Heat storage performance analysis of ZMS-Porous media/CaCl2/MgSO4 composite thermochemical heat storage materials
A new composite thermochemical heat storage (TcHS) material was proposed herein with good heat storage performance and desirable stability, which was prepared by using solid-state cold pressing with a zeolite molecular sieve (ZMS) and two salts (CaCl2 and MgSO4). First, the optimized mass content (C...
Saved in:
Published in | Solar energy materials and solar cells Vol. 230; p. 111246 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.09.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A new composite thermochemical heat storage (TcHS) material was proposed herein with good heat storage performance and desirable stability, which was prepared by using solid-state cold pressing with a zeolite molecular sieve (ZMS) and two salts (CaCl2 and MgSO4). First, the optimized mass content (CaCl2:MgSO4 = 6:4) denoted Smix was obtained, which represents an equilibrium between the adsorption capacity and deliquescence. Then, two types of ZMS porous media: 13X and NaY were added to Smix to further prevent deliquescence and improve stability, respectively. An orthogonal experiment with four factors (mass fraction, pressure, temperature, and humidity) and three levels was used to test the optimal preparation conditions, and the optimal configurations were obtained for Xopt (13X-ZMS: CaCl2: MgSO4 = 10: 54: 36) and Yopt (NaY-ZMS: CaCl2: MgSO4 = 20: 48: 32). The optimized samples were measured by SEM, XRD and thermal conductivity tests, and the adsorption capacities for Smix, Xopt, and Yopt were found to follow the order of Xopt (0.449 g/g) > Smix (0.374 g/g) > Yopt (0.335 g/g). The accumulated void formation for the porous media can promote heat and mass transfer and can significantly improve the adsorption capacity and avoid deliquescence. Differential scanning calorimetry (DSC) results showed that the heat storage density (HSD) for Xopt (1414.49 J/g) is higher than that for Yopt (1097.02 J/g). Finally, 20 cycles showed that Xopt has good cycle stability based on the normalized ad/desorption mass (>1) and normalized desorption heat (>0.8). The results showed that Xopt shows application potential as a TcHS composite material in medium- and low-temperature thermochemical adsorption heat storage systems.
•A new composite Thermochemical heat storage (TcHS) material has been synthesized by solid-state cold pressing using zeolite molecular sieve (ZMS) and two salts (CaCl2 and MgSO4).•The adsorption capacity of Smix (CaCl2:MgSO4 = 6:4), Xopt (13X-ZMS:CaCl2:MgSO4 = 10:54:36) and Yopt (NaY-ZMS:CaCl2:MgSO4 = 20:48:32) are 0.374, 0.449 and 0.335 g/g, respectively, both the Xopt and Yopt were avoided the deliquesce of the Smix.•The heat storage density of Smix, Xopt and Yopt were determined to be 1886, 1414.5 and 1097 J/g, respectively.•The Xopt has the best cycle stability in the 20 cycles from the normalized ad/desorption mass (>1) and the normalized desorption heat (>0.8) than the Yopt and Smix. |
---|---|
AbstractList | A new composite thermochemical heat storage (TcHS) material was proposed herein with good heat storage performance and desirable stability, which was prepared by using solid-state cold pressing with a zeolite molecular sieve (ZMS) and two salts (CaCl2 and MgSO4). First, the optimized mass content (CaCl2:MgSO4 = 6:4) denoted Smix was obtained, which represents an equilibrium between the adsorption capacity and deliquescence. Then, two types of ZMS porous media: 13X and NaY were added to Smix to further prevent deliquescence and improve stability, respectively. An orthogonal experiment with four factors (mass fraction, pressure, temperature, and humidity) and three levels was used to test the optimal preparation conditions, and the optimal configurations were obtained for Xopt (13X-ZMS: CaCl2: MgSO4 = 10: 54: 36) and Yopt (NaY-ZMS: CaCl2: MgSO4 = 20: 48: 32). The optimized samples were measured by SEM, XRD and thermal conductivity tests, and the adsorption capacities for Smix, Xopt, and Yopt were found to follow the order of Xopt (0.449 g/g) > Smix (0.374 g/g) > Yopt (0.335 g/g). The accumulated void formation for the porous media can promote heat and mass transfer and can significantly improve the adsorption capacity and avoid deliquescence. Differential scanning calorimetry (DSC) results showed that the heat storage density (HSD) for Xopt (1414.49 J/g) is higher than that for Yopt (1097.02 J/g). Finally, 20 cycles showed that Xopt has good cycle stability based on the normalized ad/desorption mass (>1) and normalized desorption heat (>0.8). The results showed that Xopt shows application potential as a TcHS composite material in medium- and low-temperature thermochemical adsorption heat storage systems.
•A new composite Thermochemical heat storage (TcHS) material has been synthesized by solid-state cold pressing using zeolite molecular sieve (ZMS) and two salts (CaCl2 and MgSO4).•The adsorption capacity of Smix (CaCl2:MgSO4 = 6:4), Xopt (13X-ZMS:CaCl2:MgSO4 = 10:54:36) and Yopt (NaY-ZMS:CaCl2:MgSO4 = 20:48:32) are 0.374, 0.449 and 0.335 g/g, respectively, both the Xopt and Yopt were avoided the deliquesce of the Smix.•The heat storage density of Smix, Xopt and Yopt were determined to be 1886, 1414.5 and 1097 J/g, respectively.•The Xopt has the best cycle stability in the 20 cycles from the normalized ad/desorption mass (>1) and the normalized desorption heat (>0.8) than the Yopt and Smix. A new composite thermochemical heat storage (TcHS) material was proposed herein with good heat storage performance and desirable stability, which was prepared by using solid-state cold pressing with a zeolite molecular sieve (ZMS) and two salts (CaCl2 and MgSO4). First, the optimized mass content (CaCl2:MgSO4 = 6:4) denoted Smix was obtained, which represents an equilibrium between the adsorption capacity and deliquescence. Then, two types of ZMS porous media: 13X and NaY were added to Smix to further prevent deliquescence and improve stability, respectively. An orthogonal experiment with four factors (mass fraction, pressure, temperature, and humidity) and three levels was used to test the optimal preparation conditions, and the optimal configurations were obtained for Xopt (13X-ZMS: CaCl2: MgSO4 = 10: 54: 36) and Yopt (NaY-ZMS: CaCl2: MgSO4 = 20: 48: 32). The optimized samples were measured by SEM, XRD and thermal conductivity tests, and the adsorption capacities for Smix, Xopt, and Yopt were found to follow the order of Xopt (0.449 g/g) > Smix (0.374 g/g) > Yopt (0.335 g/g). The accumulated void formation for the porous media can promote heat and mass transfer and can significantly improve the adsorption capacity and avoid deliquescence. Differential scanning calorimetry (DSC) results showed that the heat storage density (HSD) for Xopt (1414.49 J/g) is higher than that for Yopt (1097.02 J/g). Finally, 20 cycles showed that Xopt has good cycle stability based on the normalized ad/desorption mass (>1) and normalized desorption heat (>0.8). The results showed that Xopt shows application potential as a TcHS composite material in medium- and low-temperature thermochemical adsorption heat storage systems. |
ArticleNumber | 111246 |
Author | Feifei, Wang Yanling, Wang Chuanxiao, Cheng Xudong, Lei Qi, Zhang Yeqiang, Zhang Xueling, Zhang Tingxiang, Jin |
Author_xml | – sequence: 1 givenname: Zhang surname: Xueling fullname: Xueling, Zhang – sequence: 2 givenname: Wang surname: Feifei fullname: Feifei, Wang – sequence: 3 givenname: Zhang surname: Qi fullname: Qi, Zhang email: 1990922zhangqi@zzuli.edu.cn – sequence: 4 givenname: Lei surname: Xudong fullname: Xudong, Lei – sequence: 5 givenname: Wang surname: Yanling fullname: Yanling, Wang – sequence: 6 givenname: Zhang surname: Yeqiang fullname: Yeqiang, Zhang – sequence: 7 givenname: Cheng surname: Chuanxiao fullname: Chuanxiao, Cheng – sequence: 8 givenname: Jin surname: Tingxiang fullname: Tingxiang, Jin email: txjin@126.com |
BookMark | eNqFkE1rGzEURUVxoI6Tf5CFoOux9WXNTBeFYto6kJBAkk024o3myZaZGTmSHMi_74TpomTRru7mnst755zMhjAgIVecLTnjenVYptD1kJeCCb7knAulP5E5r8q6kLKuZmTOalEWTKjqMzlP6cAYE1qqOXnZImSacoiwQ3rE6ELsYbBIYYDuLflEg6PPtw_FfYjhlGiPrYfVBjadWN3uHu4UtaE_huQz0rzH2Ae7x95b6Oj-7-nxPIweunRBztwYePknF-Tp54_Hzba4uft1vfl-U1gpVS5KxcpG11LzFrWoaqa5akrdWHAaGu5Uy11Ta9koXLuqdayRVQutsFpCrZSUC_Jl2j3G8HLClM0hnOL4VDJiXfG14lJWY0tNLRtDShGdOUbfQ3wznJl3ueZgJrnmXa6Z5I7Y1w-Y9RmyD0OO4Lv_wd8mGMf3Xz1Gk6zH0XnrI9ps2uD_PfAbeZma6Q |
CitedBy_id | crossref_primary_10_1016_j_est_2022_106158 crossref_primary_10_1016_j_est_2024_113589 crossref_primary_10_1016_j_enbuild_2024_114421 crossref_primary_10_3390_pr13010008 crossref_primary_10_1016_j_micromeso_2023_112918 crossref_primary_10_1039_D3RA04859D crossref_primary_10_1016_j_solmat_2022_111696 crossref_primary_10_1016_j_energy_2022_124966 crossref_primary_10_1016_j_applthermaleng_2025_125482 crossref_primary_10_3390_ma18010070 crossref_primary_10_3390_en16062875 crossref_primary_10_1016_j_renene_2025_122831 crossref_primary_10_1016_j_energy_2024_132326 crossref_primary_10_1016_j_est_2024_111511 crossref_primary_10_1016_j_clce_2022_100006 crossref_primary_10_3390_en16124668 crossref_primary_10_1016_j_rser_2021_111846 crossref_primary_10_1016_j_energy_2023_127986 crossref_primary_10_1016_j_est_2024_114540 crossref_primary_10_1080_15567036_2023_2244457 crossref_primary_10_1016_j_est_2023_108862 crossref_primary_10_1016_j_rser_2021_111808 crossref_primary_10_1016_j_egyr_2022_09_051 crossref_primary_10_1016_j_ecmx_2022_100225 crossref_primary_10_1016_j_carbpol_2022_119932 |
Cites_doi | 10.1007/s00231-019-02793-w 10.1016/j.solener.2017.08.034 10.1016/j.egypro.2018.11.051 10.1016/j.est.2019.101026 10.1016/j.micromeso.2020.110109 10.1016/j.solmat.2020.110601 10.1016/j.solmat.2017.07.037 10.1016/j.cej.2018.11.171 10.1016/j.renene.2008.06.015 10.1016/j.apt.2017.11.020 10.1016/j.solener.2016.07.016 10.1016/j.energy.2018.10.200 10.1016/j.energy.2019.07.076 10.1016/j.solmat.2015.10.029 10.1063/5.0026131 10.1016/j.jmps.2020.104016 10.1016/j.egypro.2014.02.046 10.1063/1.5009691 10.1016/j.solmat.2020.110509 10.1016/j.tca.2013.03.020 10.1016/j.enconman.2020.112659 10.1016/j.rser.2012.10.025 10.1016/j.enconman.2017.03.080 10.1016/j.applthermaleng.2018.09.052 10.1007/s10973-017-6861-8 10.1016/j.ijheatmasstransfer.2013.08.052 10.1016/j.enconman.2017.03.066 10.1016/j.apenergy.2019.01.104 10.1021/acs.chemrev.8b00315 10.1016/j.solmat.2019.01.001 10.1016/j.solmat.2020.110725 10.1016/j.solener.2019.03.076 10.1016/j.applthermaleng.2014.09.047 10.1016/j.egypro.2015.07.688 10.1016/j.renene.2016.09.059 10.1002/er.4910 10.1016/j.apenergy.2019.113322 10.1016/j.egypro.2012.11.035 10.1016/j.solmat.2017.05.036 10.1016/j.psep.2016.09.018 10.1002/er.5556 10.1016/j.ceramint.2019.06.126 10.1016/j.applthermaleng.2017.10.031 10.1016/j.rser.2016.08.019 10.1002/htj.21677 |
ContentType | Journal Article |
Copyright | 2021 Copyright Elsevier BV Sep 15, 2021 |
Copyright_xml | – notice: 2021 – notice: Copyright Elsevier BV Sep 15, 2021 |
DBID | AAYXX CITATION 7SP 7ST 7TB 7U5 8FD C1K FR3 L7M SOI |
DOI | 10.1016/j.solmat.2021.111246 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3398 |
ExternalDocumentID | 10_1016_j_solmat_2021_111246 S0927024821002907 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 4.4 457 4G. 5VS 6OB 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABMAC ABNUV ABXRA ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 LY7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSG SSK SSM SSR SSZ T5K TWZ WH7 XPP ZMT ~02 ~G- 1~5 7-5 AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SCB SET SEW SMS SSH WUQ 7SP 7ST 7TB 7U5 8FD C1K EFKBS FR3 L7M SOI |
ID | FETCH-LOGICAL-c334t-7407b69361de62890614b76bcaf6ab1f4d1fb963b4e5f8df0b38dad2c63a94433 |
IEDL.DBID | .~1 |
ISSN | 0927-0248 |
IngestDate | Wed Aug 13 05:08:19 EDT 2025 Thu Apr 24 23:03:49 EDT 2025 Tue Jul 01 01:20:09 EDT 2025 Fri Feb 23 02:38:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Porous media Adsorption capacity Heat storage density Thermochemical heat storage Stability |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-7407b69361de62890614b76bcaf6ab1f4d1fb963b4e5f8df0b38dad2c63a94433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2581541338 |
PQPubID | 2045398 |
ParticipantIDs | proquest_journals_2581541338 crossref_primary_10_1016_j_solmat_2021_111246 crossref_citationtrail_10_1016_j_solmat_2021_111246 elsevier_sciencedirect_doi_10_1016_j_solmat_2021_111246 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-15 |
PublicationDateYYYYMMDD | 2021-09-15 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Solar energy materials and solar cells |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Sogutoglu, Donkers, Fischer, Huinink, Adan (bib13) 2018; 215 Cabeza, Sole, Barreneche (bib15) 2016; 110 Tatsidjodoung, Pierres, Luo (bib27) 2013; 18 D'Ans, Courbon, Permyakova, Nouar, Simonnet-Jegat, Bourdreux, Malee, Serre, Frere, Steunou (bib23) 2019; 25 Krönauer, Lävemann, Brückner, Hauer (bib29) 2015; 73 Um, Zhang, Katsoulakis, Plechac, Tartakovsky (bib18) 2018; 123 Ma, Bao, Roskilly (bib9) 2020; 209 Fujii, Horie, Nakaibayashi, Kanematsu, Kikuchi, Nakagaki (bib12) 2019; 238 Zhou, Zhang (bib26) 2019; 184 Casey, Aydin, Elvins, Riffat (bib19) 2017; 142 Zhang, Wang, Lei, Wang, Zhang, Wu, Jin, Wang (bib10) 2020; 10 Sleiti, Al-Ammari, Al-Khawaja (bib4) 2020; 44 Kerskes, Mette, Bertsch, Asenbeck, Drück (bib28) 2012; 30 Vigneshwaran, Sodhi, Muthukumar, Guha, Senthilmurugan (bib5) 2019; 251 Nekokar, Pourabdoli, Hamidi (bib41) 2018; 29 Ramin Farzadi (bib11) 2020; 56 El Tabbal, Dangla, Vandamme, Bottoni, Granet (bib17) 2020; 142 Piperopoulos, Mastronardo, Fazio, Lanza, Milone (bib25) 2018; 155 Brancato, Gordeeva, Grekova, Alessio Sapienza, Vasta, Frazzica, Aristov (bib24) 2019; 193 Jabbari-Hichri, Bennici, Auroux (bib49) 2017; 172 Mosa, Malley-Ernewein (bib14) 2020; 49 Li, Wang (bib35) 2020; 210 Zhao, Wang, Wang, Ma, Jiang (bib16) 2013; 67 Noiroj, Intarapong, Luengnaruemitchai A (bib45) 2009; 34 Chao, Zibo, Yunyun, Yunxiu, Feng, Xing (bib48) 2018; 129 Ullah, Ameen, Hasrat (bib8) 2019; 43 Carrillo, González-Aguilar, Romero, Coronado (bib3) 2019; 119 Posern, Osburg (bib42) 2018; 131 Molenda, Stengler, Linder, Wörner (bib37) 2013; 560 Zhao, Wang, Li, Wu, Zhang, Shi (bib46) 2020; 299 Ma, Zhao, Song, Zhao, Yu, Xiao, Wang, Li, Cao, Ning, Gao (bib47) 2019; 359 Rehman, Khan, Maosheng (bib36) 2019; 26 Ousaleh, Sair, Mansouri, Abboud, Bouari (bib7) 2020; 215 Rehman, Maosheng, Hayat (bib20) 2020; 44 Xu, Wang, Wang, Zhu (bib21) 2019; 167 Courbon, D'Ans, Permyakova, Skrylnyk, Steunou, Marc Degrez (bib22) 2017; 157 Kim, Kim, Kim, Park, Kwon, Yu (bib32) 2019; 45 Mahon, Claudio, Eames (bib30) 2017; 150 Zhou, Zhang, Zheng (bib6) 2020; 217 Zheng, Luo, Zhang, Long (bib34) 2016 Sutton, Jewell, Searle, Elvins (bib40) 2018; 145 Kenisarin, Mahkamov (bib2) 2016; 145 Schmidt, Watts, Amanda, Wolfgang, Rammelberg, N'Tsoukpoe (bib38) 2015; 75 Rammelberga, Osterland, Priehs, Opel, Ruck (bib39) 2016; 136 Lefebvre, Tezel (bib1) 2017; 67 Xu, Li, Chao, Yan, Wang (bib43) 2019; 185 Steiger, Niermann, Bonatz, Posern, Steiger (bib31) 2014; 48 Malakootian, Pourshaban–Mazandarani, Hossaini, Ehrampoush (bib44) 2016; 104 Gutierrez, Ushak, Mamani, Vargas, Barreneche, Cabeza, Grágeda (bib33) 2017; 170 D'Ans (10.1016/j.solmat.2021.111246_bib23) 2019; 25 Cabeza (10.1016/j.solmat.2021.111246_bib15) 2016; 110 Zhang (10.1016/j.solmat.2021.111246_bib10) 2020; 10 Kim (10.1016/j.solmat.2021.111246_bib32) 2019; 45 Noiroj (10.1016/j.solmat.2021.111246_bib45) 2009; 34 Chao (10.1016/j.solmat.2021.111246_bib48) 2018; 129 Ullah (10.1016/j.solmat.2021.111246_bib8) 2019; 43 Ousaleh (10.1016/j.solmat.2021.111246_bib7) 2020; 215 Tatsidjodoung (10.1016/j.solmat.2021.111246_bib27) 2013; 18 Ma (10.1016/j.solmat.2021.111246_bib9) 2020; 209 Zhao (10.1016/j.solmat.2021.111246_bib46) 2020; 299 Molenda (10.1016/j.solmat.2021.111246_bib37) 2013; 560 Xu (10.1016/j.solmat.2021.111246_bib21) 2019; 167 El Tabbal (10.1016/j.solmat.2021.111246_bib17) 2020; 142 Vigneshwaran (10.1016/j.solmat.2021.111246_bib5) 2019; 251 Courbon (10.1016/j.solmat.2021.111246_bib22) 2017; 157 Carrillo (10.1016/j.solmat.2021.111246_bib3) 2019; 119 Posern (10.1016/j.solmat.2021.111246_bib42) 2018; 131 Zhou (10.1016/j.solmat.2021.111246_bib6) 2020; 217 Jabbari-Hichri (10.1016/j.solmat.2021.111246_bib49) 2017; 172 Malakootian (10.1016/j.solmat.2021.111246_bib44) 2016; 104 Rammelberga (10.1016/j.solmat.2021.111246_bib39) 2016; 136 Sutton (10.1016/j.solmat.2021.111246_bib40) 2018; 145 Xu (10.1016/j.solmat.2021.111246_bib43) 2019; 185 Kenisarin (10.1016/j.solmat.2021.111246_bib2) 2016; 145 Casey (10.1016/j.solmat.2021.111246_bib19) 2017; 142 Ramin Farzadi (10.1016/j.solmat.2021.111246_bib11) 2020; 56 Rehman (10.1016/j.solmat.2021.111246_bib36) 2019; 26 Mahon (10.1016/j.solmat.2021.111246_bib30) 2017; 150 Kerskes (10.1016/j.solmat.2021.111246_bib28) 2012; 30 Nekokar (10.1016/j.solmat.2021.111246_bib41) 2018; 29 Zhao (10.1016/j.solmat.2021.111246_bib16) 2013; 67 Lefebvre (10.1016/j.solmat.2021.111246_bib1) 2017; 67 Schmidt (10.1016/j.solmat.2021.111246_bib38) 2015; 75 Gutierrez (10.1016/j.solmat.2021.111246_bib33) 2017; 170 Ma (10.1016/j.solmat.2021.111246_bib47) 2019; 359 Brancato (10.1016/j.solmat.2021.111246_bib24) 2019; 193 Zhou (10.1016/j.solmat.2021.111246_bib26) 2019; 184 Sogutoglu (10.1016/j.solmat.2021.111246_bib13) 2018; 215 Zheng (10.1016/j.solmat.2021.111246_bib34) 2016 Steiger (10.1016/j.solmat.2021.111246_bib31) 2014; 48 Piperopoulos (10.1016/j.solmat.2021.111246_bib25) 2018; 155 Fujii (10.1016/j.solmat.2021.111246_bib12) 2019; 238 Krönauer (10.1016/j.solmat.2021.111246_bib29) 2015; 73 Rehman (10.1016/j.solmat.2021.111246_bib20) 2020; 44 Li (10.1016/j.solmat.2021.111246_bib35) 2020; 210 Mosa (10.1016/j.solmat.2021.111246_bib14) 2020; 49 Sleiti (10.1016/j.solmat.2021.111246_bib4) 2020; 44 Um (10.1016/j.solmat.2021.111246_bib18) 2018; 123 |
References_xml | – volume: 29 start-page: 333 year: 2018 end-page: 340 ident: bib41 article-title: Effects of Fe publication-title: Adv. Powder Technol. – volume: 238 start-page: 561 year: 2019 end-page: 571 ident: bib12 article-title: Design of zeolite boiler in thermochemical energy storage and transport system utilizing unused heat from sugar mill publication-title: Appl. Energy – volume: 18 start-page: 327 year: 2013 end-page: 349 ident: bib27 article-title: A review of potential materials for thermal energy storage in building applications publication-title: Renew. Sustain. Energy Rev. – volume: 26 start-page: 101026 year: 2019 ident: bib36 article-title: Hydration behavior of MgSO publication-title: J. Energy Storage – volume: 136 start-page: 571 year: 2016 end-page: 589 ident: bib39 article-title: Thermochemical heat storage materials – performance of mixed salt hydrates publication-title: Sol. Energy – volume: 157 start-page: 532 year: 2017 end-page: 541 ident: bib22 article-title: Frère, Further improvement of the synthesis of silica gel and CaCl publication-title: Sol. Energy – volume: 67 start-page: 116 year: 2017 end-page: 125 ident: bib1 article-title: A review of energy storage technologies with a focus on adsorption thermal energy storage processes for heating applications publication-title: Renew. Sustain. Energy Rev. – volume: 155 start-page: 269 year: 2018 end-page: 279 ident: bib25 article-title: Synthetic strategies for the enhancement of Mg(OH) publication-title: Energy Procedia – volume: 45 start-page: 18908 year: 2019 end-page: 18913 ident: bib32 article-title: Mg(OH) publication-title: Ceram. Int. – volume: 75 start-page: 513 year: 2015 end-page: 531 ident: bib38 article-title: A review on the use of calcium chloride in applied thermal engineering publication-title: Appl. Therm. Eng. – volume: 215 start-page: 110601 year: 2020 ident: bib7 article-title: New hybrid graphene/inorganic salt composites for thermochemical energy storage: synthesis, cyclability investigation and heat exchanger metal corrosion protection performance publication-title: Sol. Energy Mater. Sol. Cells – volume: 43 start-page: 13685 year: 2019 ident: bib8 article-title: Experimental study on optimization of heat storage and melting salts of solar energy publication-title: J. Food Process. Preserv. – volume: 150 start-page: 870 year: 2017 end-page: 877 ident: bib30 article-title: An experimental investigation to assess the potential of using MgSO publication-title: Energy Convers. Manag. – volume: 67 start-page: 867 year: 2013 end-page: 876 ident: bib16 article-title: Study on consolidated activated carbon: choice of optimal adsorbent for refrigeration application publication-title: Int. J. Heat Mass Tran. – volume: 119 start-page: 4777 year: 2019 end-page: 4816 ident: bib3 article-title: Solar energy on demand: a review on high temperature thermochemical heat storage systems and materials publication-title: Chem. Rev. – volume: 251 start-page: 113322 year: 2019 ident: bib5 article-title: Experimental and numerical investigations on high temperature cast steel based sensible heat storage system publication-title: Appl. Energy – volume: 145 start-page: 255 year: 2016 end-page: 286 ident: bib2 article-title: Salt hydrates as latent heat storage materials: thermophysical properties and costs publication-title: Sol. Energy Mater. Sol. Cells – volume: 167 start-page: 889 year: 2019 end-page: 901 ident: bib21 article-title: Performance characterizations and thermodynamic analysis of magnesium sulfate-impregnated zeolite 13X and activated alumina composite sorbents for thermal energy storage publication-title: Energy – volume: 25 start-page: 1 year: 2019 end-page: 8 ident: bib23 article-title: A new strontium bromide MOF composite with improved performance for solar energy storage application publication-title: J. Energy Storage – volume: 34 start-page: 1145 year: 2009 end-page: 1150 ident: bib45 article-title: Jai-In, A comparative study of KOH/AlO and KOH/NaY catalysts for biodiesel production via transesterification from palm oil publication-title: Renew. Energy – volume: 48 start-page: 394 year: 2014 end-page: 404 ident: bib31 article-title: Experimental studies of the mechanism and kinetics of hydration reactions publication-title: Energy Procedia – volume: 10 start-page: 105315 year: 2020 ident: bib10 article-title: Influential factors and optimization analysis of adsorption refrigeration system performance publication-title: AIP Adv. – volume: 184 start-page: 202 year: 2019 end-page: 208 ident: bib26 article-title: Effect of graphene oxide aerogel on dehydration temperature of graphene oxide aerogel stabilized MgCl publication-title: Sol. Energy – volume: 104 start-page: 334 year: 2016 end-page: 345 ident: bib44 article-title: Preparation and characterization of TiO publication-title: Process Saf. Environ. Protect. – volume: 217 start-page: 110725 year: 2020 ident: bib6 article-title: Composite phase change materials with heat transfer self- enhancement for thermal energy storage publication-title: Sol. Energy Mater. Sol. Cells – volume: 185 start-page: 1131 year: 2019 end-page: 1142 ident: bib43 article-title: High energy–density multi–form thermochemical energy storage based on multi-step sorption processes publication-title: Energy – volume: 142 start-page: 426 year: 2017 end-page: 440 ident: bib19 article-title: Salt impregnated desiccant matrices for 'open' thermochemical energy conversion and storage–Improving energy density utilisation through hygrodynamic & thermodynamic reactor design publication-title: Energy Convers. Manag. – volume: 142 start-page: 104016 year: 2020 ident: bib17 article-title: Modelling the drying shrinkage of porous materials by considering both capillary and adsorption effects publication-title: J. Mech. Phys. Solid. – volume: 209 start-page: 112659 year: 2020 ident: bib9 article-title: Electricity-assisted thermochemical sorption system for seasonal solar energy storage publication-title: Energy Convers. Manag. – volume: 172 start-page: 177 year: 2017 end-page: 185 ident: bib49 article-title: CaCl publication-title: Sol. Energy Mater. Sol. Cells – year: 2016 ident: bib34 article-title: Preparation and characterization of composite of MgSO publication-title: 6th International Conference on Mechatronics, Materials, Biotechnology and Environment (ICMMBE 2016) – volume: 560 start-page: 76 year: 2013 end-page: 81 ident: bib37 article-title: Reversible hydration behavior of CaCl publication-title: Thermochim. Acta – volume: 131 start-page: 2769 year: 2018 end-page: 2773 ident: bib42 article-title: Determination of the heat storage performance of thermochemical heat storage materials based on SrCl publication-title: J. Therm. Anal. Calorim. – volume: 44 start-page: 269 year: 2020 end-page: 281 ident: bib20 article-title: Water sorption studies on ZnSO publication-title: Int. J. Energy Res. – volume: 30 start-page: 294 year: 2012 end-page: 304 ident: bib28 article-title: Chemical energy storage using reversible solid/gas-reactions (CWS) - results of the research project publication-title: Energy Procedia – volume: 193 start-page: 133 year: 2019 end-page: 140 ident: bib24 article-title: Water adsorption equilibrium and dynamics of LICL/MWCNT/PVA composite for adsorptive heat storage publication-title: Sol. Energy Mater. Sol. Cells – volume: 56 start-page: 1353 year: 2020 end-page: 1363 ident: bib11 article-title: Experimental study of a diffusion absorption refrigeration cycle supplied by the exhaust waste heat of a sedan car at low engine speeds publication-title: Heat Mass Tran. – volume: 215 start-page: 159 year: 2018 end-page: 173 ident: bib13 article-title: In-depth investigation of thermochemical performance in a heat battery: cyclic analysis of K publication-title: Energy – volume: 73 start-page: 272 year: 2015 end-page: 280 ident: bib29 article-title: Mobile sorption heat storage in industrial waste heat recovery publication-title: Energy Procedia – volume: 49 start-page: 3981 year: 2020 end-page: 3996 ident: bib14 article-title: Constructal design applications in buildings: radiant cooling panels and thermochemical energy storage publication-title: Heat Transfer – volume: 210 start-page: 110509 year: 2020 ident: bib35 article-title: Development and performance investigation of MgSO publication-title: Sol. Energy Mater. Sol. Cells – volume: 129 start-page: 250 year: 2018 end-page: 259 ident: bib48 article-title: Study of the hydration behavior of zeolite-MgSO publication-title: Appl. Therm. Eng.: Design, processes, equipment, economics – volume: 44 start-page: 9808 year: 2020 end-page: 9838 ident: bib4 article-title: Review of innovative approaches of thermo–mechanical refrigeration systems using low grade heat publication-title: Int. J. Energy Res. – volume: 299 start-page: 110109 year: 2020 ident: bib46 article-title: Water sorption on composite material “zeolite 13X modified by LiCl and CaCl publication-title: Microporous Mesoporous Mater. – volume: 123 year: 2018 ident: bib18 article-title: Global sensitivity analysis of multiscale properties of porous materials publication-title: J. Appl. Phys. – volume: 359 start-page: 801 year: 2019 end-page: 809 ident: bib47 article-title: Production of S-doped porous graphene via post–treatment with MgSO publication-title: Chem. Eng. J. – volume: 170 start-page: 149 year: 2017 end-page: 159 ident: bib33 article-title: Characterization of wastes based on inorganic double salt hydrates as potential thermal energy storage materials publication-title: Sol. Energy Mater. Sol. Cells – volume: 110 start-page: 3 year: 2016 end-page: 39 ident: bib15 article-title: Review on sorption materials and technologies for heat pumps and thermal energy storage publication-title: Renew. Energy – volume: 145 start-page: 483 year: 2018 end-page: 493 ident: bib40 article-title: Discharge performance of blended salt in matrix materials for low enthalpy thermochemical storage publication-title: Appl. Therm. Eng. – volume: 56 start-page: 1353 year: 2020 ident: 10.1016/j.solmat.2021.111246_bib11 article-title: Experimental study of a diffusion absorption refrigeration cycle supplied by the exhaust waste heat of a sedan car at low engine speeds publication-title: Heat Mass Tran. doi: 10.1007/s00231-019-02793-w – volume: 157 start-page: 532 year: 2017 ident: 10.1016/j.solmat.2021.111246_bib22 article-title: Frère, Further improvement of the synthesis of silica gel and CaCl2 composites: enhancement of energy storage density and stability over cycles for solar heat storage coupled with space heating applications publication-title: Sol. Energy doi: 10.1016/j.solener.2017.08.034 – volume: 155 start-page: 269 year: 2018 ident: 10.1016/j.solmat.2021.111246_bib25 article-title: Synthetic strategies for the enhancement of Mg(OH)2 thermochemical performances as heat storage material publication-title: Energy Procedia doi: 10.1016/j.egypro.2018.11.051 – volume: 26 start-page: 101026 year: 2019 ident: 10.1016/j.solmat.2021.111246_bib36 article-title: Hydration behavior of MgSO4 -ZnSO4 composites for long–term thermochemical heat storage application publication-title: J. Energy Storage doi: 10.1016/j.est.2019.101026 – volume: 299 start-page: 110109 year: 2020 ident: 10.1016/j.solmat.2021.111246_bib46 article-title: Water sorption on composite material “zeolite 13X modified by LiCl and CaCl2” publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2020.110109 – volume: 215 start-page: 110601 year: 2020 ident: 10.1016/j.solmat.2021.111246_bib7 article-title: New hybrid graphene/inorganic salt composites for thermochemical energy storage: synthesis, cyclability investigation and heat exchanger metal corrosion protection performance publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2020.110601 – volume: 172 start-page: 177 year: 2017 ident: 10.1016/j.solmat.2021.111246_bib49 article-title: CaCl2-containing composites as thermochemical heat storage materials publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2017.07.037 – volume: 359 start-page: 801 year: 2019 ident: 10.1016/j.solmat.2021.111246_bib47 article-title: Production of S-doped porous graphene via post–treatment with MgSO4 as sulphur source publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.11.171 – volume: 34 start-page: 1145 year: 2009 ident: 10.1016/j.solmat.2021.111246_bib45 article-title: Jai-In, A comparative study of KOH/AlO and KOH/NaY catalysts for biodiesel production via transesterification from palm oil publication-title: Renew. Energy doi: 10.1016/j.renene.2008.06.015 – volume: 29 start-page: 333 year: 2018 ident: 10.1016/j.solmat.2021.111246_bib41 article-title: Effects of Fe2O3 addition and mechanical activation on thermochemical heat storage properties of the Co3O4/CoO system publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2017.11.020 – volume: 136 start-page: 571 year: 2016 ident: 10.1016/j.solmat.2021.111246_bib39 article-title: Thermochemical heat storage materials – performance of mixed salt hydrates publication-title: Sol. Energy doi: 10.1016/j.solener.2016.07.016 – volume: 167 start-page: 889 year: 2019 ident: 10.1016/j.solmat.2021.111246_bib21 article-title: Performance characterizations and thermodynamic analysis of magnesium sulfate-impregnated zeolite 13X and activated alumina composite sorbents for thermal energy storage publication-title: Energy doi: 10.1016/j.energy.2018.10.200 – volume: 185 start-page: 1131 year: 2019 ident: 10.1016/j.solmat.2021.111246_bib43 article-title: High energy–density multi–form thermochemical energy storage based on multi-step sorption processes publication-title: Energy doi: 10.1016/j.energy.2019.07.076 – volume: 145 start-page: 255 year: 2016 ident: 10.1016/j.solmat.2021.111246_bib2 article-title: Salt hydrates as latent heat storage materials: thermophysical properties and costs publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2015.10.029 – volume: 10 start-page: 105315 year: 2020 ident: 10.1016/j.solmat.2021.111246_bib10 article-title: Influential factors and optimization analysis of adsorption refrigeration system performance publication-title: AIP Adv. doi: 10.1063/5.0026131 – volume: 142 start-page: 104016 year: 2020 ident: 10.1016/j.solmat.2021.111246_bib17 article-title: Modelling the drying shrinkage of porous materials by considering both capillary and adsorption effects publication-title: J. Mech. Phys. Solid. doi: 10.1016/j.jmps.2020.104016 – volume: 48 start-page: 394 year: 2014 ident: 10.1016/j.solmat.2021.111246_bib31 article-title: Experimental studies of the mechanism and kinetics of hydration reactions publication-title: Energy Procedia doi: 10.1016/j.egypro.2014.02.046 – volume: 123 year: 2018 ident: 10.1016/j.solmat.2021.111246_bib18 article-title: Global sensitivity analysis of multiscale properties of porous materials publication-title: J. Appl. Phys. doi: 10.1063/1.5009691 – volume: 210 start-page: 110509 year: 2020 ident: 10.1016/j.solmat.2021.111246_bib35 article-title: Development and performance investigation of MgSO4/SrCl2 composite salt hydrate for mid-low temperature thermochemical heat storage publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2020.110509 – volume: 560 start-page: 76 year: 2013 ident: 10.1016/j.solmat.2021.111246_bib37 article-title: Reversible hydration behavior of CaCl2 at high H2O partial pressures for thermochemical energy storage publication-title: Thermochim. Acta doi: 10.1016/j.tca.2013.03.020 – volume: 209 start-page: 112659 year: 2020 ident: 10.1016/j.solmat.2021.111246_bib9 article-title: Electricity-assisted thermochemical sorption system for seasonal solar energy storage publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2020.112659 – volume: 18 start-page: 327 year: 2013 ident: 10.1016/j.solmat.2021.111246_bib27 article-title: A review of potential materials for thermal energy storage in building applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.10.025 – volume: 150 start-page: 870 year: 2017 ident: 10.1016/j.solmat.2021.111246_bib30 article-title: An experimental investigation to assess the potential of using MgSO4 impregnation and Mg2+ ion exchange to enhance the performance of 13X molecular sieves for interseasonal domestic thermochemical energy storage publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.03.080 – volume: 145 start-page: 483 year: 2018 ident: 10.1016/j.solmat.2021.111246_bib40 article-title: Discharge performance of blended salt in matrix materials for low enthalpy thermochemical storage publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.09.052 – volume: 131 start-page: 2769 year: 2018 ident: 10.1016/j.solmat.2021.111246_bib42 article-title: Determination of the heat storage performance of thermochemical heat storage materials based on SrCl2 and MgSO4 publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-017-6861-8 – volume: 67 start-page: 867 year: 2013 ident: 10.1016/j.solmat.2021.111246_bib16 article-title: Study on consolidated activated carbon: choice of optimal adsorbent for refrigeration application publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2013.08.052 – volume: 142 start-page: 426 year: 2017 ident: 10.1016/j.solmat.2021.111246_bib19 article-title: Salt impregnated desiccant matrices for 'open' thermochemical energy conversion and storage–Improving energy density utilisation through hygrodynamic & thermodynamic reactor design publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.03.066 – volume: 238 start-page: 561 year: 2019 ident: 10.1016/j.solmat.2021.111246_bib12 article-title: Design of zeolite boiler in thermochemical energy storage and transport system utilizing unused heat from sugar mill publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.104 – year: 2016 ident: 10.1016/j.solmat.2021.111246_bib34 article-title: Preparation and characterization of composite of MgSO4·7H2O and KAl(SO4)2·12H2O thermal storage material – volume: 119 start-page: 4777 year: 2019 ident: 10.1016/j.solmat.2021.111246_bib3 article-title: Solar energy on demand: a review on high temperature thermochemical heat storage systems and materials publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00315 – volume: 193 start-page: 133 year: 2019 ident: 10.1016/j.solmat.2021.111246_bib24 article-title: Water adsorption equilibrium and dynamics of LICL/MWCNT/PVA composite for adsorptive heat storage publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2019.01.001 – volume: 217 start-page: 110725 year: 2020 ident: 10.1016/j.solmat.2021.111246_bib6 article-title: Composite phase change materials with heat transfer self- enhancement for thermal energy storage publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2020.110725 – volume: 184 start-page: 202 year: 2019 ident: 10.1016/j.solmat.2021.111246_bib26 article-title: Effect of graphene oxide aerogel on dehydration temperature of graphene oxide aerogel stabilized MgCl2·6H2O composites publication-title: Sol. Energy doi: 10.1016/j.solener.2019.03.076 – volume: 215 start-page: 159 year: 2018 ident: 10.1016/j.solmat.2021.111246_bib13 article-title: In-depth investigation of thermochemical performance in a heat battery: cyclic analysis of K2CO3, MgCl2 and Na2S, Appl publication-title: Energy – volume: 75 start-page: 513 year: 2015 ident: 10.1016/j.solmat.2021.111246_bib38 article-title: A review on the use of calcium chloride in applied thermal engineering publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.09.047 – volume: 73 start-page: 272 year: 2015 ident: 10.1016/j.solmat.2021.111246_bib29 article-title: Mobile sorption heat storage in industrial waste heat recovery publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.07.688 – volume: 110 start-page: 3 year: 2016 ident: 10.1016/j.solmat.2021.111246_bib15 article-title: Review on sorption materials and technologies for heat pumps and thermal energy storage publication-title: Renew. Energy doi: 10.1016/j.renene.2016.09.059 – volume: 25 start-page: 1 year: 2019 ident: 10.1016/j.solmat.2021.111246_bib23 article-title: A new strontium bromide MOF composite with improved performance for solar energy storage application publication-title: J. Energy Storage – volume: 44 start-page: 269 year: 2020 ident: 10.1016/j.solmat.2021.111246_bib20 article-title: Water sorption studies on ZnSO4-zeolite composite as potential thermochemical heat storage materials publication-title: Int. J. Energy Res. doi: 10.1002/er.4910 – volume: 251 start-page: 113322 year: 2019 ident: 10.1016/j.solmat.2021.111246_bib5 article-title: Experimental and numerical investigations on high temperature cast steel based sensible heat storage system publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113322 – volume: 30 start-page: 294 year: 2012 ident: 10.1016/j.solmat.2021.111246_bib28 article-title: Chemical energy storage using reversible solid/gas-reactions (CWS) - results of the research project publication-title: Energy Procedia doi: 10.1016/j.egypro.2012.11.035 – volume: 170 start-page: 149 year: 2017 ident: 10.1016/j.solmat.2021.111246_bib33 article-title: Characterization of wastes based on inorganic double salt hydrates as potential thermal energy storage materials publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2017.05.036 – volume: 104 start-page: 334 year: 2016 ident: 10.1016/j.solmat.2021.111246_bib44 article-title: Preparation and characterization of TiO2 incorporated 13X molecular sieves for photocatalytic removal of acetaminophen from aqueous solutions publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2016.09.018 – volume: 44 start-page: 9808 year: 2020 ident: 10.1016/j.solmat.2021.111246_bib4 article-title: Review of innovative approaches of thermo–mechanical refrigeration systems using low grade heat publication-title: Int. J. Energy Res. doi: 10.1002/er.5556 – volume: 45 start-page: 18908 year: 2019 ident: 10.1016/j.solmat.2021.111246_bib32 article-title: Mg(OH)2 nano-sheet decorated MgO micro-beams by electron beam irradiation for thermochemical heat storage publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.06.126 – volume: 129 start-page: 250 year: 2018 ident: 10.1016/j.solmat.2021.111246_bib48 article-title: Study of the hydration behavior of zeolite-MgSO4 composites for long-term heat storage publication-title: Appl. Therm. Eng.: Design, processes, equipment, economics doi: 10.1016/j.applthermaleng.2017.10.031 – volume: 43 start-page: 13685 year: 2019 ident: 10.1016/j.solmat.2021.111246_bib8 article-title: Experimental study on optimization of heat storage and melting salts of solar energy publication-title: J. Food Process. Preserv. – volume: 67 start-page: 116 year: 2017 ident: 10.1016/j.solmat.2021.111246_bib1 article-title: A review of energy storage technologies with a focus on adsorption thermal energy storage processes for heating applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.08.019 – volume: 49 start-page: 3981 year: 2020 ident: 10.1016/j.solmat.2021.111246_bib14 article-title: Constructal design applications in buildings: radiant cooling panels and thermochemical energy storage publication-title: Heat Transfer doi: 10.1002/htj.21677 |
SSID | ssj0002634 |
Score | 2.5179875 |
Snippet | A new composite thermochemical heat storage (TcHS) material was proposed herein with good heat storage performance and desirable stability, which was prepared... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 111246 |
SubjectTerms | Adsorption Adsorption capacity Calcium chloride Calorimetry Cold pressing Composite materials Desorption Differential scanning calorimetry Heat Heat storage Heat storage density Heat transfer Hygroscopicity Low temperature Magnesium sulfate Mass transfer Molecular sieves Porous media Salts Shelf life Stability Storage systems Thermal conductivity Thermochemical heat storage |
Title | Heat storage performance analysis of ZMS-Porous media/CaCl2/MgSO4 composite thermochemical heat storage materials |
URI | https://dx.doi.org/10.1016/j.solmat.2021.111246 https://www.proquest.com/docview/2581541338 |
Volume | 230 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mcYED4ikeY8qBayl5NG2P08Q0QBtIY9LEJWraBIbGNsa48tux-2CAkJA4tkqi1nE-28lnh5BTxpRlWWw9G-Mxo5C40RQ6zyQAmZxnjoeYjdzrq-5QXo2CUY20q1wYpFWW2F9geo7W5Ru_lKY_H4_9wXmMuVQy4lhFNM4zyqUMUcvP3lc0D67yk2Vs7GHrKn0u53jB9IJfCFEiZ4gdHN3g383TD6DOrU9ni2yWbiNtFV-2TWp2ukM2vhQT3CUvXYBVimRHgAg6XyUE0KQsPEJnjt73Bt7tbAHxPs2TRvx20p5wv_cwuJEU-eVI4rIU3cJnvEwrryZAH78ODf9SqO0eGXYu7tpdr7xQwUuFkEsvhOjNqFgollmFJ4xgm02oTJo4lRjmZMacgRVppA1clLlzI6IsyXiqRBJLKcQ-qU9nU3tAKGdpZJwz0A08LpnGLIhgaWN1sDgVzB0SUclRp2W1cbz0YqIrWtmTLqSvUfq6kP4h8T57zYtqG3-0D6sp0t-0RoNB-KNno5pRXa7aV82DCDxKjNqP_j3wMVnHJ6SUsKBB6svFmz0Bv2VpmrliNsla6_K62_8Am0rs6Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4QHIAD4ikeA3LgWro8mrZHVDGNxwBpm4S4RE2bwNDYBowrvx27DwYICYlrm1StE3-2m882IUeMKcvy2Ho2xmNGIfFHU-g8kwJkcp47HmI2cudKtfvy_Da4nSNJnQuDtMoK-0tML9C6uuJX0vQng4HfbcaYSyUjjlVEY8woX5CgvtjG4Ph9xvPgqjhaxtEeDq_z5wqSF6wvOIYQJnKG4MHRD_7dPv1A6sL8tFbJSuU30pPy1dbInB2tk-Uv1QQ3yHMbcJUi2xEwgk5mGQE0rSqP0LGjd52udzN-gYCfFlkjfpImQ-537rvXkiLBHFlclqJf-ITdtIpyAvTh66PhW8p9u0n6rdNe0vaqjgpeJoSceiGEb0bFQrHcKjxiBONsQmWy1KnUMCdz5gyopJE2cFHumkZEeZrzTIk0llKILTI_Go_sNqGcZZFxzsA0cLlkFrMgAt3G8mBxJpjbIaKWo86qcuPY9WKoa17Zoy6lr1H6upT-DvE-Z03Kcht_jA_rJdLfto0Gi_DHzEa9orpS21fNgwhcSgzbd__94EOy2O51LvXl2dXFHlnCO8gvYUGDzE9f3uw-ODFTc1Bs0g8Nne53 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat+storage+performance+analysis+of+ZMS-Porous+media%2FCaCl2%2FMgSO4+composite+thermochemical+heat+storage+materials&rft.jtitle=Solar+energy+materials+and+solar+cells&rft.au=Xueling%2C+Zhang&rft.au=Feifei%2C+Wang&rft.au=Qi%2C+Zhang&rft.au=Xudong%2C+Lei&rft.date=2021-09-15&rft.pub=Elsevier+BV&rft.issn=0927-0248&rft.volume=230&rft.spage=1&rft_id=info:doi/10.1016%2Fj.solmat.2021.111246&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0248&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0248&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0248&client=summon |