Heat storage performance analysis of ZMS-Porous media/CaCl2/MgSO4 composite thermochemical heat storage materials

A new composite thermochemical heat storage (TcHS) material was proposed herein with good heat storage performance and desirable stability, which was prepared by using solid-state cold pressing with a zeolite molecular sieve (ZMS) and two salts (CaCl2 and MgSO4). First, the optimized mass content (C...

Full description

Saved in:
Bibliographic Details
Published inSolar energy materials and solar cells Vol. 230; p. 111246
Main Authors Xueling, Zhang, Feifei, Wang, Qi, Zhang, Xudong, Lei, Yanling, Wang, Yeqiang, Zhang, Chuanxiao, Cheng, Tingxiang, Jin
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.09.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A new composite thermochemical heat storage (TcHS) material was proposed herein with good heat storage performance and desirable stability, which was prepared by using solid-state cold pressing with a zeolite molecular sieve (ZMS) and two salts (CaCl2 and MgSO4). First, the optimized mass content (CaCl2:MgSO4 = 6:4) denoted Smix was obtained, which represents an equilibrium between the adsorption capacity and deliquescence. Then, two types of ZMS porous media: 13X and NaY were added to Smix to further prevent deliquescence and improve stability, respectively. An orthogonal experiment with four factors (mass fraction, pressure, temperature, and humidity) and three levels was used to test the optimal preparation conditions, and the optimal configurations were obtained for Xopt (13X-ZMS: CaCl2: MgSO4 = 10: 54: 36) and Yopt (NaY-ZMS: CaCl2: MgSO4 = 20: 48: 32). The optimized samples were measured by SEM, XRD and thermal conductivity tests, and the adsorption capacities for Smix, Xopt, and Yopt were found to follow the order of Xopt (0.449 g/g) > Smix (0.374 g/g) > Yopt (0.335 g/g). The accumulated void formation for the porous media can promote heat and mass transfer and can significantly improve the adsorption capacity and avoid deliquescence. Differential scanning calorimetry (DSC) results showed that the heat storage density (HSD) for Xopt (1414.49 J/g) is higher than that for Yopt (1097.02 J/g). Finally, 20 cycles showed that Xopt has good cycle stability based on the normalized ad/desorption mass (>1) and normalized desorption heat (>0.8). The results showed that Xopt shows application potential as a TcHS composite material in medium- and low-temperature thermochemical adsorption heat storage systems. •A new composite Thermochemical heat storage (TcHS) material has been synthesized by solid-state cold pressing using zeolite molecular sieve (ZMS) and two salts (CaCl2 and MgSO4).•The adsorption capacity of Smix (CaCl2:MgSO4 = 6:4), Xopt (13X-ZMS:CaCl2:MgSO4 = 10:54:36) and Yopt (NaY-ZMS:CaCl2:MgSO4 = 20:48:32) are 0.374, 0.449 and 0.335 g/g, respectively, both the Xopt and Yopt were avoided the deliquesce of the Smix.•The heat storage density of Smix, Xopt and Yopt were determined to be 1886, 1414.5 and 1097 J/g, respectively.•The Xopt has the best cycle stability in the 20 cycles from the normalized ad/desorption mass (>1) and the normalized desorption heat (>0.8) than the Yopt and Smix.
AbstractList A new composite thermochemical heat storage (TcHS) material was proposed herein with good heat storage performance and desirable stability, which was prepared by using solid-state cold pressing with a zeolite molecular sieve (ZMS) and two salts (CaCl2 and MgSO4). First, the optimized mass content (CaCl2:MgSO4 = 6:4) denoted Smix was obtained, which represents an equilibrium between the adsorption capacity and deliquescence. Then, two types of ZMS porous media: 13X and NaY were added to Smix to further prevent deliquescence and improve stability, respectively. An orthogonal experiment with four factors (mass fraction, pressure, temperature, and humidity) and three levels was used to test the optimal preparation conditions, and the optimal configurations were obtained for Xopt (13X-ZMS: CaCl2: MgSO4 = 10: 54: 36) and Yopt (NaY-ZMS: CaCl2: MgSO4 = 20: 48: 32). The optimized samples were measured by SEM, XRD and thermal conductivity tests, and the adsorption capacities for Smix, Xopt, and Yopt were found to follow the order of Xopt (0.449 g/g) > Smix (0.374 g/g) > Yopt (0.335 g/g). The accumulated void formation for the porous media can promote heat and mass transfer and can significantly improve the adsorption capacity and avoid deliquescence. Differential scanning calorimetry (DSC) results showed that the heat storage density (HSD) for Xopt (1414.49 J/g) is higher than that for Yopt (1097.02 J/g). Finally, 20 cycles showed that Xopt has good cycle stability based on the normalized ad/desorption mass (>1) and normalized desorption heat (>0.8). The results showed that Xopt shows application potential as a TcHS composite material in medium- and low-temperature thermochemical adsorption heat storage systems. •A new composite Thermochemical heat storage (TcHS) material has been synthesized by solid-state cold pressing using zeolite molecular sieve (ZMS) and two salts (CaCl2 and MgSO4).•The adsorption capacity of Smix (CaCl2:MgSO4 = 6:4), Xopt (13X-ZMS:CaCl2:MgSO4 = 10:54:36) and Yopt (NaY-ZMS:CaCl2:MgSO4 = 20:48:32) are 0.374, 0.449 and 0.335 g/g, respectively, both the Xopt and Yopt were avoided the deliquesce of the Smix.•The heat storage density of Smix, Xopt and Yopt were determined to be 1886, 1414.5 and 1097 J/g, respectively.•The Xopt has the best cycle stability in the 20 cycles from the normalized ad/desorption mass (>1) and the normalized desorption heat (>0.8) than the Yopt and Smix.
A new composite thermochemical heat storage (TcHS) material was proposed herein with good heat storage performance and desirable stability, which was prepared by using solid-state cold pressing with a zeolite molecular sieve (ZMS) and two salts (CaCl2 and MgSO4). First, the optimized mass content (CaCl2:MgSO4 = 6:4) denoted Smix was obtained, which represents an equilibrium between the adsorption capacity and deliquescence. Then, two types of ZMS porous media: 13X and NaY were added to Smix to further prevent deliquescence and improve stability, respectively. An orthogonal experiment with four factors (mass fraction, pressure, temperature, and humidity) and three levels was used to test the optimal preparation conditions, and the optimal configurations were obtained for Xopt (13X-ZMS: CaCl2: MgSO4 = 10: 54: 36) and Yopt (NaY-ZMS: CaCl2: MgSO4 = 20: 48: 32). The optimized samples were measured by SEM, XRD and thermal conductivity tests, and the adsorption capacities for Smix, Xopt, and Yopt were found to follow the order of Xopt (0.449 g/g) > Smix (0.374 g/g) > Yopt (0.335 g/g). The accumulated void formation for the porous media can promote heat and mass transfer and can significantly improve the adsorption capacity and avoid deliquescence. Differential scanning calorimetry (DSC) results showed that the heat storage density (HSD) for Xopt (1414.49 J/g) is higher than that for Yopt (1097.02 J/g). Finally, 20 cycles showed that Xopt has good cycle stability based on the normalized ad/desorption mass (>1) and normalized desorption heat (>0.8). The results showed that Xopt shows application potential as a TcHS composite material in medium- and low-temperature thermochemical adsorption heat storage systems.
ArticleNumber 111246
Author Feifei, Wang
Yanling, Wang
Chuanxiao, Cheng
Xudong, Lei
Qi, Zhang
Yeqiang, Zhang
Xueling, Zhang
Tingxiang, Jin
Author_xml – sequence: 1
  givenname: Zhang
  surname: Xueling
  fullname: Xueling, Zhang
– sequence: 2
  givenname: Wang
  surname: Feifei
  fullname: Feifei, Wang
– sequence: 3
  givenname: Zhang
  surname: Qi
  fullname: Qi, Zhang
  email: 1990922zhangqi@zzuli.edu.cn
– sequence: 4
  givenname: Lei
  surname: Xudong
  fullname: Xudong, Lei
– sequence: 5
  givenname: Wang
  surname: Yanling
  fullname: Yanling, Wang
– sequence: 6
  givenname: Zhang
  surname: Yeqiang
  fullname: Yeqiang, Zhang
– sequence: 7
  givenname: Cheng
  surname: Chuanxiao
  fullname: Chuanxiao, Cheng
– sequence: 8
  givenname: Jin
  surname: Tingxiang
  fullname: Tingxiang, Jin
  email: txjin@126.com
BookMark eNqFkE1rGzEURUVxoI6Tf5CFoOux9WXNTBeFYto6kJBAkk024o3myZaZGTmSHMi_74TpomTRru7mnst755zMhjAgIVecLTnjenVYptD1kJeCCb7knAulP5E5r8q6kLKuZmTOalEWTKjqMzlP6cAYE1qqOXnZImSacoiwQ3rE6ELsYbBIYYDuLflEg6PPtw_FfYjhlGiPrYfVBjadWN3uHu4UtaE_huQz0rzH2Ae7x95b6Oj-7-nxPIweunRBztwYePknF-Tp54_Hzba4uft1vfl-U1gpVS5KxcpG11LzFrWoaqa5akrdWHAaGu5Uy11Ta9koXLuqdayRVQutsFpCrZSUC_Jl2j3G8HLClM0hnOL4VDJiXfG14lJWY0tNLRtDShGdOUbfQ3wznJl3ueZgJrnmXa6Z5I7Y1w-Y9RmyD0OO4Lv_wd8mGMf3Xz1Gk6zH0XnrI9ps2uD_PfAbeZma6Q
CitedBy_id crossref_primary_10_1016_j_est_2022_106158
crossref_primary_10_1016_j_est_2024_113589
crossref_primary_10_1016_j_enbuild_2024_114421
crossref_primary_10_3390_pr13010008
crossref_primary_10_1016_j_micromeso_2023_112918
crossref_primary_10_1039_D3RA04859D
crossref_primary_10_1016_j_solmat_2022_111696
crossref_primary_10_1016_j_energy_2022_124966
crossref_primary_10_1016_j_applthermaleng_2025_125482
crossref_primary_10_3390_ma18010070
crossref_primary_10_3390_en16062875
crossref_primary_10_1016_j_renene_2025_122831
crossref_primary_10_1016_j_energy_2024_132326
crossref_primary_10_1016_j_est_2024_111511
crossref_primary_10_1016_j_clce_2022_100006
crossref_primary_10_3390_en16124668
crossref_primary_10_1016_j_rser_2021_111846
crossref_primary_10_1016_j_energy_2023_127986
crossref_primary_10_1016_j_est_2024_114540
crossref_primary_10_1080_15567036_2023_2244457
crossref_primary_10_1016_j_est_2023_108862
crossref_primary_10_1016_j_rser_2021_111808
crossref_primary_10_1016_j_egyr_2022_09_051
crossref_primary_10_1016_j_ecmx_2022_100225
crossref_primary_10_1016_j_carbpol_2022_119932
Cites_doi 10.1007/s00231-019-02793-w
10.1016/j.solener.2017.08.034
10.1016/j.egypro.2018.11.051
10.1016/j.est.2019.101026
10.1016/j.micromeso.2020.110109
10.1016/j.solmat.2020.110601
10.1016/j.solmat.2017.07.037
10.1016/j.cej.2018.11.171
10.1016/j.renene.2008.06.015
10.1016/j.apt.2017.11.020
10.1016/j.solener.2016.07.016
10.1016/j.energy.2018.10.200
10.1016/j.energy.2019.07.076
10.1016/j.solmat.2015.10.029
10.1063/5.0026131
10.1016/j.jmps.2020.104016
10.1016/j.egypro.2014.02.046
10.1063/1.5009691
10.1016/j.solmat.2020.110509
10.1016/j.tca.2013.03.020
10.1016/j.enconman.2020.112659
10.1016/j.rser.2012.10.025
10.1016/j.enconman.2017.03.080
10.1016/j.applthermaleng.2018.09.052
10.1007/s10973-017-6861-8
10.1016/j.ijheatmasstransfer.2013.08.052
10.1016/j.enconman.2017.03.066
10.1016/j.apenergy.2019.01.104
10.1021/acs.chemrev.8b00315
10.1016/j.solmat.2019.01.001
10.1016/j.solmat.2020.110725
10.1016/j.solener.2019.03.076
10.1016/j.applthermaleng.2014.09.047
10.1016/j.egypro.2015.07.688
10.1016/j.renene.2016.09.059
10.1002/er.4910
10.1016/j.apenergy.2019.113322
10.1016/j.egypro.2012.11.035
10.1016/j.solmat.2017.05.036
10.1016/j.psep.2016.09.018
10.1002/er.5556
10.1016/j.ceramint.2019.06.126
10.1016/j.applthermaleng.2017.10.031
10.1016/j.rser.2016.08.019
10.1002/htj.21677
ContentType Journal Article
Copyright 2021
Copyright Elsevier BV Sep 15, 2021
Copyright_xml – notice: 2021
– notice: Copyright Elsevier BV Sep 15, 2021
DBID AAYXX
CITATION
7SP
7ST
7TB
7U5
8FD
C1K
FR3
L7M
SOI
DOI 10.1016/j.solmat.2021.111246
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3398
ExternalDocumentID 10_1016_j_solmat_2021_111246
S0927024821002907
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
4.4
457
4G.
5VS
6OB
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABNUV
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSG
SSK
SSM
SSR
SSZ
T5K
TWZ
WH7
XPP
ZMT
~02
~G-
1~5
7-5
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SCB
SET
SEW
SMS
SSH
WUQ
7SP
7ST
7TB
7U5
8FD
C1K
EFKBS
FR3
L7M
SOI
ID FETCH-LOGICAL-c334t-7407b69361de62890614b76bcaf6ab1f4d1fb963b4e5f8df0b38dad2c63a94433
IEDL.DBID .~1
ISSN 0927-0248
IngestDate Wed Aug 13 05:08:19 EDT 2025
Thu Apr 24 23:03:49 EDT 2025
Tue Jul 01 01:20:09 EDT 2025
Fri Feb 23 02:38:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Porous media
Adsorption capacity
Heat storage density
Thermochemical heat storage
Stability
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-7407b69361de62890614b76bcaf6ab1f4d1fb963b4e5f8df0b38dad2c63a94433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2581541338
PQPubID 2045398
ParticipantIDs proquest_journals_2581541338
crossref_primary_10_1016_j_solmat_2021_111246
crossref_citationtrail_10_1016_j_solmat_2021_111246
elsevier_sciencedirect_doi_10_1016_j_solmat_2021_111246
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-15
PublicationDateYYYYMMDD 2021-09-15
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-15
  day: 15
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Solar energy materials and solar cells
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Sogutoglu, Donkers, Fischer, Huinink, Adan (bib13) 2018; 215
Cabeza, Sole, Barreneche (bib15) 2016; 110
Tatsidjodoung, Pierres, Luo (bib27) 2013; 18
D'Ans, Courbon, Permyakova, Nouar, Simonnet-Jegat, Bourdreux, Malee, Serre, Frere, Steunou (bib23) 2019; 25
Krönauer, Lävemann, Brückner, Hauer (bib29) 2015; 73
Um, Zhang, Katsoulakis, Plechac, Tartakovsky (bib18) 2018; 123
Ma, Bao, Roskilly (bib9) 2020; 209
Fujii, Horie, Nakaibayashi, Kanematsu, Kikuchi, Nakagaki (bib12) 2019; 238
Zhou, Zhang (bib26) 2019; 184
Casey, Aydin, Elvins, Riffat (bib19) 2017; 142
Zhang, Wang, Lei, Wang, Zhang, Wu, Jin, Wang (bib10) 2020; 10
Sleiti, Al-Ammari, Al-Khawaja (bib4) 2020; 44
Kerskes, Mette, Bertsch, Asenbeck, Drück (bib28) 2012; 30
Vigneshwaran, Sodhi, Muthukumar, Guha, Senthilmurugan (bib5) 2019; 251
Nekokar, Pourabdoli, Hamidi (bib41) 2018; 29
Ramin Farzadi (bib11) 2020; 56
El Tabbal, Dangla, Vandamme, Bottoni, Granet (bib17) 2020; 142
Piperopoulos, Mastronardo, Fazio, Lanza, Milone (bib25) 2018; 155
Brancato, Gordeeva, Grekova, Alessio Sapienza, Vasta, Frazzica, Aristov (bib24) 2019; 193
Jabbari-Hichri, Bennici, Auroux (bib49) 2017; 172
Mosa, Malley-Ernewein (bib14) 2020; 49
Li, Wang (bib35) 2020; 210
Zhao, Wang, Wang, Ma, Jiang (bib16) 2013; 67
Noiroj, Intarapong, Luengnaruemitchai A (bib45) 2009; 34
Chao, Zibo, Yunyun, Yunxiu, Feng, Xing (bib48) 2018; 129
Ullah, Ameen, Hasrat (bib8) 2019; 43
Carrillo, González-Aguilar, Romero, Coronado (bib3) 2019; 119
Posern, Osburg (bib42) 2018; 131
Molenda, Stengler, Linder, Wörner (bib37) 2013; 560
Zhao, Wang, Li, Wu, Zhang, Shi (bib46) 2020; 299
Ma, Zhao, Song, Zhao, Yu, Xiao, Wang, Li, Cao, Ning, Gao (bib47) 2019; 359
Rehman, Khan, Maosheng (bib36) 2019; 26
Ousaleh, Sair, Mansouri, Abboud, Bouari (bib7) 2020; 215
Rehman, Maosheng, Hayat (bib20) 2020; 44
Xu, Wang, Wang, Zhu (bib21) 2019; 167
Courbon, D'Ans, Permyakova, Skrylnyk, Steunou, Marc Degrez (bib22) 2017; 157
Kim, Kim, Kim, Park, Kwon, Yu (bib32) 2019; 45
Mahon, Claudio, Eames (bib30) 2017; 150
Zhou, Zhang, Zheng (bib6) 2020; 217
Zheng, Luo, Zhang, Long (bib34) 2016
Sutton, Jewell, Searle, Elvins (bib40) 2018; 145
Kenisarin, Mahkamov (bib2) 2016; 145
Schmidt, Watts, Amanda, Wolfgang, Rammelberg, N'Tsoukpoe (bib38) 2015; 75
Rammelberga, Osterland, Priehs, Opel, Ruck (bib39) 2016; 136
Lefebvre, Tezel (bib1) 2017; 67
Xu, Li, Chao, Yan, Wang (bib43) 2019; 185
Steiger, Niermann, Bonatz, Posern, Steiger (bib31) 2014; 48
Malakootian, Pourshaban–Mazandarani, Hossaini, Ehrampoush (bib44) 2016; 104
Gutierrez, Ushak, Mamani, Vargas, Barreneche, Cabeza, Grágeda (bib33) 2017; 170
D'Ans (10.1016/j.solmat.2021.111246_bib23) 2019; 25
Cabeza (10.1016/j.solmat.2021.111246_bib15) 2016; 110
Zhang (10.1016/j.solmat.2021.111246_bib10) 2020; 10
Kim (10.1016/j.solmat.2021.111246_bib32) 2019; 45
Noiroj (10.1016/j.solmat.2021.111246_bib45) 2009; 34
Chao (10.1016/j.solmat.2021.111246_bib48) 2018; 129
Ullah (10.1016/j.solmat.2021.111246_bib8) 2019; 43
Ousaleh (10.1016/j.solmat.2021.111246_bib7) 2020; 215
Tatsidjodoung (10.1016/j.solmat.2021.111246_bib27) 2013; 18
Ma (10.1016/j.solmat.2021.111246_bib9) 2020; 209
Zhao (10.1016/j.solmat.2021.111246_bib46) 2020; 299
Molenda (10.1016/j.solmat.2021.111246_bib37) 2013; 560
Xu (10.1016/j.solmat.2021.111246_bib21) 2019; 167
El Tabbal (10.1016/j.solmat.2021.111246_bib17) 2020; 142
Vigneshwaran (10.1016/j.solmat.2021.111246_bib5) 2019; 251
Courbon (10.1016/j.solmat.2021.111246_bib22) 2017; 157
Carrillo (10.1016/j.solmat.2021.111246_bib3) 2019; 119
Posern (10.1016/j.solmat.2021.111246_bib42) 2018; 131
Zhou (10.1016/j.solmat.2021.111246_bib6) 2020; 217
Jabbari-Hichri (10.1016/j.solmat.2021.111246_bib49) 2017; 172
Malakootian (10.1016/j.solmat.2021.111246_bib44) 2016; 104
Rammelberga (10.1016/j.solmat.2021.111246_bib39) 2016; 136
Sutton (10.1016/j.solmat.2021.111246_bib40) 2018; 145
Xu (10.1016/j.solmat.2021.111246_bib43) 2019; 185
Kenisarin (10.1016/j.solmat.2021.111246_bib2) 2016; 145
Casey (10.1016/j.solmat.2021.111246_bib19) 2017; 142
Ramin Farzadi (10.1016/j.solmat.2021.111246_bib11) 2020; 56
Rehman (10.1016/j.solmat.2021.111246_bib36) 2019; 26
Mahon (10.1016/j.solmat.2021.111246_bib30) 2017; 150
Kerskes (10.1016/j.solmat.2021.111246_bib28) 2012; 30
Nekokar (10.1016/j.solmat.2021.111246_bib41) 2018; 29
Zhao (10.1016/j.solmat.2021.111246_bib16) 2013; 67
Lefebvre (10.1016/j.solmat.2021.111246_bib1) 2017; 67
Schmidt (10.1016/j.solmat.2021.111246_bib38) 2015; 75
Gutierrez (10.1016/j.solmat.2021.111246_bib33) 2017; 170
Ma (10.1016/j.solmat.2021.111246_bib47) 2019; 359
Brancato (10.1016/j.solmat.2021.111246_bib24) 2019; 193
Zhou (10.1016/j.solmat.2021.111246_bib26) 2019; 184
Sogutoglu (10.1016/j.solmat.2021.111246_bib13) 2018; 215
Zheng (10.1016/j.solmat.2021.111246_bib34) 2016
Steiger (10.1016/j.solmat.2021.111246_bib31) 2014; 48
Piperopoulos (10.1016/j.solmat.2021.111246_bib25) 2018; 155
Fujii (10.1016/j.solmat.2021.111246_bib12) 2019; 238
Krönauer (10.1016/j.solmat.2021.111246_bib29) 2015; 73
Rehman (10.1016/j.solmat.2021.111246_bib20) 2020; 44
Li (10.1016/j.solmat.2021.111246_bib35) 2020; 210
Mosa (10.1016/j.solmat.2021.111246_bib14) 2020; 49
Sleiti (10.1016/j.solmat.2021.111246_bib4) 2020; 44
Um (10.1016/j.solmat.2021.111246_bib18) 2018; 123
References_xml – volume: 29
  start-page: 333
  year: 2018
  end-page: 340
  ident: bib41
  article-title: Effects of Fe
  publication-title: Adv. Powder Technol.
– volume: 238
  start-page: 561
  year: 2019
  end-page: 571
  ident: bib12
  article-title: Design of zeolite boiler in thermochemical energy storage and transport system utilizing unused heat from sugar mill
  publication-title: Appl. Energy
– volume: 18
  start-page: 327
  year: 2013
  end-page: 349
  ident: bib27
  article-title: A review of potential materials for thermal energy storage in building applications
  publication-title: Renew. Sustain. Energy Rev.
– volume: 26
  start-page: 101026
  year: 2019
  ident: bib36
  article-title: Hydration behavior of MgSO
  publication-title: J. Energy Storage
– volume: 136
  start-page: 571
  year: 2016
  end-page: 589
  ident: bib39
  article-title: Thermochemical heat storage materials – performance of mixed salt hydrates
  publication-title: Sol. Energy
– volume: 157
  start-page: 532
  year: 2017
  end-page: 541
  ident: bib22
  article-title: Frère, Further improvement of the synthesis of silica gel and CaCl
  publication-title: Sol. Energy
– volume: 67
  start-page: 116
  year: 2017
  end-page: 125
  ident: bib1
  article-title: A review of energy storage technologies with a focus on adsorption thermal energy storage processes for heating applications
  publication-title: Renew. Sustain. Energy Rev.
– volume: 155
  start-page: 269
  year: 2018
  end-page: 279
  ident: bib25
  article-title: Synthetic strategies for the enhancement of Mg(OH)
  publication-title: Energy Procedia
– volume: 45
  start-page: 18908
  year: 2019
  end-page: 18913
  ident: bib32
  article-title: Mg(OH)
  publication-title: Ceram. Int.
– volume: 75
  start-page: 513
  year: 2015
  end-page: 531
  ident: bib38
  article-title: A review on the use of calcium chloride in applied thermal engineering
  publication-title: Appl. Therm. Eng.
– volume: 215
  start-page: 110601
  year: 2020
  ident: bib7
  article-title: New hybrid graphene/inorganic salt composites for thermochemical energy storage: synthesis, cyclability investigation and heat exchanger metal corrosion protection performance
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 43
  start-page: 13685
  year: 2019
  ident: bib8
  article-title: Experimental study on optimization of heat storage and melting salts of solar energy
  publication-title: J. Food Process. Preserv.
– volume: 150
  start-page: 870
  year: 2017
  end-page: 877
  ident: bib30
  article-title: An experimental investigation to assess the potential of using MgSO
  publication-title: Energy Convers. Manag.
– volume: 67
  start-page: 867
  year: 2013
  end-page: 876
  ident: bib16
  article-title: Study on consolidated activated carbon: choice of optimal adsorbent for refrigeration application
  publication-title: Int. J. Heat Mass Tran.
– volume: 119
  start-page: 4777
  year: 2019
  end-page: 4816
  ident: bib3
  article-title: Solar energy on demand: a review on high temperature thermochemical heat storage systems and materials
  publication-title: Chem. Rev.
– volume: 251
  start-page: 113322
  year: 2019
  ident: bib5
  article-title: Experimental and numerical investigations on high temperature cast steel based sensible heat storage system
  publication-title: Appl. Energy
– volume: 145
  start-page: 255
  year: 2016
  end-page: 286
  ident: bib2
  article-title: Salt hydrates as latent heat storage materials: thermophysical properties and costs
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 167
  start-page: 889
  year: 2019
  end-page: 901
  ident: bib21
  article-title: Performance characterizations and thermodynamic analysis of magnesium sulfate-impregnated zeolite 13X and activated alumina composite sorbents for thermal energy storage
  publication-title: Energy
– volume: 25
  start-page: 1
  year: 2019
  end-page: 8
  ident: bib23
  article-title: A new strontium bromide MOF composite with improved performance for solar energy storage application
  publication-title: J. Energy Storage
– volume: 34
  start-page: 1145
  year: 2009
  end-page: 1150
  ident: bib45
  article-title: Jai-In, A comparative study of KOH/AlO and KOH/NaY catalysts for biodiesel production via transesterification from palm oil
  publication-title: Renew. Energy
– volume: 48
  start-page: 394
  year: 2014
  end-page: 404
  ident: bib31
  article-title: Experimental studies of the mechanism and kinetics of hydration reactions
  publication-title: Energy Procedia
– volume: 10
  start-page: 105315
  year: 2020
  ident: bib10
  article-title: Influential factors and optimization analysis of adsorption refrigeration system performance
  publication-title: AIP Adv.
– volume: 184
  start-page: 202
  year: 2019
  end-page: 208
  ident: bib26
  article-title: Effect of graphene oxide aerogel on dehydration temperature of graphene oxide aerogel stabilized MgCl
  publication-title: Sol. Energy
– volume: 104
  start-page: 334
  year: 2016
  end-page: 345
  ident: bib44
  article-title: Preparation and characterization of TiO
  publication-title: Process Saf. Environ. Protect.
– volume: 217
  start-page: 110725
  year: 2020
  ident: bib6
  article-title: Composite phase change materials with heat transfer self- enhancement for thermal energy storage
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 185
  start-page: 1131
  year: 2019
  end-page: 1142
  ident: bib43
  article-title: High energy–density multi–form thermochemical energy storage based on multi-step sorption processes
  publication-title: Energy
– volume: 142
  start-page: 426
  year: 2017
  end-page: 440
  ident: bib19
  article-title: Salt impregnated desiccant matrices for 'open' thermochemical energy conversion and storage–Improving energy density utilisation through hygrodynamic & thermodynamic reactor design
  publication-title: Energy Convers. Manag.
– volume: 142
  start-page: 104016
  year: 2020
  ident: bib17
  article-title: Modelling the drying shrinkage of porous materials by considering both capillary and adsorption effects
  publication-title: J. Mech. Phys. Solid.
– volume: 209
  start-page: 112659
  year: 2020
  ident: bib9
  article-title: Electricity-assisted thermochemical sorption system for seasonal solar energy storage
  publication-title: Energy Convers. Manag.
– volume: 172
  start-page: 177
  year: 2017
  end-page: 185
  ident: bib49
  article-title: CaCl
  publication-title: Sol. Energy Mater. Sol. Cells
– year: 2016
  ident: bib34
  article-title: Preparation and characterization of composite of MgSO
  publication-title: 6th International Conference on Mechatronics, Materials, Biotechnology and Environment (ICMMBE 2016)
– volume: 560
  start-page: 76
  year: 2013
  end-page: 81
  ident: bib37
  article-title: Reversible hydration behavior of CaCl
  publication-title: Thermochim. Acta
– volume: 131
  start-page: 2769
  year: 2018
  end-page: 2773
  ident: bib42
  article-title: Determination of the heat storage performance of thermochemical heat storage materials based on SrCl
  publication-title: J. Therm. Anal. Calorim.
– volume: 44
  start-page: 269
  year: 2020
  end-page: 281
  ident: bib20
  article-title: Water sorption studies on ZnSO
  publication-title: Int. J. Energy Res.
– volume: 30
  start-page: 294
  year: 2012
  end-page: 304
  ident: bib28
  article-title: Chemical energy storage using reversible solid/gas-reactions (CWS) - results of the research project
  publication-title: Energy Procedia
– volume: 193
  start-page: 133
  year: 2019
  end-page: 140
  ident: bib24
  article-title: Water adsorption equilibrium and dynamics of LICL/MWCNT/PVA composite for adsorptive heat storage
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 56
  start-page: 1353
  year: 2020
  end-page: 1363
  ident: bib11
  article-title: Experimental study of a diffusion absorption refrigeration cycle supplied by the exhaust waste heat of a sedan car at low engine speeds
  publication-title: Heat Mass Tran.
– volume: 215
  start-page: 159
  year: 2018
  end-page: 173
  ident: bib13
  article-title: In-depth investigation of thermochemical performance in a heat battery: cyclic analysis of K
  publication-title: Energy
– volume: 73
  start-page: 272
  year: 2015
  end-page: 280
  ident: bib29
  article-title: Mobile sorption heat storage in industrial waste heat recovery
  publication-title: Energy Procedia
– volume: 49
  start-page: 3981
  year: 2020
  end-page: 3996
  ident: bib14
  article-title: Constructal design applications in buildings: radiant cooling panels and thermochemical energy storage
  publication-title: Heat Transfer
– volume: 210
  start-page: 110509
  year: 2020
  ident: bib35
  article-title: Development and performance investigation of MgSO
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 129
  start-page: 250
  year: 2018
  end-page: 259
  ident: bib48
  article-title: Study of the hydration behavior of zeolite-MgSO
  publication-title: Appl. Therm. Eng.: Design, processes, equipment, economics
– volume: 44
  start-page: 9808
  year: 2020
  end-page: 9838
  ident: bib4
  article-title: Review of innovative approaches of thermo–mechanical refrigeration systems using low grade heat
  publication-title: Int. J. Energy Res.
– volume: 299
  start-page: 110109
  year: 2020
  ident: bib46
  article-title: Water sorption on composite material “zeolite 13X modified by LiCl and CaCl
  publication-title: Microporous Mesoporous Mater.
– volume: 123
  year: 2018
  ident: bib18
  article-title: Global sensitivity analysis of multiscale properties of porous materials
  publication-title: J. Appl. Phys.
– volume: 359
  start-page: 801
  year: 2019
  end-page: 809
  ident: bib47
  article-title: Production of S-doped porous graphene via post–treatment with MgSO
  publication-title: Chem. Eng. J.
– volume: 170
  start-page: 149
  year: 2017
  end-page: 159
  ident: bib33
  article-title: Characterization of wastes based on inorganic double salt hydrates as potential thermal energy storage materials
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 110
  start-page: 3
  year: 2016
  end-page: 39
  ident: bib15
  article-title: Review on sorption materials and technologies for heat pumps and thermal energy storage
  publication-title: Renew. Energy
– volume: 145
  start-page: 483
  year: 2018
  end-page: 493
  ident: bib40
  article-title: Discharge performance of blended salt in matrix materials for low enthalpy thermochemical storage
  publication-title: Appl. Therm. Eng.
– volume: 56
  start-page: 1353
  year: 2020
  ident: 10.1016/j.solmat.2021.111246_bib11
  article-title: Experimental study of a diffusion absorption refrigeration cycle supplied by the exhaust waste heat of a sedan car at low engine speeds
  publication-title: Heat Mass Tran.
  doi: 10.1007/s00231-019-02793-w
– volume: 157
  start-page: 532
  year: 2017
  ident: 10.1016/j.solmat.2021.111246_bib22
  article-title: Frère, Further improvement of the synthesis of silica gel and CaCl2 composites: enhancement of energy storage density and stability over cycles for solar heat storage coupled with space heating applications
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.08.034
– volume: 155
  start-page: 269
  year: 2018
  ident: 10.1016/j.solmat.2021.111246_bib25
  article-title: Synthetic strategies for the enhancement of Mg(OH)2 thermochemical performances as heat storage material
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2018.11.051
– volume: 26
  start-page: 101026
  year: 2019
  ident: 10.1016/j.solmat.2021.111246_bib36
  article-title: Hydration behavior of MgSO4 -ZnSO4 composites for long–term thermochemical heat storage application
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2019.101026
– volume: 299
  start-page: 110109
  year: 2020
  ident: 10.1016/j.solmat.2021.111246_bib46
  article-title: Water sorption on composite material “zeolite 13X modified by LiCl and CaCl2”
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2020.110109
– volume: 215
  start-page: 110601
  year: 2020
  ident: 10.1016/j.solmat.2021.111246_bib7
  article-title: New hybrid graphene/inorganic salt composites for thermochemical energy storage: synthesis, cyclability investigation and heat exchanger metal corrosion protection performance
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2020.110601
– volume: 172
  start-page: 177
  year: 2017
  ident: 10.1016/j.solmat.2021.111246_bib49
  article-title: CaCl2-containing composites as thermochemical heat storage materials
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2017.07.037
– volume: 359
  start-page: 801
  year: 2019
  ident: 10.1016/j.solmat.2021.111246_bib47
  article-title: Production of S-doped porous graphene via post–treatment with MgSO4 as sulphur source
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.11.171
– volume: 34
  start-page: 1145
  year: 2009
  ident: 10.1016/j.solmat.2021.111246_bib45
  article-title: Jai-In, A comparative study of KOH/AlO and KOH/NaY catalysts for biodiesel production via transesterification from palm oil
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2008.06.015
– volume: 29
  start-page: 333
  year: 2018
  ident: 10.1016/j.solmat.2021.111246_bib41
  article-title: Effects of Fe2O3 addition and mechanical activation on thermochemical heat storage properties of the Co3O4/CoO system
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2017.11.020
– volume: 136
  start-page: 571
  year: 2016
  ident: 10.1016/j.solmat.2021.111246_bib39
  article-title: Thermochemical heat storage materials – performance of mixed salt hydrates
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.07.016
– volume: 167
  start-page: 889
  year: 2019
  ident: 10.1016/j.solmat.2021.111246_bib21
  article-title: Performance characterizations and thermodynamic analysis of magnesium sulfate-impregnated zeolite 13X and activated alumina composite sorbents for thermal energy storage
  publication-title: Energy
  doi: 10.1016/j.energy.2018.10.200
– volume: 185
  start-page: 1131
  year: 2019
  ident: 10.1016/j.solmat.2021.111246_bib43
  article-title: High energy–density multi–form thermochemical energy storage based on multi-step sorption processes
  publication-title: Energy
  doi: 10.1016/j.energy.2019.07.076
– volume: 145
  start-page: 255
  year: 2016
  ident: 10.1016/j.solmat.2021.111246_bib2
  article-title: Salt hydrates as latent heat storage materials: thermophysical properties and costs
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2015.10.029
– volume: 10
  start-page: 105315
  year: 2020
  ident: 10.1016/j.solmat.2021.111246_bib10
  article-title: Influential factors and optimization analysis of adsorption refrigeration system performance
  publication-title: AIP Adv.
  doi: 10.1063/5.0026131
– volume: 142
  start-page: 104016
  year: 2020
  ident: 10.1016/j.solmat.2021.111246_bib17
  article-title: Modelling the drying shrinkage of porous materials by considering both capillary and adsorption effects
  publication-title: J. Mech. Phys. Solid.
  doi: 10.1016/j.jmps.2020.104016
– volume: 48
  start-page: 394
  year: 2014
  ident: 10.1016/j.solmat.2021.111246_bib31
  article-title: Experimental studies of the mechanism and kinetics of hydration reactions
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2014.02.046
– volume: 123
  year: 2018
  ident: 10.1016/j.solmat.2021.111246_bib18
  article-title: Global sensitivity analysis of multiscale properties of porous materials
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5009691
– volume: 210
  start-page: 110509
  year: 2020
  ident: 10.1016/j.solmat.2021.111246_bib35
  article-title: Development and performance investigation of MgSO4/SrCl2 composite salt hydrate for mid-low temperature thermochemical heat storage
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2020.110509
– volume: 560
  start-page: 76
  year: 2013
  ident: 10.1016/j.solmat.2021.111246_bib37
  article-title: Reversible hydration behavior of CaCl2 at high H2O partial pressures for thermochemical energy storage
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2013.03.020
– volume: 209
  start-page: 112659
  year: 2020
  ident: 10.1016/j.solmat.2021.111246_bib9
  article-title: Electricity-assisted thermochemical sorption system for seasonal solar energy storage
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2020.112659
– volume: 18
  start-page: 327
  year: 2013
  ident: 10.1016/j.solmat.2021.111246_bib27
  article-title: A review of potential materials for thermal energy storage in building applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.10.025
– volume: 150
  start-page: 870
  year: 2017
  ident: 10.1016/j.solmat.2021.111246_bib30
  article-title: An experimental investigation to assess the potential of using MgSO4 impregnation and Mg2+ ion exchange to enhance the performance of 13X molecular sieves for interseasonal domestic thermochemical energy storage
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.03.080
– volume: 145
  start-page: 483
  year: 2018
  ident: 10.1016/j.solmat.2021.111246_bib40
  article-title: Discharge performance of blended salt in matrix materials for low enthalpy thermochemical storage
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.09.052
– volume: 131
  start-page: 2769
  year: 2018
  ident: 10.1016/j.solmat.2021.111246_bib42
  article-title: Determination of the heat storage performance of thermochemical heat storage materials based on SrCl2 and MgSO4
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-017-6861-8
– volume: 67
  start-page: 867
  year: 2013
  ident: 10.1016/j.solmat.2021.111246_bib16
  article-title: Study on consolidated activated carbon: choice of optimal adsorbent for refrigeration application
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2013.08.052
– volume: 142
  start-page: 426
  year: 2017
  ident: 10.1016/j.solmat.2021.111246_bib19
  article-title: Salt impregnated desiccant matrices for 'open' thermochemical energy conversion and storage–Improving energy density utilisation through hygrodynamic & thermodynamic reactor design
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.03.066
– volume: 238
  start-page: 561
  year: 2019
  ident: 10.1016/j.solmat.2021.111246_bib12
  article-title: Design of zeolite boiler in thermochemical energy storage and transport system utilizing unused heat from sugar mill
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.104
– year: 2016
  ident: 10.1016/j.solmat.2021.111246_bib34
  article-title: Preparation and characterization of composite of MgSO4·7H2O and KAl(SO4)2·12H2O thermal storage material
– volume: 119
  start-page: 4777
  year: 2019
  ident: 10.1016/j.solmat.2021.111246_bib3
  article-title: Solar energy on demand: a review on high temperature thermochemical heat storage systems and materials
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00315
– volume: 193
  start-page: 133
  year: 2019
  ident: 10.1016/j.solmat.2021.111246_bib24
  article-title: Water adsorption equilibrium and dynamics of LICL/MWCNT/PVA composite for adsorptive heat storage
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2019.01.001
– volume: 217
  start-page: 110725
  year: 2020
  ident: 10.1016/j.solmat.2021.111246_bib6
  article-title: Composite phase change materials with heat transfer self- enhancement for thermal energy storage
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2020.110725
– volume: 184
  start-page: 202
  year: 2019
  ident: 10.1016/j.solmat.2021.111246_bib26
  article-title: Effect of graphene oxide aerogel on dehydration temperature of graphene oxide aerogel stabilized MgCl2·6H2O composites
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.03.076
– volume: 215
  start-page: 159
  year: 2018
  ident: 10.1016/j.solmat.2021.111246_bib13
  article-title: In-depth investigation of thermochemical performance in a heat battery: cyclic analysis of K2CO3, MgCl2 and Na2S, Appl
  publication-title: Energy
– volume: 75
  start-page: 513
  year: 2015
  ident: 10.1016/j.solmat.2021.111246_bib38
  article-title: A review on the use of calcium chloride in applied thermal engineering
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.09.047
– volume: 73
  start-page: 272
  year: 2015
  ident: 10.1016/j.solmat.2021.111246_bib29
  article-title: Mobile sorption heat storage in industrial waste heat recovery
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2015.07.688
– volume: 110
  start-page: 3
  year: 2016
  ident: 10.1016/j.solmat.2021.111246_bib15
  article-title: Review on sorption materials and technologies for heat pumps and thermal energy storage
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.09.059
– volume: 25
  start-page: 1
  year: 2019
  ident: 10.1016/j.solmat.2021.111246_bib23
  article-title: A new strontium bromide MOF composite with improved performance for solar energy storage application
  publication-title: J. Energy Storage
– volume: 44
  start-page: 269
  year: 2020
  ident: 10.1016/j.solmat.2021.111246_bib20
  article-title: Water sorption studies on ZnSO4-zeolite composite as potential thermochemical heat storage materials
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.4910
– volume: 251
  start-page: 113322
  year: 2019
  ident: 10.1016/j.solmat.2021.111246_bib5
  article-title: Experimental and numerical investigations on high temperature cast steel based sensible heat storage system
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113322
– volume: 30
  start-page: 294
  year: 2012
  ident: 10.1016/j.solmat.2021.111246_bib28
  article-title: Chemical energy storage using reversible solid/gas-reactions (CWS) - results of the research project
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2012.11.035
– volume: 170
  start-page: 149
  year: 2017
  ident: 10.1016/j.solmat.2021.111246_bib33
  article-title: Characterization of wastes based on inorganic double salt hydrates as potential thermal energy storage materials
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2017.05.036
– volume: 104
  start-page: 334
  year: 2016
  ident: 10.1016/j.solmat.2021.111246_bib44
  article-title: Preparation and characterization of TiO2 incorporated 13X molecular sieves for photocatalytic removal of acetaminophen from aqueous solutions
  publication-title: Process Saf. Environ. Protect.
  doi: 10.1016/j.psep.2016.09.018
– volume: 44
  start-page: 9808
  year: 2020
  ident: 10.1016/j.solmat.2021.111246_bib4
  article-title: Review of innovative approaches of thermo–mechanical refrigeration systems using low grade heat
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.5556
– volume: 45
  start-page: 18908
  year: 2019
  ident: 10.1016/j.solmat.2021.111246_bib32
  article-title: Mg(OH)2 nano-sheet decorated MgO micro-beams by electron beam irradiation for thermochemical heat storage
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.06.126
– volume: 129
  start-page: 250
  year: 2018
  ident: 10.1016/j.solmat.2021.111246_bib48
  article-title: Study of the hydration behavior of zeolite-MgSO4 composites for long-term heat storage
  publication-title: Appl. Therm. Eng.: Design, processes, equipment, economics
  doi: 10.1016/j.applthermaleng.2017.10.031
– volume: 43
  start-page: 13685
  year: 2019
  ident: 10.1016/j.solmat.2021.111246_bib8
  article-title: Experimental study on optimization of heat storage and melting salts of solar energy
  publication-title: J. Food Process. Preserv.
– volume: 67
  start-page: 116
  year: 2017
  ident: 10.1016/j.solmat.2021.111246_bib1
  article-title: A review of energy storage technologies with a focus on adsorption thermal energy storage processes for heating applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.08.019
– volume: 49
  start-page: 3981
  year: 2020
  ident: 10.1016/j.solmat.2021.111246_bib14
  article-title: Constructal design applications in buildings: radiant cooling panels and thermochemical energy storage
  publication-title: Heat Transfer
  doi: 10.1002/htj.21677
SSID ssj0002634
Score 2.5179875
Snippet A new composite thermochemical heat storage (TcHS) material was proposed herein with good heat storage performance and desirable stability, which was prepared...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111246
SubjectTerms Adsorption
Adsorption capacity
Calcium chloride
Calorimetry
Cold pressing
Composite materials
Desorption
Differential scanning calorimetry
Heat
Heat storage
Heat storage density
Heat transfer
Hygroscopicity
Low temperature
Magnesium sulfate
Mass transfer
Molecular sieves
Porous media
Salts
Shelf life
Stability
Storage systems
Thermal conductivity
Thermochemical heat storage
Title Heat storage performance analysis of ZMS-Porous media/CaCl2/MgSO4 composite thermochemical heat storage materials
URI https://dx.doi.org/10.1016/j.solmat.2021.111246
https://www.proquest.com/docview/2581541338
Volume 230
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mcYED4ikeY8qBayl5NG2P08Q0QBtIY9LEJWraBIbGNsa48tux-2CAkJA4tkqi1nE-28lnh5BTxpRlWWw9G-Mxo5C40RQ6zyQAmZxnjoeYjdzrq-5QXo2CUY20q1wYpFWW2F9geo7W5Ru_lKY_H4_9wXmMuVQy4lhFNM4zyqUMUcvP3lc0D67yk2Vs7GHrKn0u53jB9IJfCFEiZ4gdHN3g383TD6DOrU9ni2yWbiNtFV-2TWp2ukM2vhQT3CUvXYBVimRHgAg6XyUE0KQsPEJnjt73Bt7tbAHxPs2TRvx20p5wv_cwuJEU-eVI4rIU3cJnvEwrryZAH78ODf9SqO0eGXYu7tpdr7xQwUuFkEsvhOjNqFgollmFJ4xgm02oTJo4lRjmZMacgRVppA1clLlzI6IsyXiqRBJLKcQ-qU9nU3tAKGdpZJwz0A08LpnGLIhgaWN1sDgVzB0SUclRp2W1cbz0YqIrWtmTLqSvUfq6kP4h8T57zYtqG3-0D6sp0t-0RoNB-KNno5pRXa7aV82DCDxKjNqP_j3wMVnHJ6SUsKBB6svFmz0Bv2VpmrliNsla6_K62_8Am0rs6Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4QHIAD4ikeA3LgWro8mrZHVDGNxwBpm4S4RE2bwNDYBowrvx27DwYICYlrm1StE3-2m882IUeMKcvy2Ho2xmNGIfFHU-g8kwJkcp47HmI2cudKtfvy_Da4nSNJnQuDtMoK-0tML9C6uuJX0vQng4HfbcaYSyUjjlVEY8woX5CgvtjG4Ph9xvPgqjhaxtEeDq_z5wqSF6wvOIYQJnKG4MHRD_7dPv1A6sL8tFbJSuU30pPy1dbInB2tk-Uv1QQ3yHMbcJUi2xEwgk5mGQE0rSqP0LGjd52udzN-gYCfFlkjfpImQ-537rvXkiLBHFlclqJf-ITdtIpyAvTh66PhW8p9u0n6rdNe0vaqjgpeJoSceiGEb0bFQrHcKjxiBONsQmWy1KnUMCdz5gyopJE2cFHumkZEeZrzTIk0llKILTI_Go_sNqGcZZFxzsA0cLlkFrMgAt3G8mBxJpjbIaKWo86qcuPY9WKoa17Zoy6lr1H6upT-DvE-Z03Kcht_jA_rJdLfto0Gi_DHzEa9orpS21fNgwhcSgzbd__94EOy2O51LvXl2dXFHlnCO8gvYUGDzE9f3uw-ODFTc1Bs0g8Nne53
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat+storage+performance+analysis+of+ZMS-Porous+media%2FCaCl2%2FMgSO4+composite+thermochemical+heat+storage+materials&rft.jtitle=Solar+energy+materials+and+solar+cells&rft.au=Xueling%2C+Zhang&rft.au=Feifei%2C+Wang&rft.au=Qi%2C+Zhang&rft.au=Xudong%2C+Lei&rft.date=2021-09-15&rft.pub=Elsevier+BV&rft.issn=0927-0248&rft.volume=230&rft.spage=1&rft_id=info:doi/10.1016%2Fj.solmat.2021.111246&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0248&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0248&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0248&client=summon