Exploring deep features and ECG attributes to detect cardiac rhythm classes

Arrhythmia is a condition characterized by perturbation of the regular rhythm of the heart. The development of computerized self-diagnostic systems for the detection of these arrhythmias is very popular, thanks to the machine learning models included in these systems, which eliminate the need for vi...

Full description

Saved in:
Bibliographic Details
Published inKnowledge-based systems Vol. 232; p. 107473
Main Authors Murat, Fatma, Yildirim, Ozal, Talo, Muhammed, Demir, Yakup, Tan, Ru-San, Ciaccio, Edward J., Acharya, U. Rajendra
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 28.11.2021
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Arrhythmia is a condition characterized by perturbation of the regular rhythm of the heart. The development of computerized self-diagnostic systems for the detection of these arrhythmias is very popular, thanks to the machine learning models included in these systems, which eliminate the need for visual inspection of long electrocardiogram (ECG) recordings. In order to design a reliable, generalizable and highly accurate model, large number of subjects and arrhythmia classes are included in the training and testing phases of the model. In this study, an ECG dataset containing more than 10,000 subject records was used to train and diagnose arrhythmia. A deep neural network (DNN) model was used on the data set during the extraction of the features of the ECG inputs. Feature maps obtained from hierarchically placed layers in DNN were fed to various shallow classifiers. Principal component analysis (PCA) technique was used to reduce the high dimensions of feature maps. In addition to the morphological features obtained with DNN, various ECG features obtained from lead-II for rhythmic information are fused to increase the performance. Using the ECG features, an accuracy of 90.30% has been achieved. Using only deep features, this accuracy was increased to 97.26%. However, the accuracy was increased to 98.00% by fusing both deep and ECG-based features. Another important research subject of the study is the examination of the features obtained from DNN network both on a layer basis and at each training step. The findings show that the more abstract features obtained from the last layers of the DNN network provide high performance in shallow classifiers, and weight updates of DNN network also increases the performance of these classifiers. Hence, the study presents important findings on the fusion of deep features and shallow classifiers to improve the performance of the proposed system. •Both clinical ECG features and features obtained from deep learning model layers are used for detection cardiac rhythms.•A big ECG dataset containing more than 10,000 subject records was used.•Lead-II ECG signals from individual subjects grouped into four rhythm classes were analyzed.•The random forest (RF) classifier yielded a patient-level arrhythmia classification accuracy of 98% ± 0.64 using the fused features.
AbstractList Arrhythmia is a condition characterized by perturbation of the regular rhythm of the heart. The development of computerized self-diagnostic systems for the detection of these arrhythmias is very popular, thanks to the machine learning models included in these systems, which eliminate the need for visual inspection of long electrocardiogram (ECG) recordings. In order to design a reliable, generalizable and highly accurate model, large number of subjects and arrhythmia classes are included in the training and testing phases of the model. In this study, an ECG dataset containing more than 10,000 subject records was used to train and diagnose arrhythmia. A deep neural network (DNN) model was used on the data set during the extraction of the features of the ECG inputs. Feature maps obtained from hierarchically placed layers in DNN were fed to various shallow classifiers. Principal component analysis (PCA) technique was used to reduce the high dimensions of feature maps. In addition to the morphological features obtained with DNN, various ECG features obtained from lead-II for rhythmic information are fused to increase the performance. Using the ECG features, an accuracy of 90.30% has been achieved. Using only deep features, this accuracy was increased to 97.26%. However, the accuracy was increased to 98.00% by fusing both deep and ECG-based features. Another important research subject of the study is the examination of the features obtained from DNN network both on a layer basis and at each training step. The findings show that the more abstract features obtained from the last layers of the DNN network provide high performance in shallow classifiers, and weight updates of DNN network also increases the performance of these classifiers. Hence, the study presents important findings on the fusion of deep features and shallow classifiers to improve the performance of the proposed system. •Both clinical ECG features and features obtained from deep learning model layers are used for detection cardiac rhythms.•A big ECG dataset containing more than 10,000 subject records was used.•Lead-II ECG signals from individual subjects grouped into four rhythm classes were analyzed.•The random forest (RF) classifier yielded a patient-level arrhythmia classification accuracy of 98% ± 0.64 using the fused features.
Arrhythmia is a condition characterized by perturbation of the regular rhythm of the heart. The development of computerized self-diagnostic systems for the detection of these arrhythmias is very popular, thanks to the machine learning models included in these systems, which eliminate the need for visual inspection of long electrocardiogram (ECG) recordings. In order to design a reliable, generalizable and highly accurate model, large number of subjects and arrhythmia classes are included in the training and testing phases of the model. In this study, an ECG dataset containing more than 10,000 subject records was used to train and diagnose arrhythmia. A deep neural network (DNN) model was used on the data set during the extraction of the features of the ECG inputs. Feature maps obtained from hierarchically placed layers in DNN were fed to various shallow classifiers. Principal component analysis (PCA) technique was used to reduce the high dimensions of feature maps. In addition to the morphological features obtained with DNN, various ECG features obtained from lead-II for rhythmic information are fused to increase the performance. Using the ECG features, an accuracy of 90.30% has been achieved. Using only deep features, this accuracy was increased to 97.26%. However, the accuracy was increased to 98.00% by fusing both deep and ECG-based features. Another important research subject of the study is the examination of the features obtained from DNN network both on a layer basis and at each training step. The findings show that the more abstract features obtained from the last layers of the DNN network provide high performance in shallow classifiers, and weight updates of DNN network also increases the performance of these classifiers. Hence, the study presents important findings on the fusion of deep features and shallow classifiers to improve the performance of the proposed system.
ArticleNumber 107473
Author Ciaccio, Edward J.
Yildirim, Ozal
Murat, Fatma
Acharya, U. Rajendra
Talo, Muhammed
Demir, Yakup
Tan, Ru-San
Author_xml – sequence: 1
  givenname: Fatma
  orcidid: 0000-0001-6881-9117
  surname: Murat
  fullname: Murat, Fatma
  organization: Department of Electrical and Electronics Engineering, Firat University, Elazig, 23000, Turkey
– sequence: 2
  givenname: Ozal
  surname: Yildirim
  fullname: Yildirim, Ozal
  email: ozal@firat.edu.tr
  organization: Department of Software Engineering, Firat University, Elazig, Turkey
– sequence: 3
  givenname: Muhammed
  surname: Talo
  fullname: Talo, Muhammed
  organization: Department of Software Engineering, Firat University, Elazig, Turkey
– sequence: 4
  givenname: Yakup
  surname: Demir
  fullname: Demir, Yakup
  organization: Department of Electrical and Electronics Engineering, Firat University, Elazig, 23000, Turkey
– sequence: 5
  givenname: Ru-San
  surname: Tan
  fullname: Tan, Ru-San
  organization: National Heart Centre Singapore, Singapore
– sequence: 6
  givenname: Edward J.
  surname: Ciaccio
  fullname: Ciaccio, Edward J.
  organization: Department of Medicine - Division of Cardiology, Columbia University, USA
– sequence: 7
  givenname: U. Rajendra
  surname: Acharya
  fullname: Acharya, U. Rajendra
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
BookMark eNqFkE9LAzEQxYNUsFW_gYcFz1snyWa360GQUv-g4EXPIZtMbGrd1CQV--1NWU8e9DTweO_NzG9CRr3vkZAzClMKtL5YTd96H3dxyoDRLDVVww_ImM4aVjYVtCMyhlZA2YCgR2QS4woAGKOzMXlYfG3WPrj-tTCIm8KiStuAsVC9KRbz20KlFFy3TVlKPnsS6lRoFYxTugjLXVq-F3qtYsR4Qg6tWkc8_ZnH5OVm8Ty_Kx-fbu_n14-l5rxKZQ0Wq7ptrQGuasEE051AYTpBwWrFZ6AaattOWC46VUENLap8eQfWdKZS_JicD72b4D-2GJNc-W3o80rJRNvWvGa8ya5qcOngYwxo5Sa4dxV2koLcY5MrOWCTe2xywJZjl79i2iWVnO9TUG79X_hqCGN-_9NhkFE77DUaFzI3abz7u-Ab7pSNsw
CitedBy_id crossref_primary_10_3389_fphys_2022_867033
crossref_primary_10_1007_s11042_022_14315_8
crossref_primary_10_1007_s10489_023_04829_5
crossref_primary_10_1016_j_engappai_2024_109534
crossref_primary_10_1109_JBHI_2023_3278657
crossref_primary_10_1016_j_ins_2023_118978
crossref_primary_10_1016_j_bspc_2024_105982
crossref_primary_10_1016_j_measurement_2023_114094
crossref_primary_10_3390_bioengineering10020196
crossref_primary_10_1007_s11042_024_19352_z
crossref_primary_10_1016_j_artmed_2022_102365
crossref_primary_10_1002_cpe_7232
crossref_primary_10_3390_app14167227
crossref_primary_10_1016_j_knosys_2023_110545
crossref_primary_10_3390_app13084964
crossref_primary_10_3390_diagnostics13061099
crossref_primary_10_3390_healthcare11162240
crossref_primary_10_1109_TIM_2022_3181276
crossref_primary_10_1016_j_asoc_2024_112056
crossref_primary_10_1016_j_knosys_2022_108783
crossref_primary_10_1007_s11760_023_02689_7
crossref_primary_10_1109_TIM_2024_3420364
crossref_primary_10_1016_j_bspc_2022_103863
crossref_primary_10_3389_fnins_2023_1145526
crossref_primary_10_1007_s12559_022_10103_6
crossref_primary_10_1109_JBHI_2024_3397653
crossref_primary_10_3389_fphys_2023_1079503
crossref_primary_10_1109_TCBB_2022_3198998
crossref_primary_10_1186_s12911_024_02822_7
crossref_primary_10_1016_j_knosys_2023_110473
Cites_doi 10.1109/TBME.1985.325532
10.1016/j.compbiomed.2020.103866
10.1016/j.bspc.2016.07.003
10.1016/j.cmpb.2019.06.021
10.1016/j.knosys.2016.01.040
10.1007/s11760-020-01666-8
10.1016/j.cmpb.2020.105740
10.1016/j.bspc.2020.102034
10.1016/S0140-6736(97)10190-8
10.1038/s41598-017-10942-6
10.15420/aer.2018:15:2
10.1080/14017430802471483
10.4310/SII.2009.v2.n3.a8
10.1016/j.eswa.2020.113697
10.1214/07-AOS537
10.1088/1361-6579/ac010f
10.1016/j.ins.2016.10.013
10.1016/j.bspc.2018.03.003
10.1016/0169-7439(95)00076-3
10.3402/jchimp.v2i1.14383
10.1016/j.bspc.2020.102170
10.1109/51.376755
10.1016/j.future.2019.03.025
10.1016/j.ins.2021.06.022
10.1214/aos/1013203451
10.1016/j.inffus.2019.06.024
10.1016/j.cmpb.2020.105479
10.1098/rsta.2015.0202
10.1016/j.ccep.2010.10.012
10.1016/j.eswa.2018.07.030
10.1007/978-981-15-7981-3
10.1016/j.patrec.2007.01.017
10.1016/j.artmed.2019.101743
10.1057/9780230509993
10.1016/j.artmed.2019.101788
10.1161/CIRCEP.118.006273
10.1038/415198a
10.2344/0003-3006(2006)53[53:FOEI]2.0.CO;2
10.1016/j.compbiomed.2018.03.016
10.3390/rs12101685
10.1007/s12652-020-02110-y
10.1016/j.patcog.2004.06.009
10.1007/BF00994018
10.1016/j.bspc.2020.102262
10.1016/j.cnc.2016.04.001
10.1016/j.compbiomed.2018.06.002
10.1038/s41598-021-84374-8
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier Science Ltd. Nov 28, 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Nov 28, 2021
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2021.107473
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2021_107473
S0950705121007358
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
UHS
WUQ
7SC
8FD
E3H
EFKBS
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-60fe4699fd03a65252cb5e5db510fca380a71f9b5f35ba40609ea051b0fdbd4a3
IEDL.DBID .~1
ISSN 0950-7051
IngestDate Fri Jul 25 04:16:15 EDT 2025
Tue Jul 01 04:38:04 EDT 2025
Thu Apr 24 23:08:55 EDT 2025
Fri Feb 23 02:42:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
ECG signals
Feature extraction
Cardiac rhythm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-60fe4699fd03a65252cb5e5db510fca380a71f9b5f35ba40609ea051b0fdbd4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6881-9117
PQID 2599636237
PQPubID 2035257
ParticipantIDs proquest_journals_2599636237
crossref_primary_10_1016_j_knosys_2021_107473
crossref_citationtrail_10_1016_j_knosys_2021_107473
elsevier_sciencedirect_doi_10_1016_j_knosys_2021_107473
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-28
PublicationDateYYYYMMDD 2021-11-28
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-28
  day: 28
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Marinho, de M.M. Nascimento, Souza, Gurgel, Rebouças Filho, de Albuquerque (b31) 2019
Chen, Hong, Guo, Pang (b45) 2019
Zheng, Zhang, Danioko, Yao, Guo, Rakovski (b41) 2020
Weimann, Conrad (b42) 2021
Romdhane, Alhichri, Ouni, Atri (b35) 2020
Diker, Comert, Avci, Togacar, Ergen (b47) 2019
Bers (b4) 2002
Pan, Tompkins (b18) 1985
Yu, Chen (b30) 2007
Baloglu, Yildirim, Uçar (b37) 2019
Song, Lee, Cho, Lee, Yoo (b29) 2005
Khurshid, Choi, Weng, Wang, Trinquart, Benjamin, Ellinor, Lubitz (b1) 2018
Yao, Wang, Fan, Liu, Li (b10) 2020
Pandey, Janghel (b20) 2020
Cömert, Akbulut, Akpinar, Alçin, Budak, Aslan, Şengür (b48) 2020; 1
Hall, Park, Samworth (b55) 2008
Mathunjwa, Lin, Lin, Abbod, Shieh (b39) 2021
Yildirim, Talo, Ciaccio, Tan, Acharya (b15) 2020
Kaplan Berkaya, Uysal, Sora Gunal, Ergin, Gunal, Gulmezoglu (b36) 2018
Ye, Janardan, Li (b61) 2005
Talo (b49) 2019
Hastie, Rosset, Zhu, Zou (b60) 2009
Friedman (b58) 2001
Cortes, Vapnik (b56) 1995
Oh, Ng, Tan, Acharya (b34) 2018
Güler, Übeyli (b27) 2005
Yan, Zhou, Wong (b38) 2021
AlGhatrif, Lindsay (b7) 2012
Srinivasan, Schilling (b2) 2018
Huang, Chen, Zeng, Cao, Li (b24) 2020
Kors, De Bruyne, Hoes, Van Herpen, Hofman, Van Bemmel, Grobbee (b52) 1998
Acharya, Fujita, Adam, Lih, Sudarshan, Hong, Koh, Hagiwara, Chua, Poo, San (b11) 2017; 377
Antzelevitch, Burashnikov (b5) 2011
Maršánová, Ronzhina, Smíšek, Vítek, Němcová, Smital, Nováková (b12) 2017
Gupta, Mittal, Mittal, Sharma, Saxena (b22) 2021
Chollet (b63) 2015
Yildirim (b23) 2018
Bognár, Fridli (b16) 2020
Liaw, Wiener (b57) 2002
Scherer, Aspelund, Sigurdsson, Detrano, Garcia, Mitchell, Launer, Thorgeirsson, Gudnason, Harris (b51) 2009
Baygin, Tuncer, Dogan, Tan, Acharya (b65) 2021
da S. Luz, Schwartz, Cámara-Chávez, Menotti (b9) 2016
Wang, Zhang, Pan (b13) 2019
Rish (b59) 2001
Becker (b8) 2006; 53
Sharma, Tan, Acharya (b32) 2018
Lu, Hou, Chu (b44) 2018
Huang, Li, Yu (b43) 2021
Jollife, Cadima (b50) 2016
Ku, Storer, Georgakis (b62) 1995
Acharya, Fujita, Sudarshan, Oh, Adam, Koh, Tan, Ghista, Martis, Chua, Poo, Tan (b54) 2016
Chen, Wang, Liu, Chang, Wang, He, Huang (b46) 2020
Acharya, Sudarshan, Koh, Martis, Tan, Oh, Muhammad, Hagiwara, Mookiah, Chua, Chua, Tan (b14) 2017
Jiang, Zhang, Pi, Dai (b64) 2019
Senhadji, Carrault, Bellanger, Passariello (b26) 1995
Wellens, Bär, Vanagt, Brugada, Farré (b6) 1981
Ullah, Anwar, Bilal, Mehmood (b40) 2020
Allam, Samantray, Ari (b17) 2020
Kumar, Pachori, Acharya (b53) 2017
Sangaiah, Arumugam, Bin Bian (b25) 2020
Golrizkhatami, Acan (b21) 2018
Ye, Coimbra, Vijaya Kumar (b28) 2010
Singh, Swain, Patra (b19) 2019
Kennedy, Finlay, Guldenring, Bond, Moran, McLaughlin (b3) 2016
Mazaheri, Khodadadi (b33) 2020
Marinho (10.1016/j.knosys.2021.107473_b31) 2019
Kaplan Berkaya (10.1016/j.knosys.2021.107473_b36) 2018
Ku (10.1016/j.knosys.2021.107473_b62) 1995
Diker (10.1016/j.knosys.2021.107473_b47) 2019
Baygin (10.1016/j.knosys.2021.107473_b65) 2021
Bers (10.1016/j.knosys.2021.107473_b4) 2002
Maršánová (10.1016/j.knosys.2021.107473_b12) 2017
Kors (10.1016/j.knosys.2021.107473_b52) 1998
Song (10.1016/j.knosys.2021.107473_b29) 2005
Huang (10.1016/j.knosys.2021.107473_b43) 2021
Jiang (10.1016/j.knosys.2021.107473_b64) 2019
Mazaheri (10.1016/j.knosys.2021.107473_b33) 2020
Cömert (10.1016/j.knosys.2021.107473_b48) 2020; 1
Kennedy (10.1016/j.knosys.2021.107473_b3) 2016
Yao (10.1016/j.knosys.2021.107473_b10) 2020
Cortes (10.1016/j.knosys.2021.107473_b56) 1995
Hastie (10.1016/j.knosys.2021.107473_b60) 2009
Gupta (10.1016/j.knosys.2021.107473_b22) 2021
Yildirim (10.1016/j.knosys.2021.107473_b23) 2018
Ullah (10.1016/j.knosys.2021.107473_b40) 2020
Hall (10.1016/j.knosys.2021.107473_b55) 2008
Singh (10.1016/j.knosys.2021.107473_b19) 2019
da S. Luz (10.1016/j.knosys.2021.107473_b9) 2016
Yan (10.1016/j.knosys.2021.107473_b38) 2021
Chollet (10.1016/j.knosys.2021.107473_b63) 2015
Ye (10.1016/j.knosys.2021.107473_b28) 2010
Huang (10.1016/j.knosys.2021.107473_b24) 2020
Yu (10.1016/j.knosys.2021.107473_b30) 2007
Golrizkhatami (10.1016/j.knosys.2021.107473_b21) 2018
Ye (10.1016/j.knosys.2021.107473_b61) 2005
Becker (10.1016/j.knosys.2021.107473_b8) 2006; 53
Talo (10.1016/j.knosys.2021.107473_b49) 2019
Senhadji (10.1016/j.knosys.2021.107473_b26) 1995
Weimann (10.1016/j.knosys.2021.107473_b42) 2021
Chen (10.1016/j.knosys.2021.107473_b45) 2019
Friedman (10.1016/j.knosys.2021.107473_b58) 2001
Acharya (10.1016/j.knosys.2021.107473_b14) 2017
Yildirim (10.1016/j.knosys.2021.107473_b15) 2020
Sangaiah (10.1016/j.knosys.2021.107473_b25) 2020
Bognár (10.1016/j.knosys.2021.107473_b16) 2020
Pan (10.1016/j.knosys.2021.107473_b18) 1985
Scherer (10.1016/j.knosys.2021.107473_b51) 2009
Jollife (10.1016/j.knosys.2021.107473_b50) 2016
Chen (10.1016/j.knosys.2021.107473_b46) 2020
Zheng (10.1016/j.knosys.2021.107473_b41) 2020
Liaw (10.1016/j.knosys.2021.107473_b57) 2002
Wellens (10.1016/j.knosys.2021.107473_b6) 1981
Romdhane (10.1016/j.knosys.2021.107473_b35) 2020
Pandey (10.1016/j.knosys.2021.107473_b20) 2020
Oh (10.1016/j.knosys.2021.107473_b34) 2018
AlGhatrif (10.1016/j.knosys.2021.107473_b7) 2012
Srinivasan (10.1016/j.knosys.2021.107473_b2) 2018
Sharma (10.1016/j.knosys.2021.107473_b32) 2018
Wang (10.1016/j.knosys.2021.107473_b13) 2019
Acharya (10.1016/j.knosys.2021.107473_b11) 2017; 377
Allam (10.1016/j.knosys.2021.107473_b17) 2020
Khurshid (10.1016/j.knosys.2021.107473_b1) 2018
Baloglu (10.1016/j.knosys.2021.107473_b37) 2019
Lu (10.1016/j.knosys.2021.107473_b44) 2018
Kumar (10.1016/j.knosys.2021.107473_b53) 2017
Acharya (10.1016/j.knosys.2021.107473_b54) 2016
Mathunjwa (10.1016/j.knosys.2021.107473_b39) 2021
Antzelevitch (10.1016/j.knosys.2021.107473_b5) 2011
Güler (10.1016/j.knosys.2021.107473_b27) 2005
Rish (10.1016/j.knosys.2021.107473_b59) 2001
References_xml – year: 2020
  ident: b35
  article-title: Electrocardiogram heartbeat classification based on a deep convolutional neural network and focal loss
  publication-title: Comput. Biol. Med.
– year: 2018
  ident: b2
  article-title: Sudden cardiac death and arrhythmias
  publication-title: Arrhythm. Electrophysiol. Rev.
– year: 2009
  ident: b60
  article-title: Multi-class AdaBoost
  publication-title: Stat. Interface.
– year: 2020
  ident: b40
  article-title: Classification of arrhythmia by using deep learning with 2-D ECG spectral image representation
  publication-title: Remote Sens.
– year: 1981
  ident: b6
  article-title: The differentiation between ventricular tachycardia and supraventricular tachycardia with aberrant conduction: The value of the 12-lead electrocardiogram
  publication-title: What’s New Electrocardiogr
– year: 2019
  ident: b37
  article-title: Person Recognition Via Facial Expression using ELM Classifier Based CNN Feature Maps
– year: 2020
  ident: b41
  article-title: A 12-lead electrocardiogram database for arrhythmia research covering more than 10, 000 patients
  publication-title: Sci. Data.
– year: 2016
  ident: b9
  article-title: Ecg-based heartbeat classification for arrhythmia detection: A survey
  publication-title: Comput. Methods Programs Biomed.
– year: 2005
  ident: b27
  article-title: Ecg beat classifier designed by combined neural network model
  publication-title: Pattern Recognit.
– year: 2012
  ident: b7
  article-title: A brief review: history to understand fundamentals of electrocardiography
  publication-title: J. Community Hosp. Intern. Med. Perspect.
– year: 2007
  ident: b30
  article-title: Electrocardiogram beat classification based on wavelet transformation and probabilistic neural network
  publication-title: Pattern Recognit. Lett.
– year: 2016
  ident: b3
  article-title: The cardiac conduction system: Generation and conduction of the cardiac impulse
  publication-title: Crit. Care Nurs. Clin. North Am.
– year: 2020
  ident: b16
  article-title: ECG Heartbeat classification by means of variable rational projection
  publication-title: Biomed. Signal Process. Control.
– year: 2001
  ident: b58
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Statist.
– year: 2018
  ident: b21
  article-title: ECG Classification using three-level fusion of different feature descriptors
  publication-title: Expert Syst. Appl.
– year: 2020
  ident: b25
  article-title: An intelligent learning approach for improving ECG signal classification and arrhythmia analysis
  publication-title: Artif. Intell. Med.
– year: 2001
  ident: b59
  article-title: An empirical study of the naive Bayes classifier
  publication-title: IJCAI 2001 Work. Empir. Methods Artif. Intell
– year: 1995
  ident: b26
  article-title: Comparing wavelet transforms for recognizing cardiac patterns
  publication-title: IEEE Eng. Med. Biol. Mag.
– year: 1985
  ident: b18
  article-title: A real-time QRS detection algorithm
  publication-title: IEEE Trans. Biomed. Eng.
– year: 2002
  ident: b57
  article-title: Classification and regression by randomforest
  publication-title: R News
– year: 2015
  ident: b63
  article-title: Keras: Deep learning library for Theano and TensorFlow
  publication-title: GitHub Repos.
– year: 2016
  ident: b50
  article-title: Principal component analysis: A review and recent developments
  publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
– year: 2018
  ident: b1
  article-title: Frequency of cardiac rhythm abnormalities in a half million adults
  publication-title: Circ. Arrhythm. Electrophysiol.
– year: 2018
  ident: b44
  article-title: Feature fusion for imbalanced ECG data analysis
  publication-title: Biomed. Signal Process. Control.
– year: 2020
  ident: b33
  article-title: Heart arrhythmia diagnosis based on the combination of morphological, frequency and nonlinear features of ECG signals and metaheuristic feature selection algorithm
  publication-title: Expert Syst. Appl.
– year: 1995
  ident: b62
  article-title: Disturbance detection and isolation by dynamic principal component analysis
  publication-title: Chemom. Intell. Lab. Syst.
– year: 2018
  ident: b34
  article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats
  publication-title: Comput. Biol. Med.
– year: 2020
  ident: b17
  article-title: SpEC: A System for patient specific ECG beat classification using deep residual network, biocybern
  publication-title: Biomed. Eng.
– year: 2020
  ident: b10
  article-title: Multi-class arrhythmia detection from 12-lead varied-length ECG using attention-based time-incremental convolutional neural network
  publication-title: Inf. Fusion
– year: 2005
  ident: b61
  article-title: Two-dimensional linear discriminant analysis
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 1
  year: 2020
  ident: b48
  article-title: Electrocardiogram beat classification using deep convolutional neural network techniques
  publication-title: Model. Anal. Act. Biopotential Signals Heal.
– year: 2009
  ident: b51
  article-title: Abnormal T-wave axis is associated with coronary artery calcification in older adults
  publication-title: Scand. Cardiovasc. J.
– year: 2018
  ident: b32
  article-title: A novel automated diagnostic system for classification of myocardial infarction ECG signals using an optimal biorthogonal filter bank
  publication-title: Comput. Biol. Med.
– year: 2017
  ident: b53
  article-title: Automated diagnosis of myocardial infarction ECG signals using sample entropy in flexible analytic wavelet transform framework
  publication-title: Entropy
– year: 2021
  ident: b42
  article-title: Transfer learning for ECG classification
  publication-title: Sci. Rep.
– year: 2019
  ident: b19
  article-title: Time-frequency analysis based detection of dysrhythmia in ECG using stockwell transform
  publication-title: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)
– year: 2002
  ident: b4
  article-title: Cardiac excitation-contraction coupling
  publication-title: Nature
– year: 2008
  ident: b55
  article-title: Choice of neighbor order in nearest-neighbor classification
  publication-title: Ann. Statist.
– year: 2021
  ident: b38
  article-title: Energy efficient ECG classification with spiking neural network
  publication-title: Biomed. Signal Process. Control.
– year: 2021
  ident: b22
  article-title: A novel feature extraction-based ECG signal analysis
  publication-title: J. Inst. Eng. Ser. B
– year: 2016
  ident: b54
  article-title: Automated detection and localization of myocardial infarction using electrocardiogram: A comparative study of different leads
  publication-title: Knowledge-Based Syst.
– year: 2021
  ident: b65
  article-title: Automated arrhythmia detection with homeomorphically irreducible tree technique using more than 10, 000 individual subject ECG records
  publication-title: Inf. Sci. (Ny)
– volume: 377
  start-page: 17
  year: 2017
  end-page: 29
  ident: b11
  article-title: Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: A comparative study
  publication-title: Inf. Sci. (Ny)
– year: 2018
  ident: b36
  article-title: A survey on ECG analysis
  publication-title: Biomed. Signal Process. Control.
– year: 2020
  ident: b15
  article-title: Accurate deep neural network model to detect cardiac arrhythmia on more than 10, 000 individual subject ECG records
  publication-title: Comput. Methods Programs Biomed.
– year: 1998
  ident: b52
  article-title: T axis as an indicator of risk of cardiac events in elderly people
  publication-title: Lancet
– year: 2017
  ident: b12
  article-title: ECG Features and methods for automatic classification of ventricular premature and ischemic heartbeats: A comprehensive experimental study
  publication-title: Sci. Rep.
– year: 2019
  ident: b45
  article-title: A cascaded classifier for multi-lead ECG based on feature fusion
  publication-title: Comput. Methods Programs Biomed.
– year: 2019
  ident: b64
  article-title: A novel multi-module neural network system for imbalanced heartbeats classification
  publication-title: Expert Syst. with Appl. X
– year: 2017
  ident: b14
  article-title: Application of higher-order spectra for the characterization of coronary artery disease using electrocardiogram signals
  publication-title: Biomed. Signal Process. Control.
– year: 2021
  ident: b43
  article-title: A multiview feature fusion model for heartbeat classification
  publication-title: Physiol. Meas.
– year: 2020
  ident: b46
  article-title: Multi-information fusion neural networks for arrhythmia automatic detection
  publication-title: Comput. Methods Programs Biomed.
– year: 2019
  ident: b13
  article-title: Automatic classification of CAD ECG signals with SDAE and bidirectional long short-term network
  publication-title: IEEE Access
– year: 2019
  ident: b49
  article-title: Automated classification of histopathology images using transfer learning
  publication-title: Artif. Intell. Med.
– year: 2005
  ident: b29
  article-title: Support vector machine based arrhythmia classification using reduced features
  publication-title: Int. J. Control. Autom. Syst.
– year: 2011
  ident: b5
  article-title: Overview of basic mechanisms of cardiac arrhythmia
  publication-title: Card. Electrophysiol. Clin.
– volume: 53
  start-page: 53
  year: 2006
  end-page: 64
  ident: b8
  article-title: Fundamentals of electrocardiography interpretation.
  publication-title: Anesth. Prog.
– year: 2020
  ident: b20
  article-title: Automatic arrhythmia recognition from electrocardiogram signals using different feature methods with long short-term memory network model
  publication-title: Signal Image Video Process.
– year: 2019
  ident: b31
  article-title: A novel electrocardiogram feature extraction approach for cardiac arrhythmia classification
  publication-title: Futur. Gener. Comput. Syst.
– year: 1995
  ident: b56
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– year: 2018
  ident: b23
  article-title: A novel wavelet sequences based on deep bidirectional LSTM network model for ECG signal classification
  publication-title: Comput. Biol. Med.
– year: 2021
  ident: b39
  article-title: Ecg arrhythmia classification by using a recurrence plot and convolutional neural network
  publication-title: Biomed. Signal Process. Control.
– year: 2019
  ident: b47
  article-title: A novel application based on spectrogram and convolutional neural network for ECG classification
  publication-title: 1st Int. Informatics Softw. Eng. Conf. Innov. Technol. Digit. Transform. IISEC 2019 - Proc
– year: 2020
  ident: b24
  article-title: Accurate classification of ECG arrhythmia using MOWPT enhanced fast compression deep learning networks
  publication-title: J. Ambient Intell. Humaniz. Comput.
– year: 2010
  ident: b28
  article-title: Arrhythmia detection and classification using morphological and dynamic features of ECG signals
  publication-title: 2010 Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBC’10
– year: 1985
  ident: 10.1016/j.knosys.2021.107473_b18
  article-title: A real-time QRS detection algorithm
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.1985.325532
– year: 2020
  ident: 10.1016/j.knosys.2021.107473_b35
  article-title: Electrocardiogram heartbeat classification based on a deep convolutional neural network and focal loss
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103866
– year: 2017
  ident: 10.1016/j.knosys.2021.107473_b14
  article-title: Application of higher-order spectra for the characterization of coronary artery disease using electrocardiogram signals
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2016.07.003
– year: 2020
  ident: 10.1016/j.knosys.2021.107473_b17
  article-title: SpEC: A System for patient specific ECG beat classification using deep residual network, biocybern
  publication-title: Biomed. Eng.
– year: 2019
  ident: 10.1016/j.knosys.2021.107473_b45
  article-title: A cascaded classifier for multi-lead ECG based on feature fusion
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.06.021
– year: 2016
  ident: 10.1016/j.knosys.2021.107473_b54
  article-title: Automated detection and localization of myocardial infarction using electrocardiogram: A comparative study of different leads
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2016.01.040
– year: 2016
  ident: 10.1016/j.knosys.2021.107473_b9
  article-title: Ecg-based heartbeat classification for arrhythmia detection: A survey
  publication-title: Comput. Methods Programs Biomed.
– year: 2020
  ident: 10.1016/j.knosys.2021.107473_b20
  article-title: Automatic arrhythmia recognition from electrocardiogram signals using different feature methods with long short-term memory network model
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-020-01666-8
– year: 2017
  ident: 10.1016/j.knosys.2021.107473_b53
  article-title: Automated diagnosis of myocardial infarction ECG signals using sample entropy in flexible analytic wavelet transform framework
  publication-title: Entropy
– year: 2020
  ident: 10.1016/j.knosys.2021.107473_b15
  article-title: Accurate deep neural network model to detect cardiac arrhythmia on more than 10, 000 individual subject ECG records
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105740
– year: 2020
  ident: 10.1016/j.knosys.2021.107473_b16
  article-title: ECG Heartbeat classification by means of variable rational projection
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2020.102034
– year: 1998
  ident: 10.1016/j.knosys.2021.107473_b52
  article-title: T axis as an indicator of risk of cardiac events in elderly people
  publication-title: Lancet
  doi: 10.1016/S0140-6736(97)10190-8
– year: 2017
  ident: 10.1016/j.knosys.2021.107473_b12
  article-title: ECG Features and methods for automatic classification of ventricular premature and ischemic heartbeats: A comprehensive experimental study
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-10942-6
– year: 2005
  ident: 10.1016/j.knosys.2021.107473_b29
  article-title: Support vector machine based arrhythmia classification using reduced features
  publication-title: Int. J. Control. Autom. Syst.
– year: 2005
  ident: 10.1016/j.knosys.2021.107473_b61
  article-title: Two-dimensional linear discriminant analysis
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2018
  ident: 10.1016/j.knosys.2021.107473_b2
  article-title: Sudden cardiac death and arrhythmias
  publication-title: Arrhythm. Electrophysiol. Rev.
  doi: 10.15420/aer.2018:15:2
– year: 2001
  ident: 10.1016/j.knosys.2021.107473_b59
  article-title: An empirical study of the naive Bayes classifier
– year: 2009
  ident: 10.1016/j.knosys.2021.107473_b51
  article-title: Abnormal T-wave axis is associated with coronary artery calcification in older adults
  publication-title: Scand. Cardiovasc. J.
  doi: 10.1080/14017430802471483
– year: 2009
  ident: 10.1016/j.knosys.2021.107473_b60
  article-title: Multi-class AdaBoost
  publication-title: Stat. Interface.
  doi: 10.4310/SII.2009.v2.n3.a8
– year: 2020
  ident: 10.1016/j.knosys.2021.107473_b33
  article-title: Heart arrhythmia diagnosis based on the combination of morphological, frequency and nonlinear features of ECG signals and metaheuristic feature selection algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113697
– year: 2008
  ident: 10.1016/j.knosys.2021.107473_b55
  article-title: Choice of neighbor order in nearest-neighbor classification
  publication-title: Ann. Statist.
  doi: 10.1214/07-AOS537
– year: 2010
  ident: 10.1016/j.knosys.2021.107473_b28
  article-title: Arrhythmia detection and classification using morphological and dynamic features of ECG signals
– year: 2021
  ident: 10.1016/j.knosys.2021.107473_b43
  article-title: A multiview feature fusion model for heartbeat classification
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ac010f
– year: 2019
  ident: 10.1016/j.knosys.2021.107473_b47
  article-title: A novel application based on spectrogram and convolutional neural network for ECG classification
– year: 2019
  ident: 10.1016/j.knosys.2021.107473_b13
  article-title: Automatic classification of CAD ECG signals with SDAE and bidirectional long short-term network
  publication-title: IEEE Access
– volume: 377
  start-page: 17
  year: 2017
  ident: 10.1016/j.knosys.2021.107473_b11
  article-title: Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: A comparative study
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2016.10.013
– year: 2018
  ident: 10.1016/j.knosys.2021.107473_b36
  article-title: A survey on ECG analysis
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2018.03.003
– year: 1995
  ident: 10.1016/j.knosys.2021.107473_b62
  article-title: Disturbance detection and isolation by dynamic principal component analysis
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/0169-7439(95)00076-3
– year: 2012
  ident: 10.1016/j.knosys.2021.107473_b7
  article-title: A brief review: history to understand fundamentals of electrocardiography
  publication-title: J. Community Hosp. Intern. Med. Perspect.
  doi: 10.3402/jchimp.v2i1.14383
– year: 2021
  ident: 10.1016/j.knosys.2021.107473_b38
  article-title: Energy efficient ECG classification with spiking neural network
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2020.102170
– year: 2018
  ident: 10.1016/j.knosys.2021.107473_b44
  article-title: Feature fusion for imbalanced ECG data analysis
  publication-title: Biomed. Signal Process. Control.
– year: 1995
  ident: 10.1016/j.knosys.2021.107473_b26
  article-title: Comparing wavelet transforms for recognizing cardiac patterns
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/51.376755
– year: 2019
  ident: 10.1016/j.knosys.2021.107473_b31
  article-title: A novel electrocardiogram feature extraction approach for cardiac arrhythmia classification
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.03.025
– year: 2021
  ident: 10.1016/j.knosys.2021.107473_b65
  article-title: Automated arrhythmia detection with homeomorphically irreducible tree technique using more than 10, 000 individual subject ECG records
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2021.06.022
– year: 2001
  ident: 10.1016/j.knosys.2021.107473_b58
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1013203451
– year: 2020
  ident: 10.1016/j.knosys.2021.107473_b10
  article-title: Multi-class arrhythmia detection from 12-lead varied-length ECG using attention-based time-incremental convolutional neural network
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.06.024
– year: 2020
  ident: 10.1016/j.knosys.2021.107473_b46
  article-title: Multi-information fusion neural networks for arrhythmia automatic detection
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105479
– year: 2016
  ident: 10.1016/j.knosys.2021.107473_b50
  article-title: Principal component analysis: A review and recent developments
  publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2015.0202
– year: 2011
  ident: 10.1016/j.knosys.2021.107473_b5
  article-title: Overview of basic mechanisms of cardiac arrhythmia
  publication-title: Card. Electrophysiol. Clin.
  doi: 10.1016/j.ccep.2010.10.012
– year: 2018
  ident: 10.1016/j.knosys.2021.107473_b21
  article-title: ECG Classification using three-level fusion of different feature descriptors
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.07.030
– year: 2018
  ident: 10.1016/j.knosys.2021.107473_b32
  article-title: A novel automated diagnostic system for classification of myocardial infarction ECG signals using an optimal biorthogonal filter bank
  publication-title: Comput. Biol. Med.
– year: 2015
  ident: 10.1016/j.knosys.2021.107473_b63
  article-title: Keras: Deep learning library for Theano and TensorFlow
  publication-title: GitHub Repos.
– year: 2021
  ident: 10.1016/j.knosys.2021.107473_b22
  article-title: A novel feature extraction-based ECG signal analysis
  publication-title: J. Inst. Eng. Ser. B
– year: 2020
  ident: 10.1016/j.knosys.2021.107473_b41
  article-title: A 12-lead electrocardiogram database for arrhythmia research covering more than 10, 000 patients
  publication-title: Sci. Data.
  doi: 10.1007/978-981-15-7981-3
– year: 2007
  ident: 10.1016/j.knosys.2021.107473_b30
  article-title: Electrocardiogram beat classification based on wavelet transformation and probabilistic neural network
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2007.01.017
– year: 1981
  ident: 10.1016/j.knosys.2021.107473_b6
  article-title: The differentiation between ventricular tachycardia and supraventricular tachycardia with aberrant conduction: The value of the 12-lead electrocardiogram
– year: 2019
  ident: 10.1016/j.knosys.2021.107473_b49
  article-title: Automated classification of histopathology images using transfer learning
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2019.101743
– year: 2002
  ident: 10.1016/j.knosys.2021.107473_b57
  article-title: Classification and regression by randomforest
  publication-title: R News
  doi: 10.1057/9780230509993
– year: 2019
  ident: 10.1016/j.knosys.2021.107473_b64
  article-title: A novel multi-module neural network system for imbalanced heartbeats classification
  publication-title: Expert Syst. with Appl. X
– year: 2020
  ident: 10.1016/j.knosys.2021.107473_b25
  article-title: An intelligent learning approach for improving ECG signal classification and arrhythmia analysis
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2019.101788
– year: 2019
  ident: 10.1016/j.knosys.2021.107473_b37
– year: 2019
  ident: 10.1016/j.knosys.2021.107473_b19
  article-title: Time-frequency analysis based detection of dysrhythmia in ECG using stockwell transform
– year: 2018
  ident: 10.1016/j.knosys.2021.107473_b1
  article-title: Frequency of cardiac rhythm abnormalities in a half million adults
  publication-title: Circ. Arrhythm. Electrophysiol.
  doi: 10.1161/CIRCEP.118.006273
– year: 2002
  ident: 10.1016/j.knosys.2021.107473_b4
  article-title: Cardiac excitation-contraction coupling
  publication-title: Nature
  doi: 10.1038/415198a
– volume: 1
  year: 2020
  ident: 10.1016/j.knosys.2021.107473_b48
  article-title: Electrocardiogram beat classification using deep convolutional neural network techniques
  publication-title: Model. Anal. Act. Biopotential Signals Heal.
– volume: 53
  start-page: 53
  issue: 2
  year: 2006
  ident: 10.1016/j.knosys.2021.107473_b8
  article-title: Fundamentals of electrocardiography interpretation.
  publication-title: Anesth. Prog.
  doi: 10.2344/0003-3006(2006)53[53:FOEI]2.0.CO;2
– year: 2018
  ident: 10.1016/j.knosys.2021.107473_b23
  article-title: A novel wavelet sequences based on deep bidirectional LSTM network model for ECG signal classification
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.03.016
– year: 2020
  ident: 10.1016/j.knosys.2021.107473_b40
  article-title: Classification of arrhythmia by using deep learning with 2-D ECG spectral image representation
  publication-title: Remote Sens.
  doi: 10.3390/rs12101685
– year: 2020
  ident: 10.1016/j.knosys.2021.107473_b24
  article-title: Accurate classification of ECG arrhythmia using MOWPT enhanced fast compression deep learning networks
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-020-02110-y
– year: 2005
  ident: 10.1016/j.knosys.2021.107473_b27
  article-title: Ecg beat classifier designed by combined neural network model
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2004.06.009
– year: 1995
  ident: 10.1016/j.knosys.2021.107473_b56
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– year: 2021
  ident: 10.1016/j.knosys.2021.107473_b39
  article-title: Ecg arrhythmia classification by using a recurrence plot and convolutional neural network
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2020.102262
– year: 2016
  ident: 10.1016/j.knosys.2021.107473_b3
  article-title: The cardiac conduction system: Generation and conduction of the cardiac impulse
  publication-title: Crit. Care Nurs. Clin. North Am.
  doi: 10.1016/j.cnc.2016.04.001
– year: 2018
  ident: 10.1016/j.knosys.2021.107473_b34
  article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.06.002
– year: 2021
  ident: 10.1016/j.knosys.2021.107473_b42
  article-title: Transfer learning for ECG classification
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-84374-8
SSID ssj0002218
Score 2.47112
Snippet Arrhythmia is a condition characterized by perturbation of the regular rhythm of the heart. The development of computerized self-diagnostic systems for the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107473
SubjectTerms Accuracy
Arrhythmia
Artificial neural networks
Cardiac arrhythmia
Cardiac rhythm
Classifiers
Deep learning
Diagnostic systems
ECG signals
Electrocardiography
Feature extraction
Feature maps
Inspection
Machine learning
Performance enhancement
Perturbation
Principal components analysis
Rhythm
Training
Title Exploring deep features and ECG attributes to detect cardiac rhythm classes
URI https://dx.doi.org/10.1016/j.knosys.2021.107473
https://www.proquest.com/docview/2599636237
Volume 232
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvXjxbUSR7MFrYdt9tBwJAVEiFyXh1uxudwM-CoF64OJvd7YPjCaGxGO3M00znZ2Ztt98g9Ctb4JICkm9SGnmMRr6nvJJxxNEi4Qppk1OKfQ4FsMJe5jyaQ31ql4YB6ssY38R0_NoXa60S2u2l_N5-wmKA_BX7hiwwE-5a_hlLHRe3vr8hnkEQf6Nzwl7Trpqn8sxXq_pYr1xpN2B33LIxJD-lZ5-Beo8-wyO0WFZNuJucWcnqGbSU3RUjWTA5Q49Q6Mtpg4nxiyxNTlx5xrLNMH93h2WWTHiCpayBci4fwhY526i8Wq2yWbvWLuK2qzP0WTQf-4NvXJegqcpZRnY1xp42-3YhFApeMADrbjhiYJ9Z7WkEZGhbzuKW8qVhExOOkaCSRSxiUqYpBdoL12k5tIBngjoSSYCmTBhRWRAlUE1EKqQ-JrUEa3MFOuSTNzNtHiLK9TYS1wYN3bGjQvj1pG31VoWZBo75MPqCcQ_nCKGeL9Ds1E9sLjclHDeUdFAwqbh1b8vfI0O3JHrRgyiBtrLVh_mBsqSTDVzv2ui_e79aDj-AhIF4aE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKO8DCG1Eo4IE11IntPMaqKrS0dAEkNst2HPFMqzYM_fecE6cSSAiJ1fZF0efz3SW--w6hS98EsQwl9WKlmcdo5HvKJ4kXEh2mTDFtSkqhu2k4fGS3T_ypgfp1LYxNq3S2v7LppbV2I12HZnf-8tK9h-AA9JVbBizQUx5voJZlp-JN1OqNxsPp2iAHQfmbz673rEBdQVemeb3ls-XK8nYH_pVNTozobx7qh60uHdD1Ltp2kSPuVS-3hxom30c7dVcG7A7pARqv0-pwaswcZ6bk7lximad40L_Bsqi6XMFQMYM19hoB61JTNF48r4rnD6xtUG2Wh-jxevDQH3quZYKnKWUFQJwZ-OBNspRQGfKAB1pxw1MFRy_TksZERn6WKJ5RriQ4c5IYCZAokqUqZZIeoWY-y82xzXkiICdZGMiUhVkYGxBlEBBEKiK-Jm1Ea5iEdnzitq3Fu6gTx15FBa6w4IoK3Dby1lLzik_jj_VRvQPim14IMPl_SHbqDRPuXMK8ZaMBn02jk38_-AJtDh_uJmIymo5P0ZadscWJQdxBzWLxac4gSinUudPCL9XW5FI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+deep+features+and+ECG+attributes+to+detect+cardiac+rhythm+classes&rft.jtitle=Knowledge-based+systems&rft.au=Murat%2C+Fatma&rft.au=Yildirim%2C+Ozal&rft.au=Talo%2C+Muhammed&rft.au=Demir%2C+Yakup&rft.date=2021-11-28&rft.pub=Elsevier+Science+Ltd&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=232&rft.spage=1&rft_id=info:doi/10.1016%2Fj.knosys.2021.107473&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon