Supervised learning for parameterized Koopmans–Beckmann’s graph matching

•Discusses a novel graph matching model, i.e., parameterized Koopmans–Beckmann’s graph matching (KBGMw).•Proposes a supervised learning method for KBGMw.•Shows the performances of the proposed method and several state-of-the-art graph matching methods.•Summarizes the advantages and disadvantages of...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition letters Vol. 143; pp. 8 - 13
Main Authors Zeng, Shaofeng, Liu, Zhiyong, Yang, Xu
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.03.2021
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Discusses a novel graph matching model, i.e., parameterized Koopmans–Beckmann’s graph matching (KBGMw).•Proposes a supervised learning method for KBGMw.•Shows the performances of the proposed method and several state-of-the-art graph matching methods.•Summarizes the advantages and disadvantages of the proposed method. In this paper, we discuss a novel graph matching problem, namely the parameterized Koopmans–Beckmann’s graph matching (KBGMw). KBGMw is defined by a weighted linear combination of a series of Koopmans–Beckmann’s graph matching. First, we show that KBGMw can be taken as a special case of the parameterized Lawler’s graph matching, subject to certain conditions. Second, based on structured SVM, we propose a supervised learning method for automatically estimating the parameters of KBGMw. Experimental results on both synthetic and real image matching data sets show that the proposed method achieves relatively better performances, even superior to some deep learning methods.
AbstractList In this paper, we discuss a novel graph matching problem, namely the parameterized Koopmans–Beckmann's graph matching (KBGMw). KBGMw is defined by a weighted linear combination of a series of Koopmans–Beckmann's graph matching. First, we show that KBGMw can be taken as a special case of the parameterized Lawler's graph matching, subject to certain conditions. Second, based on structured SVM, we propose a supervised learning method for automatically estimating the parameters of KBGMw. Experimental results on both synthetic and real image matching data sets show that the proposed method achieves relatively better performances, even superior to some deep learning methods.
•Discusses a novel graph matching model, i.e., parameterized Koopmans–Beckmann’s graph matching (KBGMw).•Proposes a supervised learning method for KBGMw.•Shows the performances of the proposed method and several state-of-the-art graph matching methods.•Summarizes the advantages and disadvantages of the proposed method. In this paper, we discuss a novel graph matching problem, namely the parameterized Koopmans–Beckmann’s graph matching (KBGMw). KBGMw is defined by a weighted linear combination of a series of Koopmans–Beckmann’s graph matching. First, we show that KBGMw can be taken as a special case of the parameterized Lawler’s graph matching, subject to certain conditions. Second, based on structured SVM, we propose a supervised learning method for automatically estimating the parameters of KBGMw. Experimental results on both synthetic and real image matching data sets show that the proposed method achieves relatively better performances, even superior to some deep learning methods.
Author Yang, Xu
Liu, Zhiyong
Zeng, Shaofeng
Author_xml – sequence: 1
  givenname: Shaofeng
  surname: Zeng
  fullname: Zeng, Shaofeng
  email: shaofeng.zeng@ia.ac.cn
– sequence: 2
  givenname: Zhiyong
  surname: Liu
  fullname: Liu, Zhiyong
– sequence: 3
  givenname: Xu
  surname: Yang
  fullname: Yang, Xu
BookMark eNqFkDtOAzEQhi0EEkngBhQrUW_wa70OBRJEvEQkCqC2HO8sOCT2YjuRoModqLgeJ8EoVBQwzYxm_m_G_vto23kHCB0QPCSYiKPZsNMpgBlSTHOLDjGhW6hHZE3LmnG-jXpZVpdSVNUu6sc4wxgLNpI9NLlbdhBWNkJTzEEHZ91j0fpQdDroBSQI9i2PbrzvFtrFz_X7GZjnXLrP9UcsHoPunoqFTuYpg3top9XzCPs_eYAeLs7vx1fl5Pbyenw6KQ1jPJWCNSCmlRQ5GMVY1xI4aae44obyaQ2yGQmB27plLdcVyPzulhk5BUxGdSXZAB1u9nbBvywhJjXzy-DySUUrzLigTNKs4huVCT7GAK3qgl3o8KoIVt--qZna-Ka-fVOEquxbxo5_YcYmnax3KWg7_w8-2cCQv7-yEFQ0FpyBxmZpUo23fy_4AhIzj3Y
CitedBy_id crossref_primary_10_1007_s11263_024_02040_8
Cites_doi 10.1137/0108053
10.1109/34.491619
10.2307/1907742
10.1109/34.993558
10.1109/TPAMI.2017.2716350
10.1016/0166-218X(83)90018-5
10.1287/mnsc.9.4.586
10.1109/TSSC.1968.300136
10.1016/j.patrec.2020.07.010
10.1109/TPAMI.2008.245
10.1109/TPAMI.2009.28
10.1016/j.patrec.2015.01.009
10.1007/s11263-014-0707-7
10.1016/j.imavis.2008.04.004
10.1109/TGRS.2018.2820040
10.1007/s11263-009-0275-4
10.1109/TPAMI.2013.223
10.1016/j.patrec.2018.08.026
10.1109/TPAMI.2012.51
ContentType Journal Article
Copyright 2020
Copyright Elsevier Science Ltd. Mar 2021
Copyright_xml – notice: 2020
– notice: Copyright Elsevier Science Ltd. Mar 2021
DBID AAYXX
CITATION
7SC
7TK
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.patrec.2020.12.012
DatabaseName CrossRef
Computer and Information Systems Abstracts
Neurosciences Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Neurosciences Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1872-7344
EndPage 13
ExternalDocumentID 10_1016_j_patrec_2020_12_012
S0167865520304438
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABDPE
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WH7
WUQ
XPP
Y6R
ZMT
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
CITATION
7SC
7TK
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-63de6b5866663200a78e41fb054c24b7e8d9660f7f3f4a5e8865f3c8be0197583
IEDL.DBID .~1
ISSN 0167-8655
IngestDate Fri Jul 25 04:04:28 EDT 2025
Tue Jul 01 05:16:39 EDT 2025
Thu Apr 24 23:00:08 EDT 2025
Sat Apr 12 15:20:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Koopmans–Beckmann
Supervised learning
Structured SVM
Graph matching
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-63de6b5866663200a78e41fb054c24b7e8d9660f7f3f4a5e8865f3c8be0197583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2503462382
PQPubID 2047552
PageCount 6
ParticipantIDs proquest_journals_2503462382
crossref_primary_10_1016_j_patrec_2020_12_012
crossref_citationtrail_10_1016_j_patrec_2020_12_012
elsevier_sciencedirect_doi_10_1016_j_patrec_2020_12_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2021
2021-03-00
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Pattern recognition letters
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Yao, Li (bib0033) 2012
Gold, Rangarajan (bib0013) 1996; 18
Zhang, Saha, Vishwanathan (bib0036) 2010
Cho, Sun, Duchenne, Ponce (bib0007) 2014
Tsochantaridis, Joachims, Hofmann, Altun (bib0029) 2005; 6
Caetano, Mcauley, Cheng, Le, Smola (bib0004) 2009; 31
Cortes, Serratosa (bib0008) 2015; 56
Kelley (bib0015) 1960; 8
Liu, Qiao, Yang, Hoi (bib0021) 2014; 109
Ma, Jiang, Zhou, Zhao, Guo (bib0022) 2018; 56
Ravikumar, Lafferty (bib0025) 2006; 23
Wang, Yan, Yang (bib0030) 2019
Zanfir, Sminchisescu (bib0034) 2018
Michelle, Edward, Huang, Shuran, Serena, Li (bib0023) 2018; 11205
Bougleux, Gazre, Brun (bib0003) 2016
Francesc (bib0011) 2020; 138
Hart, Nilsson, Raphael (bib0014) 1968; 4
Zaslavskiy, Bach, Vert (bib0035) 2009; 31
Wang, Ling (bib0031) 2018; 40
Frieze, Yadegar (bib0012) 1983; 5
Everingham, Van Gool, Williams, Winn, Zisserman (bib0010) 2010; 88
Algabli, Serratosa (bib0001) 2018; 112
Wang, Ling, Lang, Wu (bib0032) 2016
Cho, Lee, Lee (bib0006) 2010
Lawler (bib0017) 1963; 9
Cho, Alahari, Ponce (bib0005) 2013
A.R. Prescott, R.S. Zemel, Ranking via sinkhorn propagation
(2011).
Riesen, Bunke (bib0026) 2009; 27
Egozi, Keller, Guterman (bib0009) 2013; 35
Timothee, Praveen, Jianbo (bib0027) 2006
Koopmans, Beckmann (bib0016) 1957; 25
Leordeanu, Hebert (bib0018) 2005; 2
Liu, Qiao (bib0020) 2014; 36
Tsochantaridis, Hofmann, Joachims, Altun (bib0028) 2004
Belongie, Malik, Puzicha (bib0002) 2002; 24
Leordeanu, Hebert, S. (bib0019) 2009
Liu (10.1016/j.patrec.2020.12.012_bib0020) 2014; 36
Michelle (10.1016/j.patrec.2020.12.012_bib0023) 2018; 11205
Bougleux (10.1016/j.patrec.2020.12.012_bib0003) 2016
Zaslavskiy (10.1016/j.patrec.2020.12.012_bib0035) 2009; 31
Belongie (10.1016/j.patrec.2020.12.012_bib0002) 2002; 24
Caetano (10.1016/j.patrec.2020.12.012_bib0004) 2009; 31
Riesen (10.1016/j.patrec.2020.12.012_bib0026) 2009; 27
Everingham (10.1016/j.patrec.2020.12.012_bib0010) 2010; 88
Egozi (10.1016/j.patrec.2020.12.012_bib0009) 2013; 35
Wang (10.1016/j.patrec.2020.12.012_bib0030) 2019
Algabli (10.1016/j.patrec.2020.12.012_bib0001) 2018; 112
Frieze (10.1016/j.patrec.2020.12.012_bib0012) 1983; 5
Gold (10.1016/j.patrec.2020.12.012_bib0013) 1996; 18
Wang (10.1016/j.patrec.2020.12.012_bib0031) 2018; 40
Cho (10.1016/j.patrec.2020.12.012_bib0005) 2013
10.1016/j.patrec.2020.12.012_bib0024
Cortes (10.1016/j.patrec.2020.12.012_bib0008) 2015; 56
Liu (10.1016/j.patrec.2020.12.012_bib0021) 2014; 109
Yao (10.1016/j.patrec.2020.12.012_bib0033) 2012
Hart (10.1016/j.patrec.2020.12.012_bib0014) 1968; 4
Koopmans (10.1016/j.patrec.2020.12.012_bib0016) 1957; 25
Timothee (10.1016/j.patrec.2020.12.012_bib0027) 2006
Zhang (10.1016/j.patrec.2020.12.012_bib0036) 2010
Lawler (10.1016/j.patrec.2020.12.012_bib0017) 1963; 9
Cho (10.1016/j.patrec.2020.12.012_bib0007) 2014
Leordeanu (10.1016/j.patrec.2020.12.012_bib0018) 2005; 2
Ravikumar (10.1016/j.patrec.2020.12.012_bib0025) 2006; 23
Francesc (10.1016/j.patrec.2020.12.012_bib0011) 2020; 138
Cho (10.1016/j.patrec.2020.12.012_bib0006) 2010
Tsochantaridis (10.1016/j.patrec.2020.12.012_bib0028) 2004
Zanfir (10.1016/j.patrec.2020.12.012_bib0034) 2018
Ma (10.1016/j.patrec.2020.12.012_bib0022) 2018; 56
Leordeanu (10.1016/j.patrec.2020.12.012_bib0019) 2009
Tsochantaridis (10.1016/j.patrec.2020.12.012_bib0029) 2005; 6
Kelley (10.1016/j.patrec.2020.12.012_bib0015) 1960; 8
Wang (10.1016/j.patrec.2020.12.012_bib0032) 2016
References_xml – start-page: 313
  year: 2006
  end-page: 320
  ident: bib0027
  article-title: Balanced graph matching
  publication-title: Proceedings of the 19th International Conference on Neural Information Processing Systems
– volume: 31
  start-page: 1048
  year: 2009
  end-page: 1058
  ident: bib0004
  article-title: Learning graph matching
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 27
  start-page: 950
  year: 2009
  end-page: 959
  ident: bib0026
  article-title: Approximate graph edit distance computation by means of bipartite graph matching
  publication-title: Image Vis. Comput.
– reference: (2011).
– volume: 2
  start-page: 1482
  year: 2005
  end-page: 1489
  ident: bib0018
  article-title: A spectral technique for correspondence problems using pairwise constraints
  publication-title: Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1
– volume: 56
  start-page: 4435
  year: 2018
  end-page: 4447
  ident: bib0022
  article-title: Guided locality preserving feature matching for remote sensing image registration
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 88
  start-page: 303
  year: 2010
  end-page: 338
  ident: bib0010
  article-title: The pascal visual object classes (VOC) challenge
  publication-title: Int. J. Comput. Vis.
– volume: 31
  start-page: 2227
  year: 2009
  end-page: 2242
  ident: bib0035
  article-title: A path following algorithm for the graph matching problem
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 508
  year: 2016
  end-page: 523
  ident: bib0032
  article-title: Branching path following for graph matching
  publication-title: European Conference on Computer Vision – ECCV 2016
– volume: 23
  start-page: 737
  year: 2006
  end-page: 744
  ident: bib0025
  article-title: Quadratic programming relaxations for metric labeling and Markov random field map estimation
  publication-title: International Conference on Machine learning (ICML)
– reference: A.R. Prescott, R.S. Zemel, Ranking via sinkhorn propagation,
– volume: 6
  start-page: 1453
  year: 2005
  end-page: 1484
  ident: bib0029
  article-title: Large margin methods for structured and interdependent output variables
  publication-title: J. Mach. Learn. Res.
– volume: 9
  start-page: 586
  year: 1963
  end-page: 599
  ident: bib0017
  article-title: The quadratic assignment problem
  publication-title: Manag. Sci.
– start-page: 104
  year: 2004
  end-page: 111
  ident: bib0028
  article-title: Support vector machine learning for interdependent and structured output spaces
  publication-title: Proceedings of the Twenty-First International Conference on Machine Learning
– start-page: 3056
  year: 2019
  end-page: 3065
  ident: bib0030
  article-title: Learning combinatorial embedding networks for deep graph matching
  publication-title: The IEEE International Conference on Computer Vision (ICCV)
– start-page: 492
  year: 2010
  end-page: 505
  ident: bib0006
  article-title: Reweighted random walks for graph matching
  publication-title: European Conference on Computer Vision – ECCV 2010
– volume: 112
  start-page: 353
  year: 2018
  end-page: 360
  ident: bib0001
  article-title: Embedding the node-to-node mappings to learn the graph edit distance parameters
  publication-title: Pattern Recognit. Lett.
– start-page: 2541
  year: 2010
  end-page: 2549
  ident: bib0036
  article-title: Lower bounds on rate of convergence of cutting plane methods
  publication-title: Advances in neural information processing systems
– start-page: 173
  year: 2012
  end-page: 186
  ident: bib0033
  article-title: Action recognition with exemplar based 2.5D graph matching
  publication-title: European Conference on Computer Vision – ECCV
– volume: 8
  start-page: 703
  year: 1960
  end-page: 712
  ident: bib0015
  article-title: The cutting-plane method for solving convex programs
  publication-title: J. Soc. Ind. Appl. Math.
– volume: 25
  start-page: 53
  year: 1957
  end-page: 76
  ident: bib0016
  article-title: Assignment problems and the location of economic activities
  publication-title: Econometrica
– volume: 11205
  start-page: 673
  year: 2018
  end-page: 689
  ident: bib0023
  article-title: Neural graph matching networks for fewshot 3D action recognition
  publication-title: European Conference on Computer Vision - ECCV
– volume: 18
  start-page: 377
  year: 1996
  end-page: 388
  ident: bib0013
  article-title: A graduated assignment algorithm for graph matching
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 36
  start-page: 1258
  year: 2014
  end-page: 1267
  ident: bib0020
  article-title: Gnccp-graduated non-convexityand concavity procedure
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 25
  year: 2013
  end-page: 32
  ident: bib0005
  article-title: Learning graphs to match
  publication-title: 2013 IEEE International Conference on Computer Vision
– volume: 138
  start-page: 115
  year: 2020
  end-page: 122
  ident: bib0011
  article-title: A general model to define the substitution, insertion and deletion graph edit costs based on an embedded space
  publication-title: Pattern Recognit. Lett.
– volume: 5
  start-page: 89
  year: 1983
  end-page: 98
  ident: bib0012
  article-title: On the quadratic assignment problem
  publication-title: Discrete Appl. Math.
– start-page: 1701
  year: 2016
  end-page: 1706
  ident: bib0003
  article-title: Graph edit distance as a quadratic program
  publication-title: 2016 23rd International Conference on Pattern Recognition (ICPR)
– start-page: 2091
  year: 2014
  end-page: 2098
  ident: bib0007
  article-title: Finding matches in a haystack: a max-pooling strategy for graph matching in the presence of outliers
  publication-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition
– volume: 4
  start-page: 100
  year: 1968
  end-page: 107
  ident: bib0014
  article-title: A formal basis for the heuristic determination of minimum cost paths
  publication-title: IEEE Trans. Syst. Sci. Cybern.
– volume: 56
  start-page: 22
  year: 2015
  end-page: 29
  ident: bib0008
  article-title: Learning graph-matching edit-costs based on the optimality of the Oracle’s node correspondences
  publication-title: Pattern Recognit. Lett.
– start-page: 1114
  year: 2009
  end-page: 1122
  ident: bib0019
  article-title: An integer projected fixed point method for graph matching and map inference
  publication-title: Advances in Neural Information Processing Systems 22
– start-page: 2684
  year: 2018
  end-page: 2693
  ident: bib0034
  article-title: Deep learning of graph matching
  publication-title: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 109
  start-page: 169
  year: 2014
  end-page: 186
  ident: bib0021
  article-title: Graph matching by simplified convex-concave relaxation procedure
  publication-title: Int. J. Comput. Vis.
– volume: 35
  start-page: 18
  year: 2013
  end-page: 27
  ident: bib0009
  article-title: A probabilistic approach to spectral graph matching
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 24
  start-page: 509
  year: 2002
  end-page: 522
  ident: bib0002
  article-title: Shape matching and object recognition using shape contexts
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 40
  start-page: 1494
  year: 2018
  end-page: 1501
  ident: bib0031
  article-title: Gracker: a graph-based planar object tracker
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 8
  start-page: 703
  issue: 4
  year: 1960
  ident: 10.1016/j.patrec.2020.12.012_bib0015
  article-title: The cutting-plane method for solving convex programs
  publication-title: J. Soc. Ind. Appl. Math.
  doi: 10.1137/0108053
– ident: 10.1016/j.patrec.2020.12.012_bib0024
– volume: 2
  start-page: 1482
  year: 2005
  ident: 10.1016/j.patrec.2020.12.012_bib0018
  article-title: A spectral technique for correspondence problems using pairwise constraints
– volume: 18
  start-page: 377
  issue: 4
  year: 1996
  ident: 10.1016/j.patrec.2020.12.012_bib0013
  article-title: A graduated assignment algorithm for graph matching
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.491619
– volume: 25
  start-page: 53
  issue: 1
  year: 1957
  ident: 10.1016/j.patrec.2020.12.012_bib0016
  article-title: Assignment problems and the location of economic activities
  publication-title: Econometrica
  doi: 10.2307/1907742
– volume: 23
  start-page: 737
  year: 2006
  ident: 10.1016/j.patrec.2020.12.012_bib0025
  article-title: Quadratic programming relaxations for metric labeling and Markov random field map estimation
– start-page: 2091
  year: 2014
  ident: 10.1016/j.patrec.2020.12.012_bib0007
  article-title: Finding matches in a haystack: a max-pooling strategy for graph matching in the presence of outliers
– volume: 24
  start-page: 509
  issue: 4
  year: 2002
  ident: 10.1016/j.patrec.2020.12.012_bib0002
  article-title: Shape matching and object recognition using shape contexts
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.993558
– volume: 40
  start-page: 1494
  issue: 6
  year: 2018
  ident: 10.1016/j.patrec.2020.12.012_bib0031
  article-title: Gracker: a graph-based planar object tracker
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2716350
– volume: 5
  start-page: 89
  issue: 1
  year: 1983
  ident: 10.1016/j.patrec.2020.12.012_bib0012
  article-title: On the quadratic assignment problem
  publication-title: Discrete Appl. Math.
  doi: 10.1016/0166-218X(83)90018-5
– start-page: 104
  year: 2004
  ident: 10.1016/j.patrec.2020.12.012_bib0028
  article-title: Support vector machine learning for interdependent and structured output spaces
– start-page: 2684
  year: 2018
  ident: 10.1016/j.patrec.2020.12.012_bib0034
  article-title: Deep learning of graph matching
– start-page: 2541
  year: 2010
  ident: 10.1016/j.patrec.2020.12.012_bib0036
  article-title: Lower bounds on rate of convergence of cutting plane methods
– start-page: 1114
  year: 2009
  ident: 10.1016/j.patrec.2020.12.012_bib0019
  article-title: An integer projected fixed point method for graph matching and map inference
– volume: 9
  start-page: 586
  issue: 4
  year: 1963
  ident: 10.1016/j.patrec.2020.12.012_bib0017
  article-title: The quadratic assignment problem
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.9.4.586
– volume: 4
  start-page: 100
  year: 1968
  ident: 10.1016/j.patrec.2020.12.012_bib0014
  article-title: A formal basis for the heuristic determination of minimum cost paths
  publication-title: IEEE Trans. Syst. Sci. Cybern.
  doi: 10.1109/TSSC.1968.300136
– volume: 138
  start-page: 115
  year: 2020
  ident: 10.1016/j.patrec.2020.12.012_bib0011
  article-title: A general model to define the substitution, insertion and deletion graph edit costs based on an embedded space
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2020.07.010
– volume: 31
  start-page: 2227
  issue: 12
  year: 2009
  ident: 10.1016/j.patrec.2020.12.012_bib0035
  article-title: A path following algorithm for the graph matching problem
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.245
– start-page: 1701
  year: 2016
  ident: 10.1016/j.patrec.2020.12.012_bib0003
  article-title: Graph edit distance as a quadratic program
– start-page: 492
  year: 2010
  ident: 10.1016/j.patrec.2020.12.012_bib0006
  article-title: Reweighted random walks for graph matching
– volume: 31
  start-page: 1048
  issue: 6
  year: 2009
  ident: 10.1016/j.patrec.2020.12.012_bib0004
  article-title: Learning graph matching
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2009.28
– start-page: 508
  year: 2016
  ident: 10.1016/j.patrec.2020.12.012_bib0032
  article-title: Branching path following for graph matching
– start-page: 25
  year: 2013
  ident: 10.1016/j.patrec.2020.12.012_bib0005
  article-title: Learning graphs to match
– volume: 56
  start-page: 22
  year: 2015
  ident: 10.1016/j.patrec.2020.12.012_bib0008
  article-title: Learning graph-matching edit-costs based on the optimality of the Oracle’s node correspondences
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2015.01.009
– volume: 109
  start-page: 169
  issue: 3
  year: 2014
  ident: 10.1016/j.patrec.2020.12.012_bib0021
  article-title: Graph matching by simplified convex-concave relaxation procedure
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-014-0707-7
– volume: 27
  start-page: 950
  year: 2009
  ident: 10.1016/j.patrec.2020.12.012_bib0026
  article-title: Approximate graph edit distance computation by means of bipartite graph matching
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2008.04.004
– start-page: 173
  year: 2012
  ident: 10.1016/j.patrec.2020.12.012_bib0033
  article-title: Action recognition with exemplar based 2.5D graph matching
– volume: 56
  start-page: 4435
  issue: 8
  year: 2018
  ident: 10.1016/j.patrec.2020.12.012_bib0022
  article-title: Guided locality preserving feature matching for remote sensing image registration
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2820040
– volume: 11205
  start-page: 673
  year: 2018
  ident: 10.1016/j.patrec.2020.12.012_bib0023
  article-title: Neural graph matching networks for fewshot 3D action recognition
– start-page: 313
  year: 2006
  ident: 10.1016/j.patrec.2020.12.012_bib0027
  article-title: Balanced graph matching
– volume: 88
  start-page: 303
  issue: 2
  year: 2010
  ident: 10.1016/j.patrec.2020.12.012_bib0010
  article-title: The pascal visual object classes (VOC) challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-009-0275-4
– volume: 36
  start-page: 1258
  issue: 6
  year: 2014
  ident: 10.1016/j.patrec.2020.12.012_bib0020
  article-title: Gnccp-graduated non-convexityand concavity procedure
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.223
– volume: 112
  start-page: 353
  year: 2018
  ident: 10.1016/j.patrec.2020.12.012_bib0001
  article-title: Embedding the node-to-node mappings to learn the graph edit distance parameters
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2018.08.026
– volume: 35
  start-page: 18
  issue: 1
  year: 2013
  ident: 10.1016/j.patrec.2020.12.012_bib0009
  article-title: A probabilistic approach to spectral graph matching
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.51
– volume: 6
  start-page: 1453
  year: 2005
  ident: 10.1016/j.patrec.2020.12.012_bib0029
  article-title: Large margin methods for structured and interdependent output variables
  publication-title: J. Mach. Learn. Res.
– start-page: 3056
  year: 2019
  ident: 10.1016/j.patrec.2020.12.012_bib0030
  article-title: Learning combinatorial embedding networks for deep graph matching
SSID ssj0006398
Score 2.3334591
Snippet •Discusses a novel graph matching model, i.e., parameterized Koopmans–Beckmann’s graph matching (KBGMw).•Proposes a supervised learning method for KBGMw.•Shows...
In this paper, we discuss a novel graph matching problem, namely the parameterized Koopmans–Beckmann's graph matching (KBGMw). KBGMw is defined by a weighted...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8
SubjectTerms Deep learning
Graph matching
Koopmans–Beckmann
Parameter estimation
Parameterization
Structured SVM
Supervised learning
Teaching methods
Title Supervised learning for parameterized Koopmans–Beckmann’s graph matching
URI https://dx.doi.org/10.1016/j.patrec.2020.12.012
https://www.proquest.com/docview/2503462382
Volume 143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV25TgMxELUQNFBwI8IRbUG7JGs7XlMGRBTOJkSis9bOLApHEpHQUKD8AxW_ly9hxvFySQiJbrVrW6uxPX6237xhbO8AbJWjD4iF0tVYug7E1uKeR-kEwUY1486TaC4uVbMtT69r1zPsqIiFIVpl8P1Tn-69dXhTCdasDLrdSosI9BRWyel2TwoK-JUypVG-__JJ88AVWBf63lS6CJ_zHC86bwYSMuRVfyiY8N-Wpx-O2q8-jWW2GGBjVJ_-2Qqbgd4qWypSMkRhhq6yhS_6gmvsvPU0IF8whE4U0kPcRIhSIxL8fiAiTPcZP531-xSDMJyMXw_B3eFjbzJ-G0ZezDpCSOv5luus3Ti-OmrGIX1C7ISQo1iJDihb07hBUQInQ5ZqkEluEaQ5Lm0KukPSnHmai1xmNdBonlw4bQFhH24jxAab7fV7sMmiDGwuEp44rpxMc8gAGzhwCkDlCCJsiYnCasYFbXFKcXFvChLZrZna2pCtTcIN2rrE4o9ag6m2xh_l06JDzLcxYtD9_1Fzp-g_E-bo0CD4ExLRn-Zb_254m81zIrl4UtoOmx09PsEuopSRLfthWGZz9ZOz5uU7aZ3pDA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB5ROFAOQGkr_kp9gGO6G9vrmEMP0BYt3YULIHFzY--kWn52V2QRgkPFO3DiOXgjnoSx16E_EkKqxC1KYicaOzOfnW--AVhdR1vn5AMSoXQ9ka6DibW05lE6JbBRz7kLJJqdXdU8kN8PG4djcFflwnhaZfT9I58evHU8U4vWrA263dqeJ9D7tEru_-5JoSOzsoWXF7RuKz9vf6VBXuN869v-l2YSSwskTgg5TJTooLINTeBdCZooeaZRpoUlAOO4tBnqjpetLLJCFDJvoKYHFcJpiwSJCGIL6vcVTEhyF75swqdfv3klFPJ1JSjuX6_K1wukMr_BjV45kdfDLmTKn4qH_0SGEO62ZmE64lS2MTLFGxjD3hzMVDUgWHQJczD1h6DhW2jvnQ-88ymxw2I9ip-MYDHzCuOnnnnTvaJLrX7fJz2U99c3m-iO6bB3f31bsqCezQhDB4LnOzh4EaO-h_Fev4fzwHK0hUh56rhyMiswR-pg3SlEVRBqsQsgKqsZF8XMfU2NE1Ox1o7MyNbG29qk3JCtFyB5bDUYiXk8c39WDYj5a1IaijfPtFyuxs9Ep1AaQptCEtzUfPG_O_4Ik839nbZpb--2luA19wybwIhbhvHh2Tl-IIg0tCthSjL48dLfwAPsdyM_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supervised+learning+for+parameterized+Koopmans%E2%80%93Beckmann%E2%80%99s+graph+matching&rft.jtitle=Pattern+recognition+letters&rft.au=Zeng%2C+Shaofeng&rft.au=Liu%2C+Zhiyong&rft.au=Yang%2C+Xu&rft.date=2021-03-01&rft.issn=0167-8655&rft.volume=143&rft.spage=8&rft.epage=13&rft_id=info:doi/10.1016%2Fj.patrec.2020.12.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patrec_2020_12_012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon