Biomarker Phenotypes in Heart Failure with Preserved Ejection Fraction Using Hierarchical Clustering: A Pilot Study
Objectives: We hypothesized the existence of distinct phenotype-based groups within the very heterogeneous population of patients of heart failure with preserved ejection fraction (HFpEF) and using an unsupervised hierarchical clustering applied to plasma concentration of various biomarkers. We soug...
Saved in:
Published in | Medical principles and practice Vol. 32; no. 4-5; pp. 297 - 307 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel, Switzerland
S. Karger AG
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objectives: We hypothesized the existence of distinct phenotype-based groups within the very heterogeneous population of patients of heart failure with preserved ejection fraction (HFpEF) and using an unsupervised hierarchical clustering applied to plasma concentration of various biomarkers. We sought to characterize them as “biomarker phenotypes” and to conclude differences in their overall characteristics. Subjects and Methods: A cross-sectional study was conducted on 75 patients with HFpEF. An agglomerative hierarchical clustering was performed using the concentrations of cardiac remodeling biomarkers, BNP, and cystatin C. Results: According to the obtained heat map of this analysis, we concluded two distinctive biomarker phenotypes within the HFpEF. The “remodeled phenotype” presented with significantly higher concentrations of cardiac remodeling biomarkers and cystatin C (p < 0.001), higher prevalence of myocardial infarction (p = 0.047), STEMI (p = 0.045), atrial fibrillation (p = 0.047), and anemia: lower erythrocytes count (p = 0.037), hemoglobin concentration (p = 0.034), and hematocrit (p = 0.046), compared to “non-remodeled phenotype.” Echocardiography showed that patients within “remodeled phenotype” had significantly increased parameters of left ventricular remodeling: left ventricular mass index (p < 0.001), left ventricular mass (p = 0.001), diameters of the interventricular septum (p = 0.027), posterior wall (p = 0.003), and function alterations, intermediate pauses duration >2.0 s (p < 0.006). Conclusion: Unsupervised hierarchical clustering applied to plasma concentration of various biomarkers in patients with HFpEF enables the identification of two biomarker phenotypes, significantly different in clinical characteristics and cardiac structure and function, whereas one phenotype particularly relates to patients with reduced ejection fraction. These findings imply distinct underlying pathophysiology within a unique cohort of HFpEF. |
---|---|
AbstractList | We hypothesized the existence of distinct phenotype-based groups within the very heterogeneous population of patients of heart failure with preserved ejection fraction (HFpEF) and using an unsupervised hierarchical clustering applied to plasma concentration of various biomarkers. We sought to characterize them as "biomarker phenotypes" and to conclude differences in their overall characteristics.OBJECTIVESWe hypothesized the existence of distinct phenotype-based groups within the very heterogeneous population of patients of heart failure with preserved ejection fraction (HFpEF) and using an unsupervised hierarchical clustering applied to plasma concentration of various biomarkers. We sought to characterize them as "biomarker phenotypes" and to conclude differences in their overall characteristics.A cross-sectional study was conducted on 75 patients with HFpEF. An agglomerative hierarchical clustering was performed using the concentrations of cardiac remodeling biomarkers, BNP and cystatin C.SUBJECTS AND METHODSA cross-sectional study was conducted on 75 patients with HFpEF. An agglomerative hierarchical clustering was performed using the concentrations of cardiac remodeling biomarkers, BNP and cystatin C.According to the obtained heat map of this analysis, we concluded two distinctive biomarker phenotypes within the HFpEF. The "remodeled phenotype" presented with significantly higher concentrations of cardiac remodeling biomarkers and cystatin C (p < 0.001), higher prevalence of myocardial infarction (p = 0.047), STEMI (p = 0.045), atrial fibrillation (p = 0.047) and anemia: lower erythrocytes count (p=0.037), hemoglobin concentration (p = 0.034) and hematocrit (p = 0.046), compared to "non-remodeled phenotype". Echocardiography showed that patients within "remodeled phenotype" had significantly increased parameters of left ventricular remodeling: left ventricular mass index (p < 0.001), left ventricular mass (p = 0.001), diameters of the interventricular septum (p = 0.027) and posterior wall (p = 0.003) and function alterations, intermediate pauses duration >2.0 seconds (p < 0.006).RESULTSAccording to the obtained heat map of this analysis, we concluded two distinctive biomarker phenotypes within the HFpEF. The "remodeled phenotype" presented with significantly higher concentrations of cardiac remodeling biomarkers and cystatin C (p < 0.001), higher prevalence of myocardial infarction (p = 0.047), STEMI (p = 0.045), atrial fibrillation (p = 0.047) and anemia: lower erythrocytes count (p=0.037), hemoglobin concentration (p = 0.034) and hematocrit (p = 0.046), compared to "non-remodeled phenotype". Echocardiography showed that patients within "remodeled phenotype" had significantly increased parameters of left ventricular remodeling: left ventricular mass index (p < 0.001), left ventricular mass (p = 0.001), diameters of the interventricular septum (p = 0.027) and posterior wall (p = 0.003) and function alterations, intermediate pauses duration >2.0 seconds (p < 0.006).Unsupervised hierarchical clustering applied to plasma concentration of various biomarkers in patients with HFpEF enables the identification of two biomarker phenotypes, significantly different in clinical characteristics and cardiac structure and function, whereas one phenotype particularly relates to patients with reduced ejection fraction. These findings imply distinct underlying pathophysiology within a unique cohort of HFpEF.CONCLUSIONUnsupervised hierarchical clustering applied to plasma concentration of various biomarkers in patients with HFpEF enables the identification of two biomarker phenotypes, significantly different in clinical characteristics and cardiac structure and function, whereas one phenotype particularly relates to patients with reduced ejection fraction. These findings imply distinct underlying pathophysiology within a unique cohort of HFpEF. Objectives: We hypothesized the existence of distinct phenotype-based groups within the very heterogeneous population of patients of heart failure with preserved ejection fraction (HFpEF) and using an unsupervised hierarchical clustering applied to plasma concentration of various biomarkers. We sought to characterize them as “biomarker phenotypes” and to conclude differences in their overall characteristics. Subjects and Methods: A cross-sectional study was conducted on 75 patients with HFpEF. An agglomerative hierarchical clustering was performed using the concentrations of cardiac remodeling biomarkers, BNP, and cystatin C. Results: According to the obtained heat map of this analysis, we concluded two distinctive biomarker phenotypes within the HFpEF. The “remodeled phenotype” presented with significantly higher concentrations of cardiac remodeling biomarkers and cystatin C (p < 0.001), higher prevalence of myocardial infarction (p = 0.047), STEMI (p = 0.045), atrial fibrillation (p = 0.047), and anemia: lower erythrocytes count (p = 0.037), hemoglobin concentration (p = 0.034), and hematocrit (p = 0.046), compared to “non-remodeled phenotype.” Echocardiography showed that patients within “remodeled phenotype” had significantly increased parameters of left ventricular remodeling: left ventricular mass index (p < 0.001), left ventricular mass (p = 0.001), diameters of the interventricular septum (p = 0.027), posterior wall (p = 0.003), and function alterations, intermediate pauses duration >2.0 s (p < 0.006). Conclusion: Unsupervised hierarchical clustering applied to plasma concentration of various biomarkers in patients with HFpEF enables the identification of two biomarker phenotypes, significantly different in clinical characteristics and cardiac structure and function, whereas one phenotype particularly relates to patients with reduced ejection fraction. These findings imply distinct underlying pathophysiology within a unique cohort of HFpEF. |
Author | Ignjatovic, Aleksandra Stojanovic, Dijana Mitic, Valentina Milenkovic, Jelena Deljanin Ilic, Marina Petrovic, Dejan |
Author_xml | – sequence: 1 givenname: Valentina surname: Mitic fullname: Mitic, Valentina – sequence: 2 givenname: Dijana surname: Stojanovic fullname: Stojanovic, Dijana email: *Dijana Stojanovic, dijana.stojanovic@medfak.ni.ac.rs – sequence: 3 givenname: Marina surname: Deljanin Ilic fullname: Deljanin Ilic, Marina – sequence: 4 givenname: Dejan surname: Petrovic fullname: Petrovic, Dejan – sequence: 5 givenname: Aleksandra surname: Ignjatovic fullname: Ignjatovic, Aleksandra – sequence: 6 givenname: Jelena surname: Milenkovic fullname: Milenkovic, Jelena |
BookMark | eNptkctrGzEQxkVIycPNofceBL00h20lzb7UW2riuJDShabnRasdx3I2K3ekbfB_HwWHBEJP8zH8-ObxnbLD0Y_I2AcpvkhZ6K9CiAJyWRQH7ETmCjIhC3mYtJAyq4pKHrPTEDYJqwHEETuGqoIcAE5Y-O78vaE7JN6scfRxt8XA3ciXaCjyhXHDRMgfXFzzhjAg_cOeX27QRudHviCzF3-CG2_50iEZsmtnzcDnwxQiUup_4xe8cYOP_Hec-t179m5lhoBnz3XGbhaXN_Nldv3r6sf84jqzAHnMSq3VCmsN0HWyQ6N6bXtTm17ZTuqqkmVXKqVysJ3qZJ3urnVpLFpb6Np0MGOf97Zb8n8nDLG9d8HiMJgR_RRaVZe1VKDThBn79Abd-InGtFyrtBCgRJ6LRJ3vKUs-BMJVuyWXnrdrpWifgmhfgnh1vDN0i_RC_myaPdFu-1WiPv6XejZ5BJMIj5Y |
Cites_doi | 10.1002/ejhf.137 10.1515/CCLM.2002.060 10.1016/j.jacc.2015.03.043 10.1515/cclm-2020-0310 10.1016/j.ejim.2022.01.012 10.1620/tjem.250.233 10.1515/CCLM.2006.063 10.1016/j.jacc.2014.03.034 10.3390/ijms24010844 10.1161/JAHA.118.009034 10.1002/ejhf.327 10.1002/ejhf.430 10.1093/eurheartj/ehy712 10.1002/ejhf.592 10.1093/eurheartj/ehu204 10.1136/heartjnl-2019-315481 10.1152/ajpheart.00684.2005 10.1093/eurheartj/ehz641 10.1038/nrg2897 10.1002/ejhf.1621 10.1097/HCO.0b013e32833f0438 10.1093/eurheartj/ehaa083 10.1016/j.jacc.2014.07.979 10.1093/ehjci/jev014 10.1161/CIRCULATIONAHA.114.010637 10.1016/j.jchf.2019.09.009 10.1016/j.ijcard.2020.08.065 10.3390/jcdd9080256 10.1515/CCLM.2004.108 10.1016/S2213-8587(18)30051-2 10.1002/ejhf.483 10.1161/JAHA.115.002477 10.1016/j.jchf.2013.10.006 10.1016/B978-0-12-375003-7.00006-6 |
ContentType | Journal Article |
Copyright | 2023 The Author(s). Published by S. Karger AG, Basel 2023 The Author(s). Published by S. Karger AG, Basel. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s). Published by S. Karger AG, Basel. |
Copyright_xml | – notice: 2023 The Author(s). Published by S. Karger AG, Basel – notice: 2023 The Author(s). Published by S. Karger AG, Basel. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s). Published by S. Karger AG, Basel. |
DBID | M-- AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1159/000534155 |
DatabaseTitle | CrossRef ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest One Academic Middle East (New) CrossRef |
Database_xml | – sequence: 1 dbid: M-- name: Karger Open Access url: https://www.karger.com/OpenAccess sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1423-0151 |
EndPage | 307 |
ExternalDocumentID | 10_1159_000534155 534155 |
GeographicLocations | United Kingdom--UK United States--US |
GeographicLocations_xml | – name: United Kingdom--UK – name: United States--US |
GroupedDBID | --- 0R~ 0~B 30W 326 36B 3O. 3V. 4.4 53G 5GY 7X7 88E 8FI 8FJ 8UI AAWTL AAYIC ABPAZ ABUWG ACGFS ADBBV AENEX AEYAO AFKRA AHMBA ALDHI ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZPMC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CS3 CYUIP DU5 E0A E3Z EBS EMB EMOBN F5P FB. FYUFA GROUPED_DOAJ HMCUK HYE HZ~ IAO IHR KUZGX M-- M1P MK0 O1H O9- OK1 P2P PQQKQ PROAC PSQYO RKO RNS RPM SV3 UJ6 UKHRP AAYXX ABBTS ABWCG ACQXL ADAGL AFJJK AFSIO AHFRZ AIOBO CAG CITATION COF DIK EJD ITC PHGZM PHGZT PJZUB PPXIY RIG RXVBD TR2 7XB 8FK K9. PKEHL PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c334t-6992fe8933bb1bea2d9cda8ad2cb197716b622243cb2b18423896acecc598ab3 |
IEDL.DBID | 7X7 |
ISSN | 1011-7571 1423-0151 |
IngestDate | Fri Jul 11 04:55:58 EDT 2025 Fri Jul 25 05:24:09 EDT 2025 Tue Aug 05 12:01:03 EDT 2025 Thu Sep 05 17:57:48 EDT 2024 Thu Aug 29 12:04:47 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4-5 |
Keywords | Heart failure with a preserved ejection fraction Phenomapping Hierarchical clustering Cardiac remodeling biomarkers Cystatin C |
Language | English |
License | This article is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC). Usage and distribution for commercial purposes requires written permission. https://creativecommons.org/licenses/by-nc/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-6992fe8933bb1bea2d9cda8ad2cb197716b622243cb2b18423896acecc598ab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://karger.com/doi/10.1159/000534155 |
PMID | 37734333 |
PQID | 2900320440 |
PQPubID | 2047984 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2868123989 karger_primary_534155 crossref_primary_10_1159_000534155 proquest_journals_2900320440 |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel, Switzerland |
PublicationPlace_xml | – name: Basel, Switzerland – name: Basel |
PublicationTitle | Medical principles and practice |
PublicationTitleAlternate | Med Princ Pract |
PublicationYear | 2023 |
Publisher | S. Karger AG |
Publisher_xml | – name: S. Karger AG |
References | D’Elia E, Vaduganathan M, Gori M, Gavazzi A, Butler J, Senni M. Role of biomarkers in cardiac structure phenotyping in heart failure with preserved ejection fraction: critical appraisal and practical use. Eur J Heart Fail. 2015;17(12):1231–9. Tromp J, Ouwerkerk W, Demissei BG, Anker SD, Cleland JG, Dickstein K. Novel endotypes in heart failure: effects on guideline-directed medical therapy. Eur Heart J. 2018;39(48):4269–76. Hwang SJ, Melenovsky V, Borlaug BA. Implications of coronary artery disease in heart failure with preserved ejection fraction. J Am Coll Cardiol. 20146325 Pt A281727. Farmakis D, Mueller C, Apple FS. High-sensitivity cardiac troponin assays for cardiovascular risk stratification in the general population. Eur Heart J. 2020;41(41):4050–6. Lanktree MB, Johansen CT, Joy TR, Hegele RA. A translational view of the genetics of lipodystrophy and ectopic fat deposition. Prog Mol Biol Transl Sci. 2010;94:159–96. Ahlqvist E, Storm P, Käräjämäki A, Martinell M, Dorkhan M, Carlsson A. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018;6(5):361–9. Kao DP, Lewsey JD, Anand IS, Massie BM, Zile MR, Carson PE. Characterization of subgroups of heart failure patients with preserved ejection fraction with possible implications for prognosis and treatment response. Eur J Heart Fail. 2015;17(9):925–35. Clerico A, Zaninotto M, Passino C, Aspromonte N, Piepoli MF, Migliardi M. Evidence on clinical relevance of cardiovascular risk evaluation in the general population using cardio-specific biomarkers. Clin Chem Lab Med. 2020;59(1):79–90. Pieske B, Tschöpe C, de Boer RA, Fraser AG, Anker SD, Donal E. How to diagnose heart failure with preserved ejection fraction: the HFA–PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur Heart J. 2019;40(40):3297–317. Clerico A, Carlo Zucchelli G, Pilo A, Passino C, Emdin M. Clinical relevance of biological variation: the lesson of brain natriuretic peptide (BNP) and NT-proBNP assay. Clin Chem Lab Med. 2006;44(4):366–78. Perrone MA, Aimo A, Bernardini S, Clerico A. Inflammageing and cardiovascular system: focus on cardiokines and cardiac-specific biomarkers. Int J Mol Sci. 2023;24(1):844. Clerico A, Recchia FA, Passino C, Emdin M. Cardiac endocrine function is an essential component of the homeostatic regulation network: physiological and clinical implications. Am J Physiol Heart Circ Physiol. 2006;290(1):17–29. Butler J, Fonarow G, Zile MR, Lam CS, Roessig L, Schelbert EB. Developing therapies for heart failure with preserved ejection fraction: current state and future directions. JACC Heart Fail. 2014;2:97–112. Cohen JB, Schrauben SJ, Zhao L, Basso MD, Cvijic ME, Li Z. Clinical phenogroups in heart failure with preserved ejection fraction: detailed phenotypes, prognosis, and response to Spironolactone. JACC Heart Fail. 2020;8(3):172–84. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European society of cardiology (ESC) Developed with the special contribution of the heart failure association (HFA) of the ESC. Eur J Heart Fail. 2016;18(8):891–975. Houle D, Govindaraju D, Omholt S. Phenomics: the next challenge. Nat Rev Genet. 2010;11(12):855–66. Lund LH, Donal E, Oger E, Hage C, Persson H, Haugen-Löfman I. Association between cardiovascular vs. non-cardiovascular co-morbidities and outcomes in heart failure with preserved ejection fraction. Eur J Heart Fail. 2014;16(9):992–1001. Senni M, Paulus WJ, Gavazzi A, Fraser AG, Díez J, Solomon SD. New strategies for heart failure with preserved ejection fraction: the importance of targeted therapies for heart failure phenotypes. Eur Heart J. 2014;35(40):2797–815. Emdin M, Passino C, Prontera C, Iervasi A, Ripoli A, Masini S. Cardiac natriuretic hormones, neuro-hormones, thyroid hormones and cytokines in normal subjects and patients with heart failure. Clin Chem Lab Med. 2004;42(6):627–36. Kelly JP, Mentz RJ, Mebazaa A, Voors AA, Butler J, Roessig L. Patient selection in heart failure with preserved ejection fraction clinical trials. Am Coll Cardiol. 2015;65(16):1668–82. Ahmad T, Pencina MJ, Schulte PJ, O'Brien E, Whellan DJ, Piña IL. Clinical implications of chronic heart failure phenotypes defined by cluster analysis. J Am Coll Cardiol. 2014;64(17):1765–74. Samson R, Jaiswal A, Ennezat PV, Cassidy M, Le Jemtel TH. Clinical phenotypes in heart failure with preserved ejection fraction. J Am Heart Assoc. 2016;5(1):e002477. Aimo A, Georgiopoulos G, Panichella G, Vergaro G, Passino C, Emdin M. High-sensitivity troponins for outcome prediction in the general population: a systematic review and meta-analysis. Eur J Intern Med. 2022;98:61–8. Lang RM, Badano LP, Mor-Avi VV, Afilalo J, Armstrong A, Ernande L. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16(3):233–70. van Riet EES, Hoes AW, Wagenaar KP, Limburg A, Landman MAJ, Rutten FH. Epidemiology of heart failure: the prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review. Eur J Heart Fail. 2016;18(3):242–52. Morfino P, Aimo A, Castiglione V, Vergaro G, Emdin M, Clerico A. Biomarkers of HFpEF: natriuretic peptides, high-sensitivity troponins and beyond. J Cardiovasc Dev Dis. 2022;9(8):256. R Core TeamR: a language and environment for statistical computingVienna, AustriaR Foundation for Statistical Computing. 2014. http://www.R-project.org/. Shah SJ, Katz DH, Selvaraj S, Burke MA, Yancy CW, Gheorghiade M. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation. 2015;131(3):269–79. Hedman AK, Hage C, Sharma A, Brosnan MJ, Buckbinder L, Gan LM. Identification of novel pheno-groups in heart failure with preserved ejection fraction using machine learning. Heart. 2020;106(5):342–9. Hastie T, Tibshirani R, Friedman J. Unsupervised learning: hierarchical clustering2nd ed. In: Hastie T, Tibshirani R, Friedman J, editors. The elements of statistical learningNew York, NYSpringer. 2009. p. 5208. Segar MW, Patel KV, Ayers C, Basit M, Tang WH, Willett D. Phenomapping of patients with heart failure with preserved ejection fraction using machine learning-based unsupervised cluster analysis. Eur J Heart Fail. 2020;22(1):148–58. Ohara T, Little WC. Evolving focus on diastolic dysfunction in patients with coronary artery disease. Curr Opin Cardiol. 2010;25(6):613–21. Mitic V, Stojanovic D, Deljanin Ilic M, Stojanovic M, Petrovic D, Ignjatovic A. Cardiac remodeling biomarkers as potential circulating markers of left ventricular hypertrophy in heart failure with preserved ejection fraction. Tohoku J Exp Med. 2020;250(4):233–42. Gu J, Pan J, Lin H, Zhang J, Wang C. Characteristics, prognosis and treatment response in distinct phenogroups of heart failure with preserved ejection fraction. Int J Cardiol. 2021;323:148–54. Clerico A, Del Ry S, Maffei S, Prontera C, Emdin M, Giannessi D. The circulating levels of cardiac natriuretic hormones in healthy adults: effects of age and sex. Clin Chem Lab Med. 2002;40(4):371–7. Liu CM, Lin CY, Chang SL, Lin YJ, Lo LW, Hu YF. Intermediate pause at daytime is associated with increased cardiovascular risk and mortality: an 8-year cohort study. J Am Heart Assoc. 2018;7(12):e009034. ref13 ref12 ref34 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – reference: Pieske B, Tschöpe C, de Boer RA, Fraser AG, Anker SD, Donal E. How to diagnose heart failure with preserved ejection fraction: the HFA–PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur Heart J. 2019;40(40):3297–317. – reference: Shah SJ, Katz DH, Selvaraj S, Burke MA, Yancy CW, Gheorghiade M. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation. 2015;131(3):269–79. – reference: Segar MW, Patel KV, Ayers C, Basit M, Tang WH, Willett D. Phenomapping of patients with heart failure with preserved ejection fraction using machine learning-based unsupervised cluster analysis. Eur J Heart Fail. 2020;22(1):148–58. – reference: Cohen JB, Schrauben SJ, Zhao L, Basso MD, Cvijic ME, Li Z. Clinical phenogroups in heart failure with preserved ejection fraction: detailed phenotypes, prognosis, and response to Spironolactone. JACC Heart Fail. 2020;8(3):172–84. – reference: D’Elia E, Vaduganathan M, Gori M, Gavazzi A, Butler J, Senni M. Role of biomarkers in cardiac structure phenotyping in heart failure with preserved ejection fraction: critical appraisal and practical use. Eur J Heart Fail. 2015;17(12):1231–9. – reference: Kao DP, Lewsey JD, Anand IS, Massie BM, Zile MR, Carson PE. Characterization of subgroups of heart failure patients with preserved ejection fraction with possible implications for prognosis and treatment response. Eur J Heart Fail. 2015;17(9):925–35. – reference: Lang RM, Badano LP, Mor-Avi VV, Afilalo J, Armstrong A, Ernande L. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16(3):233–70. – reference: Gu J, Pan J, Lin H, Zhang J, Wang C. Characteristics, prognosis and treatment response in distinct phenogroups of heart failure with preserved ejection fraction. Int J Cardiol. 2021;323:148–54. – reference: Farmakis D, Mueller C, Apple FS. High-sensitivity cardiac troponin assays for cardiovascular risk stratification in the general population. Eur Heart J. 2020;41(41):4050–6. – reference: Houle D, Govindaraju D, Omholt S. Phenomics: the next challenge. Nat Rev Genet. 2010;11(12):855–66. – reference: Hedman AK, Hage C, Sharma A, Brosnan MJ, Buckbinder L, Gan LM. Identification of novel pheno-groups in heart failure with preserved ejection fraction using machine learning. Heart. 2020;106(5):342–9. – reference: Mitic V, Stojanovic D, Deljanin Ilic M, Stojanovic M, Petrovic D, Ignjatovic A. Cardiac remodeling biomarkers as potential circulating markers of left ventricular hypertrophy in heart failure with preserved ejection fraction. Tohoku J Exp Med. 2020;250(4):233–42. – reference: Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European society of cardiology (ESC) Developed with the special contribution of the heart failure association (HFA) of the ESC. Eur J Heart Fail. 2016;18(8):891–975. – reference: Ahmad T, Pencina MJ, Schulte PJ, O'Brien E, Whellan DJ, Piña IL. Clinical implications of chronic heart failure phenotypes defined by cluster analysis. J Am Coll Cardiol. 2014;64(17):1765–74. – reference: Clerico A, Del Ry S, Maffei S, Prontera C, Emdin M, Giannessi D. The circulating levels of cardiac natriuretic hormones in healthy adults: effects of age and sex. Clin Chem Lab Med. 2002;40(4):371–7. – reference: Liu CM, Lin CY, Chang SL, Lin YJ, Lo LW, Hu YF. Intermediate pause at daytime is associated with increased cardiovascular risk and mortality: an 8-year cohort study. J Am Heart Assoc. 2018;7(12):e009034. – reference: Lanktree MB, Johansen CT, Joy TR, Hegele RA. A translational view of the genetics of lipodystrophy and ectopic fat deposition. Prog Mol Biol Transl Sci. 2010;94:159–96. – reference: Lund LH, Donal E, Oger E, Hage C, Persson H, Haugen-Löfman I. Association between cardiovascular vs. non-cardiovascular co-morbidities and outcomes in heart failure with preserved ejection fraction. Eur J Heart Fail. 2014;16(9):992–1001. – reference: Emdin M, Passino C, Prontera C, Iervasi A, Ripoli A, Masini S. Cardiac natriuretic hormones, neuro-hormones, thyroid hormones and cytokines in normal subjects and patients with heart failure. Clin Chem Lab Med. 2004;42(6):627–36. – reference: Ahlqvist E, Storm P, Käräjämäki A, Martinell M, Dorkhan M, Carlsson A. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018;6(5):361–9. – reference: Hwang SJ, Melenovsky V, Borlaug BA. Implications of coronary artery disease in heart failure with preserved ejection fraction. J Am Coll Cardiol. 20146325 Pt A281727. – reference: van Riet EES, Hoes AW, Wagenaar KP, Limburg A, Landman MAJ, Rutten FH. Epidemiology of heart failure: the prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review. Eur J Heart Fail. 2016;18(3):242–52. – reference: Ohara T, Little WC. Evolving focus on diastolic dysfunction in patients with coronary artery disease. Curr Opin Cardiol. 2010;25(6):613–21. – reference: Samson R, Jaiswal A, Ennezat PV, Cassidy M, Le Jemtel TH. Clinical phenotypes in heart failure with preserved ejection fraction. J Am Heart Assoc. 2016;5(1):e002477. – reference: Clerico A, Recchia FA, Passino C, Emdin M. Cardiac endocrine function is an essential component of the homeostatic regulation network: physiological and clinical implications. Am J Physiol Heart Circ Physiol. 2006;290(1):17–29. – reference: Hastie T, Tibshirani R, Friedman J. Unsupervised learning: hierarchical clustering2nd ed. In: Hastie T, Tibshirani R, Friedman J, editors. The elements of statistical learningNew York, NYSpringer. 2009. p. 5208. – reference: Tromp J, Ouwerkerk W, Demissei BG, Anker SD, Cleland JG, Dickstein K. Novel endotypes in heart failure: effects on guideline-directed medical therapy. Eur Heart J. 2018;39(48):4269–76. – reference: Aimo A, Georgiopoulos G, Panichella G, Vergaro G, Passino C, Emdin M. High-sensitivity troponins for outcome prediction in the general population: a systematic review and meta-analysis. Eur J Intern Med. 2022;98:61–8. – reference: Butler J, Fonarow G, Zile MR, Lam CS, Roessig L, Schelbert EB. Developing therapies for heart failure with preserved ejection fraction: current state and future directions. JACC Heart Fail. 2014;2:97–112. – reference: Clerico A, Carlo Zucchelli G, Pilo A, Passino C, Emdin M. Clinical relevance of biological variation: the lesson of brain natriuretic peptide (BNP) and NT-proBNP assay. Clin Chem Lab Med. 2006;44(4):366–78. – reference: Senni M, Paulus WJ, Gavazzi A, Fraser AG, Díez J, Solomon SD. New strategies for heart failure with preserved ejection fraction: the importance of targeted therapies for heart failure phenotypes. Eur Heart J. 2014;35(40):2797–815. – reference: R Core TeamR: a language and environment for statistical computingVienna, AustriaR Foundation for Statistical Computing. 2014. http://www.R-project.org/. – reference: Perrone MA, Aimo A, Bernardini S, Clerico A. Inflammageing and cardiovascular system: focus on cardiokines and cardiac-specific biomarkers. Int J Mol Sci. 2023;24(1):844. – reference: Morfino P, Aimo A, Castiglione V, Vergaro G, Emdin M, Clerico A. Biomarkers of HFpEF: natriuretic peptides, high-sensitivity troponins and beyond. J Cardiovasc Dev Dis. 2022;9(8):256. – reference: Clerico A, Zaninotto M, Passino C, Aspromonte N, Piepoli MF, Migliardi M. Evidence on clinical relevance of cardiovascular risk evaluation in the general population using cardio-specific biomarkers. Clin Chem Lab Med. 2020;59(1):79–90. – reference: Kelly JP, Mentz RJ, Mebazaa A, Voors AA, Butler J, Roessig L. Patient selection in heart failure with preserved ejection fraction clinical trials. Am Coll Cardiol. 2015;65(16):1668–82. – ident: ref21 doi: 10.1002/ejhf.137 – ident: ref29 doi: 10.1515/CCLM.2002.060 – ident: ref6 doi: 10.1016/j.jacc.2015.03.043 – ident: ref33 doi: 10.1515/cclm-2020-0310 – ident: ref34 doi: 10.1016/j.ejim.2022.01.012 – ident: ref22 doi: 10.1620/tjem.250.233 – ident: ref26 doi: 10.1515/CCLM.2006.063 – ident: ref23 doi: 10.1016/j.jacc.2014.03.034 – ident: ref28 doi: 10.3390/ijms24010844 – ident: ref31 doi: 10.1161/JAHA.118.009034 – ident: ref13 doi: 10.1002/ejhf.327 – ident: ref20 doi: 10.1002/ejhf.430 – ident: ref18 doi: 10.1093/eurheartj/ehy712 – ident: ref1 doi: 10.1002/ejhf.592 – ident: ref4 doi: 10.1093/eurheartj/ehu204 – ident: ref11 doi: 10.1136/heartjnl-2019-315481 – ident: ref25 doi: 10.1152/ajpheart.00684.2005 – ident: ref2 doi: 10.1093/eurheartj/ehz641 – ident: ref9 doi: 10.1038/nrg2897 – ident: ref15 doi: 10.1002/ejhf.1621 – ident: ref24 doi: 10.1097/HCO.0b013e32833f0438 – ident: ref32 doi: 10.1093/eurheartj/ehaa083 – ident: ref17 doi: 10.1016/j.jacc.2014.07.979 – ident: ref19 doi: 10.1093/ehjci/jev014 – ident: ref5 doi: 10.1161/CIRCULATIONAHA.114.010637 – ident: ref16 doi: 10.1016/j.jchf.2019.09.009 – ident: ref14 doi: 10.1016/j.ijcard.2020.08.065 – ident: ref8 doi: 10.3390/jcdd9080256 – ident: ref27 doi: 10.1515/CCLM.2004.108 – ident: ref12 doi: 10.1016/S2213-8587(18)30051-2 – ident: ref3 doi: 10.1002/ejhf.483 – ident: ref30 doi: 10.1161/JAHA.115.002477 – ident: ref7 doi: 10.1016/j.jchf.2013.10.006 – ident: ref10 doi: 10.1016/B978-0-12-375003-7.00006-6 |
SSID | ssj0008330 |
Score | 2.3242455 |
Snippet | Objectives: We hypothesized the existence of distinct phenotype-based groups within the very heterogeneous population of patients of heart failure with... We hypothesized the existence of distinct phenotype-based groups within the very heterogeneous population of patients of heart failure with preserved ejection... |
SourceID | proquest crossref karger |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 297 |
SubjectTerms | Biomarkers Clustering Cysts Ejection fraction Electrocardiography Flow velocity Genotype & phenotype Heart failure Heart rate Machine learning Original Paper Patients Plasma Population Pulmonary arteries Rehabilitation |
Title | Biomarker Phenotypes in Heart Failure with Preserved Ejection Fraction Using Hierarchical Clustering: A Pilot Study |
URI | https://karger.com/doi/10.1159/000534155 https://www.proquest.com/docview/2900320440 https://www.proquest.com/docview/2868123989 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA86RbyInzidI4rX4Nq0aeNFNtkYwqTIhN1KkqZYne3cuoP_vXlpN1HBSw5JyCFf7-v33g-ha6Zp4IHTXUoIM6auQ4QvBVGK-7yjQUWA5OTRIxs-ew8Tf1I73BY1rHL1J9qPOikU-MhvXHC5uUCQfDf7IMAaBdHVmkJjE21B6TKAdAWTtcFltAtaVSNwHBL4gVNXFjIS3HLZURCmP-TR9hvAr-d__mUrbAb7aK_WEnG3OtYDtKHzQ7QzquPgR2jRy4p3ANbMcfSi8wIcqQuc5XhoLm6JByIDtDkGJysGkAXAGhPcf7W4qxwP5lU6A7aAATzMIAvZkqJM8f10CbUTTP8t7uIomxYlBrDh5zEaD_rj-yGp6ROIotQrCePcTbXRR6iUjtTCTbhKRCgSV0nHqH0Ok8xoBx5V0pXG0DPCmzOhzJn6PBSSnqBGXuT6FGEmOqmgzOvQQELJMJGoNNSJ54P0Z17aRFerPYxnVZGM2BoXPo_XG91Ex9Xurqes-lu_-kdRVA3Fs8Ss3VqdRVw_r0X8fRma6HI9bB4GRDtEroulmRNCaTXKQ372_xLnaBc45KsEwxZqlPOlvjCaRinb9jq10Vav_xg9ta29btoRIV_cydRg |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NDrG9TAOG1lGGQfAY0diJG0-apm20ythaRahIe4tsxxHZSlLaVGh_1P7H-fJRBEi87dWOLOV89n34d_cD-MANG3iYdFcKnxlT6jrSV9LRWviib9BFwOLk8YSH37wv1_71Bty3tTAIq2zvxOqiTgqNOfJPFFNuFAmST-Y_HWSNwtfVlkKjVotLc_fLhmzL44vPdn8_UjoaTs9Dp2EVcDRjXulwIWhqkGVeKVcZSROhExnIhGrlWm_I5Ypbo-kxraiy8Y-1aYJLbX_VF4FUzC77BDY9ZiOZDmyeDSfR1_XVHzBWtz9wXWfgD9ymlZF1GSryPIbW-w8D-PQW8d6LfwxBZd1Gu7DTuKXktNaj57Bh8hfwbNw8vL-E5VlW_EAkz4JE301eYOZ2SbKchFYkJRnJDOHtBLO6BFEdiKNMyPCmAnrlZLSo6ydIhVAgYYZlzxULy4ycz1bYrMGOH5FTEmWzoiSIbrzbg-ljSPYVdPIiN_tAuOynknGvzwYKe5TJRKeBSTwf3Q3upV1438owntddOeIqmvFFvBZ0F_Zq6a4_acd7f42Po6ieiueJXbvX7kXcnOdl_Fv7uvBuPW1PIj6vyNwUK_tNgL3cmAjEwf-XeAtb4XR8FV9dTC5fwzYS2NfVjT3olIuVeWPdnFIdNspFIH5kdX4AKIkPcQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VgqpeEI8iFhYwCI5RN3bixEgIlbbRlrJVDkXaW2Q7jghsk2U3K9Sfxr9jJo9FgMStVzuylPHY8_A38wG8lk5EASXdjaFnxoL7ng6N9qxVoZo4chGoOHl2Iaefg4_zcL4DP4daGIJVDndie1HntaUc-SGnlBsnguTDoodFpCfJ--V3jxik6KV1oNPoVOTcXf_A8G397uwE9_oN58np5fHU6xkGPCtE0HhSKV44Ypw3xjdO81zZXMc659b46Bn50kg0oIGwhhuMhdC-Kakt_naoYm0ELnsLbkci9OmIRfNtrIeOjegaIfi-F4WR3zc1QuehpdETZMf_MIV3vhHye_WPSWjtXHIP7vYOKjvqNOo-7LjqAezN-if4h7D-UNZXhOlZsfSLq2rK4a5ZWbEpCqRhiS4J6M4ov8sI30GIypydfm0hXxVLVl0lBWuxCmxaUgF0y8eyYMeLDbVtwPG37Iil5aJuGOEcrw_g8ibk-gh2q7pyj4FJPSm0kMFERIa6lencFrHLg5AcDxkUI3g1yDBbdv05sjauCVW2FfQIDjrpbj8Zxsd_jc_StJvKljmuPR72IutP9jr7rYcjeLmdxjNJDy26cvUGv4mpq5tQsXry_yVewB4qcfbp7OL8KewTk31X5jiG3Wa1cc_Q32nM81azGGQ3rMm_AOIUEkE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomarker+Phenotypes+in+Heart+Failure+with+Preserved+Ejection+Fraction+Using+Hierarchical+Clustering-A+Pilot+Study&rft.jtitle=Medical+principles+and+practice&rft.au=Mitic%2C+Valentina&rft.au=Stojanovic%2C+Dijana&rft.au=Deljanin-Ilic%2C+Marina&rft.au=Petrovic%2C+Dejan&rft.date=2023-11-01&rft.issn=1423-0151&rft.eissn=1423-0151&rft_id=info:doi/10.1159%2F000534155&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1011-7571&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1011-7571&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1011-7571&client=summon |