Microglial Activation in Neuroinflammation: Implications for the Etiology of Neurodegeneration

Background: Activated microglia secrete inflammatory cytokines and may play roles in the progression of neurodegenerative diseases. However, the mechanism underlying microglial activation remains unclear. Objective: Our aim was to examine the regulation of activated microglia through their cell deat...

Full description

Saved in:
Bibliographic Details
Published inNeuro-degenerative diseases Vol. 10; no. 1-4; pp. 100 - 103
Main Authors Kaneko, Yoko S., Nakashima, Akira, Mori, Keiji, Nagatsu, Toshiharu, Nagatsu, Ikuko, Ota, Akira
Format Journal Article
LanguageEnglish
Published Basel, Switzerland S. Karger AG 01.01.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background: Activated microglia secrete inflammatory cytokines and may play roles in the progression of neurodegenerative diseases. However, the mechanism underlying microglial activation remains unclear. Objective: Our aim was to examine the regulation of activated microglia through their cell death and survival pathways. Methods: We used mouse primary-cultured microglia, which are destined to die within a few days under ordinary culture conditions. The microglia live for longer than 1 month, without any measurable increase in apoptotic or necrotic cell death, when kept activated by sublethal concentrations of lipopolysaccharide (LPS). Results: LPS-treated microglia showed changes in shape. LPS treatment had no effect on the level of the proapoptotic Bcl-2-associated X protein but increased the level of the antiapoptotic protein Bcl-xL at day 1. Furthermore, the level of microtubule-associated light chain 3-II, a marker protein for autophagy, was decreased 3 h after exposure to LPS.Conclusion:An increase in Bcl-xL seems to inhibit both apoptosis and autophagy. Our results suggest that long-lived microglia resulting from exposure to the optimal dose of LPS may play critical roles in the progression of neurodegeneration.
AbstractList Activated microglia secrete inflammatory cytokines and may play roles in the progression of neurodegenerative diseases. However, the mechanism underlying microglial activation remains unclear. Our aim was to examine the regulation of activated microglia through their cell death and survival pathways. We used mouse primary-cultured microglia, which are destined to die within a few days under ordinary culture conditions. The microglia live for longer than 1 month, without any measurable increase in apoptotic or necrotic cell death, when kept activated by sublethal concentrations of lipopolysaccharide (LPS). LPS-treated microglia showed changes in shape. LPS treatment had no effect on the level of the proapoptotic Bcl-2-associated X protein but increased the level of the antiapoptotic protein Bcl-xL at day 1. Furthermore, the level of microtubule-associated light chain 3-II, a marker protein for autophagy, was decreased 3 h after exposure to LPS. An increase in Bcl-xL seems to inhibit both apoptosis and autophagy. Our results suggest that long-lived microglia resulting from exposure to the optimal dose of LPS may play critical roles in the progression of neurodegeneration.
BACKGROUNDActivated microglia secrete inflammatory cytokines and may play roles in the progression of neurodegenerative diseases. However, the mechanism underlying microglial activation remains unclear.OBJECTIVEOur aim was to examine the regulation of activated microglia through their cell death and survival pathways.METHODSWe used mouse primary-cultured microglia, which are destined to die within a few days under ordinary culture conditions. The microglia live for longer than 1 month, without any measurable increase in apoptotic or necrotic cell death, when kept activated by sublethal concentrations of lipopolysaccharide (LPS).RESULTSLPS-treated microglia showed changes in shape. LPS treatment had no effect on the level of the proapoptotic Bcl-2-associated X protein but increased the level of the antiapoptotic protein Bcl-xL at day 1. Furthermore, the level of microtubule-associated light chain 3-II, a marker protein for autophagy, was decreased 3 h after exposure to LPS.CONCLUSIONAn increase in Bcl-xL seems to inhibit both apoptosis and autophagy. Our results suggest that long-lived microglia resulting from exposure to the optimal dose of LPS may play critical roles in the progression of neurodegeneration.
Background: Activated microglia secrete inflammatory cytokines and may play roles in the progression of neurodegenerative diseases. However, the mechanism underlying microglial activation remains unclear. Objective: Our aim was to examine the regulation of activated microglia through their cell death and survival pathways. Methods: We used mouse primary-cultured microglia, which are destined to die within a few days under ordinary culture conditions. The microglia live for longer than 1 month, without any measurable increase in apoptotic or necrotic cell death, when kept activated by sublethal concentrations of lipopolysaccharide (LPS). Results: LPS-treated microglia showed changes in shape. LPS treatment had no effect on the level of the proapoptotic Bcl-2-associated X protein but increased the level of the antiapoptotic protein Bcl-xL at day 1. Furthermore, the level of microtubule-associated light chain 3-II, a marker protein for autophagy, was decreased 3 h after exposure to LPS.Conclusion:An increase in Bcl-xL seems to inhibit both apoptosis and autophagy. Our results suggest that long-lived microglia resulting from exposure to the optimal dose of LPS may play critical roles in the progression of neurodegeneration.
Background: Activated microglia secrete inflammatory cytokines and may play roles in the progression of neurodegenerative diseases. However, the mechanism underlying microglial activation remains unclear. Objective: Our aim was to examine the regulation of activated microglia through their cell death and survival pathways. Methods: We used mouse primary-cultured microglia, which are destined to die within a few days under ordinary culture conditions. The microglia live for longer than 1 month, without any measurable increase in apoptotic or necrotic cell death, when kept activated by sublethal concentrations of lipopolysaccharide (LPS). Results: LPS-treated microglia showed changes in shape. LPS treatment had no effect on the level of the proapoptotic Bcl-2-associated X protein but increased the level of the antiapoptotic protein Bcl-xL at day 1. Furthermore, the level of microtubule-associated light chain 3-II, a marker protein for autophagy, was decreased 3 h after exposure to LPS.Conclusion:An increase in Bcl-xL seems to inhibit both apoptosis and autophagy. Our results suggest that long-lived microglia resulting from exposure to the optimal dose of LPS may play critical roles in the progression of neurodegeneration. Copyright © 2012 S. Karger AG, Basel [PUBLICATION ABSTRACT]
Author Nakashima, Akira
Nagatsu, Toshiharu
Kaneko, Yoko S.
Mori, Keiji
Nagatsu, Ikuko
Ota, Akira
Author_xml – sequence: 1
  givenname: Yoko S.
  surname: Kaneko
  fullname: Kaneko, Yoko S.
– sequence: 2
  givenname: Akira
  surname: Nakashima
  fullname: Nakashima, Akira
– sequence: 3
  givenname: Keiji
  surname: Mori
  fullname: Mori, Keiji
– sequence: 4
  givenname: Toshiharu
  surname: Nagatsu
  fullname: Nagatsu, Toshiharu
– sequence: 5
  givenname: Ikuko
  surname: Nagatsu
  fullname: Nagatsu, Ikuko
– sequence: 6
  givenname: Akira
  surname: Ota
  fullname: Ota, Akira
  email: aota@fujita-hu.ac.jp
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22301667$$D View this record in MEDLINE/PubMed
BookMark eNpd0c1PwyAUAHD8inPqwbsxTbzoYQoPKMXbskxdMvWiVxvawUTbMqE18b8Xt7mDJ_J4v_cC7_XRbuMajdAJwVeEcHmNMaYUJE23UJ9SkmEggtJtdEDSFA8gS2EHHUuR_eWA7G5ynPVQP4R3jEEKSfZRD4DimBQH6PXBlt7NK6uqZFi29ku11jWJbZJH3XlnG1Opul5e3iSTelHZchmExDiftG86GcewcvPvxJlVzUzPdaP9kh2hPaOqoI_X5yF6uR0_j-4H06e7yWg4HZSUsnbAC5IaqhkzQhkAnkoolAbOOSsEZqXkygiZEV4KOsOcQBY_jGlKi0LqUhB6iC5WfRfefXY6tHltQ6mrSjXadSEnGGcZQMpkpOf_6LvrfBNfFxUIzgTjENXlSsXphOC1yRfe1sp_R5T_biTfbCTas3XHrqj1bCP_phzB6Qp8KD_XfgPW9T9n84qY
CitedBy_id crossref_primary_10_1016_j_molcel_2022_11_016
crossref_primary_10_1016_j_neurobiolaging_2013_06_020
crossref_primary_10_1371_journal_pone_0113531
crossref_primary_10_1093_hmg_ddu138
crossref_primary_10_1111_bph_12470
crossref_primary_10_1016_j_ejphar_2013_12_041
crossref_primary_10_1038_s41598_017_14062_z
crossref_primary_10_1007_s11357_019_00110_1
crossref_primary_10_1007_s12017_016_8410_1
crossref_primary_10_1038_jcbfm_2013_143
crossref_primary_10_1007_s10571_015_0325_0
crossref_primary_10_1007_s11904_023_00675_9
crossref_primary_10_1093_gerona_glt177
Cites_doi 10.1046%2Fj.1365-2443.1998.00223.x
10.1007%2Fs10571-006-9061-9
10.1038%2Fnature04724
10.1097%2FNEN.0b013e3181f3a5b1
10.1016%2Fj.immuni.2007.05.022
10.1016%2Fj.mehy.2006.01.013
10.1002%2Fglia.20265
10.1016%2Fj.bbrc.2005.12.050
10.1111%2Fj.1471-4159.2005.03209.x
10.1101%2Fgad.1599207
10.1046%2Fj.1471-4159.2001.t01-1-00216.x
10.1016%2Fj.pneurobio.2005.06.004
10.1038%2Fnature04723
10.1016%2Fj.brainres.2009.05.008
10.1016%2FS0304-3940%2801%2901780-3
10.1002%2Fmds.23455
10.1038%2Fnature06639
10.1093%2Femboj%2F19.21.5720
ContentType Journal Article
Copyright 2012 S. Karger AG, Basel
Copyright © 2012 S. Karger AG, Basel.
Copyright (c) 2012 S. Karger AG, Basel
Copyright_xml – notice: 2012 S. Karger AG, Basel
– notice: Copyright © 2012 S. Karger AG, Basel.
– notice: Copyright (c) 2012 S. Karger AG, Basel
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7RV
7TK
7X7
7XB
88E
88G
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9-
K9.
KB0
LK8
M0R
M0S
M1P
M2M
M7P
NAPCQ
PQEST
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
DOI 10.1159/000332936
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Nursing & Allied Health Source (ProQuest)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Consumer Health Database (Alumni Edition)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Consumer Health Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Psychology Journals (ProQuest)
Biological Science Database
Nursing & Allied Health Premium
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest One Psychology
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Family Health (Alumni Edition)
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Family Health
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

ProQuest One Psychology
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISBN 3318021733
9783318021738
EISSN 1660-2862
EndPage 103
ExternalDocumentID 2718842211
10_1159_000332936
22301667
332936
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
0~5
0~B
123
36B
3O.
3V.
4.4
53G
7RV
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8UI
AAYIC
ABJNI
ABPAZ
ABUWG
ACGFS
ACPRK
ACPSR
ADBBV
AENEX
AEYAO
AFJJK
AFKRA
AHMBA
ALDHI
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AZPMC
AZQEC
BBNVY
BENPR
BHPHI
BKEYQ
BKNYI
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CYUIP
DU5
DWQXO
E0A
EBS
EJD
EMB
EMOBN
EX3
F5P
FB.
FYUFA
GNUQQ
HCIFZ
HMCUK
HZ~
IAO
IHR
IHW
INH
IY7
K9-
KUZGX
LK8
M0R
M1P
M2M
M7P
N9A
NAPCQ
O1H
O9-
P2P
PQQKQ
PROAC
PSQYO
PSYQQ
RKO
SV3
UJ6
UKHRP
WOW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7XB
8FK
K9.
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c334t-5b16f3e44f7af225692bae25554b704c95af79815c73d051288620363bb9ec713
IEDL.DBID BENPR
ISBN 9783318021721
3318021725
ISSN 1660-2854
IngestDate Fri Jun 28 05:25:40 EDT 2024
Fri Sep 13 02:53:37 EDT 2024
Fri Aug 23 01:30:37 EDT 2024
Thu May 23 23:15:49 EDT 2024
Thu Aug 29 12:04:32 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1-4
Keywords Lipopolysaccharide
Life span
Autophagy
Apoptosis
Microglia
Language English
License Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Copyright © 2012 S. Karger AG, Basel.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-5b16f3e44f7af225692bae25554b704c95af79815c73d051288620363bb9ec713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22301667
PQID 1027547452
PQPubID 1356336
PageCount 4
ParticipantIDs proquest_journals_1027547452
karger_primary_332936
proquest_miscellaneous_1008822649
pubmed_primary_22301667
crossref_primary_10_1159_000332936
PublicationCentury 2000
PublicationDate 2012-01-01
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel, Switzerland
PublicationPlace_xml – name: Basel, Switzerland
– name: Switzerland
– name: Basel
PublicationTitle Neuro-degenerative diseases
PublicationTitleAlternate Neurodegener Dis
PublicationYear 2012
Publisher S. Karger AG
Publisher_xml – name: S. Karger AG
References Mizushima N, Levine B, Cuervo AM, Klionsky DJ: Autophagy fights disease through cellular self-digestion. Nature 2008;451:1069–1075.1830553810.1038%2Fnature06639
Nagatsu T, Sawada M: Cellular and molecular mechanisms of Parkinson’s disease: neurotoxins, causative genes, and inflammatory cytokines. Cell Mol Neurobiol 2006;26:781–802.1682362510.1007%2Fs10571-006-9061-9
Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N: Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006;441:885–889.1662520410.1038%2Fnature04724
Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K: Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006;441:880–884.1662520510.1038%2Fnature04723
Kaneko YS, Nakashima A, Mori K, Nagatsu T, Nagatsu I, Ota A: Lipopolysaccharide extends the lifespan of mouse primary-cultured microglia. Brain Res 2009;1279:9–20.10.1016%2Fj.brainres.2009.05.008
Islam S, Hassan F, Tumurkhuu G, Ito H, Koide N, Mori I, Yoshida T, Yokochi T: Lipopolysaccharide prevents apoptosis induced by brefeldin A, an endoplasmic reticulum stress agent, in RAW 264.7 cells. Biochem Biophys Res Commun 2006;340:589–596.10.1016%2Fj.bbrc.2005.12.050
Cho BP, Song DY, Sugama S, Shin DH, Shimizu Y, Kim SS, Kim YS, Joh TH: Pathological dynamics of activated microglia following medial forebrain bundle transection. Glia 2006;53:92–102.10.1002%2Fglia.20265
Halliday GM, Stevens CH: Glia: initiators and progressors of pathology in Parkinson’s disease. Mov Disord 2011;26:6–17.10.1002%2Fmds.23455
Xu Y, Jagannath C, Liu X-D, Sharafkhaneh A, Kolodziejska KE, Eissa NT: Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 2007;27:135–144.1765827710.1016%2Fj.immuni.2007.05.022
McCarty MF: Down-regulation of microglial activation may represent a practical strategy for combating neurodegenerative disorders. Med Hypotheses 2006;67:251–269.1651328710.1016%2Fj.mehy.2006.01.013
Levine B: Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 2005;120:159–162.15680321
Wang J-Y, Yang J-M, Wang J-Y, Tao P-L, Yang SN: Synergistic apoptosis induced by bacterial endotoxin lipopolysaccharide and high glucose in rat microglia. Neurosci Lett 2001;304:177–180.10.1016%2FS0304-3940%2801%2901780-3
Naert G, Rivest S: The role of microglial cell subsets in Alzheimer’s disease. Curr Alzheimer Res 2011;8:151–155.
Block ML, Hong JS: Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 2005;76:77–98.10.1016%2Fj.pneurobio.2005.06.004
Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 2000;19:5720–5728.1106002310.1093%2Femboj%2F19.21.5720
Howell OW, Rundle JL, Garg A, Komada M, Brophy PJ, Reynolds R: Activated microglia mediate axoglial disruption that contributes to axonal injury in multiple sclerosis. J Neuropathol Exp Neurol 2010;69:1017–1033.10.1097%2FNEN.0b013e3181f3a5b1
Kaneko YS, Mori K, Nakashima A, Sawada M, Nagatsu I, Ota A: Peripheral injection of lipopolysaccharide enhances expression of inflammatory cytokines in murine locus coeruleus: possible role of increased norepinephrine turnover. J Neurochem 2005;94:393–404.1599829010.1111%2Fj.1471-4159.2005.03209.x
Mizushima N: Autophagy: process and function. Genes Dev 2007;21:2861–2873.1800668310.1101%2Fgad.1599207
Tsujimoto Y: Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes Cells 1998;3:697–707.999050510.1046%2Fj.1365-2443.1998.00223.x
Liu B, Wang K, Gao HM, Mandavilli B, Wang JY, Hong JS: Molecular consequences of activated microglia in the brain: overactivation induces apoptosis. J Neurochem 2001;77:182–189.1127927410.1046%2Fj.1471-4159.2001.t01-1-00216.x
ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref12
  doi: 10.1046%2Fj.1365-2443.1998.00223.x
– ident: ref2
  doi: 10.1007%2Fs10571-006-9061-9
– ident: ref14
  doi: 10.1038%2Fnature04724
– ident: ref1
  doi: 10.1097%2FNEN.0b013e3181f3a5b1
– ident: ref7
  doi: 10.1016%2Fj.immuni.2007.05.022
– ident: ref5
  doi: 10.1016%2Fj.mehy.2006.01.013
– ident: ref11
  doi: 10.1002%2Fglia.20265
– ident: ref13
  doi: 10.1016%2Fj.bbrc.2005.12.050
– ident: ref9
  doi: 10.1111%2Fj.1471-4159.2005.03209.x
– ident: ref18
  doi: 10.1101%2Fgad.1599207
– ident: ref6
  doi: 10.1046%2Fj.1471-4159.2001.t01-1-00216.x
– ident: ref4
  doi: 10.1016%2Fj.pneurobio.2005.06.004
– ident: ref15
  doi: 10.1038%2Fnature04723
– ident: ref10
  doi: 10.1016%2Fj.brainres.2009.05.008
– ident: ref8
  doi: 10.1016%2FS0304-3940%2801%2901780-3
– ident: ref3
  doi: 10.1002%2Fmds.23455
– ident: ref16
  doi: 10.1038%2Fnature06639
– ident: ref17
  doi: 10.1093%2Femboj%2F19.21.5720
SSID ssj0029791
Score 2.048546
Snippet Background: Activated microglia secrete inflammatory cytokines and may play roles in the progression of neurodegenerative diseases. However, the mechanism...
Activated microglia secrete inflammatory cytokines and may play roles in the progression of neurodegenerative diseases. However, the mechanism underlying...
BACKGROUNDActivated microglia secrete inflammatory cytokines and may play roles in the progression of neurodegenerative diseases. However, the mechanism...
SourceID proquest
crossref
pubmed
karger
SourceType Aggregation Database
Index Database
Publisher
StartPage 100
SubjectTerms Animals
Apoptosis - drug effects
Apoptosis - physiology
bcl-2-Associated X Protein - metabolism
bcl-X Protein - metabolism
Brain - cytology
Caspase 3 - metabolism
Cells, Cultured
Cytokines - metabolism
Lipopolysaccharides - pharmacology
Mice
Microglia - drug effects
Signal Transduction - drug effects
Title Microglial Activation in Neuroinflammation: Implications for the Etiology of Neurodegeneration
URI https://karger.com/doi/10.1159/000332936
https://www.ncbi.nlm.nih.gov/pubmed/22301667
https://www.proquest.com/docview/1027547452/abstract/
https://search.proquest.com/docview/1008822649
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7BUlVcEFAKy0um6jVi4_gR91IBWrQgLaqqIu2pke21EQJlgWb_f2fyajnANRn7MOPxfON5AXx1uYoyDybRWZSJCDTI3RqeKK6dG7nMc0v1ztMbNbkV1zM5W4FJVwtDaZXdnVhf1POFpzdy1G6updBC8lPr6BXAV6ffn54Tmh9FcdZ2mMYqrPFUUMB27Xx88-Nn73wZXU_PS5UaJVQ12HYZQmtOxQxZhmZPvbJNHx4oFfvlbeRZW6DLTdhooSM7a2S9BSuh3IaP0zY4_gl-Tym57u7xnoh8N7aM3Zes7sCBRwml31QqfmNX_2WSMwSuDIEgG1dN8QpbxGbNPNzVbamJbAduL8e_LiZJOz4h8VkmqkS6VMUsCBG1jai2ynBnA7oQUjg9Et5IG7XJU-l1Nkfd5Dl6NxTXdc4Ej87rZxiUizLsAfNpdBaBSAjRiVR7J_Qoj0GgVD062HYIXzrGFU9Nl4yi9i6kKXruDmGnYWlP0n0_7DhctAr0p_gn7iGc9L_x6FM8w5ZhsSQa8g8Q0Zkh7DaS6bdG1INgVun99zc_gHVEQLx5UzmEQfWyDEeIMip3DKt6po_bY_QXxOTQ5g
link.rule.ids 315,786,790,12083,21416,27957,27958,31754,31755,33779,33780,43345,43840
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgIOCCeDOeAXGttLZ5NFwQQqAN1p2GtBNVkyXTBGoHbP8fpy_gANfWjVQ7jj_HL4ArFXHLIiM9EVrmUeMGuacy8HgglOqoUAepq3eOB7z7TB9HbFRduH1WaZX1mVgc1ONcuzty1O5AMCooC25m756bGuWiq9UIjWVYoWFIXUqfGH07XFIUE_N8zjueqxSsOguhBXcFDGGIpo7_skerry79-uNvtFlYnYct2KzgIrkt5bsNSybbgbW4CojvwkvsEuomb1NHpOtRZWSakaLrBm4flHhZnXhNej-yxwmCVYLgj9zPy4IVktvym7GZFK2oHdkePD_cD--6XjUywdP4_3OPKZ_b0FBqRWpRVbkMVGrQbWBUiQ7VkqVWyMhnWoRj1McgQo_GxXKVkkajw7oPrSzPzCEQ7VuVIvgwxirqC62o6ETWUJSkRqc6bcNlzbhkVnbGSAqPgsmk4W4b9kqWNiT185Oaw0mlNJ_Jt4jbcNG8xu3uYhhpZvKFo3E-AaI42YaDUjLN0oh0EMBycfT_4uew3h3G_aTfGzwdwwYioKC8UzmB1vxjYU4RZczVWbGVvgAKLs3M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microglial+Activation+in+Neuroinflammation%3A+Implications+for+the+Etiology+of+Neurodegeneration&rft.jtitle=Neuro-degenerative+diseases&rft.au=Kaneko%2C+Yoko+S&rft.au=Nakashima%2C+Akira&rft.au=Mori%2C+Keiji&rft.au=Nagatsu%2C+Toshiharu&rft.date=2012-01-01&rft.pub=S.+Karger+AG&rft.issn=1660-2854&rft.eissn=1660-2862&rft.volume=10&rft.issue=1-4&rft.spage=100&rft_id=info:doi/10.1159%2F000332936&rft.externalDocID=2718842211
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1660-2854&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1660-2854&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1660-2854&client=summon