysis based on Chinese coinvent patent data
  publication-title: Stud. Sci. Sci.
– start-page: 453
  year: 2015
  ident: 10.1016/j.knosys.2019.104899_b22
  article-title: Semantic path based personalized recommendation on weighted heterogeneous information networks
– year: 2016
  ident: 10.1016/j.knosys.2019.104899_b67
  article-title: Link prediction in schema-rich heterogeneous information network
– volume: 36
  start-page: 916
  issue: 9
  year: 2017
  ident: 10.1016/j.knosys.2019.104899_b31
  article-title: Personalized recommendation research based on user interest topic model
  publication-title: J. China Soc. Sci. Tech. Inf.
– start-page: 1
  year: 2018
  ident: 10.1016/j.knosys.2019.104899_b61
– volume: 11
  start-page: 2995
  issue: 37
  year: 2017
  ident: 10.1016/j.knosys.2019.104899_b14
  article-title: The method of personalized learning materials recommendation based on multidimensional feature difference
  publication-title: Syst. Eng. Theory Pract.
– start-page: 453
  year: 2015
  ident: 10.1016/j.knosys.2019.104899_b66
  article-title: Semantic path based personalized recommendation on weighted heterogeneous information networks
– volume: 48
  start-page: 1111
  issue: 5
  year: 2018
  ident: 10.1016/j.knosys.2019.104899_b20
  article-title: Supervised ranking framework for relation prediction in heterogeneous information networks
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-017-1044-7
– volume: 33
  start-page: 2945
  issue: 11
  year: 2013
  ident: 10.1016/j.knosys.2019.104899_b32
  article-title: Improved collaborative filtering model based on context clustering and user ranking
  publication-title: Syst. Eng. Theory Pract.
– start-page: 378
  year: 2017
  ident: 10.1016/j.knosys.2019.104899_b69
  article-title: HEMnet: Integration of electronic medical records with molecular interaction networks and domain knowledge for survival analysis
– volume: 31
  start-page: 13
  issue: 6
  year: 2015
  ident: 10.1016/j.knosys.2019.104899_b28
  article-title: Research on collaborative filtering personalized recommendation method based on user classification
  publication-title: Data Anal. Knowl. Discov.
– volume: 36
  start-page: 1897
  issue: 10
  year: 2018
  ident: 10.1016/j.knosys.2019.104899_b10
  article-title: Industry university research institute collaboration and the evolution of innovation ability of innovators in later - development countries - Evidence from the China’s highspeed rail industry
  publication-title: Stud. Sci. Sci.
– volume: 65
  start-page: 9982
  issue: 12
  year: 2016
  ident: 10.1016/j.knosys.2019.104899_b17
  article-title: User association in heterogeneous networks: A social interaction approach
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2016.2525726
– volume: 125
  start-page: 125
  year: 2017
  ident: 10.1016/j.knosys.2019.104899_b9
  article-title: The actors and relations in evolving networks: The determinants of inter-regional technology transaction in China
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2017.08.005
– volume: 37
  start-page: 48
  issue: 04
  year: 2018
  ident: 10.1016/j.knosys.2019.104899_b29
  article-title: Study of a group recommendation model of integrating context information in a mobile environment—empirical analysis based on user APP behavior data
  publication-title: J. China Soc. Sci. Tech. Inf.
– volume: 31
  start-page: 357
  issue: 02
  year: 2019
  ident: 10.1016/j.knosys.2019.104899_b25
  article-title: Heterogeneous information network embedding for recommendation
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2833443
– volume: 169
  start-page: 87
  issue: 2–4
  year: 1987
  ident: 10.1016/j.knosys.2019.104899_b63
  article-title: A technology gap approach to why growth rates differ
  publication-title: Res. Policy
  doi: 10.1016/0048-7333(87)90025-4
– volume: 39
  start-page: 475
  issue: 2
  year: 2019
  ident: 10.1016/j.knosys.2019.104899_b23
  article-title: Technology demand recognition model based on semantic similarity under the supply-demand matching perspective
  publication-title: Syst. Eng. Theory Pract.
– start-page: 1
  year: 2019
  ident: 10.1016/j.knosys.2019.104899_b55
– volume: 21
  start-page: 205227
  issue: 1
  year: 2008
  ident: 10.1016/j.knosys.2019.104899_b3
  article-title: The study on tech transfer problems of R&D institutions
  publication-title: Korean J. Bus. Adm.
– start-page: 1
  year: 2016
  ident: 10.1016/j.knosys.2019.104899_b53
– start-page: 79
  issue: 5
  year: 2018
  ident: 10.1016/j.knosys.2019.104899_b12
  article-title: Prediction of transaction opportunities among technology supply and demand subjects in patent transfer networks of new energy field
  publication-title: J. Intell.
– volume: 33
  start-page: 2337
  issue: 15
  year: 2017
  ident: 10.1016/j.knosys.2019.104899_b18
  article-title: Meta structure: Computing relevance in large heterogeneous information networks heterogeneous networks of biomedical linked data to predict novel drugtarget associations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx160
– volume: 11
  start-page: 992
  issue: 4
  year: 2011
  ident: 10.1016/j.knosys.2019.104899_b40
  article-title: Pathsim: meta path-based top-k similarity search in heterogeneous information networks
  publication-title: Proc. VLDB Endowment
  doi: 10.14778/3402707.3402736
– volume: 25
  start-page: 187
  issue: 2
  year: 2017
  ident: 10.1016/j.knosys.2019.104899_b8
  article-title: Strategy of entering into networks of transfer enterprise, network structure and level of knowledge
  publication-title: Chin. J. Manage. Sci.
– volume: 436
  start-page: 56
  year: 2018
  ident: 10.1016/j.knosys.2019.104899_b27
  article-title: PCCF: Periodic and continual temporal co-factorization for recommender systems
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.01.019
– start-page: 414
  year: 2018
  ident: 10.1016/j.knosys.2019.104899_b48
  article-title: Fusing diversity in recommendations in heterogeneous information networks
– volume: 34
  start-page: 85
  issue: 13
  year: 2018
  ident: 10.1016/j.knosys.2019.104899_b30
  article-title: Personalized recommendation of simrank algorithms based on fusion of time influences
  publication-title: Stat. Decis.
– volume: 81
  start-page: 63
  year: 2017
  ident: 10.1016/j.knosys.2019.104899_b38
  article-title: User recommendation in healthcare social media by assessing user similarity in heterogeneous network
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2017.03.002
– volume: 38
  start-page: 65
  issue: 6
  year: 2017
  ident: 10.1016/j.knosys.2019.104899_b6
  article-title: Research on the evolution of technology transfer network in new energy fields based on patent licensing
  publication-title: Sci. Sci. Manage. S. T.
– start-page: 1011
  issue: 4
  year: 2017
  ident: 10.1016/j.knosys.2019.104899_b34
  article-title: Personalized recommendation of crowd-funding campaigns: A bipartite graph approach for sparse data
  publication-title: Syst. Eng. Theory Pract.
– start-page: 119
  year: 2015
  ident: 10.1016/j.knosys.2019.104899_b56
  article-title: Heterogeneous network embedding via deep architectures
– start-page: 1
  year: 2017
  ident: 10.1016/j.knosys.2019.104899_b57
– start-page: 91
  issue: 02
  year: 2017
  ident: 10.1016/j.knosys.2019.104899_b35
  article-title: Research on collaborative filtering method based on trust and the change of user’s interest
  publication-title: J. China Soc. Sci. Tech. Inf.
– year: 2014
  ident: 10.1016/j.knosys.2019.104899_b2
– volume: 38
  start-page: 251
  issue: 3
  year: 2013
  ident: 10.1016/j.knosys.2019.104899_b5
  article-title: Licensing versus selling in transactions for exploiting patented technological knowledge assets in the markets for technology
  publication-title: J. Technol. Transfer
  doi: 10.1007/s10961-012-9252-0
– volume: 573
  start-page: 1
  issue: 8
  year: 2017
  ident: 10.1016/j.knosys.2019.104899_b13
  article-title: A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information
  publication-title: Nature Commun.
– start-page: 19773
  issue: 5
  year: 2017
  ident: 10.1016/j.knosys.2019.104899_b45
  article-title: Semantic preference-based personalized recommendation on heterogeneous information network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2751682
– start-page: 1
  year: 2018
  ident: 10.1016/j.knosys.2019.104899_b60
SSID ssj0002218
Score 2.3304975
Snippet Most patent technology recommendations are based on link prediction of a homogeneous trade network and multiple-attribute matching. We constructed a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104899
SubjectTerms Algorithms
Decision making
Embedding
Heterogeneous information network
Network embedding
Patent technology
Trade recommendation
Title Weighted meta paths and networking embedding for patent technology trade recommendations among subjects
URI https://dx.doi.org/10.1016/j.knosys.2019.104899
https://www.proquest.com/docview/2314296904
Volume 184
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LSsQwMIhevPgWH6vk4DVumzRpehRxWRW9qOitpMlEfGwVtx68-O1m2lRRBMFj28lQJpN5ZR6E7CmrBWQSWKWVZZmDiulUWgaKGyecT7zG2uGzczW-yk5u5M0MOexrYTCtMsr-Tqa30jq-GUZqDp_v7oYXwTgI_Ir3YCiGE_TbsyxHLt9__0rz4LyN8SEwQ-i-fK7N8Xqon6Zv2LQ7LfCyU7cdYH9VTz8Edat9RktkIZqN9KD7s2UyA_UKWexHMtB4QlfJ7XUb6gRHJ9AYivOGp9TUjtZdundQVBQmFThUWTQYrAgS9A5tPkPstHkxDih6ypMJxJlLAQlOJaLT1woDN9M1cjU6ujwcszhLgVkhsobllUmFs7qyQkEiTTt0ODfOaPBe2sRLVRRGB4_V5Knn3IvUFYYDl1xWAV6sk9n6qYYNQotgUUCA9SqBgCPTKlXWA2Ljwfi0m0T0JCxtbDSO8y4eyz6j7L7sCF8i4cuO8JuEfa567hpt_AGf97tTfmOYMuiCP1YO-s0s44EN30UaNLMqkmzr34i3yTw-YaViKgdktnl5hZ1gsjTVbsuTu2Tu4Ph0fP4B-UbuTw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxwxDI7QciiX0hcqj7Y5cI12JplkM0eEQEuBvQAqtyiTOBUtOyB2OPTf157JrNSqElKvE8caOYntOLY_xg5NsAoqDaKxJogqQiNsqYMAI31UMRXJUu3w5cLMb6qvt_p2gx2PtTCUVpl1_6DTe22dv0yzNKePd3fTK3QOcL_SOxip4QLv7ZvUnUpP2ObR2fl8sVbIUvZhPqIXNGGsoOvTvH62D6tf1Le7rOm90_ZNYP9pof7S1b0BOn3DXmfPkR8NP_eWbUD7jm2PqAw8H9L37Pu3PtoJkS-h85wgh1fct5G3Q8Y32ioOywYiWS2OPiuRoOnh3TrKzrsnH4HTZXm5hAy7hEwImIivnhuK3aw-sJvTk-vjuchwCiIoVXVi1vhSxWCboAwU2ve4wzMfvYWUdCiSNnXtLV5a_axMUiZVxtpLkFrqBunVDpu0Dy18ZLxGpwKQNpkCkEdlTWlCAuIm0f8Mu0yNInQh9xonyIt7NyaV_XCD4B0J3g2C32ViPetx6LXxAv1sXB33x55xaA5emHkwLqbLZxbHVYnG2dRFtfffjL-wV_Prywt3cbY432dbNEKFi6U-YJPu6Rk-oQfTNZ_zDv0NIZnxAA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weighted+meta+paths+and+networking+embedding+for+patent+technology+trade+recommendations+among+subjects&rft.jtitle=Knowledge-based+systems&rft.au=He%2C+Xi-jun&rft.au=Dong%2C+Yanbo&rft.au=Zhen%2C+Zhou&rft.au=Wu%2C+Yu-ying&rft.date=2019-11-15&rft.pub=Elsevier+Science+Ltd&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=184&rft.spage=1&rft_id=info:doi/10.1016%2Fj.knosys.2019.104899&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon