Supervised learning for parameterized Koopmans–Beckmann’s graph matching
•Discusses a novel graph matching model, i.e., parameterized Koopmans–Beckmann’s graph matching (KBGMw).•Proposes a supervised learning method for KBGMw.•Shows the performances of the proposed method and several state-of-the-art graph matching methods.•Summarizes the advantages and disadvantages of...
Saved in:
Published in | Pattern recognition letters Vol. 143; pp. 8 - 13 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.03.2021
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Discusses a novel graph matching model, i.e., parameterized Koopmans–Beckmann’s graph matching (KBGMw).•Proposes a supervised learning method for KBGMw.•Shows the performances of the proposed method and several state-of-the-art graph matching methods.•Summarizes the advantages and disadvantages of the proposed method.
In this paper, we discuss a novel graph matching problem, namely the parameterized Koopmans–Beckmann’s graph matching (KBGMw). KBGMw is defined by a weighted linear combination of a series of Koopmans–Beckmann’s graph matching. First, we show that KBGMw can be taken as a special case of the parameterized Lawler’s graph matching, subject to certain conditions. Second, based on structured SVM, we propose a supervised learning method for automatically estimating the parameters of KBGMw. Experimental results on both synthetic and real image matching data sets show that the proposed method achieves relatively better performances, even superior to some deep learning methods. |
---|---|
AbstractList | In this paper, we discuss a novel graph matching problem, namely the parameterized Koopmans–Beckmann's graph matching (KBGMw). KBGMw is defined by a weighted linear combination of a series of Koopmans–Beckmann's graph matching. First, we show that KBGMw can be taken as a special case of the parameterized Lawler's graph matching, subject to certain conditions. Second, based on structured SVM, we propose a supervised learning method for automatically estimating the parameters of KBGMw. Experimental results on both synthetic and real image matching data sets show that the proposed method achieves relatively better performances, even superior to some deep learning methods. •Discusses a novel graph matching model, i.e., parameterized Koopmans–Beckmann’s graph matching (KBGMw).•Proposes a supervised learning method for KBGMw.•Shows the performances of the proposed method and several state-of-the-art graph matching methods.•Summarizes the advantages and disadvantages of the proposed method. In this paper, we discuss a novel graph matching problem, namely the parameterized Koopmans–Beckmann’s graph matching (KBGMw). KBGMw is defined by a weighted linear combination of a series of Koopmans–Beckmann’s graph matching. First, we show that KBGMw can be taken as a special case of the parameterized Lawler’s graph matching, subject to certain conditions. Second, based on structured SVM, we propose a supervised learning method for automatically estimating the parameters of KBGMw. Experimental results on both synthetic and real image matching data sets show that the proposed method achieves relatively better performances, even superior to some deep learning methods. |
Author | Yang, Xu Liu, Zhiyong Zeng, Shaofeng |
Author_xml | – sequence: 1 givenname: Shaofeng surname: Zeng fullname: Zeng, Shaofeng email: shaofeng.zeng@ia.ac.cn – sequence: 2 givenname: Zhiyong surname: Liu fullname: Liu, Zhiyong – sequence: 3 givenname: Xu surname: Yang fullname: Yang, Xu |
BookMark | eNqFkDtOAzEQhi0EEkngBhQrUW_wa70OBRJEvEQkCqC2HO8sOCT2YjuRoModqLgeJ8EoVBQwzYxm_m_G_vto23kHCB0QPCSYiKPZsNMpgBlSTHOLDjGhW6hHZE3LmnG-jXpZVpdSVNUu6sc4wxgLNpI9NLlbdhBWNkJTzEEHZ91j0fpQdDroBSQI9i2PbrzvFtrFz_X7GZjnXLrP9UcsHoPunoqFTuYpg3top9XzCPs_eYAeLs7vx1fl5Pbyenw6KQ1jPJWCNSCmlRQ5GMVY1xI4aae44obyaQ2yGQmB27plLdcVyPzulhk5BUxGdSXZAB1u9nbBvywhJjXzy-DySUUrzLigTNKs4huVCT7GAK3qgl3o8KoIVt--qZna-Ka-fVOEquxbxo5_YcYmnax3KWg7_w8-2cCQv7-yEFQ0FpyBxmZpUo23fy_4AhIzj3Y |
CitedBy_id | crossref_primary_10_1007_s11263_024_02040_8 |
Cites_doi | 10.1137/0108053 10.1109/34.491619 10.2307/1907742 10.1109/34.993558 10.1109/TPAMI.2017.2716350 10.1016/0166-218X(83)90018-5 10.1287/mnsc.9.4.586 10.1109/TSSC.1968.300136 10.1016/j.patrec.2020.07.010 10.1109/TPAMI.2008.245 10.1109/TPAMI.2009.28 10.1016/j.patrec.2015.01.009 10.1007/s11263-014-0707-7 10.1016/j.imavis.2008.04.004 10.1109/TGRS.2018.2820040 10.1007/s11263-009-0275-4 10.1109/TPAMI.2013.223 10.1016/j.patrec.2018.08.026 10.1109/TPAMI.2012.51 |
ContentType | Journal Article |
Copyright | 2020 Copyright Elsevier Science Ltd. Mar 2021 |
Copyright_xml | – notice: 2020 – notice: Copyright Elsevier Science Ltd. Mar 2021 |
DBID | AAYXX CITATION 7SC 7TK 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.patrec.2020.12.012 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Neurosciences Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Neurosciences Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1872-7344 |
EndPage | 13 |
ExternalDocumentID | 10_1016_j_patrec_2020_12_012 S0167865520304438 |
GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABBOA ABDPE ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSH SST SSV SSZ T5K TN5 UNMZH VOH WH7 WUQ XPP Y6R ZMT ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP CITATION 7SC 7TK 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c334t-63de6b5866663200a78e41fb054c24b7e8d9660f7f3f4a5e8865f3c8be0197583 |
IEDL.DBID | .~1 |
ISSN | 0167-8655 |
IngestDate | Fri Jul 25 04:04:28 EDT 2025 Tue Jul 01 05:16:39 EDT 2025 Thu Apr 24 23:00:08 EDT 2025 Sat Apr 12 15:20:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Koopmans–Beckmann Supervised learning Structured SVM Graph matching |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-63de6b5866663200a78e41fb054c24b7e8d9660f7f3f4a5e8865f3c8be0197583 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2503462382 |
PQPubID | 2047552 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2503462382 crossref_primary_10_1016_j_patrec_2020_12_012 crossref_citationtrail_10_1016_j_patrec_2020_12_012 elsevier_sciencedirect_doi_10_1016_j_patrec_2020_12_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2021 2021-03-00 20210301 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Pattern recognition letters |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Yao, Li (bib0033) 2012 Gold, Rangarajan (bib0013) 1996; 18 Zhang, Saha, Vishwanathan (bib0036) 2010 Cho, Sun, Duchenne, Ponce (bib0007) 2014 Tsochantaridis, Joachims, Hofmann, Altun (bib0029) 2005; 6 Caetano, Mcauley, Cheng, Le, Smola (bib0004) 2009; 31 Cortes, Serratosa (bib0008) 2015; 56 Kelley (bib0015) 1960; 8 Liu, Qiao, Yang, Hoi (bib0021) 2014; 109 Ma, Jiang, Zhou, Zhao, Guo (bib0022) 2018; 56 Ravikumar, Lafferty (bib0025) 2006; 23 Wang, Yan, Yang (bib0030) 2019 Zanfir, Sminchisescu (bib0034) 2018 Michelle, Edward, Huang, Shuran, Serena, Li (bib0023) 2018; 11205 Bougleux, Gazre, Brun (bib0003) 2016 Francesc (bib0011) 2020; 138 Hart, Nilsson, Raphael (bib0014) 1968; 4 Zaslavskiy, Bach, Vert (bib0035) 2009; 31 Wang, Ling (bib0031) 2018; 40 Frieze, Yadegar (bib0012) 1983; 5 Everingham, Van Gool, Williams, Winn, Zisserman (bib0010) 2010; 88 Algabli, Serratosa (bib0001) 2018; 112 Wang, Ling, Lang, Wu (bib0032) 2016 Cho, Lee, Lee (bib0006) 2010 Lawler (bib0017) 1963; 9 Cho, Alahari, Ponce (bib0005) 2013 A.R. Prescott, R.S. Zemel, Ranking via sinkhorn propagation (2011). Riesen, Bunke (bib0026) 2009; 27 Egozi, Keller, Guterman (bib0009) 2013; 35 Timothee, Praveen, Jianbo (bib0027) 2006 Koopmans, Beckmann (bib0016) 1957; 25 Leordeanu, Hebert (bib0018) 2005; 2 Liu, Qiao (bib0020) 2014; 36 Tsochantaridis, Hofmann, Joachims, Altun (bib0028) 2004 Belongie, Malik, Puzicha (bib0002) 2002; 24 Leordeanu, Hebert, S. (bib0019) 2009 Liu (10.1016/j.patrec.2020.12.012_bib0020) 2014; 36 Michelle (10.1016/j.patrec.2020.12.012_bib0023) 2018; 11205 Bougleux (10.1016/j.patrec.2020.12.012_bib0003) 2016 Zaslavskiy (10.1016/j.patrec.2020.12.012_bib0035) 2009; 31 Belongie (10.1016/j.patrec.2020.12.012_bib0002) 2002; 24 Caetano (10.1016/j.patrec.2020.12.012_bib0004) 2009; 31 Riesen (10.1016/j.patrec.2020.12.012_bib0026) 2009; 27 Everingham (10.1016/j.patrec.2020.12.012_bib0010) 2010; 88 Egozi (10.1016/j.patrec.2020.12.012_bib0009) 2013; 35 Wang (10.1016/j.patrec.2020.12.012_bib0030) 2019 Algabli (10.1016/j.patrec.2020.12.012_bib0001) 2018; 112 Frieze (10.1016/j.patrec.2020.12.012_bib0012) 1983; 5 Gold (10.1016/j.patrec.2020.12.012_bib0013) 1996; 18 Wang (10.1016/j.patrec.2020.12.012_bib0031) 2018; 40 Cho (10.1016/j.patrec.2020.12.012_bib0005) 2013 10.1016/j.patrec.2020.12.012_bib0024 Cortes (10.1016/j.patrec.2020.12.012_bib0008) 2015; 56 Liu (10.1016/j.patrec.2020.12.012_bib0021) 2014; 109 Yao (10.1016/j.patrec.2020.12.012_bib0033) 2012 Hart (10.1016/j.patrec.2020.12.012_bib0014) 1968; 4 Koopmans (10.1016/j.patrec.2020.12.012_bib0016) 1957; 25 Timothee (10.1016/j.patrec.2020.12.012_bib0027) 2006 Zhang (10.1016/j.patrec.2020.12.012_bib0036) 2010 Lawler (10.1016/j.patrec.2020.12.012_bib0017) 1963; 9 Cho (10.1016/j.patrec.2020.12.012_bib0007) 2014 Leordeanu (10.1016/j.patrec.2020.12.012_bib0018) 2005; 2 Ravikumar (10.1016/j.patrec.2020.12.012_bib0025) 2006; 23 Francesc (10.1016/j.patrec.2020.12.012_bib0011) 2020; 138 Cho (10.1016/j.patrec.2020.12.012_bib0006) 2010 Tsochantaridis (10.1016/j.patrec.2020.12.012_bib0028) 2004 Zanfir (10.1016/j.patrec.2020.12.012_bib0034) 2018 Ma (10.1016/j.patrec.2020.12.012_bib0022) 2018; 56 Leordeanu (10.1016/j.patrec.2020.12.012_bib0019) 2009 Tsochantaridis (10.1016/j.patrec.2020.12.012_bib0029) 2005; 6 Kelley (10.1016/j.patrec.2020.12.012_bib0015) 1960; 8 Wang (10.1016/j.patrec.2020.12.012_bib0032) 2016 |
References_xml | – start-page: 313 year: 2006 end-page: 320 ident: bib0027 article-title: Balanced graph matching publication-title: Proceedings of the 19th International Conference on Neural Information Processing Systems – volume: 31 start-page: 1048 year: 2009 end-page: 1058 ident: bib0004 article-title: Learning graph matching publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 27 start-page: 950 year: 2009 end-page: 959 ident: bib0026 article-title: Approximate graph edit distance computation by means of bipartite graph matching publication-title: Image Vis. Comput. – reference: (2011). – volume: 2 start-page: 1482 year: 2005 end-page: 1489 ident: bib0018 article-title: A spectral technique for correspondence problems using pairwise constraints publication-title: Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1 – volume: 56 start-page: 4435 year: 2018 end-page: 4447 ident: bib0022 article-title: Guided locality preserving feature matching for remote sensing image registration publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 88 start-page: 303 year: 2010 end-page: 338 ident: bib0010 article-title: The pascal visual object classes (VOC) challenge publication-title: Int. J. Comput. Vis. – volume: 31 start-page: 2227 year: 2009 end-page: 2242 ident: bib0035 article-title: A path following algorithm for the graph matching problem publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 508 year: 2016 end-page: 523 ident: bib0032 article-title: Branching path following for graph matching publication-title: European Conference on Computer Vision – ECCV 2016 – volume: 23 start-page: 737 year: 2006 end-page: 744 ident: bib0025 article-title: Quadratic programming relaxations for metric labeling and Markov random field map estimation publication-title: International Conference on Machine learning (ICML) – reference: A.R. Prescott, R.S. Zemel, Ranking via sinkhorn propagation, – volume: 6 start-page: 1453 year: 2005 end-page: 1484 ident: bib0029 article-title: Large margin methods for structured and interdependent output variables publication-title: J. Mach. Learn. Res. – volume: 9 start-page: 586 year: 1963 end-page: 599 ident: bib0017 article-title: The quadratic assignment problem publication-title: Manag. Sci. – start-page: 104 year: 2004 end-page: 111 ident: bib0028 article-title: Support vector machine learning for interdependent and structured output spaces publication-title: Proceedings of the Twenty-First International Conference on Machine Learning – start-page: 3056 year: 2019 end-page: 3065 ident: bib0030 article-title: Learning combinatorial embedding networks for deep graph matching publication-title: The IEEE International Conference on Computer Vision (ICCV) – start-page: 492 year: 2010 end-page: 505 ident: bib0006 article-title: Reweighted random walks for graph matching publication-title: European Conference on Computer Vision – ECCV 2010 – volume: 112 start-page: 353 year: 2018 end-page: 360 ident: bib0001 article-title: Embedding the node-to-node mappings to learn the graph edit distance parameters publication-title: Pattern Recognit. Lett. – start-page: 2541 year: 2010 end-page: 2549 ident: bib0036 article-title: Lower bounds on rate of convergence of cutting plane methods publication-title: Advances in neural information processing systems – start-page: 173 year: 2012 end-page: 186 ident: bib0033 article-title: Action recognition with exemplar based 2.5D graph matching publication-title: European Conference on Computer Vision – ECCV – volume: 8 start-page: 703 year: 1960 end-page: 712 ident: bib0015 article-title: The cutting-plane method for solving convex programs publication-title: J. Soc. Ind. Appl. Math. – volume: 25 start-page: 53 year: 1957 end-page: 76 ident: bib0016 article-title: Assignment problems and the location of economic activities publication-title: Econometrica – volume: 11205 start-page: 673 year: 2018 end-page: 689 ident: bib0023 article-title: Neural graph matching networks for fewshot 3D action recognition publication-title: European Conference on Computer Vision - ECCV – volume: 18 start-page: 377 year: 1996 end-page: 388 ident: bib0013 article-title: A graduated assignment algorithm for graph matching publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 36 start-page: 1258 year: 2014 end-page: 1267 ident: bib0020 article-title: Gnccp-graduated non-convexityand concavity procedure publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 25 year: 2013 end-page: 32 ident: bib0005 article-title: Learning graphs to match publication-title: 2013 IEEE International Conference on Computer Vision – volume: 138 start-page: 115 year: 2020 end-page: 122 ident: bib0011 article-title: A general model to define the substitution, insertion and deletion graph edit costs based on an embedded space publication-title: Pattern Recognit. Lett. – volume: 5 start-page: 89 year: 1983 end-page: 98 ident: bib0012 article-title: On the quadratic assignment problem publication-title: Discrete Appl. Math. – start-page: 1701 year: 2016 end-page: 1706 ident: bib0003 article-title: Graph edit distance as a quadratic program publication-title: 2016 23rd International Conference on Pattern Recognition (ICPR) – start-page: 2091 year: 2014 end-page: 2098 ident: bib0007 article-title: Finding matches in a haystack: a max-pooling strategy for graph matching in the presence of outliers publication-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition – volume: 4 start-page: 100 year: 1968 end-page: 107 ident: bib0014 article-title: A formal basis for the heuristic determination of minimum cost paths publication-title: IEEE Trans. Syst. Sci. Cybern. – volume: 56 start-page: 22 year: 2015 end-page: 29 ident: bib0008 article-title: Learning graph-matching edit-costs based on the optimality of the Oracle’s node correspondences publication-title: Pattern Recognit. Lett. – start-page: 1114 year: 2009 end-page: 1122 ident: bib0019 article-title: An integer projected fixed point method for graph matching and map inference publication-title: Advances in Neural Information Processing Systems 22 – start-page: 2684 year: 2018 end-page: 2693 ident: bib0034 article-title: Deep learning of graph matching publication-title: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 109 start-page: 169 year: 2014 end-page: 186 ident: bib0021 article-title: Graph matching by simplified convex-concave relaxation procedure publication-title: Int. J. Comput. Vis. – volume: 35 start-page: 18 year: 2013 end-page: 27 ident: bib0009 article-title: A probabilistic approach to spectral graph matching publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 24 start-page: 509 year: 2002 end-page: 522 ident: bib0002 article-title: Shape matching and object recognition using shape contexts publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 40 start-page: 1494 year: 2018 end-page: 1501 ident: bib0031 article-title: Gracker: a graph-based planar object tracker publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 8 start-page: 703 issue: 4 year: 1960 ident: 10.1016/j.patrec.2020.12.012_bib0015 article-title: The cutting-plane method for solving convex programs publication-title: J. Soc. Ind. Appl. Math. doi: 10.1137/0108053 – ident: 10.1016/j.patrec.2020.12.012_bib0024 – volume: 2 start-page: 1482 year: 2005 ident: 10.1016/j.patrec.2020.12.012_bib0018 article-title: A spectral technique for correspondence problems using pairwise constraints – volume: 18 start-page: 377 issue: 4 year: 1996 ident: 10.1016/j.patrec.2020.12.012_bib0013 article-title: A graduated assignment algorithm for graph matching publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.491619 – volume: 25 start-page: 53 issue: 1 year: 1957 ident: 10.1016/j.patrec.2020.12.012_bib0016 article-title: Assignment problems and the location of economic activities publication-title: Econometrica doi: 10.2307/1907742 – volume: 23 start-page: 737 year: 2006 ident: 10.1016/j.patrec.2020.12.012_bib0025 article-title: Quadratic programming relaxations for metric labeling and Markov random field map estimation – start-page: 2091 year: 2014 ident: 10.1016/j.patrec.2020.12.012_bib0007 article-title: Finding matches in a haystack: a max-pooling strategy for graph matching in the presence of outliers – volume: 24 start-page: 509 issue: 4 year: 2002 ident: 10.1016/j.patrec.2020.12.012_bib0002 article-title: Shape matching and object recognition using shape contexts publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.993558 – volume: 40 start-page: 1494 issue: 6 year: 2018 ident: 10.1016/j.patrec.2020.12.012_bib0031 article-title: Gracker: a graph-based planar object tracker publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2716350 – volume: 5 start-page: 89 issue: 1 year: 1983 ident: 10.1016/j.patrec.2020.12.012_bib0012 article-title: On the quadratic assignment problem publication-title: Discrete Appl. Math. doi: 10.1016/0166-218X(83)90018-5 – start-page: 104 year: 2004 ident: 10.1016/j.patrec.2020.12.012_bib0028 article-title: Support vector machine learning for interdependent and structured output spaces – start-page: 2684 year: 2018 ident: 10.1016/j.patrec.2020.12.012_bib0034 article-title: Deep learning of graph matching – start-page: 2541 year: 2010 ident: 10.1016/j.patrec.2020.12.012_bib0036 article-title: Lower bounds on rate of convergence of cutting plane methods – start-page: 1114 year: 2009 ident: 10.1016/j.patrec.2020.12.012_bib0019 article-title: An integer projected fixed point method for graph matching and map inference – volume: 9 start-page: 586 issue: 4 year: 1963 ident: 10.1016/j.patrec.2020.12.012_bib0017 article-title: The quadratic assignment problem publication-title: Manag. Sci. doi: 10.1287/mnsc.9.4.586 – volume: 4 start-page: 100 year: 1968 ident: 10.1016/j.patrec.2020.12.012_bib0014 article-title: A formal basis for the heuristic determination of minimum cost paths publication-title: IEEE Trans. Syst. Sci. Cybern. doi: 10.1109/TSSC.1968.300136 – volume: 138 start-page: 115 year: 2020 ident: 10.1016/j.patrec.2020.12.012_bib0011 article-title: A general model to define the substitution, insertion and deletion graph edit costs based on an embedded space publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2020.07.010 – volume: 31 start-page: 2227 issue: 12 year: 2009 ident: 10.1016/j.patrec.2020.12.012_bib0035 article-title: A path following algorithm for the graph matching problem publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.245 – start-page: 1701 year: 2016 ident: 10.1016/j.patrec.2020.12.012_bib0003 article-title: Graph edit distance as a quadratic program – start-page: 492 year: 2010 ident: 10.1016/j.patrec.2020.12.012_bib0006 article-title: Reweighted random walks for graph matching – volume: 31 start-page: 1048 issue: 6 year: 2009 ident: 10.1016/j.patrec.2020.12.012_bib0004 article-title: Learning graph matching publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2009.28 – start-page: 508 year: 2016 ident: 10.1016/j.patrec.2020.12.012_bib0032 article-title: Branching path following for graph matching – start-page: 25 year: 2013 ident: 10.1016/j.patrec.2020.12.012_bib0005 article-title: Learning graphs to match – volume: 56 start-page: 22 year: 2015 ident: 10.1016/j.patrec.2020.12.012_bib0008 article-title: Learning graph-matching edit-costs based on the optimality of the Oracle’s node correspondences publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2015.01.009 – volume: 109 start-page: 169 issue: 3 year: 2014 ident: 10.1016/j.patrec.2020.12.012_bib0021 article-title: Graph matching by simplified convex-concave relaxation procedure publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-014-0707-7 – volume: 27 start-page: 950 year: 2009 ident: 10.1016/j.patrec.2020.12.012_bib0026 article-title: Approximate graph edit distance computation by means of bipartite graph matching publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2008.04.004 – start-page: 173 year: 2012 ident: 10.1016/j.patrec.2020.12.012_bib0033 article-title: Action recognition with exemplar based 2.5D graph matching – volume: 56 start-page: 4435 issue: 8 year: 2018 ident: 10.1016/j.patrec.2020.12.012_bib0022 article-title: Guided locality preserving feature matching for remote sensing image registration publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2820040 – volume: 11205 start-page: 673 year: 2018 ident: 10.1016/j.patrec.2020.12.012_bib0023 article-title: Neural graph matching networks for fewshot 3D action recognition – start-page: 313 year: 2006 ident: 10.1016/j.patrec.2020.12.012_bib0027 article-title: Balanced graph matching – volume: 88 start-page: 303 issue: 2 year: 2010 ident: 10.1016/j.patrec.2020.12.012_bib0010 article-title: The pascal visual object classes (VOC) challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-009-0275-4 – volume: 36 start-page: 1258 issue: 6 year: 2014 ident: 10.1016/j.patrec.2020.12.012_bib0020 article-title: Gnccp-graduated non-convexityand concavity procedure publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.223 – volume: 112 start-page: 353 year: 2018 ident: 10.1016/j.patrec.2020.12.012_bib0001 article-title: Embedding the node-to-node mappings to learn the graph edit distance parameters publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2018.08.026 – volume: 35 start-page: 18 issue: 1 year: 2013 ident: 10.1016/j.patrec.2020.12.012_bib0009 article-title: A probabilistic approach to spectral graph matching publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.51 – volume: 6 start-page: 1453 year: 2005 ident: 10.1016/j.patrec.2020.12.012_bib0029 article-title: Large margin methods for structured and interdependent output variables publication-title: J. Mach. Learn. Res. – start-page: 3056 year: 2019 ident: 10.1016/j.patrec.2020.12.012_bib0030 article-title: Learning combinatorial embedding networks for deep graph matching |
SSID | ssj0006398 |
Score | 2.3334591 |
Snippet | •Discusses a novel graph matching model, i.e., parameterized Koopmans–Beckmann’s graph matching (KBGMw).•Proposes a supervised learning method for KBGMw.•Shows... In this paper, we discuss a novel graph matching problem, namely the parameterized Koopmans–Beckmann's graph matching (KBGMw). KBGMw is defined by a weighted... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8 |
SubjectTerms | Deep learning Graph matching Koopmans–Beckmann Parameter estimation Parameterization Structured SVM Supervised learning Teaching methods |
Title | Supervised learning for parameterized Koopmans–Beckmann’s graph matching |
URI | https://dx.doi.org/10.1016/j.patrec.2020.12.012 https://www.proquest.com/docview/2503462382 |
Volume | 143 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV25TgMxELUQNFBwI8IRbUG7JGs7XlMGRBTOJkSis9bOLApHEpHQUKD8AxW_ly9hxvFySQiJbrVrW6uxPX6237xhbO8AbJWjD4iF0tVYug7E1uKeR-kEwUY1486TaC4uVbMtT69r1zPsqIiFIVpl8P1Tn-69dXhTCdasDLrdSosI9BRWyel2TwoK-JUypVG-__JJ88AVWBf63lS6CJ_zHC86bwYSMuRVfyiY8N-Wpx-O2q8-jWW2GGBjVJ_-2Qqbgd4qWypSMkRhhq6yhS_6gmvsvPU0IF8whE4U0kPcRIhSIxL8fiAiTPcZP531-xSDMJyMXw_B3eFjbzJ-G0ZezDpCSOv5luus3Ti-OmrGIX1C7ISQo1iJDihb07hBUQInQ5ZqkEluEaQ5Lm0KukPSnHmai1xmNdBonlw4bQFhH24jxAab7fV7sMmiDGwuEp44rpxMc8gAGzhwCkDlCCJsiYnCasYFbXFKcXFvChLZrZna2pCtTcIN2rrE4o9ag6m2xh_l06JDzLcxYtD9_1Fzp-g_E-bo0CD4ExLRn-Zb_254m81zIrl4UtoOmx09PsEuopSRLfthWGZz9ZOz5uU7aZ3pDA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB5ROFAOQGkr_kp9gGO6G9vrmEMP0BYt3YULIHFzY--kWn52V2QRgkPFO3DiOXgjnoSx16E_EkKqxC1KYicaOzOfnW--AVhdR1vn5AMSoXQ9ka6DibW05lE6JbBRz7kLJJqdXdU8kN8PG4djcFflwnhaZfT9I58evHU8U4vWrA263dqeJ9D7tEru_-5JoSOzsoWXF7RuKz9vf6VBXuN869v-l2YSSwskTgg5TJTooLINTeBdCZooeaZRpoUlAOO4tBnqjpetLLJCFDJvoKYHFcJpiwSJCGIL6vcVTEhyF75swqdfv3klFPJ1JSjuX6_K1wukMr_BjV45kdfDLmTKn4qH_0SGEO62ZmE64lS2MTLFGxjD3hzMVDUgWHQJczD1h6DhW2jvnQ-88ymxw2I9ip-MYDHzCuOnnnnTvaJLrX7fJz2U99c3m-iO6bB3f31bsqCezQhDB4LnOzh4EaO-h_Fev4fzwHK0hUh56rhyMiswR-pg3SlEVRBqsQsgKqsZF8XMfU2NE1Ox1o7MyNbG29qk3JCtFyB5bDUYiXk8c39WDYj5a1IaijfPtFyuxs9Ep1AaQptCEtzUfPG_O_4Ik839nbZpb--2luA19wybwIhbhvHh2Tl-IIg0tCthSjL48dLfwAPsdyM_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supervised+learning+for+parameterized+Koopmans%E2%80%93Beckmann%E2%80%99s+graph+matching&rft.jtitle=Pattern+recognition+letters&rft.au=Zeng%2C+Shaofeng&rft.au=Liu%2C+Zhiyong&rft.au=Yang%2C+Xu&rft.date=2021-03-01&rft.issn=0167-8655&rft.volume=143&rft.spage=8&rft.epage=13&rft_id=info:doi/10.1016%2Fj.patrec.2020.12.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patrec_2020_12_012 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon |