Insight into the effect of bromine on facet-dependent surface oxygen vacancies construction and stabilization of Bi2MoO6 for efficient photocatalytic NO removal
Benefiting from the Br− selectively induced the OVs on {001} facets of Bi2MoO6, an extended light-absorption until near-infrared region and enhanced the molecular oxygen activation were achieved, thus endowing the OVs concentration optimized Bi2MoO6 with superior activity and selectivity of NO remov...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 265; p. 118585 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.05.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Benefiting from the Br− selectively induced the OVs on {001} facets of Bi2MoO6, an extended light-absorption until near-infrared region and enhanced the molecular oxygen activation were achieved, thus endowing the OVs concentration optimized Bi2MoO6 with superior activity and selectivity of NO removal in a flow reaction.
[Display omitted]
•Br− boost the construction and stabilization of OVs on {001} facets of Bi2MoO6.•Br− induced OVs facilitate NO removal of BMO-001-Br even in near-infrared region.•NO oxidative removal with high selectivity of 93.6% is achieved on BMO-001-Br.•Mechanism for highly efficient NO removal (62.9%) over BMO-001-Br is proposed.
Surface oxygen vacancies (OVs) are believed as active sites for photocatalytic NO removal. The construction and stabilization of OVs on materials, especially from the point of view of exogenous ions towards different facets is vital for OVs-mediated photocatalysis. Herein, the impact of bromide ions (Br−) on OVs construction on different facets of Bi2MoO6 was systematically investigated. Theoretical calculations and characterizations demonstrated that Br− can boost and stabilize the OVs on {001} facets of Bi2MoO6, while hardly affect that on {010} facets. The Br- induced OVs on Bi2MoO6 caused a light-absorption until near-infrared region and enhanced the molecular oxygen activation, thus endowing the OVs concentration optimized Bi2MoO6 (BMO-001-Br) with superior activity on NO removal (62.9%) and selectivity of NO complete oxidation (93.61%) in a flow reaction. This work provides new insight into understanding the exogenous ions on construction and stabilization of OVs and the roles of OVs in photocatalytic NO removal. |
---|---|
AbstractList | Benefiting from the Br− selectively induced the OVs on {001} facets of Bi2MoO6, an extended light-absorption until near-infrared region and enhanced the molecular oxygen activation were achieved, thus endowing the OVs concentration optimized Bi2MoO6 with superior activity and selectivity of NO removal in a flow reaction.
[Display omitted]
•Br− boost the construction and stabilization of OVs on {001} facets of Bi2MoO6.•Br− induced OVs facilitate NO removal of BMO-001-Br even in near-infrared region.•NO oxidative removal with high selectivity of 93.6% is achieved on BMO-001-Br.•Mechanism for highly efficient NO removal (62.9%) over BMO-001-Br is proposed.
Surface oxygen vacancies (OVs) are believed as active sites for photocatalytic NO removal. The construction and stabilization of OVs on materials, especially from the point of view of exogenous ions towards different facets is vital for OVs-mediated photocatalysis. Herein, the impact of bromide ions (Br−) on OVs construction on different facets of Bi2MoO6 was systematically investigated. Theoretical calculations and characterizations demonstrated that Br− can boost and stabilize the OVs on {001} facets of Bi2MoO6, while hardly affect that on {010} facets. The Br- induced OVs on Bi2MoO6 caused a light-absorption until near-infrared region and enhanced the molecular oxygen activation, thus endowing the OVs concentration optimized Bi2MoO6 (BMO-001-Br) with superior activity on NO removal (62.9%) and selectivity of NO complete oxidation (93.61%) in a flow reaction. This work provides new insight into understanding the exogenous ions on construction and stabilization of OVs and the roles of OVs in photocatalytic NO removal. Surface oxygen vacancies (OVs) are believed as active sites for photocatalytic NO removal. The construction and stabilization of OVs on materials, especially from the point of view of exogenous ions towards different facets is vital for OVs-mediated photocatalysis. Herein, the impact of bromide ions (Br−) on OVs construction on different facets of Bi2MoO6 was systematically investigated. Theoretical calculations and characterizations demonstrated that Br− can boost and stabilize the OVs on {001} facets of Bi2MoO6, while hardly affect that on {010} facets. The Br- induced OVs on Bi2MoO6 caused a light-absorption until near-infrared region and enhanced the molecular oxygen activation, thus endowing the OVs concentration optimized Bi2MoO6 (BMO-001-Br) with superior activity on NO removal (62.9%) and selectivity of NO complete oxidation (93.61%) in a flow reaction. This work provides new insight into understanding the exogenous ions on construction and stabilization of OVs and the roles of OVs in photocatalytic NO removal. |
ArticleNumber | 118585 |
Author | Zhang, Lizhi Ding, Xing Wang, Shengyao Zhan, Guangming Dong, Guohui Chen, Hao Yang, Nan Zhang, Xuehao |
Author_xml | – sequence: 1 givenname: Shengyao surname: Wang fullname: Wang, Shengyao email: wangshengyao@mail.hzau.edu.cn organization: College of Science, Huazhong Agricultural University, Wuhan, 430070, PR China – sequence: 2 givenname: Xing surname: Ding fullname: Ding, Xing organization: College of Science, Huazhong Agricultural University, Wuhan, 430070, PR China – sequence: 3 givenname: Nan surname: Yang fullname: Yang, Nan organization: College of Science, Huazhong Agricultural University, Wuhan, 430070, PR China – sequence: 4 givenname: Guangming surname: Zhan fullname: Zhan, Guangming organization: Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China – sequence: 5 givenname: Xuehao surname: Zhang fullname: Zhang, Xuehao organization: College of Science, Huazhong Agricultural University, Wuhan, 430070, PR China – sequence: 6 givenname: Guohui surname: Dong fullname: Dong, Guohui organization: School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, PR China – sequence: 7 givenname: Lizhi orcidid: 0000-0002-6842-9167 surname: Zhang fullname: Zhang, Lizhi organization: Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China – sequence: 8 givenname: Hao orcidid: 0000-0002-3958-3456 surname: Chen fullname: Chen, Hao email: hchenhao@mail.hzau.edu.cn organization: College of Science, Huazhong Agricultural University, Wuhan, 430070, PR China |
BookMark | eNqFkctuEzEUhi3USqQtb8DCEusJvszFZoEEFZRKhWzateWxzzSOJvZgO1HD0_Co9XRYsYCVpaPz_Ue_vwt05oMHhN5SsqaEtu93az0Znfs1I1SuKRWNaF6hFRUdr7gQ_AytiGRtxXnHX6OLlHaEEMaZWKHftz65x23GzueA8xYwDAOYjMOA-xj2zgMOHg_aQK4sTOAt-IzTIc4jHJ5Oj-DxURvtjYOETfApx4PJrlDaW5yy7t3ofumXSUn97Nj3sGnxEOJ8yxWsBE7bkEPpoMdTdgb_2OAI-3DU4xU6H_SY4M2f9xI9fP1yf_2tutvc3F5_uqsM53WuOilJZ6wluqVUs67WlPSU1VIAp9RYZomRvRZWDMSwhgtuG2lkIRrLSEv4JXq35E4x_DxAymoXDtGXk4rxlsm24bUoWx-WLRNDShEGZVx-qZajdqOiRM1G1E4tRtRsRC1GClz_BU_R7XU8_Q_7uGBQ6h8dRJXmPzNgXSymlA3u3wHPdEKsXg |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2025_179022 crossref_primary_10_1016_j_jhazmat_2021_127685 crossref_primary_10_1016_j_seppur_2022_121990 crossref_primary_10_1016_j_jece_2024_115046 crossref_primary_10_1021_acs_est_4c08326 crossref_primary_10_1016_j_ccr_2022_214970 crossref_primary_10_1002_slct_202303076 crossref_primary_10_1021_acsanm_4c02846 crossref_primary_10_1103_PhysRevMaterials_7_045401 crossref_primary_10_1016_j_jallcom_2024_174493 crossref_primary_10_1039_D2SE01455F crossref_primary_10_1016_j_apsusc_2023_158104 crossref_primary_10_1016_j_apcatb_2022_121319 crossref_primary_10_1016_j_ceramint_2023_08_280 crossref_primary_10_1016_j_materresbull_2024_113214 crossref_primary_10_1016_j_jallcom_2024_175609 crossref_primary_10_1007_s12274_020_2906_6 crossref_primary_10_1016_j_apcatb_2021_120492 crossref_primary_10_1016_j_apcatb_2024_124955 crossref_primary_10_1039_D0TA08165E crossref_primary_10_1039_D1EN00896J crossref_primary_10_1016_j_apcatb_2021_120372 crossref_primary_10_1007_s11783_022_1573_0 crossref_primary_10_1016_j_jhazmat_2024_136951 crossref_primary_10_1002_adfm_202412775 crossref_primary_10_1021_acscatal_2c05545 crossref_primary_10_1016_j_cattod_2024_114747 crossref_primary_10_1021_acs_iecr_1c04155 crossref_primary_10_1016_j_seppur_2025_132196 crossref_primary_10_1039_d0pp00247j crossref_primary_10_1002_solr_202000442 crossref_primary_10_1016_j_apsusc_2024_161323 crossref_primary_10_1016_j_cej_2021_131550 crossref_primary_10_1016_j_apsusc_2021_150104 crossref_primary_10_1016_j_enconman_2022_116605 crossref_primary_10_1002_admi_202101671 crossref_primary_10_1021_acssuschemeng_3c07871 crossref_primary_10_1016_j_foodchem_2024_140082 crossref_primary_10_1021_acs_jpcc_2c08841 crossref_primary_10_1039_D2TA07120G crossref_primary_10_1039_D1RA07275G crossref_primary_10_1016_j_cej_2020_127443 crossref_primary_10_1039_D1TA03705F crossref_primary_10_1016_j_jece_2023_111078 crossref_primary_10_1016_j_apcatb_2024_124293 crossref_primary_10_1016_j_envres_2022_114521 crossref_primary_10_1016_j_matchemphys_2024_129860 crossref_primary_10_1002_cctc_202100422 crossref_primary_10_1016_j_jwpe_2025_107157 crossref_primary_10_1016_j_cej_2021_132361 crossref_primary_10_3390_ijms232315221 crossref_primary_10_1002_inc2_12023 crossref_primary_10_1016_j_apcatb_2020_119790 crossref_primary_10_3390_nano13182614 crossref_primary_10_1007_s10562_022_03987_4 crossref_primary_10_1016_j_apsusc_2023_158839 crossref_primary_10_1016_j_micromeso_2022_112003 crossref_primary_10_1016_j_surfin_2021_101272 crossref_primary_10_1016_j_jallcom_2023_169018 crossref_primary_10_1016_j_apt_2021_09_047 crossref_primary_10_1016_j_jcis_2021_02_036 crossref_primary_10_1039_D0QI00673D crossref_primary_10_1002_cssc_202001855 crossref_primary_10_1016_j_snb_2024_136290 crossref_primary_10_1002_aenm_202403713 crossref_primary_10_1039_D4CY00134F crossref_primary_10_1016_j_cej_2022_135029 crossref_primary_10_1016_j_jhazmat_2023_131237 crossref_primary_10_1039_D1NJ03664E crossref_primary_10_1016_j_carbon_2022_08_031 crossref_primary_10_1007_s12274_023_6014_2 crossref_primary_10_1016_j_jenvman_2023_119125 crossref_primary_10_1021_acs_energyfuels_2c01660 crossref_primary_10_15541_jim20200437 crossref_primary_10_1016_j_cej_2020_127868 crossref_primary_10_1007_s12598_024_02670_4 crossref_primary_10_1016_j_jece_2024_113296 crossref_primary_10_1016_j_apmate_2024_100201 crossref_primary_10_1016_j_compositesb_2021_109600 crossref_primary_10_1002_advs_202203057 crossref_primary_10_1021_acsanm_3c05941 crossref_primary_10_3390_catal11091089 crossref_primary_10_1002_adsu_202200009 crossref_primary_10_1007_s41810_024_00263_3 crossref_primary_10_1002_adfm_202100919 crossref_primary_10_1016_j_cej_2024_148580 crossref_primary_10_1021_acs_est_1c01749 crossref_primary_10_1039_D3CY00018D crossref_primary_10_1016_j_jallcom_2024_173759 crossref_primary_10_1016_j_apcatb_2022_121888 crossref_primary_10_1016_j_seppur_2024_126711 crossref_primary_10_1016_j_apt_2022_103927 crossref_primary_10_1016_j_surfin_2025_106262 crossref_primary_10_1016_j_apcatb_2023_123093 crossref_primary_10_1063_5_0228635 crossref_primary_10_1016_j_jcis_2022_03_014 crossref_primary_10_1016_j_ccr_2022_214515 crossref_primary_10_1016_j_seppur_2025_131463 crossref_primary_10_1016_j_seppur_2025_131622 crossref_primary_10_1021_acs_analchem_2c02848 crossref_primary_10_3390_molecules30030538 crossref_primary_10_1016_j_surfin_2021_101247 crossref_primary_10_1016_j_apsusc_2021_150144 crossref_primary_10_1016_j_seppur_2024_129893 crossref_primary_10_1016_j_apsusc_2023_156605 crossref_primary_10_1039_D2QI00391K crossref_primary_10_1016_j_seppur_2024_131293 crossref_primary_10_1016_j_cej_2023_148036 crossref_primary_10_1002_adfm_202501291 crossref_primary_10_1016_j_clay_2021_106319 crossref_primary_10_1002_solr_202200154 crossref_primary_10_1016_j_apsusc_2021_151370 crossref_primary_10_1021_acsami_3c15677 crossref_primary_10_1021_acsomega_0c03595 crossref_primary_10_1021_acs_est_3c06593 crossref_primary_10_1007_s11356_020_09759_0 crossref_primary_10_1021_acsami_1c14371 crossref_primary_10_1016_j_snb_2022_132983 crossref_primary_10_1007_s11705_023_2353_5 crossref_primary_10_1016_j_jallcom_2021_161736 crossref_primary_10_1021_acscatal_4c00014 crossref_primary_10_1016_j_apcatb_2021_120231 crossref_primary_10_1016_j_apcatb_2021_120352 crossref_primary_10_1016_j_cej_2021_132968 crossref_primary_10_1016_j_seppur_2023_123886 |
Cites_doi | 10.1016/j.cej.2018.12.071 10.1021/acs.est.8b01849 10.1016/j.apcatb.2010.05.022 10.1016/S1381-1169(00)00362-9 10.1021/jp911851h 10.1016/j.apsusc.2017.08.072 10.1002/adfm.201703923 10.1021/jacs.5b03105 10.1039/c1cc11015b 10.1021/acs.est.8b07322 10.1021/ja210484t 10.1016/0021-9517(80)90039-1 10.1126/science.173.3991.45 10.1021/acscatal.6b02613 10.1038/srep19347 10.1002/adma.201705369 10.1016/S0920-5861(98)00399-X 10.1016/j.apcatb.2018.10.037 10.1021/acscatal.5b02098 10.1016/j.jcat.2016.10.005 10.1016/j.apcatb.2017.12.074 10.1016/j.nanoen.2019.04.029 10.1016/j.apcatb.2019.117860 10.1016/j.apcatb.2015.09.046 10.1038/s41929-018-0128-z 10.1039/C4NR04810E 10.1021/acs.est.9b01287 10.1016/j.cej.2010.07.009 10.1021/acscatal.8b00783 10.1038/ncomms9340 10.1002/smll.201302950 10.1016/j.apsusc.2016.07.070 10.1126/science.1184087 10.1016/j.cplett.2004.11.126 10.1016/j.jhazmat.2018.10.063 10.1002/anie.201813967 10.1021/ja300823a 10.1016/j.apcatb.2019.01.013 10.1016/j.apcatb.2018.10.027 10.1021/ja402956f 10.1016/j.apcatb.2018.08.078 |
ContentType | Journal Article |
Copyright | 2019 Copyright Elsevier BV May 15, 2020 |
Copyright_xml | – notice: 2019 – notice: Copyright Elsevier BV May 15, 2020 |
DBID | AAYXX CITATION 7SR 7ST 7U5 8BQ 8FD C1K FR3 JG9 KR7 L7M SOI |
DOI | 10.1016/j.apcatb.2019.118585 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
ExternalDocumentID | 10_1016_j_apcatb_2019_118585 S0926337319313311 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPD SSG SSZ T5K ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ XPP 7SR 7ST 7U5 8BQ 8FD C1K EFKBS FR3 JG9 KR7 L7M SOI |
ID | FETCH-LOGICAL-c334t-79907cdd0a611a274a10b12498e311cd2d0c9ba8d8f0c25383d59c9cdd5d20603 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Wed Aug 13 04:08:53 EDT 2025 Tue Jul 01 04:35:02 EDT 2025 Thu Apr 24 22:56:05 EDT 2025 Sat Mar 02 15:59:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bromine Bi2MoO6 NO removal Oxygen vacancy Facet |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-79907cdd0a611a274a10b12498e311cd2d0c9ba8d8f0c25383d59c9cdd5d20603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3958-3456 0000-0002-6842-9167 |
PQID | 2362965348 |
PQPubID | 2045281 |
ParticipantIDs | proquest_journals_2362965348 crossref_citationtrail_10_1016_j_apcatb_2019_118585 crossref_primary_10_1016_j_apcatb_2019_118585 elsevier_sciencedirect_doi_10_1016_j_apcatb_2019_118585 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-15 |
PublicationDateYYYYMMDD | 2020-05-15 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Liu, Zhang, Sheng, Zhang, Zhao (bib0015) 2010; 162 Wang, Xu, Cui, Lv, Wang, Ren, Xu, Dong, Dou, Hao (bib0115) 2019; 29 Li, Shang, Cao, Yang, Ai, Zhang (bib0205) 2018; 52 Gordon, Cargnello, Paik, Mangolini, Weber, Fornasiero, Murray (bib0070) 2012; 134 Wang, Yang, Zhang, Ding, Yang, Dai, Chen (bib0145) 2017; 391 Shang, Li, Li, Huang, Mao, Ai, Zhang (bib0030) 2019; 53 Zhou, Zhang, Lin, Long, Zhang, Lin, Wu, Wang (bib0105) 2015; 6 Xu, Ding, Yang, Wang, Li, Lu, Chen (bib0150) 2019; 364 Ding, Ho, Shang, Zhang (bib0025) 2016; 182 Cao, Chen, Lin, Cheong, Liu, Zhang, Peng, Chen, Han, Tong, Wang, Shen, Zhu, Wang, Li (bib0110) 2018; 1 Brazdil, Suresh, Grasselli (bib0185) 1980; 66 Wan, Chen, Jia, Zheng, Dong, Zheng, Wang, Yan, Chen, Peng, Wang, Li (bib0120) 2018; 30 Zhang, Xu, Zhao, Zhu (bib0135) 2010; 98 Jiang, Zhao, Xiao, Zhang (bib0160) 2012; 134 Liu, Jiang, Zhao, Chen, Cheng, Yang, Li (bib0075) 2016; 6 Li, Shang, Li, Cao, Yang, Ai, Zhang (bib0220) 2019; 53 Nakamura, Negishi, Kutsuna, Ihara, Sugihara, Takeuchi (bib0040) 2000; 161 Yu, Zhang, Dong, Li, Zhang, Huang (bib0175) 2018; 226 Matthias, Morales, Diebold (bib0100) 2006; 96 Long, Wang, Chang, Zhao, Liu, Zhou, Wei, Wang, Huang, Huang (bib0165) 2014; 10 Hu, Li, Wu, Wang, Li, Li, Li, Lv (bib0190) 2019; 256 Li, Haneda, Labhsetwar, Hishita, Ohashi (bib0200) 2005; 401 Li, Shang, Zhu, Yang, Ai, Zhang (bib0090) 2016; 6 Ye, Zan, Tian, Peng, Zhang (bib0060) 2011; 47 Wang, Ding, Zhang, Pang, Hai, Zhan, Zhou, Song, Zhang, Chen (bib0155) 2017; 27 Huang, Wang, Wang, Rao, Cao, Pu, Ho, Lee (bib0215) 2019; 240 Jing, Ma, Ren, Xiong, Guo, Song, Liang, Wu (bib0130) 2019; 243 Huo, Dong, Li, Liu, Liu, Zhang, Dong (bib0180) 2019; 361 Dong, Zhao, Wu, Zhu, Wang (bib0210) 2019; 245 Di, Zhao, Lian, Ji, Xia, Xiong, Zhou, Cao, She, Liu (bib0125) 2019; 61 Yang, Shen, Dai, Zhang, Chen (bib0140) 2018; 430 Shi, Wang, Li, Bai, Xie, Zhou, Ye (bib0195) 2019; 243 Li, Shi, Zhao, Zhang (bib0080) 2014; 6 Pârvulescu, Grange, Delmon (bib0020) 1998; 46 Dong, Xiong, Yan, Wang, Sun, Zhang, Huang, Wu (bib0085) 2016; 344 Roldán, Boronat, Corma, Illas (bib0095) 2010; 114 Kim, Qi, Dahlberg, Li (bib0005) 2010; 327 Yu, Li, Zhang, Yang, Han, Dong, Ma, Huang (bib0170) 2019; 58 Guan, Xiao, Zhang, Fan, An, Cheng, Xie, Zhou, Ye, Xie (bib0050) 2013; 135 Lv, Yao, Zong, Zhu (bib0035) 2016; 6 Sun, Wang, Chi, Lin, Chen, Ling, Qiu, Xu, Song, Chen, Su (bib0065) 2018; 8 Li, Shang, Ai, Zhang (bib0045) 2015; 137 Wang, Hai, Ding, Chang, Xiang, Meng, Yang, Chen, Ye (bib0055) 2017; 29 Kreuzer, Patel (bib0010) 1971; 173 Li (10.1016/j.apcatb.2019.118585_bib0045) 2015; 137 Li (10.1016/j.apcatb.2019.118585_bib0080) 2014; 6 Brazdil (10.1016/j.apcatb.2019.118585_bib0185) 1980; 66 Sun (10.1016/j.apcatb.2019.118585_bib0065) 2018; 8 Kreuzer (10.1016/j.apcatb.2019.118585_bib0010) 1971; 173 Wan (10.1016/j.apcatb.2019.118585_bib0120) 2018; 30 Huo (10.1016/j.apcatb.2019.118585_bib0180) 2019; 361 Wang (10.1016/j.apcatb.2019.118585_bib0115) 2019; 29 Wang (10.1016/j.apcatb.2019.118585_bib0155) 2017; 27 Wang (10.1016/j.apcatb.2019.118585_bib0055) 2017; 29 Roldán (10.1016/j.apcatb.2019.118585_bib0095) 2010; 114 Gordon (10.1016/j.apcatb.2019.118585_bib0070) 2012; 134 Zhang (10.1016/j.apcatb.2019.118585_bib0135) 2010; 98 Dong (10.1016/j.apcatb.2019.118585_bib0085) 2016; 344 Ding (10.1016/j.apcatb.2019.118585_bib0025) 2016; 182 Shi (10.1016/j.apcatb.2019.118585_bib0195) 2019; 243 Li (10.1016/j.apcatb.2019.118585_bib0200) 2005; 401 Xu (10.1016/j.apcatb.2019.118585_bib0150) 2019; 364 Zhou (10.1016/j.apcatb.2019.118585_bib0105) 2015; 6 Ye (10.1016/j.apcatb.2019.118585_bib0060) 2011; 47 Long (10.1016/j.apcatb.2019.118585_bib0165) 2014; 10 Dong (10.1016/j.apcatb.2019.118585_bib0210) 2019; 245 Kim (10.1016/j.apcatb.2019.118585_bib0005) 2010; 327 Guan (10.1016/j.apcatb.2019.118585_bib0050) 2013; 135 Li (10.1016/j.apcatb.2019.118585_bib0090) 2016; 6 Yu (10.1016/j.apcatb.2019.118585_bib0170) 2019; 58 Wang (10.1016/j.apcatb.2019.118585_bib0145) 2017; 391 Shang (10.1016/j.apcatb.2019.118585_bib0030) 2019; 53 Lv (10.1016/j.apcatb.2019.118585_bib0035) 2016; 6 Hu (10.1016/j.apcatb.2019.118585_bib0190) 2019; 256 Di (10.1016/j.apcatb.2019.118585_bib0125) 2019; 61 Li (10.1016/j.apcatb.2019.118585_bib0220) 2019; 53 Li (10.1016/j.apcatb.2019.118585_bib0205) 2018; 52 Huang (10.1016/j.apcatb.2019.118585_bib0215) 2019; 240 Nakamura (10.1016/j.apcatb.2019.118585_bib0040) 2000; 161 Jing (10.1016/j.apcatb.2019.118585_bib0130) 2019; 243 Yang (10.1016/j.apcatb.2019.118585_bib0140) 2018; 430 Matthias (10.1016/j.apcatb.2019.118585_bib0100) 2006; 96 Yu (10.1016/j.apcatb.2019.118585_bib0175) 2018; 226 Pârvulescu (10.1016/j.apcatb.2019.118585_bib0020) 1998; 46 Cao (10.1016/j.apcatb.2019.118585_bib0110) 2018; 1 Liu (10.1016/j.apcatb.2019.118585_bib0015) 2010; 162 Liu (10.1016/j.apcatb.2019.118585_bib0075) 2016; 6 Jiang (10.1016/j.apcatb.2019.118585_bib0160) 2012; 134 |
References_xml | – volume: 137 start-page: 6393 year: 2015 end-page: 6399 ident: bib0045 article-title: Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets publication-title: J. Am. Chem. Soc. – volume: 162 start-page: 1006 year: 2010 end-page: 1011 ident: bib0015 article-title: Simultaneous removal of NO and SO publication-title: Chem. Eng. J. – volume: 161 start-page: 205 year: 2000 end-page: 212 ident: bib0040 article-title: Role of oxygen vacancy in the plasma-treated TiO publication-title: J. Mol. Catal. A-Chem. – volume: 134 start-page: 4473 year: 2012 end-page: 4476 ident: bib0160 article-title: Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 8659 year: 2018 end-page: 8665 ident: bib0205 article-title: Oxygen vacancies mediated complete visible light NO oxidation via side-on bridging superoxide radicals publication-title: Environ. Sci. Technol. – volume: 344 start-page: 401 year: 2016 end-page: 410 ident: bib0085 article-title: Facets and defects cooperatively promote visible light plasmonic photocatalysis with Bi nanowires@ BiOCl nanosheets publication-title: J. Catal. – volume: 327 start-page: 1624 year: 2010 end-page: 1627 ident: bib0005 article-title: Strontium-doped perovskites rival platinum catalysts for treating NO publication-title: Science – volume: 391 start-page: 194 year: 2017 end-page: 201 ident: bib0145 article-title: A plate-on-plate sandwiched Z-scheme heterojunction photocatalyst: BiOBr-Bi publication-title: Appl. Surf. Sci. – volume: 53 start-page: 6444 year: 2019 end-page: 6453 ident: bib0030 article-title: Oxygen vacancies promoted selective photocatalytic removal of NO with blue TiO publication-title: Environ. Sci. Technol. – volume: 6 start-page: 19347 year: 2016 ident: bib0035 article-title: Fabrication of wide-range-visible photocatalyst Bi publication-title: Sci. Rep. – volume: 364 start-page: 691 year: 2019 end-page: 699 ident: bib0150 article-title: Oxygen vacancy boosted photocatalytic decomposition of ciprofloxacin over Bi publication-title: J. Hazard. Mater. – volume: 243 start-page: 322 year: 2019 end-page: 329 ident: bib0195 article-title: Change in photocatalytic NO removal mechanisms of ultrathin BiOBr/BiOI via NO publication-title: Appl. Catal. B-Environ. – volume: 29 year: 2019 ident: bib0115 article-title: Monolayer epitaxial heterostructures for selective visible‐light‐driven photocatalytic NO oxidation publication-title: Adv. Funct. Mater. – volume: 182 start-page: 316 year: 2016 end-page: 325 ident: bib0025 article-title: Self doping promoted photocatalytic removal of no under visible light with Bi publication-title: Appl. Catal. B-Environ. – volume: 10 start-page: 2791 year: 2014 end-page: 2795 ident: bib0165 article-title: Bi publication-title: Small – volume: 58 start-page: 3880 year: 2019 end-page: 3884 ident: bib0170 article-title: Three‐in‐one oxygen vacancies: whole visible‐spectrum absorption, efficient charge separation, and surface site activation for robust CO publication-title: Angew. Chem. Int. Ed. – volume: 430 start-page: 505 year: 2018 end-page: 514 ident: bib0140 article-title: Controllable synthesis of Bi publication-title: Appl. Surf. Sci. – volume: 66 start-page: 347 year: 1980 end-page: 367 ident: bib0185 article-title: Redox kinetics of bismuth molybdate ammoxidation catalysts publication-title: J. Catal. – volume: 27 year: 2017 ident: bib0155 article-title: In situ carbon homogeneous doping on ultrathin bismuth molybdate: a dual‐Purpose strategy for efficient molecular oxygen activation publication-title: Adv. Funct. Mater. – volume: 96 year: 2006 ident: bib0100 article-title: Influence of nitrogen doping on the defect formation and surface properties of TiO publication-title: Phys. Rev. Lett. – volume: 47 start-page: 6951 year: 2011 end-page: 6953 ident: bib0060 article-title: The {001} facets-dependent high photoactivity of BiOCl nanosheets publication-title: Chem. Commun. – volume: 29 year: 2017 ident: bib0055 article-title: Light‐switchable oxygen vacancies in ultrafine Bi publication-title: Adv. Mater. – volume: 226 start-page: 441 year: 2018 end-page: 450 ident: bib0175 article-title: Readily achieving concentration-tunable oxygen vacancies in Bi publication-title: Appl. Catal. B-Environ. – volume: 173 start-page: 45 year: 1971 end-page: 47 ident: bib0010 article-title: Nitric oxide air pollution: detection by optoacoustic spectroscopy publication-title: Science – volume: 243 start-page: 10 year: 2019 end-page: 18 ident: bib0130 article-title: Hierarchical Bi publication-title: Appl. Catal. B-Environ. – volume: 6 start-page: 14168 year: 2014 end-page: 14173 ident: bib0080 article-title: Sustainable molecular oxygen activation with oxygen vacancies on the {001} facets of BiOCl nanosheets under solar light publication-title: Nanoscale – volume: 30 year: 2018 ident: bib0120 article-title: Defect effects on TiO publication-title: Adv. Mater. – volume: 61 start-page: 54 year: 2019 end-page: 59 ident: bib0125 article-title: Atomically-thin Bi publication-title: Nano Energy – volume: 256 year: 2019 ident: bib0190 article-title: Dramatic promotion of visible-light photoreactivity of TiO publication-title: Appl. Catal. B-Environ. – volume: 53 start-page: 6964 year: 2019 end-page: 6971 ident: bib0220 article-title: An interfacial charging-decharging strategy to efficient and selective aerobic NO oxidation on oxygen vacancy publication-title: Environ. Sci. Technol. – volume: 6 start-page: 8276 year: 2016 end-page: 8285 ident: bib0090 article-title: Oxygen vacancy structure associated phtotcatalytic water oxidation of BiOCl publication-title: ACS Catal. – volume: 1 start-page: 704 year: 2018 end-page: 710 ident: bib0110 article-title: A photochromic composite with enhanced carrier separation for the photocatalytic activation of benzylic C-H bonds in toluene publication-title: Nat. Catal. – volume: 245 start-page: 459 year: 2019 end-page: 468 ident: bib0210 article-title: Photocatalysis removing of NO based on modified carbon nitride: the effect of celestite mineral particles publication-title: Appl. Catal. B-Environ. – volume: 98 start-page: 138 year: 2010 end-page: 146 ident: bib0135 article-title: Controllable synthesis of Bi publication-title: Appl. Catal. B-Environ. – volume: 6 start-page: 8340 year: 2015 ident: bib0105 article-title: Monolayered Bi publication-title: Nat. Commun. – volume: 361 start-page: 129 year: 2019 end-page: 138 ident: bib0180 article-title: Synthesis of Bi publication-title: Chem. Eng. J. – volume: 6 start-page: 1097 year: 2016 end-page: 1108 ident: bib0075 article-title: Engineering coexposed {001} and {101} Facets in oxygen-deficient TiO publication-title: ACS Catal. – volume: 135 start-page: 10411 year: 2013 end-page: 10417 ident: bib0050 article-title: Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets publication-title: J. Am. Chem. Soc. – volume: 114 start-page: 6511 year: 2010 end-page: 6517 ident: bib0095 article-title: Theoretical confirmation of the enhanced facility to increase oxygen vacancy concentration in TiO publication-title: J. Phys. Chem. C – volume: 46 start-page: 233 year: 1998 end-page: 316 ident: bib0020 article-title: Catalytic removal of NO publication-title: Catal. Today – volume: 240 start-page: 122 year: 2019 end-page: 131 ident: bib0215 article-title: Protonated g-C publication-title: Appl. Catal. B-Environ – volume: 8 start-page: 7585 year: 2018 end-page: 7592 ident: bib0065 article-title: Engineering the electronic structure of MoS publication-title: ACS Catal. – volume: 134 start-page: 6751 year: 2012 end-page: 6761 ident: bib0070 article-title: Nonaqueous synthesis of TiO publication-title: J. Am. Chem. Soc. – volume: 401 start-page: 579 year: 2005 end-page: 584 ident: bib0200 article-title: Visible-light-driven photocatalysis on fluorine-doped TiO publication-title: Chem. Phys. Lett. – volume: 361 start-page: 129 year: 2019 ident: 10.1016/j.apcatb.2019.118585_bib0180 article-title: Synthesis of Bi2WO6 with gradient oxygen vacancies for highly photocatalytic NO oxidation and mechanism study publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.12.071 – volume: 52 start-page: 8659 year: 2018 ident: 10.1016/j.apcatb.2019.118585_bib0205 article-title: Oxygen vacancies mediated complete visible light NO oxidation via side-on bridging superoxide radicals publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b01849 – volume: 98 start-page: 138 year: 2010 ident: 10.1016/j.apcatb.2019.118585_bib0135 article-title: Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2010.05.022 – volume: 161 start-page: 205 year: 2000 ident: 10.1016/j.apcatb.2019.118585_bib0040 article-title: Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal publication-title: J. Mol. Catal. A-Chem. doi: 10.1016/S1381-1169(00)00362-9 – volume: 114 start-page: 6511 year: 2010 ident: 10.1016/j.apcatb.2019.118585_bib0095 article-title: Theoretical confirmation of the enhanced facility to increase oxygen vacancy concentration in TiO2 by Iron doping publication-title: J. Phys. Chem. C doi: 10.1021/jp911851h – volume: 430 start-page: 505 year: 2018 ident: 10.1016/j.apcatb.2019.118585_bib0140 article-title: Controllable synthesis of Bi2MoO6 nanosheets and their facet-dependent visible-light-driven photocatalytic activity publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.08.072 – volume: 27 year: 2017 ident: 10.1016/j.apcatb.2019.118585_bib0155 article-title: In situ carbon homogeneous doping on ultrathin bismuth molybdate: a dual‐Purpose strategy for efficient molecular oxygen activation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201703923 – volume: 29 year: 2019 ident: 10.1016/j.apcatb.2019.118585_bib0115 article-title: Monolayer epitaxial heterostructures for selective visible‐light‐driven photocatalytic NO oxidation publication-title: Adv. Funct. Mater. – volume: 137 start-page: 6393 year: 2015 ident: 10.1016/j.apcatb.2019.118585_bib0045 article-title: Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03105 – volume: 47 start-page: 6951 year: 2011 ident: 10.1016/j.apcatb.2019.118585_bib0060 article-title: The {001} facets-dependent high photoactivity of BiOCl nanosheets publication-title: Chem. Commun. doi: 10.1039/c1cc11015b – volume: 53 start-page: 6444 year: 2019 ident: 10.1016/j.apcatb.2019.118585_bib0030 article-title: Oxygen vacancies promoted selective photocatalytic removal of NO with blue TiO2 via simultaneous molecular oxygen activation and photogenerated holes annihilation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b07322 – volume: 134 start-page: 4473 year: 2012 ident: 10.1016/j.apcatb.2019.118585_bib0160 article-title: Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets publication-title: J. Am. Chem. Soc. doi: 10.1021/ja210484t – volume: 66 start-page: 347 year: 1980 ident: 10.1016/j.apcatb.2019.118585_bib0185 article-title: Redox kinetics of bismuth molybdate ammoxidation catalysts publication-title: J. Catal. doi: 10.1016/0021-9517(80)90039-1 – volume: 173 start-page: 45 year: 1971 ident: 10.1016/j.apcatb.2019.118585_bib0010 article-title: Nitric oxide air pollution: detection by optoacoustic spectroscopy publication-title: Science doi: 10.1126/science.173.3991.45 – volume: 6 start-page: 8276 year: 2016 ident: 10.1016/j.apcatb.2019.118585_bib0090 article-title: Oxygen vacancy structure associated phtotcatalytic water oxidation of BiOCl publication-title: ACS Catal. doi: 10.1021/acscatal.6b02613 – volume: 6 start-page: 19347 year: 2016 ident: 10.1016/j.apcatb.2019.118585_bib0035 article-title: Fabrication of wide-range-visible photocatalyst Bi2WO6-x nanoplates via surface oxygen vacancies publication-title: Sci. Rep. doi: 10.1038/srep19347 – volume: 30 year: 2018 ident: 10.1016/j.apcatb.2019.118585_bib0120 article-title: Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties publication-title: Adv. Mater. doi: 10.1002/adma.201705369 – volume: 46 start-page: 233 year: 1998 ident: 10.1016/j.apcatb.2019.118585_bib0020 article-title: Catalytic removal of NO publication-title: Catal. Today doi: 10.1016/S0920-5861(98)00399-X – volume: 243 start-page: 322 year: 2019 ident: 10.1016/j.apcatb.2019.118585_bib0195 article-title: Change in photocatalytic NO removal mechanisms of ultrathin BiOBr/BiOI via NO3− adsorption publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2018.10.037 – volume: 6 start-page: 1097 year: 2016 ident: 10.1016/j.apcatb.2019.118585_bib0075 article-title: Engineering coexposed {001} and {101} Facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 photoreduction under visible light publication-title: ACS Catal. doi: 10.1021/acscatal.5b02098 – volume: 344 start-page: 401 year: 2016 ident: 10.1016/j.apcatb.2019.118585_bib0085 article-title: Facets and defects cooperatively promote visible light plasmonic photocatalysis with Bi nanowires@ BiOCl nanosheets publication-title: J. Catal. doi: 10.1016/j.jcat.2016.10.005 – volume: 96 year: 2006 ident: 10.1016/j.apcatb.2019.118585_bib0100 article-title: Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase publication-title: Phys. Rev. Lett. – volume: 226 start-page: 441 year: 2018 ident: 10.1016/j.apcatb.2019.118585_bib0175 article-title: Readily achieving concentration-tunable oxygen vacancies in Bi2O2CO3: triple-functional role for efficient visible-light photocatalytic redox performance publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2017.12.074 – volume: 61 start-page: 54 year: 2019 ident: 10.1016/j.apcatb.2019.118585_bib0125 article-title: Atomically-thin Bi2MoO6 nanosheets with vacancy pairs for improved photocatalytic CO2 reduction publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.029 – volume: 256 year: 2019 ident: 10.1016/j.apcatb.2019.118585_bib0190 article-title: Dramatic promotion of visible-light photoreactivity of TiO2 hollow microspheres towards NO oxidation by introduction of oxygen vacancy publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2019.117860 – volume: 29 year: 2017 ident: 10.1016/j.apcatb.2019.118585_bib0055 article-title: Light‐switchable oxygen vacancies in ultrafine Bi5O7Br nanotubes for boosting solar‐driven nitrogenfixation in pure water publication-title: Adv. Mater. – volume: 182 start-page: 316 year: 2016 ident: 10.1016/j.apcatb.2019.118585_bib0025 article-title: Self doping promoted photocatalytic removal of no under visible light with Bi2MoO6: indispensable role of superoxide ions publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2015.09.046 – volume: 1 start-page: 704 year: 2018 ident: 10.1016/j.apcatb.2019.118585_bib0110 article-title: A photochromic composite with enhanced carrier separation for the photocatalytic activation of benzylic C-H bonds in toluene publication-title: Nat. Catal. doi: 10.1038/s41929-018-0128-z – volume: 6 start-page: 14168 year: 2014 ident: 10.1016/j.apcatb.2019.118585_bib0080 article-title: Sustainable molecular oxygen activation with oxygen vacancies on the {001} facets of BiOCl nanosheets under solar light publication-title: Nanoscale doi: 10.1039/C4NR04810E – volume: 53 start-page: 6964 year: 2019 ident: 10.1016/j.apcatb.2019.118585_bib0220 article-title: An interfacial charging-decharging strategy to efficient and selective aerobic NO oxidation on oxygen vacancy publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b01287 – volume: 162 start-page: 1006 year: 2010 ident: 10.1016/j.apcatb.2019.118585_bib0015 article-title: Simultaneous removal of NO and SO2 from coal-fired flue gas by UV/H2O2 advanced oxidation process publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.07.009 – volume: 8 start-page: 7585 year: 2018 ident: 10.1016/j.apcatb.2019.118585_bib0065 article-title: Engineering the electronic structure of MoS2 nanorods by N and Mn dopants for ultra-efficient hydrogen production publication-title: ACS Catal. doi: 10.1021/acscatal.8b00783 – volume: 6 start-page: 8340 year: 2015 ident: 10.1016/j.apcatb.2019.118585_bib0105 article-title: Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis publication-title: Nat. Commun. doi: 10.1038/ncomms9340 – volume: 10 start-page: 2791 year: 2014 ident: 10.1016/j.apcatb.2019.118585_bib0165 article-title: Bi2MoO6 nanobelts for crystal facet‐enhanced photocatalysis publication-title: Small doi: 10.1002/smll.201302950 – volume: 391 start-page: 194 year: 2017 ident: 10.1016/j.apcatb.2019.118585_bib0145 article-title: A plate-on-plate sandwiched Z-scheme heterojunction photocatalyst: BiOBr-Bi2MoO6 with enhanced photocatalytic performance publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.07.070 – volume: 327 start-page: 1624 year: 2010 ident: 10.1016/j.apcatb.2019.118585_bib0005 article-title: Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust publication-title: Science doi: 10.1126/science.1184087 – volume: 401 start-page: 579 year: 2005 ident: 10.1016/j.apcatb.2019.118585_bib0200 article-title: Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2004.11.126 – volume: 364 start-page: 691 year: 2019 ident: 10.1016/j.apcatb.2019.118585_bib0150 article-title: Oxygen vacancy boosted photocatalytic decomposition of ciprofloxacin over Bi2MoO6: oxygen vacancy engineering, biotoxicity evaluation and mechanism study publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.10.063 – volume: 58 start-page: 3880 year: 2019 ident: 10.1016/j.apcatb.2019.118585_bib0170 article-title: Three‐in‐one oxygen vacancies: whole visible‐spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoreduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201813967 – volume: 134 start-page: 6751 year: 2012 ident: 10.1016/j.apcatb.2019.118585_bib0070 article-title: Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity publication-title: J. Am. Chem. Soc. doi: 10.1021/ja300823a – volume: 245 start-page: 459 year: 2019 ident: 10.1016/j.apcatb.2019.118585_bib0210 article-title: Photocatalysis removing of NO based on modified carbon nitride: the effect of celestite mineral particles publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2019.01.013 – volume: 243 start-page: 10 year: 2019 ident: 10.1016/j.apcatb.2019.118585_bib0130 article-title: Hierarchical Bi2MoO6 spheres in situ assembled by monolayer nanosheets toward photocatalytic selective oxidation of benzyl alcohol publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2018.10.027 – volume: 135 start-page: 10411 year: 2013 ident: 10.1016/j.apcatb.2019.118585_bib0050 article-title: Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets publication-title: J. Am. Chem. Soc. doi: 10.1021/ja402956f – volume: 240 start-page: 122 year: 2019 ident: 10.1016/j.apcatb.2019.118585_bib0215 article-title: Protonated g-C3N4/Ti3+ self-doped TiO2 nanocomposite films: room-temperature preparation, hydrophilicity, and application for photocatalytic NOx removal publication-title: Appl. Catal. B-Environ doi: 10.1016/j.apcatb.2018.08.078 |
SSID | ssj0002328 |
Score | 2.6347592 |
Snippet | Benefiting from the Br− selectively induced the OVs on {001} facets of Bi2MoO6, an extended light-absorption until near-infrared region and enhanced the... Surface oxygen vacancies (OVs) are believed as active sites for photocatalytic NO removal. The construction and stabilization of OVs on materials, especially... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 118585 |
SubjectTerms | Bi2MoO6 Bromine Electromagnetic absorption Facet Ions Near infrared radiation NO removal Oxidation Oxygen Oxygen vacancy Photocatalysis Selectivity Stabilization Vacancies |
Title | Insight into the effect of bromine on facet-dependent surface oxygen vacancies construction and stabilization of Bi2MoO6 for efficient photocatalytic NO removal |
URI | https://dx.doi.org/10.1016/j.apcatb.2019.118585 https://www.proquest.com/docview/2362965348 |
Volume | 265 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQPUAPqN0WFUrRHHp1Nxs7TnKkK9DSiuVAkbhZfiQiVYlXm4Dg0t_CT2XsJCxFQki9Rh7nMZNvvknmQchXxXQhcqaoKoWmPDEpVZwxyjjjiin0OaGV0slczM75j4vkYo1Mh1oYn1bZY3-H6QGt-yPj_mmOF1U1PovyWDCWog0xDLRCfS_nqbfyb39XaR7IGAIa42LqVw_lcyHHSy2MarVP8MoRO_wvspfc0zOgDt7n6B3Z6mkjHHRX9p6sFfWIbEyHaW0j8vZJY8ER2T5c1a-hWP8CNx_I_XHd-HAcqrp1gOQPuoQOcCXopbvCLcDVUCpTtHQYkNtCc730h8Dd3qHBwY0yYahvA8atOtCCqi0g2fTptl1xp9_1exWfuFMBSI79uapQgAmLS9e68OnoDu8I5qewLK4cWv1Hcn50-Gs6o_2QBmoY4y1N0Z2lxtpIiclEYYyrJpH2E62zAnVibGwjk2uV2ayMTIzwymySmxwlEhtHImLbZL12dfGJQJwZzQUvs4lCXqPzTJjICoEBUIq4lJY7hA26kabvYO4HafyRQ6rab9lpVHqNyk6jO4Q-Si26Dh6vrE8Htct_LFGik3lFcm-wEtkjQSNjZAi5SBjPdv97489kM_Zhvm8am-yRddRr8QW5UKv3g7HvkzcHxz9n8wcOzQrO |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbQcqA9oHZbVFrazqFXa7Ox4yRHugLtArscChI3y49ETVXi1SYg-Df9qR0nDrSVEFKvkcd5zOSbb5J5EPJFMV2InCmqSqEpT0xKFWeMMs64Ygp9TtdKabkS80t-cpVcbZHZUAvj0yoD9veY3qF1ODIJT3OyrqrJtyiPBWMp2hDDQMvX92777lTJiGwfLk7nqwdARtLQATKup15gqKDr0rzU2qhW-xyvHOHD_yV7ykP9g9WdAzp-RXYDc4TD_uJek62iHpOd2TCwbUxe_tFbcEz2jh5L2FAsvMPNG_JrUTc-Ioeqbh0g_4M-pwNcCXrjrnELcDWUyhQtHWbkttDcbPwhcHf3aHNwq0w317cB4x6b0IKqLSDf9Bm3fX2n3_VrFS_duQDkx_5cVVeDCevvrnXd16N7vCNYncOmuHZo-G_J5fHRxWxOw5wGahjjLU3Ro6XG2kiJ6VRhmKumkfZDrbMC1WJsbCOTa5XZrIxMjAjLbJKbHCUSG0ciYntkVLu6eEcgzozmgpfZVCG10XkmTGSFwBgoRWhKy33CBt1IE5qY-1kaP-WQrfZD9hqVXqOy1-g-oQ9S676JxzPr00Ht8i9jlOhnnpE8GKxEBjBoZIwkIRcJ49n7_974M9mZXyzP5NlidfqBvIh91O97yCYHZIQ6Lj4iNWr1p2D6vwEjcA1_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insight+into+the+effect+of+bromine+on+facet-dependent+surface+oxygen+vacancies+construction+and+stabilization+of+Bi2MoO6+for+efficient+photocatalytic+NO+removal&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Wang%2C+Shengyao&rft.au=Ding%2C+Xing&rft.au=Yang%2C+Nan&rft.au=Zhan%2C+Guangming&rft.date=2020-05-15&rft.pub=Elsevier+BV&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=265&rft.spage=1&rft_id=info:doi/10.1016%2Fj.apcatb.2019.118585&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |