Insight into the effect of bromine on facet-dependent surface oxygen vacancies construction and stabilization of Bi2MoO6 for efficient photocatalytic NO removal

Benefiting from the Br− selectively induced the OVs on {001} facets of Bi2MoO6, an extended light-absorption until near-infrared region and enhanced the molecular oxygen activation were achieved, thus endowing the OVs concentration optimized Bi2MoO6 with superior activity and selectivity of NO remov...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 265; p. 118585
Main Authors Wang, Shengyao, Ding, Xing, Yang, Nan, Zhan, Guangming, Zhang, Xuehao, Dong, Guohui, Zhang, Lizhi, Chen, Hao
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.05.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Benefiting from the Br− selectively induced the OVs on {001} facets of Bi2MoO6, an extended light-absorption until near-infrared region and enhanced the molecular oxygen activation were achieved, thus endowing the OVs concentration optimized Bi2MoO6 with superior activity and selectivity of NO removal in a flow reaction. [Display omitted] •Br− boost the construction and stabilization of OVs on {001} facets of Bi2MoO6.•Br− induced OVs facilitate NO removal of BMO-001-Br even in near-infrared region.•NO oxidative removal with high selectivity of 93.6% is achieved on BMO-001-Br.•Mechanism for highly efficient NO removal (62.9%) over BMO-001-Br is proposed. Surface oxygen vacancies (OVs) are believed as active sites for photocatalytic NO removal. The construction and stabilization of OVs on materials, especially from the point of view of exogenous ions towards different facets is vital for OVs-mediated photocatalysis. Herein, the impact of bromide ions (Br−) on OVs construction on different facets of Bi2MoO6 was systematically investigated. Theoretical calculations and characterizations demonstrated that Br− can boost and stabilize the OVs on {001} facets of Bi2MoO6, while hardly affect that on {010} facets. The Br- induced OVs on Bi2MoO6 caused a light-absorption until near-infrared region and enhanced the molecular oxygen activation, thus endowing the OVs concentration optimized Bi2MoO6 (BMO-001-Br) with superior activity on NO removal (62.9%) and selectivity of NO complete oxidation (93.61%) in a flow reaction. This work provides new insight into understanding the exogenous ions on construction and stabilization of OVs and the roles of OVs in photocatalytic NO removal.
AbstractList Benefiting from the Br− selectively induced the OVs on {001} facets of Bi2MoO6, an extended light-absorption until near-infrared region and enhanced the molecular oxygen activation were achieved, thus endowing the OVs concentration optimized Bi2MoO6 with superior activity and selectivity of NO removal in a flow reaction. [Display omitted] •Br− boost the construction and stabilization of OVs on {001} facets of Bi2MoO6.•Br− induced OVs facilitate NO removal of BMO-001-Br even in near-infrared region.•NO oxidative removal with high selectivity of 93.6% is achieved on BMO-001-Br.•Mechanism for highly efficient NO removal (62.9%) over BMO-001-Br is proposed. Surface oxygen vacancies (OVs) are believed as active sites for photocatalytic NO removal. The construction and stabilization of OVs on materials, especially from the point of view of exogenous ions towards different facets is vital for OVs-mediated photocatalysis. Herein, the impact of bromide ions (Br−) on OVs construction on different facets of Bi2MoO6 was systematically investigated. Theoretical calculations and characterizations demonstrated that Br− can boost and stabilize the OVs on {001} facets of Bi2MoO6, while hardly affect that on {010} facets. The Br- induced OVs on Bi2MoO6 caused a light-absorption until near-infrared region and enhanced the molecular oxygen activation, thus endowing the OVs concentration optimized Bi2MoO6 (BMO-001-Br) with superior activity on NO removal (62.9%) and selectivity of NO complete oxidation (93.61%) in a flow reaction. This work provides new insight into understanding the exogenous ions on construction and stabilization of OVs and the roles of OVs in photocatalytic NO removal.
Surface oxygen vacancies (OVs) are believed as active sites for photocatalytic NO removal. The construction and stabilization of OVs on materials, especially from the point of view of exogenous ions towards different facets is vital for OVs-mediated photocatalysis. Herein, the impact of bromide ions (Br−) on OVs construction on different facets of Bi2MoO6 was systematically investigated. Theoretical calculations and characterizations demonstrated that Br− can boost and stabilize the OVs on {001} facets of Bi2MoO6, while hardly affect that on {010} facets. The Br- induced OVs on Bi2MoO6 caused a light-absorption until near-infrared region and enhanced the molecular oxygen activation, thus endowing the OVs concentration optimized Bi2MoO6 (BMO-001-Br) with superior activity on NO removal (62.9%) and selectivity of NO complete oxidation (93.61%) in a flow reaction. This work provides new insight into understanding the exogenous ions on construction and stabilization of OVs and the roles of OVs in photocatalytic NO removal.
ArticleNumber 118585
Author Zhang, Lizhi
Ding, Xing
Wang, Shengyao
Zhan, Guangming
Dong, Guohui
Chen, Hao
Yang, Nan
Zhang, Xuehao
Author_xml – sequence: 1
  givenname: Shengyao
  surname: Wang
  fullname: Wang, Shengyao
  email: wangshengyao@mail.hzau.edu.cn
  organization: College of Science, Huazhong Agricultural University, Wuhan, 430070, PR China
– sequence: 2
  givenname: Xing
  surname: Ding
  fullname: Ding, Xing
  organization: College of Science, Huazhong Agricultural University, Wuhan, 430070, PR China
– sequence: 3
  givenname: Nan
  surname: Yang
  fullname: Yang, Nan
  organization: College of Science, Huazhong Agricultural University, Wuhan, 430070, PR China
– sequence: 4
  givenname: Guangming
  surname: Zhan
  fullname: Zhan, Guangming
  organization: Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
– sequence: 5
  givenname: Xuehao
  surname: Zhang
  fullname: Zhang, Xuehao
  organization: College of Science, Huazhong Agricultural University, Wuhan, 430070, PR China
– sequence: 6
  givenname: Guohui
  surname: Dong
  fullname: Dong, Guohui
  organization: School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, PR China
– sequence: 7
  givenname: Lizhi
  orcidid: 0000-0002-6842-9167
  surname: Zhang
  fullname: Zhang, Lizhi
  organization: Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
– sequence: 8
  givenname: Hao
  orcidid: 0000-0002-3958-3456
  surname: Chen
  fullname: Chen, Hao
  email: hchenhao@mail.hzau.edu.cn
  organization: College of Science, Huazhong Agricultural University, Wuhan, 430070, PR China
BookMark eNqFkctuEzEUhi3USqQtb8DCEusJvszFZoEEFZRKhWzateWxzzSOJvZgO1HD0_Co9XRYsYCVpaPz_Ue_vwt05oMHhN5SsqaEtu93az0Znfs1I1SuKRWNaF6hFRUdr7gQ_AytiGRtxXnHX6OLlHaEEMaZWKHftz65x23GzueA8xYwDAOYjMOA-xj2zgMOHg_aQK4sTOAt-IzTIc4jHJ5Oj-DxURvtjYOETfApx4PJrlDaW5yy7t3ofumXSUn97Nj3sGnxEOJ8yxWsBE7bkEPpoMdTdgb_2OAI-3DU4xU6H_SY4M2f9xI9fP1yf_2tutvc3F5_uqsM53WuOilJZ6wluqVUs67WlPSU1VIAp9RYZomRvRZWDMSwhgtuG2lkIRrLSEv4JXq35E4x_DxAymoXDtGXk4rxlsm24bUoWx-WLRNDShEGZVx-qZajdqOiRM1G1E4tRtRsRC1GClz_BU_R7XU8_Q_7uGBQ6h8dRJXmPzNgXSymlA3u3wHPdEKsXg
CitedBy_id crossref_primary_10_1016_j_jallcom_2025_179022
crossref_primary_10_1016_j_jhazmat_2021_127685
crossref_primary_10_1016_j_seppur_2022_121990
crossref_primary_10_1016_j_jece_2024_115046
crossref_primary_10_1021_acs_est_4c08326
crossref_primary_10_1016_j_ccr_2022_214970
crossref_primary_10_1002_slct_202303076
crossref_primary_10_1021_acsanm_4c02846
crossref_primary_10_1103_PhysRevMaterials_7_045401
crossref_primary_10_1016_j_jallcom_2024_174493
crossref_primary_10_1039_D2SE01455F
crossref_primary_10_1016_j_apsusc_2023_158104
crossref_primary_10_1016_j_apcatb_2022_121319
crossref_primary_10_1016_j_ceramint_2023_08_280
crossref_primary_10_1016_j_materresbull_2024_113214
crossref_primary_10_1016_j_jallcom_2024_175609
crossref_primary_10_1007_s12274_020_2906_6
crossref_primary_10_1016_j_apcatb_2021_120492
crossref_primary_10_1016_j_apcatb_2024_124955
crossref_primary_10_1039_D0TA08165E
crossref_primary_10_1039_D1EN00896J
crossref_primary_10_1016_j_apcatb_2021_120372
crossref_primary_10_1007_s11783_022_1573_0
crossref_primary_10_1016_j_jhazmat_2024_136951
crossref_primary_10_1002_adfm_202412775
crossref_primary_10_1021_acscatal_2c05545
crossref_primary_10_1016_j_cattod_2024_114747
crossref_primary_10_1021_acs_iecr_1c04155
crossref_primary_10_1016_j_seppur_2025_132196
crossref_primary_10_1039_d0pp00247j
crossref_primary_10_1002_solr_202000442
crossref_primary_10_1016_j_apsusc_2024_161323
crossref_primary_10_1016_j_cej_2021_131550
crossref_primary_10_1016_j_apsusc_2021_150104
crossref_primary_10_1016_j_enconman_2022_116605
crossref_primary_10_1002_admi_202101671
crossref_primary_10_1021_acssuschemeng_3c07871
crossref_primary_10_1016_j_foodchem_2024_140082
crossref_primary_10_1021_acs_jpcc_2c08841
crossref_primary_10_1039_D2TA07120G
crossref_primary_10_1039_D1RA07275G
crossref_primary_10_1016_j_cej_2020_127443
crossref_primary_10_1039_D1TA03705F
crossref_primary_10_1016_j_jece_2023_111078
crossref_primary_10_1016_j_apcatb_2024_124293
crossref_primary_10_1016_j_envres_2022_114521
crossref_primary_10_1016_j_matchemphys_2024_129860
crossref_primary_10_1002_cctc_202100422
crossref_primary_10_1016_j_jwpe_2025_107157
crossref_primary_10_1016_j_cej_2021_132361
crossref_primary_10_3390_ijms232315221
crossref_primary_10_1002_inc2_12023
crossref_primary_10_1016_j_apcatb_2020_119790
crossref_primary_10_3390_nano13182614
crossref_primary_10_1007_s10562_022_03987_4
crossref_primary_10_1016_j_apsusc_2023_158839
crossref_primary_10_1016_j_micromeso_2022_112003
crossref_primary_10_1016_j_surfin_2021_101272
crossref_primary_10_1016_j_jallcom_2023_169018
crossref_primary_10_1016_j_apt_2021_09_047
crossref_primary_10_1016_j_jcis_2021_02_036
crossref_primary_10_1039_D0QI00673D
crossref_primary_10_1002_cssc_202001855
crossref_primary_10_1016_j_snb_2024_136290
crossref_primary_10_1002_aenm_202403713
crossref_primary_10_1039_D4CY00134F
crossref_primary_10_1016_j_cej_2022_135029
crossref_primary_10_1016_j_jhazmat_2023_131237
crossref_primary_10_1039_D1NJ03664E
crossref_primary_10_1016_j_carbon_2022_08_031
crossref_primary_10_1007_s12274_023_6014_2
crossref_primary_10_1016_j_jenvman_2023_119125
crossref_primary_10_1021_acs_energyfuels_2c01660
crossref_primary_10_15541_jim20200437
crossref_primary_10_1016_j_cej_2020_127868
crossref_primary_10_1007_s12598_024_02670_4
crossref_primary_10_1016_j_jece_2024_113296
crossref_primary_10_1016_j_apmate_2024_100201
crossref_primary_10_1016_j_compositesb_2021_109600
crossref_primary_10_1002_advs_202203057
crossref_primary_10_1021_acsanm_3c05941
crossref_primary_10_3390_catal11091089
crossref_primary_10_1002_adsu_202200009
crossref_primary_10_1007_s41810_024_00263_3
crossref_primary_10_1002_adfm_202100919
crossref_primary_10_1016_j_cej_2024_148580
crossref_primary_10_1021_acs_est_1c01749
crossref_primary_10_1039_D3CY00018D
crossref_primary_10_1016_j_jallcom_2024_173759
crossref_primary_10_1016_j_apcatb_2022_121888
crossref_primary_10_1016_j_seppur_2024_126711
crossref_primary_10_1016_j_apt_2022_103927
crossref_primary_10_1016_j_surfin_2025_106262
crossref_primary_10_1016_j_apcatb_2023_123093
crossref_primary_10_1063_5_0228635
crossref_primary_10_1016_j_jcis_2022_03_014
crossref_primary_10_1016_j_ccr_2022_214515
crossref_primary_10_1016_j_seppur_2025_131463
crossref_primary_10_1016_j_seppur_2025_131622
crossref_primary_10_1021_acs_analchem_2c02848
crossref_primary_10_3390_molecules30030538
crossref_primary_10_1016_j_surfin_2021_101247
crossref_primary_10_1016_j_apsusc_2021_150144
crossref_primary_10_1016_j_seppur_2024_129893
crossref_primary_10_1016_j_apsusc_2023_156605
crossref_primary_10_1039_D2QI00391K
crossref_primary_10_1016_j_seppur_2024_131293
crossref_primary_10_1016_j_cej_2023_148036
crossref_primary_10_1002_adfm_202501291
crossref_primary_10_1016_j_clay_2021_106319
crossref_primary_10_1002_solr_202200154
crossref_primary_10_1016_j_apsusc_2021_151370
crossref_primary_10_1021_acsami_3c15677
crossref_primary_10_1021_acsomega_0c03595
crossref_primary_10_1021_acs_est_3c06593
crossref_primary_10_1007_s11356_020_09759_0
crossref_primary_10_1021_acsami_1c14371
crossref_primary_10_1016_j_snb_2022_132983
crossref_primary_10_1007_s11705_023_2353_5
crossref_primary_10_1016_j_jallcom_2021_161736
crossref_primary_10_1021_acscatal_4c00014
crossref_primary_10_1016_j_apcatb_2021_120231
crossref_primary_10_1016_j_apcatb_2021_120352
crossref_primary_10_1016_j_cej_2021_132968
crossref_primary_10_1016_j_seppur_2023_123886
Cites_doi 10.1016/j.cej.2018.12.071
10.1021/acs.est.8b01849
10.1016/j.apcatb.2010.05.022
10.1016/S1381-1169(00)00362-9
10.1021/jp911851h
10.1016/j.apsusc.2017.08.072
10.1002/adfm.201703923
10.1021/jacs.5b03105
10.1039/c1cc11015b
10.1021/acs.est.8b07322
10.1021/ja210484t
10.1016/0021-9517(80)90039-1
10.1126/science.173.3991.45
10.1021/acscatal.6b02613
10.1038/srep19347
10.1002/adma.201705369
10.1016/S0920-5861(98)00399-X
10.1016/j.apcatb.2018.10.037
10.1021/acscatal.5b02098
10.1016/j.jcat.2016.10.005
10.1016/j.apcatb.2017.12.074
10.1016/j.nanoen.2019.04.029
10.1016/j.apcatb.2019.117860
10.1016/j.apcatb.2015.09.046
10.1038/s41929-018-0128-z
10.1039/C4NR04810E
10.1021/acs.est.9b01287
10.1016/j.cej.2010.07.009
10.1021/acscatal.8b00783
10.1038/ncomms9340
10.1002/smll.201302950
10.1016/j.apsusc.2016.07.070
10.1126/science.1184087
10.1016/j.cplett.2004.11.126
10.1016/j.jhazmat.2018.10.063
10.1002/anie.201813967
10.1021/ja300823a
10.1016/j.apcatb.2019.01.013
10.1016/j.apcatb.2018.10.027
10.1021/ja402956f
10.1016/j.apcatb.2018.08.078
ContentType Journal Article
Copyright 2019
Copyright Elsevier BV May 15, 2020
Copyright_xml – notice: 2019
– notice: Copyright Elsevier BV May 15, 2020
DBID AAYXX
CITATION
7SR
7ST
7U5
8BQ
8FD
C1K
FR3
JG9
KR7
L7M
SOI
DOI 10.1016/j.apcatb.2019.118585
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
ExternalDocumentID 10_1016_j_apcatb_2019_118585
S0926337319313311
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPD
SSG
SSZ
T5K
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
XPP
7SR
7ST
7U5
8BQ
8FD
C1K
EFKBS
FR3
JG9
KR7
L7M
SOI
ID FETCH-LOGICAL-c334t-79907cdd0a611a274a10b12498e311cd2d0c9ba8d8f0c25383d59c9cdd5d20603
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Wed Aug 13 04:08:53 EDT 2025
Tue Jul 01 04:35:02 EDT 2025
Thu Apr 24 22:56:05 EDT 2025
Sat Mar 02 15:59:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bromine
Bi2MoO6
NO removal
Oxygen vacancy
Facet
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-79907cdd0a611a274a10b12498e311cd2d0c9ba8d8f0c25383d59c9cdd5d20603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3958-3456
0000-0002-6842-9167
PQID 2362965348
PQPubID 2045281
ParticipantIDs proquest_journals_2362965348
crossref_citationtrail_10_1016_j_apcatb_2019_118585
crossref_primary_10_1016_j_apcatb_2019_118585
elsevier_sciencedirect_doi_10_1016_j_apcatb_2019_118585
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-15
PublicationDateYYYYMMDD 2020-05-15
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-15
  day: 15
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Liu, Zhang, Sheng, Zhang, Zhao (bib0015) 2010; 162
Wang, Xu, Cui, Lv, Wang, Ren, Xu, Dong, Dou, Hao (bib0115) 2019; 29
Li, Shang, Cao, Yang, Ai, Zhang (bib0205) 2018; 52
Gordon, Cargnello, Paik, Mangolini, Weber, Fornasiero, Murray (bib0070) 2012; 134
Wang, Yang, Zhang, Ding, Yang, Dai, Chen (bib0145) 2017; 391
Shang, Li, Li, Huang, Mao, Ai, Zhang (bib0030) 2019; 53
Zhou, Zhang, Lin, Long, Zhang, Lin, Wu, Wang (bib0105) 2015; 6
Xu, Ding, Yang, Wang, Li, Lu, Chen (bib0150) 2019; 364
Ding, Ho, Shang, Zhang (bib0025) 2016; 182
Cao, Chen, Lin, Cheong, Liu, Zhang, Peng, Chen, Han, Tong, Wang, Shen, Zhu, Wang, Li (bib0110) 2018; 1
Brazdil, Suresh, Grasselli (bib0185) 1980; 66
Wan, Chen, Jia, Zheng, Dong, Zheng, Wang, Yan, Chen, Peng, Wang, Li (bib0120) 2018; 30
Zhang, Xu, Zhao, Zhu (bib0135) 2010; 98
Jiang, Zhao, Xiao, Zhang (bib0160) 2012; 134
Liu, Jiang, Zhao, Chen, Cheng, Yang, Li (bib0075) 2016; 6
Li, Shang, Li, Cao, Yang, Ai, Zhang (bib0220) 2019; 53
Nakamura, Negishi, Kutsuna, Ihara, Sugihara, Takeuchi (bib0040) 2000; 161
Yu, Zhang, Dong, Li, Zhang, Huang (bib0175) 2018; 226
Matthias, Morales, Diebold (bib0100) 2006; 96
Long, Wang, Chang, Zhao, Liu, Zhou, Wei, Wang, Huang, Huang (bib0165) 2014; 10
Hu, Li, Wu, Wang, Li, Li, Li, Lv (bib0190) 2019; 256
Li, Haneda, Labhsetwar, Hishita, Ohashi (bib0200) 2005; 401
Li, Shang, Zhu, Yang, Ai, Zhang (bib0090) 2016; 6
Ye, Zan, Tian, Peng, Zhang (bib0060) 2011; 47
Wang, Ding, Zhang, Pang, Hai, Zhan, Zhou, Song, Zhang, Chen (bib0155) 2017; 27
Huang, Wang, Wang, Rao, Cao, Pu, Ho, Lee (bib0215) 2019; 240
Jing, Ma, Ren, Xiong, Guo, Song, Liang, Wu (bib0130) 2019; 243
Huo, Dong, Li, Liu, Liu, Zhang, Dong (bib0180) 2019; 361
Dong, Zhao, Wu, Zhu, Wang (bib0210) 2019; 245
Di, Zhao, Lian, Ji, Xia, Xiong, Zhou, Cao, She, Liu (bib0125) 2019; 61
Yang, Shen, Dai, Zhang, Chen (bib0140) 2018; 430
Shi, Wang, Li, Bai, Xie, Zhou, Ye (bib0195) 2019; 243
Li, Shi, Zhao, Zhang (bib0080) 2014; 6
Pârvulescu, Grange, Delmon (bib0020) 1998; 46
Dong, Xiong, Yan, Wang, Sun, Zhang, Huang, Wu (bib0085) 2016; 344
Roldán, Boronat, Corma, Illas (bib0095) 2010; 114
Kim, Qi, Dahlberg, Li (bib0005) 2010; 327
Yu, Li, Zhang, Yang, Han, Dong, Ma, Huang (bib0170) 2019; 58
Guan, Xiao, Zhang, Fan, An, Cheng, Xie, Zhou, Ye, Xie (bib0050) 2013; 135
Lv, Yao, Zong, Zhu (bib0035) 2016; 6
Sun, Wang, Chi, Lin, Chen, Ling, Qiu, Xu, Song, Chen, Su (bib0065) 2018; 8
Li, Shang, Ai, Zhang (bib0045) 2015; 137
Wang, Hai, Ding, Chang, Xiang, Meng, Yang, Chen, Ye (bib0055) 2017; 29
Kreuzer, Patel (bib0010) 1971; 173
Li (10.1016/j.apcatb.2019.118585_bib0045) 2015; 137
Li (10.1016/j.apcatb.2019.118585_bib0080) 2014; 6
Brazdil (10.1016/j.apcatb.2019.118585_bib0185) 1980; 66
Sun (10.1016/j.apcatb.2019.118585_bib0065) 2018; 8
Kreuzer (10.1016/j.apcatb.2019.118585_bib0010) 1971; 173
Wan (10.1016/j.apcatb.2019.118585_bib0120) 2018; 30
Huo (10.1016/j.apcatb.2019.118585_bib0180) 2019; 361
Wang (10.1016/j.apcatb.2019.118585_bib0115) 2019; 29
Wang (10.1016/j.apcatb.2019.118585_bib0155) 2017; 27
Wang (10.1016/j.apcatb.2019.118585_bib0055) 2017; 29
Roldán (10.1016/j.apcatb.2019.118585_bib0095) 2010; 114
Gordon (10.1016/j.apcatb.2019.118585_bib0070) 2012; 134
Zhang (10.1016/j.apcatb.2019.118585_bib0135) 2010; 98
Dong (10.1016/j.apcatb.2019.118585_bib0085) 2016; 344
Ding (10.1016/j.apcatb.2019.118585_bib0025) 2016; 182
Shi (10.1016/j.apcatb.2019.118585_bib0195) 2019; 243
Li (10.1016/j.apcatb.2019.118585_bib0200) 2005; 401
Xu (10.1016/j.apcatb.2019.118585_bib0150) 2019; 364
Zhou (10.1016/j.apcatb.2019.118585_bib0105) 2015; 6
Ye (10.1016/j.apcatb.2019.118585_bib0060) 2011; 47
Long (10.1016/j.apcatb.2019.118585_bib0165) 2014; 10
Dong (10.1016/j.apcatb.2019.118585_bib0210) 2019; 245
Kim (10.1016/j.apcatb.2019.118585_bib0005) 2010; 327
Guan (10.1016/j.apcatb.2019.118585_bib0050) 2013; 135
Li (10.1016/j.apcatb.2019.118585_bib0090) 2016; 6
Yu (10.1016/j.apcatb.2019.118585_bib0170) 2019; 58
Wang (10.1016/j.apcatb.2019.118585_bib0145) 2017; 391
Shang (10.1016/j.apcatb.2019.118585_bib0030) 2019; 53
Lv (10.1016/j.apcatb.2019.118585_bib0035) 2016; 6
Hu (10.1016/j.apcatb.2019.118585_bib0190) 2019; 256
Di (10.1016/j.apcatb.2019.118585_bib0125) 2019; 61
Li (10.1016/j.apcatb.2019.118585_bib0220) 2019; 53
Li (10.1016/j.apcatb.2019.118585_bib0205) 2018; 52
Huang (10.1016/j.apcatb.2019.118585_bib0215) 2019; 240
Nakamura (10.1016/j.apcatb.2019.118585_bib0040) 2000; 161
Jing (10.1016/j.apcatb.2019.118585_bib0130) 2019; 243
Yang (10.1016/j.apcatb.2019.118585_bib0140) 2018; 430
Matthias (10.1016/j.apcatb.2019.118585_bib0100) 2006; 96
Yu (10.1016/j.apcatb.2019.118585_bib0175) 2018; 226
Pârvulescu (10.1016/j.apcatb.2019.118585_bib0020) 1998; 46
Cao (10.1016/j.apcatb.2019.118585_bib0110) 2018; 1
Liu (10.1016/j.apcatb.2019.118585_bib0015) 2010; 162
Liu (10.1016/j.apcatb.2019.118585_bib0075) 2016; 6
Jiang (10.1016/j.apcatb.2019.118585_bib0160) 2012; 134
References_xml – volume: 137
  start-page: 6393
  year: 2015
  end-page: 6399
  ident: bib0045
  article-title: Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets
  publication-title: J. Am. Chem. Soc.
– volume: 162
  start-page: 1006
  year: 2010
  end-page: 1011
  ident: bib0015
  article-title: Simultaneous removal of NO and SO
  publication-title: Chem. Eng. J.
– volume: 161
  start-page: 205
  year: 2000
  end-page: 212
  ident: bib0040
  article-title: Role of oxygen vacancy in the plasma-treated TiO
  publication-title: J. Mol. Catal. A-Chem.
– volume: 134
  start-page: 4473
  year: 2012
  end-page: 4476
  ident: bib0160
  article-title: Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 8659
  year: 2018
  end-page: 8665
  ident: bib0205
  article-title: Oxygen vacancies mediated complete visible light NO oxidation via side-on bridging superoxide radicals
  publication-title: Environ. Sci. Technol.
– volume: 344
  start-page: 401
  year: 2016
  end-page: 410
  ident: bib0085
  article-title: Facets and defects cooperatively promote visible light plasmonic photocatalysis with Bi nanowires@ BiOCl nanosheets
  publication-title: J. Catal.
– volume: 327
  start-page: 1624
  year: 2010
  end-page: 1627
  ident: bib0005
  article-title: Strontium-doped perovskites rival platinum catalysts for treating NO
  publication-title: Science
– volume: 391
  start-page: 194
  year: 2017
  end-page: 201
  ident: bib0145
  article-title: A plate-on-plate sandwiched Z-scheme heterojunction photocatalyst: BiOBr-Bi
  publication-title: Appl. Surf. Sci.
– volume: 53
  start-page: 6444
  year: 2019
  end-page: 6453
  ident: bib0030
  article-title: Oxygen vacancies promoted selective photocatalytic removal of NO with blue TiO
  publication-title: Environ. Sci. Technol.
– volume: 6
  start-page: 19347
  year: 2016
  ident: bib0035
  article-title: Fabrication of wide-range-visible photocatalyst Bi
  publication-title: Sci. Rep.
– volume: 364
  start-page: 691
  year: 2019
  end-page: 699
  ident: bib0150
  article-title: Oxygen vacancy boosted photocatalytic decomposition of ciprofloxacin over Bi
  publication-title: J. Hazard. Mater.
– volume: 243
  start-page: 322
  year: 2019
  end-page: 329
  ident: bib0195
  article-title: Change in photocatalytic NO removal mechanisms of ultrathin BiOBr/BiOI via NO
  publication-title: Appl. Catal. B-Environ.
– volume: 29
  year: 2019
  ident: bib0115
  article-title: Monolayer epitaxial heterostructures for selective visible‐light‐driven photocatalytic NO oxidation
  publication-title: Adv. Funct. Mater.
– volume: 182
  start-page: 316
  year: 2016
  end-page: 325
  ident: bib0025
  article-title: Self doping promoted photocatalytic removal of no under visible light with Bi
  publication-title: Appl. Catal. B-Environ.
– volume: 10
  start-page: 2791
  year: 2014
  end-page: 2795
  ident: bib0165
  article-title: Bi
  publication-title: Small
– volume: 58
  start-page: 3880
  year: 2019
  end-page: 3884
  ident: bib0170
  article-title: Three‐in‐one oxygen vacancies: whole visible‐spectrum absorption, efficient charge separation, and surface site activation for robust CO
  publication-title: Angew. Chem. Int. Ed.
– volume: 430
  start-page: 505
  year: 2018
  end-page: 514
  ident: bib0140
  article-title: Controllable synthesis of Bi
  publication-title: Appl. Surf. Sci.
– volume: 66
  start-page: 347
  year: 1980
  end-page: 367
  ident: bib0185
  article-title: Redox kinetics of bismuth molybdate ammoxidation catalysts
  publication-title: J. Catal.
– volume: 27
  year: 2017
  ident: bib0155
  article-title: In situ carbon homogeneous doping on ultrathin bismuth molybdate: a dual‐Purpose strategy for efficient molecular oxygen activation
  publication-title: Adv. Funct. Mater.
– volume: 96
  year: 2006
  ident: bib0100
  article-title: Influence of nitrogen doping on the defect formation and surface properties of TiO
  publication-title: Phys. Rev. Lett.
– volume: 47
  start-page: 6951
  year: 2011
  end-page: 6953
  ident: bib0060
  article-title: The {001} facets-dependent high photoactivity of BiOCl nanosheets
  publication-title: Chem. Commun.
– volume: 29
  year: 2017
  ident: bib0055
  article-title: Light‐switchable oxygen vacancies in ultrafine Bi
  publication-title: Adv. Mater.
– volume: 226
  start-page: 441
  year: 2018
  end-page: 450
  ident: bib0175
  article-title: Readily achieving concentration-tunable oxygen vacancies in Bi
  publication-title: Appl. Catal. B-Environ.
– volume: 173
  start-page: 45
  year: 1971
  end-page: 47
  ident: bib0010
  article-title: Nitric oxide air pollution: detection by optoacoustic spectroscopy
  publication-title: Science
– volume: 243
  start-page: 10
  year: 2019
  end-page: 18
  ident: bib0130
  article-title: Hierarchical Bi
  publication-title: Appl. Catal. B-Environ.
– volume: 6
  start-page: 14168
  year: 2014
  end-page: 14173
  ident: bib0080
  article-title: Sustainable molecular oxygen activation with oxygen vacancies on the {001} facets of BiOCl nanosheets under solar light
  publication-title: Nanoscale
– volume: 30
  year: 2018
  ident: bib0120
  article-title: Defect effects on TiO
  publication-title: Adv. Mater.
– volume: 61
  start-page: 54
  year: 2019
  end-page: 59
  ident: bib0125
  article-title: Atomically-thin Bi
  publication-title: Nano Energy
– volume: 256
  year: 2019
  ident: bib0190
  article-title: Dramatic promotion of visible-light photoreactivity of TiO
  publication-title: Appl. Catal. B-Environ.
– volume: 53
  start-page: 6964
  year: 2019
  end-page: 6971
  ident: bib0220
  article-title: An interfacial charging-decharging strategy to efficient and selective aerobic NO oxidation on oxygen vacancy
  publication-title: Environ. Sci. Technol.
– volume: 6
  start-page: 8276
  year: 2016
  end-page: 8285
  ident: bib0090
  article-title: Oxygen vacancy structure associated phtotcatalytic water oxidation of BiOCl
  publication-title: ACS Catal.
– volume: 1
  start-page: 704
  year: 2018
  end-page: 710
  ident: bib0110
  article-title: A photochromic composite with enhanced carrier separation for the photocatalytic activation of benzylic C-H bonds in toluene
  publication-title: Nat. Catal.
– volume: 245
  start-page: 459
  year: 2019
  end-page: 468
  ident: bib0210
  article-title: Photocatalysis removing of NO based on modified carbon nitride: the effect of celestite mineral particles
  publication-title: Appl. Catal. B-Environ.
– volume: 98
  start-page: 138
  year: 2010
  end-page: 146
  ident: bib0135
  article-title: Controllable synthesis of Bi
  publication-title: Appl. Catal. B-Environ.
– volume: 6
  start-page: 8340
  year: 2015
  ident: bib0105
  article-title: Monolayered Bi
  publication-title: Nat. Commun.
– volume: 361
  start-page: 129
  year: 2019
  end-page: 138
  ident: bib0180
  article-title: Synthesis of Bi
  publication-title: Chem. Eng. J.
– volume: 6
  start-page: 1097
  year: 2016
  end-page: 1108
  ident: bib0075
  article-title: Engineering coexposed {001} and {101} Facets in oxygen-deficient TiO
  publication-title: ACS Catal.
– volume: 135
  start-page: 10411
  year: 2013
  end-page: 10417
  ident: bib0050
  article-title: Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets
  publication-title: J. Am. Chem. Soc.
– volume: 114
  start-page: 6511
  year: 2010
  end-page: 6517
  ident: bib0095
  article-title: Theoretical confirmation of the enhanced facility to increase oxygen vacancy concentration in TiO
  publication-title: J. Phys. Chem. C
– volume: 46
  start-page: 233
  year: 1998
  end-page: 316
  ident: bib0020
  article-title: Catalytic removal of NO
  publication-title: Catal. Today
– volume: 240
  start-page: 122
  year: 2019
  end-page: 131
  ident: bib0215
  article-title: Protonated g-C
  publication-title: Appl. Catal. B-Environ
– volume: 8
  start-page: 7585
  year: 2018
  end-page: 7592
  ident: bib0065
  article-title: Engineering the electronic structure of MoS
  publication-title: ACS Catal.
– volume: 134
  start-page: 6751
  year: 2012
  end-page: 6761
  ident: bib0070
  article-title: Nonaqueous synthesis of TiO
  publication-title: J. Am. Chem. Soc.
– volume: 401
  start-page: 579
  year: 2005
  end-page: 584
  ident: bib0200
  article-title: Visible-light-driven photocatalysis on fluorine-doped TiO
  publication-title: Chem. Phys. Lett.
– volume: 361
  start-page: 129
  year: 2019
  ident: 10.1016/j.apcatb.2019.118585_bib0180
  article-title: Synthesis of Bi2WO6 with gradient oxygen vacancies for highly photocatalytic NO oxidation and mechanism study
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.12.071
– volume: 52
  start-page: 8659
  year: 2018
  ident: 10.1016/j.apcatb.2019.118585_bib0205
  article-title: Oxygen vacancies mediated complete visible light NO oxidation via side-on bridging superoxide radicals
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b01849
– volume: 98
  start-page: 138
  year: 2010
  ident: 10.1016/j.apcatb.2019.118585_bib0135
  article-title: Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2010.05.022
– volume: 161
  start-page: 205
  year: 2000
  ident: 10.1016/j.apcatb.2019.118585_bib0040
  article-title: Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal
  publication-title: J. Mol. Catal. A-Chem.
  doi: 10.1016/S1381-1169(00)00362-9
– volume: 114
  start-page: 6511
  year: 2010
  ident: 10.1016/j.apcatb.2019.118585_bib0095
  article-title: Theoretical confirmation of the enhanced facility to increase oxygen vacancy concentration in TiO2 by Iron doping
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp911851h
– volume: 430
  start-page: 505
  year: 2018
  ident: 10.1016/j.apcatb.2019.118585_bib0140
  article-title: Controllable synthesis of Bi2MoO6 nanosheets and their facet-dependent visible-light-driven photocatalytic activity
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.08.072
– volume: 27
  year: 2017
  ident: 10.1016/j.apcatb.2019.118585_bib0155
  article-title: In situ carbon homogeneous doping on ultrathin bismuth molybdate: a dual‐Purpose strategy for efficient molecular oxygen activation
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201703923
– volume: 29
  year: 2019
  ident: 10.1016/j.apcatb.2019.118585_bib0115
  article-title: Monolayer epitaxial heterostructures for selective visible‐light‐driven photocatalytic NO oxidation
  publication-title: Adv. Funct. Mater.
– volume: 137
  start-page: 6393
  year: 2015
  ident: 10.1016/j.apcatb.2019.118585_bib0045
  article-title: Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b03105
– volume: 47
  start-page: 6951
  year: 2011
  ident: 10.1016/j.apcatb.2019.118585_bib0060
  article-title: The {001} facets-dependent high photoactivity of BiOCl nanosheets
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc11015b
– volume: 53
  start-page: 6444
  year: 2019
  ident: 10.1016/j.apcatb.2019.118585_bib0030
  article-title: Oxygen vacancies promoted selective photocatalytic removal of NO with blue TiO2 via simultaneous molecular oxygen activation and photogenerated holes annihilation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b07322
– volume: 134
  start-page: 4473
  year: 2012
  ident: 10.1016/j.apcatb.2019.118585_bib0160
  article-title: Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja210484t
– volume: 66
  start-page: 347
  year: 1980
  ident: 10.1016/j.apcatb.2019.118585_bib0185
  article-title: Redox kinetics of bismuth molybdate ammoxidation catalysts
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(80)90039-1
– volume: 173
  start-page: 45
  year: 1971
  ident: 10.1016/j.apcatb.2019.118585_bib0010
  article-title: Nitric oxide air pollution: detection by optoacoustic spectroscopy
  publication-title: Science
  doi: 10.1126/science.173.3991.45
– volume: 6
  start-page: 8276
  year: 2016
  ident: 10.1016/j.apcatb.2019.118585_bib0090
  article-title: Oxygen vacancy structure associated phtotcatalytic water oxidation of BiOCl
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02613
– volume: 6
  start-page: 19347
  year: 2016
  ident: 10.1016/j.apcatb.2019.118585_bib0035
  article-title: Fabrication of wide-range-visible photocatalyst Bi2WO6-x nanoplates via surface oxygen vacancies
  publication-title: Sci. Rep.
  doi: 10.1038/srep19347
– volume: 30
  year: 2018
  ident: 10.1016/j.apcatb.2019.118585_bib0120
  article-title: Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705369
– volume: 46
  start-page: 233
  year: 1998
  ident: 10.1016/j.apcatb.2019.118585_bib0020
  article-title: Catalytic removal of NO
  publication-title: Catal. Today
  doi: 10.1016/S0920-5861(98)00399-X
– volume: 243
  start-page: 322
  year: 2019
  ident: 10.1016/j.apcatb.2019.118585_bib0195
  article-title: Change in photocatalytic NO removal mechanisms of ultrathin BiOBr/BiOI via NO3− adsorption
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2018.10.037
– volume: 6
  start-page: 1097
  year: 2016
  ident: 10.1016/j.apcatb.2019.118585_bib0075
  article-title: Engineering coexposed {001} and {101} Facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 photoreduction under visible light
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b02098
– volume: 344
  start-page: 401
  year: 2016
  ident: 10.1016/j.apcatb.2019.118585_bib0085
  article-title: Facets and defects cooperatively promote visible light plasmonic photocatalysis with Bi nanowires@ BiOCl nanosheets
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2016.10.005
– volume: 96
  year: 2006
  ident: 10.1016/j.apcatb.2019.118585_bib0100
  article-title: Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase
  publication-title: Phys. Rev. Lett.
– volume: 226
  start-page: 441
  year: 2018
  ident: 10.1016/j.apcatb.2019.118585_bib0175
  article-title: Readily achieving concentration-tunable oxygen vacancies in Bi2O2CO3: triple-functional role for efficient visible-light photocatalytic redox performance
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2017.12.074
– volume: 61
  start-page: 54
  year: 2019
  ident: 10.1016/j.apcatb.2019.118585_bib0125
  article-title: Atomically-thin Bi2MoO6 nanosheets with vacancy pairs for improved photocatalytic CO2 reduction
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.029
– volume: 256
  year: 2019
  ident: 10.1016/j.apcatb.2019.118585_bib0190
  article-title: Dramatic promotion of visible-light photoreactivity of TiO2 hollow microspheres towards NO oxidation by introduction of oxygen vacancy
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2019.117860
– volume: 29
  year: 2017
  ident: 10.1016/j.apcatb.2019.118585_bib0055
  article-title: Light‐switchable oxygen vacancies in ultrafine Bi5O7Br nanotubes for boosting solar‐driven nitrogenfixation in pure water
  publication-title: Adv. Mater.
– volume: 182
  start-page: 316
  year: 2016
  ident: 10.1016/j.apcatb.2019.118585_bib0025
  article-title: Self doping promoted photocatalytic removal of no under visible light with Bi2MoO6: indispensable role of superoxide ions
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2015.09.046
– volume: 1
  start-page: 704
  year: 2018
  ident: 10.1016/j.apcatb.2019.118585_bib0110
  article-title: A photochromic composite with enhanced carrier separation for the photocatalytic activation of benzylic C-H bonds in toluene
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0128-z
– volume: 6
  start-page: 14168
  year: 2014
  ident: 10.1016/j.apcatb.2019.118585_bib0080
  article-title: Sustainable molecular oxygen activation with oxygen vacancies on the {001} facets of BiOCl nanosheets under solar light
  publication-title: Nanoscale
  doi: 10.1039/C4NR04810E
– volume: 53
  start-page: 6964
  year: 2019
  ident: 10.1016/j.apcatb.2019.118585_bib0220
  article-title: An interfacial charging-decharging strategy to efficient and selective aerobic NO oxidation on oxygen vacancy
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b01287
– volume: 162
  start-page: 1006
  year: 2010
  ident: 10.1016/j.apcatb.2019.118585_bib0015
  article-title: Simultaneous removal of NO and SO2 from coal-fired flue gas by UV/H2O2 advanced oxidation process
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.07.009
– volume: 8
  start-page: 7585
  year: 2018
  ident: 10.1016/j.apcatb.2019.118585_bib0065
  article-title: Engineering the electronic structure of MoS2 nanorods by N and Mn dopants for ultra-efficient hydrogen production
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b00783
– volume: 6
  start-page: 8340
  year: 2015
  ident: 10.1016/j.apcatb.2019.118585_bib0105
  article-title: Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9340
– volume: 10
  start-page: 2791
  year: 2014
  ident: 10.1016/j.apcatb.2019.118585_bib0165
  article-title: Bi2MoO6 nanobelts for crystal facet‐enhanced photocatalysis
  publication-title: Small
  doi: 10.1002/smll.201302950
– volume: 391
  start-page: 194
  year: 2017
  ident: 10.1016/j.apcatb.2019.118585_bib0145
  article-title: A plate-on-plate sandwiched Z-scheme heterojunction photocatalyst: BiOBr-Bi2MoO6 with enhanced photocatalytic performance
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.07.070
– volume: 327
  start-page: 1624
  year: 2010
  ident: 10.1016/j.apcatb.2019.118585_bib0005
  article-title: Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust
  publication-title: Science
  doi: 10.1126/science.1184087
– volume: 401
  start-page: 579
  year: 2005
  ident: 10.1016/j.apcatb.2019.118585_bib0200
  article-title: Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2004.11.126
– volume: 364
  start-page: 691
  year: 2019
  ident: 10.1016/j.apcatb.2019.118585_bib0150
  article-title: Oxygen vacancy boosted photocatalytic decomposition of ciprofloxacin over Bi2MoO6: oxygen vacancy engineering, biotoxicity evaluation and mechanism study
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2018.10.063
– volume: 58
  start-page: 3880
  year: 2019
  ident: 10.1016/j.apcatb.2019.118585_bib0170
  article-title: Three‐in‐one oxygen vacancies: whole visible‐spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoreduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201813967
– volume: 134
  start-page: 6751
  year: 2012
  ident: 10.1016/j.apcatb.2019.118585_bib0070
  article-title: Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja300823a
– volume: 245
  start-page: 459
  year: 2019
  ident: 10.1016/j.apcatb.2019.118585_bib0210
  article-title: Photocatalysis removing of NO based on modified carbon nitride: the effect of celestite mineral particles
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2019.01.013
– volume: 243
  start-page: 10
  year: 2019
  ident: 10.1016/j.apcatb.2019.118585_bib0130
  article-title: Hierarchical Bi2MoO6 spheres in situ assembled by monolayer nanosheets toward photocatalytic selective oxidation of benzyl alcohol
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2018.10.027
– volume: 135
  start-page: 10411
  year: 2013
  ident: 10.1016/j.apcatb.2019.118585_bib0050
  article-title: Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja402956f
– volume: 240
  start-page: 122
  year: 2019
  ident: 10.1016/j.apcatb.2019.118585_bib0215
  article-title: Protonated g-C3N4/Ti3+ self-doped TiO2 nanocomposite films: room-temperature preparation, hydrophilicity, and application for photocatalytic NOx removal
  publication-title: Appl. Catal. B-Environ
  doi: 10.1016/j.apcatb.2018.08.078
SSID ssj0002328
Score 2.6347592
Snippet Benefiting from the Br− selectively induced the OVs on {001} facets of Bi2MoO6, an extended light-absorption until near-infrared region and enhanced the...
Surface oxygen vacancies (OVs) are believed as active sites for photocatalytic NO removal. The construction and stabilization of OVs on materials, especially...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118585
SubjectTerms Bi2MoO6
Bromine
Electromagnetic absorption
Facet
Ions
Near infrared radiation
NO removal
Oxidation
Oxygen
Oxygen vacancy
Photocatalysis
Selectivity
Stabilization
Vacancies
Title Insight into the effect of bromine on facet-dependent surface oxygen vacancies construction and stabilization of Bi2MoO6 for efficient photocatalytic NO removal
URI https://dx.doi.org/10.1016/j.apcatb.2019.118585
https://www.proquest.com/docview/2362965348
Volume 265
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQPUAPqN0WFUrRHHp1Nxs7TnKkK9DSiuVAkbhZfiQiVYlXm4Dg0t_CT2XsJCxFQki9Rh7nMZNvvknmQchXxXQhcqaoKoWmPDEpVZwxyjjjiin0OaGV0slczM75j4vkYo1Mh1oYn1bZY3-H6QGt-yPj_mmOF1U1PovyWDCWog0xDLRCfS_nqbfyb39XaR7IGAIa42LqVw_lcyHHSy2MarVP8MoRO_wvspfc0zOgDt7n6B3Z6mkjHHRX9p6sFfWIbEyHaW0j8vZJY8ER2T5c1a-hWP8CNx_I_XHd-HAcqrp1gOQPuoQOcCXopbvCLcDVUCpTtHQYkNtCc730h8Dd3qHBwY0yYahvA8atOtCCqi0g2fTptl1xp9_1exWfuFMBSI79uapQgAmLS9e68OnoDu8I5qewLK4cWv1Hcn50-Gs6o_2QBmoY4y1N0Z2lxtpIiclEYYyrJpH2E62zAnVibGwjk2uV2ayMTIzwymySmxwlEhtHImLbZL12dfGJQJwZzQUvs4lCXqPzTJjICoEBUIq4lJY7hA26kabvYO4HafyRQ6rab9lpVHqNyk6jO4Q-Si26Dh6vrE8Htct_LFGik3lFcm-wEtkjQSNjZAi5SBjPdv97489kM_Zhvm8am-yRddRr8QW5UKv3g7HvkzcHxz9n8wcOzQrO
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbQcqA9oHZbVFrazqFXa7Ox4yRHugLtArscChI3y49ETVXi1SYg-Df9qR0nDrSVEFKvkcd5zOSbb5J5EPJFMV2InCmqSqEpT0xKFWeMMs64Ygp9TtdKabkS80t-cpVcbZHZUAvj0yoD9veY3qF1ODIJT3OyrqrJtyiPBWMp2hDDQMvX92777lTJiGwfLk7nqwdARtLQATKup15gqKDr0rzU2qhW-xyvHOHD_yV7ykP9g9WdAzp-RXYDc4TD_uJek62iHpOd2TCwbUxe_tFbcEz2jh5L2FAsvMPNG_JrUTc-Ioeqbh0g_4M-pwNcCXrjrnELcDWUyhQtHWbkttDcbPwhcHf3aHNwq0w317cB4x6b0IKqLSDf9Bm3fX2n3_VrFS_duQDkx_5cVVeDCevvrnXd16N7vCNYncOmuHZo-G_J5fHRxWxOw5wGahjjLU3Ro6XG2kiJ6VRhmKumkfZDrbMC1WJsbCOTa5XZrIxMjAjLbJKbHCUSG0ciYntkVLu6eEcgzozmgpfZVCG10XkmTGSFwBgoRWhKy33CBt1IE5qY-1kaP-WQrfZD9hqVXqOy1-g-oQ9S676JxzPr00Ht8i9jlOhnnpE8GKxEBjBoZIwkIRcJ49n7_974M9mZXyzP5NlidfqBvIh91O97yCYHZIQ6Lj4iNWr1p2D6vwEjcA1_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insight+into+the+effect+of+bromine+on+facet-dependent+surface+oxygen+vacancies+construction+and+stabilization+of+Bi2MoO6+for+efficient+photocatalytic+NO+removal&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Wang%2C+Shengyao&rft.au=Ding%2C+Xing&rft.au=Yang%2C+Nan&rft.au=Zhan%2C+Guangming&rft.date=2020-05-15&rft.pub=Elsevier+BV&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=265&rft.spage=1&rft_id=info:doi/10.1016%2Fj.apcatb.2019.118585&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon