Impact of thermal masses on the peak load in district heating systems

During district heating operations, part of the heat supplied to the network is used to increase the temperature of the various components (e.g. transport and distribution networks, heat exchangers installed in the substations, heating circuits and heating devices in buildings). The mass of these co...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 214; p. 118849
Main Author Guelpa, Elisa
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.01.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract During district heating operations, part of the heat supplied to the network is used to increase the temperature of the various components (e.g. transport and distribution networks, heat exchangers installed in the substations, heating circuits and heating devices in buildings). The mass of these components acts as a thermal storage, storing heat when their temperature increases and releasing heat when they cool down. The impact may become significant, especially during shutdown or setback. In this paper, the components are analyzed in order to estimate the impact of their thermal capacity on the district heating demand. This provides a clear image of the additional supply used to heat the other thermal masses, that can be managed differently since partially independent from the indoor temperature. Results show that in the case study analyzed, i.e. large system mainly switched off during night, the heat absorbed by the thermal masses corresponds to the 4% of the heat supplied during the entire day and 70% of the heat provided during the peak. The various thermal masses affect the extra heat absorbed to a similar extent (except for radiators). Results provide a clue that proper management of thermal masses for energy saving might be considered. [Display omitted] •Thermal masses of district heating network components are analyzed independently.•In case of night shutdown, capacities affecting peak formation are quantified.•An existing large-scale network (Turin, Italy) is used as case study.•Capacity of buildings makes only a partial contribution in peak formation.•Distribution networks and building circuits are the major extra thermal masses.
AbstractList During district heating operations, part of the heat supplied to the network is used to increase the temperature of the various components (e.g. transport and distribution networks, heat exchangers installed in the substations, heating circuits and heating devices in buildings). The mass of these components acts as a thermal storage, storing heat when their temperature increases and releasing heat when they cool down. The impact may become significant, especially during shutdown or setback. In this paper, the components are analyzed in order to estimate the impact of their thermal capacity on the district heating demand. This provides a clear image of the additional supply used to heat the other thermal masses, that can be managed differently since partially independent from the indoor temperature. Results show that in the case study analyzed, i.e. large system mainly switched off during night, the heat absorbed by the thermal masses corresponds to the 4% of the heat supplied during the entire day and 70% of the heat provided during the peak. The various thermal masses affect the extra heat absorbed to a similar extent (except for radiators). Results provide a clue that proper management of thermal masses for energy saving might be considered. [Display omitted] •Thermal masses of district heating network components are analyzed independently.•In case of night shutdown, capacities affecting peak formation are quantified.•An existing large-scale network (Turin, Italy) is used as case study.•Capacity of buildings makes only a partial contribution in peak formation.•Distribution networks and building circuits are the major extra thermal masses.
During district heating operations, part of the heat supplied to the network is used to increase the temperature of the various components (e.g. transport and distribution networks, heat exchangers installed in the substations, heating circuits and heating devices in buildings). The mass of these components acts as a thermal storage, storing heat when their temperature increases and releasing heat when they cool down. The impact may become significant, especially during shutdown or setback. In this paper, the components are analyzed in order to estimate the impact of their thermal capacity on the district heating demand. This provides a clear image of the additional supply used to heat the other thermal masses, that can be managed differently since partially independent from the indoor temperature. Results show that in the case study analyzed, i.e. large system mainly switched off during night, the heat absorbed by the thermal masses corresponds to the 4% of the heat supplied during the entire day and 70% of the heat provided during the peak. The various thermal masses affect the extra heat absorbed to a similar extent (except for radiators). Results provide a clue that proper management of thermal masses for energy saving might be considered.
ArticleNumber 118849
Author Guelpa, Elisa
Author_xml – sequence: 1
  givenname: Elisa
  surname: Guelpa
  fullname: Guelpa, Elisa
  email: elisa.guelpa@polito.it
  organization: Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, Italy
BookMark eNp9kE9LAzEQxYNUsK1-Aw8Bz1uTbP7tRZBStVDwoueQ7k7arN1sTbZCv70p69nTwOP33sy8GZqEPgBC95QsKKHysV1AgLg7LxhhWaJa8-oKTalWZSGVFhM0JaUkheCc3aBZSi0hROiqmqLVujvaesC9w8MeYmcPuLMpQcJ9uCj4CPYLH3rbYB9w49MQfcb3YAcfdjid0wBdukXXzh4S3P3NOfp8WX0s34rN--t6-bwp6rLkQyEc2VagBaPKOb11nBDZgCTCOWWJzAwH5hpZScY1FzyfrqzcNk1tlWakLOfoYcw9xv77BGkwbX-KIa80jCvFFFVKZIqPVB37lCI4c4y-s_FsKDGXwkxrxsLMpTAzFpZtT6MN8gc_HqJJtYdQQ-Mj1INpev9_wC9YTnaK
CitedBy_id crossref_primary_10_2139_ssrn_4064473
crossref_primary_10_3390_designs7010011
crossref_primary_10_1007_s00231_021_03065_2
crossref_primary_10_3390_su152115603
crossref_primary_10_1016_j_scs_2022_104286
crossref_primary_10_1051_e3sconf_202126304016
crossref_primary_10_1016_j_enconman_2022_116543
crossref_primary_10_3390_su152014908
crossref_primary_10_1016_j_enbuild_2023_113209
crossref_primary_10_1016_j_energy_2022_124071
crossref_primary_10_2478_rtuect_2021_0040
crossref_primary_10_1016_j_segan_2023_101135
crossref_primary_10_1016_j_applthermaleng_2023_121871
crossref_primary_10_1016_j_energy_2022_123618
crossref_primary_10_1016_j_energy_2021_121368
crossref_primary_10_1016_j_jobe_2023_107138
crossref_primary_10_1007_s11081_021_09644_w
crossref_primary_10_1016_j_energy_2021_120549
crossref_primary_10_1016_j_rset_2023_100062
crossref_primary_10_1016_j_est_2021_103216
Cites_doi 10.1016/j.scs.2019.101481
10.1016/j.enbuild.2012.03.039
10.1016/j.energy.2017.04.159
10.1016/j.energy.2018.03.010
10.1016/j.energy.2018.04.093
10.1016/j.energy.2014.02.089
10.1016/j.egypro.2019.01.302
10.1016/j.energy.2019.115885
10.1016/j.energy.2015.05.144
10.1016/j.apenergy.2014.07.026
10.1016/j.energy.2018.09.141
10.1016/j.apenergy.2013.01.030
10.1016/j.energy.2017.04.045
10.1016/j.energy.2016.06.039
10.1016/j.enconman.2018.01.068
10.1016/j.energy.2018.05.075
10.1016/j.energy.2017.08.084
10.1016/j.apenergy.2016.08.055
10.1016/j.energy.2018.03.034
10.1016/j.energy.2012.02.061
10.1016/j.energy.2012.06.037
10.1016/j.apenergy.2017.05.004
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Jan 1, 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 1, 2021
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
DOI 10.1016/j.energy.2020.118849
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
ExternalDocumentID 10_1016_j_energy_2020_118849
S0360544220319563
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AAXKI
AAYXX
ABFNM
ABXDB
ADMUD
AFJKZ
AHHHB
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
G8K
HVGLF
HZ~
R2-
RIG
SAC
SEW
WUQ
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
ID FETCH-LOGICAL-c334t-5f0b9e85217ff8bf4006de605ff7a063344e2fd6962484547857a6bddca782033
IEDL.DBID AIKHN
ISSN 0360-5442
IngestDate Thu Oct 10 17:05:26 EDT 2024
Thu Sep 26 17:02:17 EDT 2024
Fri Feb 23 02:46:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Thermal capacity
Storage
Advanced operations
Thermal networks
District heating network
Temperature variation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-5f0b9e85217ff8bf4006de605ff7a063344e2fd6962484547857a6bddca782033
PQID 2477271775
PQPubID 2045484
ParticipantIDs proquest_journals_2477271775
crossref_primary_10_1016_j_energy_2020_118849
elsevier_sciencedirect_doi_10_1016_j_energy_2020_118849
PublicationCentury 2000
PublicationDate 2021-01-01
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Barzin, Chen, Young, Farid (bib12) 2015; 92
Gu, Wang, Lu, Luo, Wu (bib21) 2017; 199
Sandersen, Skov, Honore (bib28) 2018
Verda, Guelpa (bib1) 2017; vol. 58417
Frederiksen, Werner (bib26) 2013
Perpar, Rek, Bajric, Zun (bib6) 2012; 44
Leśko, Bujalski, Futyma (bib7) 2018; 165
Lund, Werner, Wiltshire, Svendsen, Thorsen, Hvelplund, Mathiesen (bib30) 2014; 68
Carotenuto, Figaj, Vanoli (bib2) 2017; 141
Luthander, Widén, Munkhammar, Lingfors (bib11) 2016; 112
Turski, Nogaj, Sekret (bib24) 2019; 187
bib27
Verda, Guelpa, Barbero, Brundu, Acquaviva, Patti (bib15) 2016; vol. 50589
Romanchenko, Kensby, Odenberger, Johnsson (bib13) 2018; 162
Vandermeulen, Reynders, van der Heijde, Vanhoudt, Salenbien, Saelens, Helsen (bib16) 2018
Winterscheid, Dalenbäck, Holler (bib3) 2017; 137
Mishra, Jokisalo, Kosonen, Kinnunen, Ekkerhaugen, Ihasalo, Martin (bib18) 2019; 47
Stinner, Huchtemann, Müller (bib25) Nov. 2016; 181
Gadd, Werner (bib9) 2013; 106
Lund (bib22) 2018; 151
Daniele, Florian, Olivier, Schmidt (bib17) 2011
Brand, Thorsen, Svendsen (bib8) 2012; 41
Vandermeulen, van der Heijde, Helsen (bib10) 2018; 151
Dominković, Gianniou, Münster, Heller, Rode (bib20) 2018; 153
Bačeković, Østergaard (bib4) 2018; 155
Dominković, Gianniou, Münster, Heller, Rode (bib14) 2018; 153
Hennessy, Li, Wallin, Thorin (bib23) 2019; 158
GKensby, Trüschel, Dalenbäck (bib19) 2015; 137
Werner (bib5) 2017; 137
Genić, Jaćimović, Mandić, Petrović (bib29) 2012; 50
Gadd (10.1016/j.energy.2020.118849_bib9) 2013; 106
GKensby (10.1016/j.energy.2020.118849_bib19) 2015; 137
Gu (10.1016/j.energy.2020.118849_bib21) 2017; 199
Daniele (10.1016/j.energy.2020.118849_bib17) 2011
Barzin (10.1016/j.energy.2020.118849_bib12) 2015; 92
Hennessy (10.1016/j.energy.2020.118849_bib23) 2019; 158
Vandermeulen (10.1016/j.energy.2020.118849_bib16) 2018
Frederiksen (10.1016/j.energy.2020.118849_bib26) 2013
Turski (10.1016/j.energy.2020.118849_bib24) 2019; 187
Verda (10.1016/j.energy.2020.118849_bib1) 2017; vol. 58417
Werner (10.1016/j.energy.2020.118849_bib5) 2017; 137
Bačeković (10.1016/j.energy.2020.118849_bib4) 2018; 155
Brand (10.1016/j.energy.2020.118849_bib8) 2012; 41
Romanchenko (10.1016/j.energy.2020.118849_bib13) 2018; 162
Lund (10.1016/j.energy.2020.118849_bib22) 2018; 151
Stinner (10.1016/j.energy.2020.118849_bib25) 2016; 181
Verda (10.1016/j.energy.2020.118849_bib15) 2016; vol. 50589
Winterscheid (10.1016/j.energy.2020.118849_bib3) 2017; 137
Sandersen (10.1016/j.energy.2020.118849_bib28) 2018
Dominković (10.1016/j.energy.2020.118849_bib20) 2018; 153
Vandermeulen (10.1016/j.energy.2020.118849_bib10) 2018; 151
Carotenuto (10.1016/j.energy.2020.118849_bib2) 2017; 141
Dominković (10.1016/j.energy.2020.118849_bib14) 2018; 153
Lund (10.1016/j.energy.2020.118849_bib30) 2014; 68
Genić (10.1016/j.energy.2020.118849_bib29) 2012; 50
Perpar (10.1016/j.energy.2020.118849_bib6) 2012; 44
Mishra (10.1016/j.energy.2020.118849_bib18) 2019; 47
Leśko (10.1016/j.energy.2020.118849_bib7) 2018; 165
Luthander (10.1016/j.energy.2020.118849_bib11) 2016; 112
References_xml – volume: 106
  start-page: 47
  year: 2013
  end-page: 55
  ident: bib9
  article-title: Daily heat load variations in Swedish district heating systems
  publication-title: Appl Energy
  contributor:
    fullname: Werner
– volume: 92
  start-page: 505
  year: 2015
  end-page: 514
  ident: bib12
  article-title: Peak load shifting with energy storage and price-based control system
  publication-title: Energy
  contributor:
    fullname: Farid
– volume: 68
  start-page: 1
  year: 2014
  end-page: 11
  ident: bib30
  article-title: 4th Generation District Heating (4GDH): integrating smart thermal grids into future sustainable energy systems
  publication-title: Energy
  contributor:
    fullname: Mathiesen
– volume: 199
  start-page: 234
  year: 2017
  end-page: 246
  ident: bib21
  article-title: Optimal operation for integrated energy system considering thermal inertia of district heating network and buildings
  publication-title: Appl Energy
  contributor:
    fullname: Wu
– volume: 47
  start-page: 101481
  year: 2019
  ident: bib18
  article-title: Demand response events in district heating: results from field tests in a university building
  publication-title: Sustainable Cities and Society
  contributor:
    fullname: Martin
– volume: 112
  start-page: 221
  year: 2016
  end-page: 231
  ident: bib11
  article-title: Self-consumption enhancement and peak shaving of residential photovoltaics using storage and curtailment
  publication-title: Energy
  contributor:
    fullname: Lingfors
– volume: 162
  start-page: 26
  year: 2018
  end-page: 38
  ident: bib13
  article-title: Thermal energy storage in district heating: centralised storage vs. storage in thermal inertia of buildings
  publication-title: Energy Convers Manag
  contributor:
    fullname: Johnsson
– start-page: 1
  year: 2018
  end-page: 9
  ident: bib16
  article-title: Sources of energy flexibility in district heating networks: building thermal inertia versus thermal energy storage in the network pipes
  publication-title: Proceedings of the urban energy simulation conference 2018
  contributor:
    fullname: Helsen
– volume: 155
  start-page: 824
  year: 2018
  end-page: 837
  ident: bib4
  article-title: A smart energy system approach vs a non-integrated renewable energy system approach to designing a future energy system in Zagreb
  publication-title: Energy
  contributor:
    fullname: Østergaard
– volume: 153
  start-page: 949
  year: 2018
  end-page: 966
  ident: bib20
  article-title: Utilizing thermal building mass for storage in district heating systems: combined building level simulations and system level optimization
  publication-title: Energy
  contributor:
    fullname: Rode
– volume: 165
  start-page: 902
  year: 2018
  end-page: 915
  ident: bib7
  article-title: Operational optimization in district heating systems with the use of thermal energy storage
  publication-title: Energy
  contributor:
    fullname: Futyma
– year: 2011
  ident: bib17
  article-title: Sensible heat storage in district heating networks: a novel control strategy using the network as storage
  publication-title: Conference proceedings of the 6th international renewable energy storage conference IRES, Berlin, Germany
  contributor:
    fullname: Schmidt
– volume: 181
  start-page: 140
  year: Nov. 2016
  end-page: 154
  ident: bib25
  article-title: Quantifying the operational flexibility of building energy systems with thermal energy storages
  publication-title: Appl Energy
  contributor:
    fullname: Müller
– volume: 44
  start-page: 197
  year: 2012
  end-page: 210
  ident: bib6
  article-title: Soil thermal conductivity prediction for district heating pre-insulated pipeline in operation
  publication-title: Energy
  contributor:
    fullname: Zun
– year: 2018
  ident: bib28
  article-title: A manual for how to use existing buildings’ heat profiles to improve the design and operation of buildings
  contributor:
    fullname: Honore
– volume: vol. 58417
  year: 2017
  ident: bib1
  article-title: November). District heating network modelling for the analysis of low-exergy sources
  publication-title: ASME International mechanical Engineering congress and Exposition
  contributor:
    fullname: Guelpa
– volume: vol. 50589
  year: 2016
  ident: bib15
  article-title: November). Optimization of the thermal request profiles of buildings connected with a large district heating network
  publication-title: ASME International mechanical Engineering congress and Exposition
  contributor:
    fullname: Patti
– volume: 137
  start-page: 773
  year: 2015
  end-page: 781
  ident: bib19
  article-title: Potential of residential buildings as thermal energy storage in district heating systems–results from a pilot test
  publication-title: Appl Energy
  contributor:
    fullname: Dalenbäck
– volume: 137
  start-page: 617
  year: 2017
  end-page: 631
  ident: bib5
  article-title: International review of district heating and cooling
  publication-title: Energy
  contributor:
    fullname: Werner
– volume: 158
  start-page: 2430
  year: 2019
  end-page: 2434
  ident: bib23
  article-title: Flexibility in thermal grids: a review of short-term storage in district heating distribution networks
  publication-title: Energy Procedia
  contributor:
    fullname: Thorin
– volume: 41
  start-page: 392
  year: 2012
  end-page: 400
  ident: bib8
  article-title: Numerical modelling and experimental measurements for a low-temperature district heating substation for instantaneous preparation of DHW with respect to service pipes
  publication-title: Energy
  contributor:
    fullname: Svendsen
– volume: 137
  start-page: 579
  year: 2017
  end-page: 585
  ident: bib3
  article-title: Integration of solar thermal systems in existing district heating systems
  publication-title: Energy
  contributor:
    fullname: Holler
– volume: 153
  start-page: 949
  year: 2018
  end-page: 966
  ident: bib14
  article-title: Utilizing thermal building mass for storage in district heating systems: combined building level simulations and system level optimization
  publication-title: Energy
  contributor:
    fullname: Rode
– ident: bib27
– volume: 151
  start-page: 103
  year: 2018
  end-page: 115
  ident: bib10
  article-title: Controlling district heating and cooling networks to unlock flexibility: a review
  publication-title: Energy
  contributor:
    fullname: Helsen
– volume: 141
  start-page: 2652
  year: 2017
  end-page: 2669
  ident: bib2
  article-title: A novel solar-geothermal district heating, cooling and domestic hot water system: dynamic simulation and energy-economic analysis
  publication-title: Energy
  contributor:
    fullname: Vanoli
– volume: 151
  start-page: 94
  year: 2018
  end-page: 102
  ident: bib22
  article-title: Renewable heating strategies and their consequences for storage and grid infrastructures comparing a smart grid to a smart energy systems approach
  publication-title: Energy
  contributor:
    fullname: Lund
– volume: 187
  start-page: 115885
  year: 2019
  ident: bib24
  article-title: The use of a PCM heat accumulator to improve the efficiency of the district heating substation
  publication-title: Energy
  contributor:
    fullname: Sekret
– year: 2013
  ident: bib26
  article-title: District heating and cooling
  contributor:
    fullname: Werner
– volume: 50
  start-page: 204
  year: 2012
  end-page: 211
  ident: bib29
  article-title: Experimental determination of fouling factor on plate heat exchangers in district heating system
  publication-title: Energy Build
  contributor:
    fullname: Petrović
– volume: 47
  start-page: 101481
  year: 2019
  ident: 10.1016/j.energy.2020.118849_bib18
  article-title: Demand response events in district heating: results from field tests in a university building
  publication-title: Sustainable Cities and Society
  doi: 10.1016/j.scs.2019.101481
  contributor:
    fullname: Mishra
– start-page: 1
  year: 2018
  ident: 10.1016/j.energy.2020.118849_bib16
  article-title: Sources of energy flexibility in district heating networks: building thermal inertia versus thermal energy storage in the network pipes
  contributor:
    fullname: Vandermeulen
– year: 2013
  ident: 10.1016/j.energy.2020.118849_bib26
  contributor:
    fullname: Frederiksen
– year: 2018
  ident: 10.1016/j.energy.2020.118849_bib28
  contributor:
    fullname: Sandersen
– volume: vol. 50589
  year: 2016
  ident: 10.1016/j.energy.2020.118849_bib15
  article-title: November). Optimization of the thermal request profiles of buildings connected with a large district heating network
  contributor:
    fullname: Verda
– volume: 50
  start-page: 204
  year: 2012
  ident: 10.1016/j.energy.2020.118849_bib29
  article-title: Experimental determination of fouling factor on plate heat exchangers in district heating system
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2012.03.039
  contributor:
    fullname: Genić
– volume: 137
  start-page: 579
  year: 2017
  ident: 10.1016/j.energy.2020.118849_bib3
  article-title: Integration of solar thermal systems in existing district heating systems
  publication-title: Energy
  doi: 10.1016/j.energy.2017.04.159
  contributor:
    fullname: Winterscheid
– volume: 151
  start-page: 94
  year: 2018
  ident: 10.1016/j.energy.2020.118849_bib22
  article-title: Renewable heating strategies and their consequences for storage and grid infrastructures comparing a smart grid to a smart energy systems approach
  publication-title: Energy
  doi: 10.1016/j.energy.2018.03.010
  contributor:
    fullname: Lund
– volume: 153
  start-page: 949
  year: 2018
  ident: 10.1016/j.energy.2020.118849_bib14
  article-title: Utilizing thermal building mass for storage in district heating systems: combined building level simulations and system level optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2018.04.093
  contributor:
    fullname: Dominković
– volume: 68
  start-page: 1
  year: 2014
  ident: 10.1016/j.energy.2020.118849_bib30
  article-title: 4th Generation District Heating (4GDH): integrating smart thermal grids into future sustainable energy systems
  publication-title: Energy
  doi: 10.1016/j.energy.2014.02.089
  contributor:
    fullname: Lund
– volume: 158
  start-page: 2430
  year: 2019
  ident: 10.1016/j.energy.2020.118849_bib23
  article-title: Flexibility in thermal grids: a review of short-term storage in district heating distribution networks
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2019.01.302
  contributor:
    fullname: Hennessy
– volume: 187
  start-page: 115885
  year: 2019
  ident: 10.1016/j.energy.2020.118849_bib24
  article-title: The use of a PCM heat accumulator to improve the efficiency of the district heating substation
  publication-title: Energy
  doi: 10.1016/j.energy.2019.115885
  contributor:
    fullname: Turski
– volume: 92
  start-page: 505
  year: 2015
  ident: 10.1016/j.energy.2020.118849_bib12
  article-title: Peak load shifting with energy storage and price-based control system
  publication-title: Energy
  doi: 10.1016/j.energy.2015.05.144
  contributor:
    fullname: Barzin
– volume: 137
  start-page: 773
  year: 2015
  ident: 10.1016/j.energy.2020.118849_bib19
  article-title: Potential of residential buildings as thermal energy storage in district heating systems–results from a pilot test
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.07.026
  contributor:
    fullname: GKensby
– volume: 165
  start-page: 902
  year: 2018
  ident: 10.1016/j.energy.2020.118849_bib7
  article-title: Operational optimization in district heating systems with the use of thermal energy storage
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.141
  contributor:
    fullname: Leśko
– volume: 153
  start-page: 949
  year: 2018
  ident: 10.1016/j.energy.2020.118849_bib20
  article-title: Utilizing thermal building mass for storage in district heating systems: combined building level simulations and system level optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2018.04.093
  contributor:
    fullname: Dominković
– volume: 106
  start-page: 47
  year: 2013
  ident: 10.1016/j.energy.2020.118849_bib9
  article-title: Daily heat load variations in Swedish district heating systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.01.030
  contributor:
    fullname: Gadd
– volume: 137
  start-page: 617
  year: 2017
  ident: 10.1016/j.energy.2020.118849_bib5
  article-title: International review of district heating and cooling
  publication-title: Energy
  doi: 10.1016/j.energy.2017.04.045
  contributor:
    fullname: Werner
– volume: 112
  start-page: 221
  year: 2016
  ident: 10.1016/j.energy.2020.118849_bib11
  article-title: Self-consumption enhancement and peak shaving of residential photovoltaics using storage and curtailment
  publication-title: Energy
  doi: 10.1016/j.energy.2016.06.039
  contributor:
    fullname: Luthander
– volume: vol. 58417
  year: 2017
  ident: 10.1016/j.energy.2020.118849_bib1
  article-title: November). District heating network modelling for the analysis of low-exergy sources
  contributor:
    fullname: Verda
– volume: 162
  start-page: 26
  year: 2018
  ident: 10.1016/j.energy.2020.118849_bib13
  article-title: Thermal energy storage in district heating: centralised storage vs. storage in thermal inertia of buildings
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.01.068
  contributor:
    fullname: Romanchenko
– volume: 155
  start-page: 824
  year: 2018
  ident: 10.1016/j.energy.2020.118849_bib4
  article-title: A smart energy system approach vs a non-integrated renewable energy system approach to designing a future energy system in Zagreb
  publication-title: Energy
  doi: 10.1016/j.energy.2018.05.075
  contributor:
    fullname: Bačeković
– volume: 141
  start-page: 2652
  year: 2017
  ident: 10.1016/j.energy.2020.118849_bib2
  article-title: A novel solar-geothermal district heating, cooling and domestic hot water system: dynamic simulation and energy-economic analysis
  publication-title: Energy
  doi: 10.1016/j.energy.2017.08.084
  contributor:
    fullname: Carotenuto
– volume: 181
  start-page: 140
  year: 2016
  ident: 10.1016/j.energy.2020.118849_bib25
  article-title: Quantifying the operational flexibility of building energy systems with thermal energy storages
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.08.055
  contributor:
    fullname: Stinner
– year: 2011
  ident: 10.1016/j.energy.2020.118849_bib17
  article-title: Sensible heat storage in district heating networks: a novel control strategy using the network as storage
  contributor:
    fullname: Daniele
– volume: 151
  start-page: 103
  year: 2018
  ident: 10.1016/j.energy.2020.118849_bib10
  article-title: Controlling district heating and cooling networks to unlock flexibility: a review
  publication-title: Energy
  doi: 10.1016/j.energy.2018.03.034
  contributor:
    fullname: Vandermeulen
– volume: 41
  start-page: 392
  issue: 1
  year: 2012
  ident: 10.1016/j.energy.2020.118849_bib8
  article-title: Numerical modelling and experimental measurements for a low-temperature district heating substation for instantaneous preparation of DHW with respect to service pipes
  publication-title: Energy
  doi: 10.1016/j.energy.2012.02.061
  contributor:
    fullname: Brand
– volume: 44
  start-page: 197
  issue: 1
  year: 2012
  ident: 10.1016/j.energy.2020.118849_bib6
  article-title: Soil thermal conductivity prediction for district heating pre-insulated pipeline in operation
  publication-title: Energy
  doi: 10.1016/j.energy.2012.06.037
  contributor:
    fullname: Perpar
– volume: 199
  start-page: 234
  year: 2017
  ident: 10.1016/j.energy.2020.118849_bib21
  article-title: Optimal operation for integrated energy system considering thermal inertia of district heating network and buildings
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.05.004
  contributor:
    fullname: Gu
SSID ssj0005899
Score 2.4817824
Snippet During district heating operations, part of the heat supplied to the network is used to increase the temperature of the various components (e.g. transport and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 118849
SubjectTerms Advanced operations
District heating
District heating network
Electrical transmission
Energy conservation
Heat
Heat exchangers
Heating
Heating systems
Peak load
Radiators
Shutdowns
Storage
Substations
Temperature
Temperature variation
Thermal capacity
Thermal networks
Thermal storage
Title Impact of thermal masses on the peak load in district heating systems
URI https://dx.doi.org/10.1016/j.energy.2020.118849
https://www.proquest.com/docview/2477271775
Volume 214
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEB3aetCL-InVWnLwGmuz2c3usZRKq-hFBW8haRKo2m2x9epvd2Y_KIogeN1NlvCyeTPZnfcCcGG8dWRjxgOGGy5xhrkVU8VNH4dtg_AmI4Hz3X0yfpI3z_FzA4a1FobKKivuLzm9YOvqSq9Cs7eczXoPyL2Yb0ghSIgTJ1ETtjAcSdmCrcHkdny_qfRIi2MkqT2nDrWCrijz8oXEDjeKgugjTclU8_cI9YOriwB0vQe7VebIBuXg9qHh8wPYroXFqwM4Hm1Ea9iwWrWrQxhNCikkWwRG6d4cb84N_exli5yusKU3r-xtYRyb5cyRle4MmxNNY2Bjpdnz6gierkePwzGvjk_g0yiSax6HK5v5FOOzCiG1AVdr4jxiFoIymJlEUnoRXJIlQqaFr1esTGKdmxoy0YuiY2jli9yfUP2TyozMroTxEWZc3ijvMPFwqQo2-L5tA68h08vSJUPX5WMvuoRYE8S6hLgNqsZVf5ttjUT-R89OPQ26Wm0rLSTuEXBfquLTfz_4DHYElasUX1c60Fq_f_hzzDfWtgvNy89-t3qrvgBy9tS2
link.rule.ids 315,786,790,4521,24144,27955,27956,45618,45712
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGWBBUEAUCnhgNW0dJ05GVLUqX11oJTbLrm2pQNOKlpXfzp2TiA8hIbE6l8h6F787J_fOhFxoZyy2MWMewg0T4GFm-FQy3YVpG8-dzlDgfD9KhhNx8xg_1kiv0sJgWWXJ_QWnB7YuR9olmu3lbNZ-AO6FfENwjkKcOIk2yCZmA1jXdfn-pc4jDYdIojVD80o_F4q8XBDYwTaRI3mkKbbU_D0-_WDqEH4Gu2SnzBvpVTG1PVJzeYNsVbLiVYMc9j8la2BYrtnVPulfByEkXXiKyd4cLs41_uqlixxH6NLpZ_qy0JbOcmqxke4MzJGkIazRotXz6oBMBv1xb8jKwxPYNIrEmsW-YzKXQnSW3qfGw1pNrAPEvJca8pJICMe9TbKEizR09YqlToy1U40t9KLokNTzRe6OsPpJZlpkHa5dBAg7LZ2FtMOm0hvvuqZJWAWZWhY9MlRVPPakCogVQqwKiJtEVriqb75WQON_3Nmq3KDKtbZSXMAOAXalMj7-94PPydZwfH-n7q5Htydkm2PhSvjO0iL19eubO4XMY23Owpv1AVIw1Ys
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+thermal+masses+on+the+peak+load+in+district+heating+systems&rft.jtitle=Energy+%28Oxford%29&rft.au=Guelpa%2C+Elisa&rft.date=2021-01-01&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=214&rft_id=info:doi/10.1016%2Fj.energy.2020.118849&rft.externalDocID=S0360544220319563
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon