Long-time asymptotics and the bright N-soliton solutions of the Kundu–Eckhaus equation via the Riemann–Hilbert approach

The long-time asymptotics and bright N-soliton solutions of the Kundu–Eckhaus equation are studied by Riemann–Hilbert approach. Firstly, the initial value problem of the defocusing Kundu–Eckhaus equation is considered and its long-time asymptotics is derived based on the nonlinear steepest descent m...

Full description

Saved in:
Bibliographic Details
Published inNonlinear analysis: real world applications Vol. 41; pp. 334 - 361
Main Authors Wang, Deng-Shan, Wang, Xiaoli
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.06.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The long-time asymptotics and bright N-soliton solutions of the Kundu–Eckhaus equation are studied by Riemann–Hilbert approach. Firstly, the initial value problem of the defocusing Kundu–Eckhaus equation is considered and its long-time asymptotics is derived based on the nonlinear steepest descent method of Deift–Zhou. Then the linear spectral problem of the focusing Kundu–Eckhaus equation is investigated via Riemann–Hilbert formulation and the bright N-soliton solutions of this equation are obtained explicitly.
AbstractList The long-time asymptotics and bright N-soliton solutions of the Kundu-Eckhaus equation are studied by R.iemann-Hilbert approach. Firstly, the initial value problem of the defocusing Kundu-Eckhaus equation is considered and its long-time asymptotics is derived based on the nonlinear steepest descent method of Deift-Zhou. Then the linear spectral problem of the focusing Kundu-Eckhaus equation is investigated via Riemann-Hilbert formulation and the bright N-soliton solutions of this equation are obtained explicitly.
The long-time asymptotics and bright N-soliton solutions of the Kundu–Eckhaus equation are studied by Riemann–Hilbert approach. Firstly, the initial value problem of the defocusing Kundu–Eckhaus equation is considered and its long-time asymptotics is derived based on the nonlinear steepest descent method of Deift–Zhou. Then the linear spectral problem of the focusing Kundu–Eckhaus equation is investigated via Riemann–Hilbert formulation and the bright N-soliton solutions of this equation are obtained explicitly.
Author Wang, Deng-Shan
Wang, Xiaoli
Author_xml – sequence: 1
  givenname: Deng-Shan
  surname: Wang
  fullname: Wang, Deng-Shan
  email: wangdsh1980@163.com
  organization: School of Applied Science, Beijing Information Science and Technology University, Beijing 100192, China
– sequence: 2
  givenname: Xiaoli
  surname: Wang
  fullname: Wang, Xiaoli
  organization: School of Science, Qilu University of Technology, Daxue Road, Jinan, 250353, China
BookMark eNqFkM1KQzEQhYNU0Kpv4CLg-tZM778LQcQ_LAqi65CbO7GpbVKT3Epx4zv4hj6JaevKha5mOHxnhnP6pGesQUIOgQ2AQXE8GUTBvYnBkEEZpQGDbIvsQlVWSV5C3Yt7VlQJDKHaIX3vJyyCkMIueR9Z85wEPUMq_HI2DzZo6akwLQ1jpI3Tz-NA7xJvpzpYQ-PsgrbGU6vWxG1n2u7r4_NCvoxF5ym-dmIF0IUWa-BB40wYE5FrPW3QBSrmc2eFHO-TbSWmHg9-5h55urx4PL9ORvdXN-dno0SmaRaSvB5Cq1idQy0UKJnJRoEUBbISS1G0Tdo0IJtGKoZ1BUzmRZ4X9TADVdYKq3SPHG3uxrevHfrAJ7ZzJr7ksbCapXlsI1InG0o6671DxaUO6yjBCT3lwPiqbD7hm7JX3nKlxrKjOftlnjs9E275n-10Y8MYf6HRcS81GomtdigDb63--8A3C5SiOQ
CitedBy_id crossref_primary_10_1142_S0217984919501914
crossref_primary_10_4213_tmf10149
crossref_primary_10_1088_1742_6596_2012_1_012065
crossref_primary_10_3390_fractalfract6060327
crossref_primary_10_3390_math7070573
crossref_primary_10_1134_S0040577921090063
crossref_primary_10_1080_00207160_2020_1759804
crossref_primary_10_1002_mma_10430
crossref_primary_10_1002_mma_9587
crossref_primary_10_1016_j_amc_2018_07_061
crossref_primary_10_1007_s11071_019_04821_0
crossref_primary_10_1007_s11071_024_09351_y
crossref_primary_10_1007_s11071_018_4522_5
crossref_primary_10_1088_1572_9494_acba81
crossref_primary_10_1063_1_5061793
crossref_primary_10_1142_S0217984922500580
crossref_primary_10_1140_epjp_s13360_021_01454_4
crossref_primary_10_1007_s11071_019_05226_9
crossref_primary_10_1155_2019_4072754
crossref_primary_10_1134_S0040577922120054
crossref_primary_10_12677_AAM_2023_125236
crossref_primary_10_1080_00207160_2022_2041194
crossref_primary_10_4213_tmf10653
crossref_primary_10_1016_j_physa_2019_121344
crossref_primary_10_1007_s11071_021_06592_z
crossref_primary_10_1007_s11071_019_05359_x
crossref_primary_10_1186_s13662_018_1751_3
crossref_primary_10_1134_S004057792409006X
crossref_primary_10_1016_j_ijleo_2022_169350
crossref_primary_10_1007_s44198_023_00148_y
crossref_primary_10_1007_s11071_021_06655_1
crossref_primary_10_1016_j_aml_2017_12_019
crossref_primary_10_1088_1402_4896_ab05f9
crossref_primary_10_1007_s44198_022_00076_3
crossref_primary_10_1016_j_camwa_2018_03_024
crossref_primary_10_1016_j_aml_2020_106326
crossref_primary_10_1142_S0217984920503327
crossref_primary_10_7498_aps_69_20191240
crossref_primary_10_1016_j_jmaa_2024_128127
crossref_primary_10_1134_S0040577922010020
crossref_primary_10_1142_S0217984920502243
crossref_primary_10_1016_j_camwa_2018_10_008
crossref_primary_10_1016_j_cnsns_2019_104887
crossref_primary_10_1007_s11071_024_09889_x
crossref_primary_10_1016_j_aml_2024_109005
crossref_primary_10_1007_s11071_019_05222_z
crossref_primary_10_1016_j_jde_2018_10_053
crossref_primary_10_1142_S0217984919501744
crossref_primary_10_1088_2399_6528_aaeaf5
crossref_primary_10_1088_1402_4896_abfcf0
crossref_primary_10_1016_j_geomphys_2021_104291
crossref_primary_10_1134_S0040577922010032
crossref_primary_10_1186_s13662_018_1748_y
crossref_primary_10_1088_1674_1056_27_7_070201
crossref_primary_10_1142_S0217984920501286
crossref_primary_10_1142_S0217984921503218
crossref_primary_10_1088_1572_9494_abc3ac
crossref_primary_10_1007_s11071_022_07767_y
crossref_primary_10_1038_s41598_024_71821_5
crossref_primary_10_1007_s11071_022_08106_x
crossref_primary_10_1016_j_physd_2025_134522
crossref_primary_10_1088_1402_4896_ac0c92
crossref_primary_10_4213_tmf10150
crossref_primary_10_1016_j_rinp_2021_104147
crossref_primary_10_1088_0253_6102_71_2_152
crossref_primary_10_1007_s10255_018_0765_7
crossref_primary_10_1088_1402_4896_acbac9
crossref_primary_10_1016_j_apm_2018_10_030
crossref_primary_10_1007_s11071_021_06541_w
crossref_primary_10_1088_1402_4896_ad13dc
crossref_primary_10_1007_s11071_021_06205_9
crossref_primary_10_1007_s11071_024_09835_x
crossref_primary_10_1142_S0217979223501151
crossref_primary_10_1016_j_chaos_2022_112440
crossref_primary_10_1016_j_cjph_2022_07_001
crossref_primary_10_1016_j_physleta_2018_08_002
crossref_primary_10_1140_epjp_s13360_020_00348_1
crossref_primary_10_1007_s00033_023_01956_4
crossref_primary_10_1142_S0217984921506272
crossref_primary_10_1007_s10473_020_0306_3
crossref_primary_10_1016_j_jmaa_2021_125109
crossref_primary_10_1007_s44198_024_00173_5
crossref_primary_10_1016_j_padiff_2022_100260
crossref_primary_10_1016_j_jmaa_2020_123968
crossref_primary_10_1088_1361_6455_ac7ca5
crossref_primary_10_1142_S0217984919503500
crossref_primary_10_1007_s11425_018_9567_1
crossref_primary_10_3934_math_2020080
crossref_primary_10_1007_s11071_020_05573_y
crossref_primary_10_1142_S0217984919500878
crossref_primary_10_4213_tmf10059
crossref_primary_10_1016_j_camwa_2019_03_005
crossref_primary_10_1016_j_rinp_2022_106084
crossref_primary_10_1080_14029251_2019_1613055
crossref_primary_10_1016_j_rinp_2019_102362
crossref_primary_10_11948_20190011
crossref_primary_10_4213_tmf10338
crossref_primary_10_1007_s11071_021_06322_5
crossref_primary_10_1016_j_aml_2024_109363
crossref_primary_10_1142_S021798492150233X
crossref_primary_10_3389_fphy_2023_1131007
crossref_primary_10_1016_j_aml_2022_108390
crossref_primary_10_1016_j_aml_2023_108924
crossref_primary_10_1016_j_wavemoti_2022_103053
crossref_primary_10_1002_mma_5698
crossref_primary_10_1016_j_cnsns_2021_106131
crossref_primary_10_1142_S0217979221501538
crossref_primary_10_1088_1402_4896_abdf0d
crossref_primary_10_1142_S0217984919504165
crossref_primary_10_4213_tmf10171
crossref_primary_10_1186_s13662_019_2271_5
crossref_primary_10_1007_s10255_024_1121_8
crossref_primary_10_1007_s11071_021_06706_7
crossref_primary_10_1142_S0217984919501331
crossref_primary_10_1088_0256_307X_36_11_110201
crossref_primary_10_1016_j_physa_2019_121780
crossref_primary_10_1016_j_camwa_2019_03_001
crossref_primary_10_1016_j_physd_2023_133838
crossref_primary_10_1007_s13324_020_00413_z
crossref_primary_10_1016_j_aml_2018_07_012
crossref_primary_10_1016_j_chaos_2019_01_032
crossref_primary_10_1007_s11071_022_07363_0
crossref_primary_10_1016_j_ijleo_2021_167853
crossref_primary_10_1134_S0040577922090057
crossref_primary_10_1016_j_geomphys_2020_103669
crossref_primary_10_1088_0256_307X_35_7_070201
crossref_primary_10_1080_17455030_2019_1630785
crossref_primary_10_1007_s11071_024_10581_3
crossref_primary_10_1007_s11071_018_4563_9
crossref_primary_10_1088_1402_4896_ab6a3f
crossref_primary_10_1016_j_aml_2020_106850
crossref_primary_10_1016_j_ijleo_2023_170548
crossref_primary_10_1007_s11005_024_01802_2
crossref_primary_10_1002_mma_6931
crossref_primary_10_1002_mma_5964
crossref_primary_10_1360_SCM_2020_0546
crossref_primary_10_1007_s11071_020_05514_9
crossref_primary_10_1007_s40819_023_01540_4
crossref_primary_10_1007_s11040_020_09347_1
crossref_primary_10_1142_S0217984921503139
crossref_primary_10_1088_1402_4896_ab2cdc
crossref_primary_10_1140_epjp_i2019_12439_y
crossref_primary_10_1016_j_rinp_2023_106283
crossref_primary_10_1142_S0217984919502919
crossref_primary_10_3389_fphy_2023_1108505
crossref_primary_10_1142_S0217984918503876
crossref_primary_10_1142_S0217984920504199
crossref_primary_10_1007_s11464_021_0918_5
crossref_primary_10_1016_j_aml_2018_09_011
crossref_primary_10_1088_1572_9494_ad1324
crossref_primary_10_1142_S0217984922502037
crossref_primary_10_1142_S021798492150041X
crossref_primary_10_1088_1572_9494_ad1327
crossref_primary_10_1016_j_camwa_2018_10_035
crossref_primary_10_1016_j_physd_2024_134380
crossref_primary_10_1016_j_rinp_2021_104587
crossref_primary_10_1063_1_5020996
crossref_primary_10_1016_j_camwa_2019_05_012
crossref_primary_10_1016_j_chaos_2021_111507
Cites_doi 10.1002/cpa.21494
10.2307/2946540
10.1007/BF01008354
10.1103/PhysRevLett.19.1095
10.1016/0378-4371(92)90117-9
10.1007/BF01016136
10.1143/JPSJ.68.1508
10.1016/j.physleta.2013.01.044
10.1063/1.3290736
10.1103/PhysRevA.74.023607
10.1002/cpa.20024
10.1063/1.526113
10.1002/cpa.20179
10.1007/s11040-013-9132-3
10.2969/jmsj/06630765
10.1143/JPSJ.79.074005
10.1016/j.cnsns.2014.04.002
10.1088/0031-8949/89/9/095210
10.1016/j.physd.2016.03.009
10.1088/0266-5611/4/1/005
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier BV Jun 2018
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier BV Jun 2018
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.nonrwa.2017.10.014
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1878-5719
EndPage 361
ExternalDocumentID 10_1016_j_nonrwa_2017_10_014
S146812181730161X
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29N
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
J9A
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
XPP
YQT
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7TB
8FD
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-5921df09519af1fc4cbf1ca6e07e7a6db3bb1cbbcf0e9810c565569241f79fe83
IEDL.DBID .~1
ISSN 1468-1218
IngestDate Mon Jul 14 10:31:20 EDT 2025
Tue Jul 01 04:03:12 EDT 2025
Thu Apr 24 22:57:27 EDT 2025
Fri Feb 23 02:27:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Long-time asymptotics
Soliton solutions
Lax pair
Kundu–Eckhaus equation
Riemann–Hilbert approach
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-5921df09519af1fc4cbf1ca6e07e7a6db3bb1cbbcf0e9810c565569241f79fe83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2019035017
PQPubID 2045088
PageCount 28
ParticipantIDs proquest_journals_2019035017
crossref_citationtrail_10_1016_j_nonrwa_2017_10_014
crossref_primary_10_1016_j_nonrwa_2017_10_014
elsevier_sciencedirect_doi_10_1016_j_nonrwa_2017_10_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2018
2018-06-00
20180601
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: June 2018
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Nonlinear analysis: real world applications
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Jenkins, McLaughlin (b22) 2014; 67
Yamane (b23) 2014; 6
Zakharov, Shabat (b1) 1972; 34
Deift, Its, Zhou (b6) 1993
Pethick, Smith (b10) 2004
Deift, Zhou (b7) 1993; 137
Zhaqilao (b15) 2013; 377
Geng (b13) 1992; 180
Tovbis, Venakides, Zhou (b20) 2004; 57
Calogerot, Eckhaus (b18) 1988; 4
Kumar, Radha, Wadati (b11) 2010; 79
Geng, Tam (b14) 1999; 68
Wang, Zhang, Yang (b5) 2010; 51
Zakharov, Manakov, Novikov, Pitaevskii (b3) 1984
Khaykovich, Malomed (b9) 2006; 74
Zhao, Liu, Yang (b16) 2015; 20
Gardner, Greene, Kruskal, Miura (b2) 1967; 19
Buckingham, Venakides (b24) 2007; 60
Xu, Fan, Chen (b21) 2013; 16
Yang (b4) 2010
Tovbis, El (b25) 2016; 333
Kundu (b12) 1984; 25
Kodama (b8) 1985; 39
Wang, Yang, Chen, Yang (b17) 2014; 89
Conte, Musette (b19) 1994; 99
Khaykovich (10.1016/j.nonrwa.2017.10.014_b9) 2006; 74
Geng (10.1016/j.nonrwa.2017.10.014_b14) 1999; 68
Conte (10.1016/j.nonrwa.2017.10.014_b19) 1994; 99
Wang (10.1016/j.nonrwa.2017.10.014_b17) 2014; 89
Kundu (10.1016/j.nonrwa.2017.10.014_b12) 1984; 25
Yamane (10.1016/j.nonrwa.2017.10.014_b23) 2014; 6
Zhao (10.1016/j.nonrwa.2017.10.014_b16) 2015; 20
Tovbis (10.1016/j.nonrwa.2017.10.014_b25) 2016; 333
Zakharov (10.1016/j.nonrwa.2017.10.014_b1) 1972; 34
Deift (10.1016/j.nonrwa.2017.10.014_b7) 1993; 137
Kumar (10.1016/j.nonrwa.2017.10.014_b11) 2010; 79
Xu (10.1016/j.nonrwa.2017.10.014_b21) 2013; 16
Pethick (10.1016/j.nonrwa.2017.10.014_b10) 2004
Buckingham (10.1016/j.nonrwa.2017.10.014_b24) 2007; 60
Zhaqilao (10.1016/j.nonrwa.2017.10.014_b15) 2013; 377
Tovbis (10.1016/j.nonrwa.2017.10.014_b20) 2004; 57
Geng (10.1016/j.nonrwa.2017.10.014_b13) 1992; 180
Deift (10.1016/j.nonrwa.2017.10.014_b6) 1993
Wang (10.1016/j.nonrwa.2017.10.014_b5) 2010; 51
Gardner (10.1016/j.nonrwa.2017.10.014_b2) 1967; 19
Zakharov (10.1016/j.nonrwa.2017.10.014_b3) 1984
Kodama (10.1016/j.nonrwa.2017.10.014_b8) 1985; 39
Yang (10.1016/j.nonrwa.2017.10.014_b4) 2010
Calogerot (10.1016/j.nonrwa.2017.10.014_b18) 1988; 4
Jenkins (10.1016/j.nonrwa.2017.10.014_b22) 2014; 67
References_xml – volume: 16
  start-page: 253
  year: 2013
  end-page: 288
  ident: b21
  article-title: Long-time asymptotic for the derivative nonlinear Schrödinger equation with step-like initial value
  publication-title: Math. Phys. Anal. Geom.
– year: 2004
  ident: b10
  publication-title: Bose–Einstein Condensation in Dilute Gases
– volume: 51
  start-page: 023510
  year: 2010
  ident: b5
  article-title: Integrable properties of the general coupled nonlinear Schrödinger equations
  publication-title: J. Math. Phys.
– volume: 60
  start-page: 1349
  year: 2007
  end-page: 1414
  ident: b24
  article-title: Long-time asymptotics of the nonlinear Schrödinger equation shock problem
  publication-title: Commum. Pure Appl. Math.
– year: 1984
  ident: b3
  publication-title: The Theory of Solitons: The Inverse Scattering Method
– volume: 67
  start-page: 246
  year: 2014
  end-page: 320
  ident: b22
  article-title: The semiclassical limit of focusing NLS for a family of square barrier initial data
  publication-title: Comm. Pure Appl. Math.
– volume: 333
  start-page: 171
  year: 2016
  end-page: 184
  ident: b25
  article-title: Semiclassical limit of the focusing NLS: Whitham equations and the Riemann-Hilbert Problem approach
  publication-title: Physica D
– volume: 68
  start-page: 1508
  year: 1999
  ident: b14
  article-title: Darboux transformation and soliton solutions for generalized nonlinear Schrödinger equations
  publication-title: J. Phys. Soc. Japan
– volume: 74
  start-page: 023607
  year: 2006
  ident: b9
  article-title: Deviation from one dimensionality in stationary properties and collisional dynamics of matter-wave solitons
  publication-title: Phys. Rev. E
– volume: 34
  start-page: 62
  year: 1972
  end-page: 69
  ident: b1
  article-title: Exact theory of two-dimensional self-focusing and one-dimension self-modulation of waves in nonlinear media
  publication-title: Sov. Phys.—JETP
– volume: 25
  start-page: 3433
  year: 1984
  ident: b12
  article-title: Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations
  publication-title: J. Math. Phys.
– volume: 180
  start-page: 241
  year: 1992
  ident: b13
  article-title: A hierarchy of nonlinear evolution-equations, its hamiltonian-structure and classical integrable system
  publication-title: Physica A
– volume: 4
  start-page: 11
  year: 1988
  end-page: 33
  ident: b18
  article-title: Nonlinear evolution equations, rescalings, model PDES and their integrability: I
  publication-title: Inverse Problems
– volume: 20
  start-page: 9
  year: 2015
  end-page: 13
  ident: b16
  article-title: The rogue waves with quintic nonlinearity and nonlinear dispersion effects in nonlinear optical fibers
  publication-title: Commu. Nonl. Sci. Numer. Simul.
– volume: 89
  start-page: 095210
  year: 2014
  ident: b17
  article-title: Higher-order rogue wave solutions of the Kundu-Eckhaus equation
  publication-title: Phys. Scr.
– volume: 377
  start-page: 855
  year: 2013
  ident: b15
  article-title: On Nth-order rogue wave solution to the generalized nonlinear Schrödinger equation
  publication-title: Phys. Lett. A
– volume: 6
  start-page: 765
  year: 2014
  end-page: 803
  ident: b23
  article-title: Long-time asymptotics for the defocusing integrable discrete nonlinear Schrödinger equation
  publication-title: J. Math. Soc. Japan
– volume: 19
  start-page: 1095
  year: 1967
  ident: b2
  article-title: Method for solving the Korteweg-deVries equation
  publication-title: Phys. Rev. Lett.
– volume: 57
  start-page: 877
  year: 2004
  end-page: 985
  ident: b20
  article-title: On semiclassical (zero dispersion limit) solutions of the focusing nonlinear Schrödinger equation
  publication-title: Commum. Pure Appl. Math.
– year: 2010
  ident: b4
  publication-title: Nonlinear Waves in Integrable and Non-Integrable Systems
– start-page: 181
  year: 1993
  end-page: 204
  ident: b6
  article-title: Long-time asymptotics for integrable nonlinear wave equations
  publication-title: Important Developments in Soliton Theory 1980-1990
– volume: 79
  start-page: 074005
  year: 2010
  ident: b11
  article-title: Phase engineering and solitons of Bose–Einstein condensates with two- and three-body interactions
  publication-title: J. Phys. Soc. Japan
– volume: 99
  start-page: 543
  year: 1994
  end-page: 548
  ident: b19
  article-title: Exact solutions to the partially integrable Eckhaus equation
  publication-title: Theoret. Math. Phys.
– volume: 39
  start-page: 597
  year: 1985
  end-page: 614
  ident: b8
  article-title: Optical solitons in a monomode fiber
  publication-title: J. Stat. Phys.
– volume: 137
  start-page: 295
  year: 1993
  end-page: 368
  ident: b7
  article-title: A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation
  publication-title: Ann. of Math. (2)
– volume: 67
  start-page: 246
  year: 2014
  ident: 10.1016/j.nonrwa.2017.10.014_b22
  article-title: The semiclassical limit of focusing NLS for a family of square barrier initial data
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.21494
– year: 1984
  ident: 10.1016/j.nonrwa.2017.10.014_b3
– start-page: 181
  year: 1993
  ident: 10.1016/j.nonrwa.2017.10.014_b6
  article-title: Long-time asymptotics for integrable nonlinear wave equations
– volume: 137
  start-page: 295
  issue: 2
  year: 1993
  ident: 10.1016/j.nonrwa.2017.10.014_b7
  article-title: A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation
  publication-title: Ann. of Math. (2)
  doi: 10.2307/2946540
– volume: 39
  start-page: 597
  year: 1985
  ident: 10.1016/j.nonrwa.2017.10.014_b8
  article-title: Optical solitons in a monomode fiber
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01008354
– year: 2010
  ident: 10.1016/j.nonrwa.2017.10.014_b4
– volume: 19
  start-page: 1095
  year: 1967
  ident: 10.1016/j.nonrwa.2017.10.014_b2
  article-title: Method for solving the Korteweg-deVries equation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.19.1095
– volume: 180
  start-page: 241
  year: 1992
  ident: 10.1016/j.nonrwa.2017.10.014_b13
  article-title: A hierarchy of nonlinear evolution-equations, its hamiltonian-structure and classical integrable system
  publication-title: Physica A
  doi: 10.1016/0378-4371(92)90117-9
– volume: 99
  start-page: 543
  year: 1994
  ident: 10.1016/j.nonrwa.2017.10.014_b19
  article-title: Exact solutions to the partially integrable Eckhaus equation
  publication-title: Theoret. Math. Phys.
  doi: 10.1007/BF01016136
– volume: 68
  start-page: 1508
  year: 1999
  ident: 10.1016/j.nonrwa.2017.10.014_b14
  article-title: Darboux transformation and soliton solutions for generalized nonlinear Schrödinger equations
  publication-title: J. Phys. Soc. Japan
  doi: 10.1143/JPSJ.68.1508
– volume: 377
  start-page: 855
  year: 2013
  ident: 10.1016/j.nonrwa.2017.10.014_b15
  article-title: On Nth-order rogue wave solution to the generalized nonlinear Schrödinger equation
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2013.01.044
– year: 2004
  ident: 10.1016/j.nonrwa.2017.10.014_b10
– volume: 51
  start-page: 023510
  year: 2010
  ident: 10.1016/j.nonrwa.2017.10.014_b5
  article-title: Integrable properties of the general coupled nonlinear Schrödinger equations
  publication-title: J. Math. Phys.
  doi: 10.1063/1.3290736
– volume: 74
  start-page: 023607
  year: 2006
  ident: 10.1016/j.nonrwa.2017.10.014_b9
  article-title: Deviation from one dimensionality in stationary properties and collisional dynamics of matter-wave solitons
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevA.74.023607
– volume: 57
  start-page: 877
  year: 2004
  ident: 10.1016/j.nonrwa.2017.10.014_b20
  article-title: On semiclassical (zero dispersion limit) solutions of the focusing nonlinear Schrödinger equation
  publication-title: Commum. Pure Appl. Math.
  doi: 10.1002/cpa.20024
– volume: 25
  start-page: 3433
  year: 1984
  ident: 10.1016/j.nonrwa.2017.10.014_b12
  article-title: Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations
  publication-title: J. Math. Phys.
  doi: 10.1063/1.526113
– volume: 60
  start-page: 1349
  year: 2007
  ident: 10.1016/j.nonrwa.2017.10.014_b24
  article-title: Long-time asymptotics of the nonlinear Schrödinger equation shock problem
  publication-title: Commum. Pure Appl. Math.
  doi: 10.1002/cpa.20179
– volume: 16
  start-page: 253
  year: 2013
  ident: 10.1016/j.nonrwa.2017.10.014_b21
  article-title: Long-time asymptotic for the derivative nonlinear Schrödinger equation with step-like initial value
  publication-title: Math. Phys. Anal. Geom.
  doi: 10.1007/s11040-013-9132-3
– volume: 6
  start-page: 765
  year: 2014
  ident: 10.1016/j.nonrwa.2017.10.014_b23
  article-title: Long-time asymptotics for the defocusing integrable discrete nonlinear Schrödinger equation
  publication-title: J. Math. Soc. Japan
  doi: 10.2969/jmsj/06630765
– volume: 79
  start-page: 074005
  year: 2010
  ident: 10.1016/j.nonrwa.2017.10.014_b11
  article-title: Phase engineering and solitons of Bose–Einstein condensates with two- and three-body interactions
  publication-title: J. Phys. Soc. Japan
  doi: 10.1143/JPSJ.79.074005
– volume: 20
  start-page: 9
  year: 2015
  ident: 10.1016/j.nonrwa.2017.10.014_b16
  article-title: The rogue waves with quintic nonlinearity and nonlinear dispersion effects in nonlinear optical fibers
  publication-title: Commu. Nonl. Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2014.04.002
– volume: 89
  start-page: 095210
  year: 2014
  ident: 10.1016/j.nonrwa.2017.10.014_b17
  article-title: Higher-order rogue wave solutions of the Kundu-Eckhaus equation
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/89/9/095210
– volume: 34
  start-page: 62
  year: 1972
  ident: 10.1016/j.nonrwa.2017.10.014_b1
  article-title: Exact theory of two-dimensional self-focusing and one-dimension self-modulation of waves in nonlinear media
  publication-title: Sov. Phys.—JETP
– volume: 333
  start-page: 171
  year: 2016
  ident: 10.1016/j.nonrwa.2017.10.014_b25
  article-title: Semiclassical limit of the focusing NLS: Whitham equations and the Riemann-Hilbert Problem approach
  publication-title: Physica D
  doi: 10.1016/j.physd.2016.03.009
– volume: 4
  start-page: 11
  year: 1988
  ident: 10.1016/j.nonrwa.2017.10.014_b18
  article-title: Nonlinear evolution equations, rescalings, model PDES and their integrability: I
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/4/1/005
SSID ssj0017131
Score 2.5550542
Snippet The long-time asymptotics and bright N-soliton solutions of the Kundu–Eckhaus equation are studied by Riemann–Hilbert approach. Firstly, the initial value...
The long-time asymptotics and bright N-soliton solutions of the Kundu-Eckhaus equation are studied by R.iemann-Hilbert approach. Firstly, the initial value...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 334
SubjectTerms Asymptotic methods
Asymptotic properties
Boundary value problems
Defocusing
Kundu–Eckhaus equation
Lax pair
Long-time asymptotics
Nonlinear equations
Riemann–Hilbert approach
Schrodinger equation
Soliton solutions
Steepest descent method
Title Long-time asymptotics and the bright N-soliton solutions of the Kundu–Eckhaus equation via the Riemann–Hilbert approach
URI https://dx.doi.org/10.1016/j.nonrwa.2017.10.014
https://www.proquest.com/docview/2019035017
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfOKjlj14Tdtt0jyOpbRUW4tUhd7C7mZX4yOtTaqIIP4H_6G_xJk8CgoieArZzCZhZzIP8s23hBwrpPxothTUJhZHUu2GIbgLhasDwY1pJpnG3uGzkd2_sk4nrUmJdIpeGIRV5r4_8-mpt85H6vlq1mdhWL_ApiGGEQqN1GYT7GC3HLTy2tsS5sGgCGNFhxFKF-1zKcYLKuz5M7IPMaeGGC9m_RaefjjqNPr0Nsh6njbSdvZmm6Skoi2ydrbkXI23yetwGl0buFc85fHLwyyZ4jjlUUBBioq0DKcjI0bE2zSiS6OjU51KDBZRsPh8_-jKuxu-iKl6zGjA6VPIU4FxCA-LIhDph0iNldCCkXyHXPW6l52-kW-tYEjTtBKj5TVZoDG98rhmWlpSgF64rRqOcrgdCFMIJoWQuqE8lzUk5H0tG2o1ph1PK9fcJWVYPLVHqGkH3IW0RliCW4FnChecqJAQ9nkgAubtE7NYUV_mvOO4_cW9XwDMbv1MDz7qAUdBD_vEWM6aZbwbf8g7hbL8b_bjQ2j4Y2al0K2ff78xXvfSf67Owb9vfEhW4czNcGUVUk7mC3UEGUwiqqmJVslKuzMenuPxZNAffQERjvZt
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4AHoCDEYWwitAHPc7u9s774MEIZHEfB2WTvQ3dPd0wirPrzqyEmBj_Az_Ff-QvoWpeCSSGxIRrd3XPpKqmHpmqrwDeaIL86LkacxNHEKh215IiwMTVR-fGDVfcUO_waOz1J87HqTtdgT91LwyVVVa2v7TphbWuVjoVNzvzJOl8pqYhTh6KlNTj06qycqCvrzBvy96dHKKQ3_Z6x0enH_pWNVrAUrbt5JYb9nhsKLwIheFGOUriewlPd33tCy-WtpRcSalMV4cB7yqMe1wPcxVu_NDowMZ7V-GJg-aCxia0fzV1JRyzPl63NNHr1f16RVEZpvSLK4I74n6bisq48y9_eM8zFO7u-Bk8reJU9r5kxRas6PQ5bI4akNfsBfwcztJzi4bTM5Fdf5vnM1pnIo0ZUjFZ5P1sbGVUYjdLWaPlbGYKisEyjZd_f98cqa8XYpkx_b3EHWc_ElEQfErwYWmKJP2EsLhyVkOgb8PkURi-A2vIPL0LzPZiEWAcJR0pnDi0ZYBWWyqMM0QsYx62wK45GqkK6JzmbVxGdUXbl6iUQ0RyoFWUQwus5tS8BPp4gN6vhRXdUdgIfdEDJ_dq2UaVwchoPyx-8vov__viA1jvn46G0fBkPHgFG7gTlEVte7CWL5b6NYZPudwv1JXB2WN_H7fSETHR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-time+asymptotics+and+the+bright+N-soliton+solutions+of+the+Kundu-Eckhaus+equation+via+the+Riemann-Hilbert+approach&rft.jtitle=Nonlinear+analysis%3A+real+world+applications&rft.au=Wang%2C+Deng-Shan&rft.au=Wang%2C+Xiaoli&rft.date=2018-06-01&rft.pub=Elsevier+BV&rft.issn=1468-1218&rft.eissn=1878-5719&rft.volume=41&rft.spage=334&rft_id=info:doi/10.1016%2Fj.nonrwa.2017.10.014&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-1218&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-1218&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-1218&client=summon