Long-time asymptotics and the bright N-soliton solutions of the Kundu–Eckhaus equation via the Riemann–Hilbert approach
The long-time asymptotics and bright N-soliton solutions of the Kundu–Eckhaus equation are studied by Riemann–Hilbert approach. Firstly, the initial value problem of the defocusing Kundu–Eckhaus equation is considered and its long-time asymptotics is derived based on the nonlinear steepest descent m...
Saved in:
Published in | Nonlinear analysis: real world applications Vol. 41; pp. 334 - 361 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
01.06.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The long-time asymptotics and bright N-soliton solutions of the Kundu–Eckhaus equation are studied by Riemann–Hilbert approach. Firstly, the initial value problem of the defocusing Kundu–Eckhaus equation is considered and its long-time asymptotics is derived based on the nonlinear steepest descent method of Deift–Zhou. Then the linear spectral problem of the focusing Kundu–Eckhaus equation is investigated via Riemann–Hilbert formulation and the bright N-soliton solutions of this equation are obtained explicitly. |
---|---|
AbstractList | The long-time asymptotics and bright N-soliton solutions of the Kundu-Eckhaus equation are studied by R.iemann-Hilbert approach. Firstly, the initial value problem of the defocusing Kundu-Eckhaus equation is considered and its long-time asymptotics is derived based on the nonlinear steepest descent method of Deift-Zhou. Then the linear spectral problem of the focusing Kundu-Eckhaus equation is investigated via Riemann-Hilbert formulation and the bright N-soliton solutions of this equation are obtained explicitly. The long-time asymptotics and bright N-soliton solutions of the Kundu–Eckhaus equation are studied by Riemann–Hilbert approach. Firstly, the initial value problem of the defocusing Kundu–Eckhaus equation is considered and its long-time asymptotics is derived based on the nonlinear steepest descent method of Deift–Zhou. Then the linear spectral problem of the focusing Kundu–Eckhaus equation is investigated via Riemann–Hilbert formulation and the bright N-soliton solutions of this equation are obtained explicitly. |
Author | Wang, Deng-Shan Wang, Xiaoli |
Author_xml | – sequence: 1 givenname: Deng-Shan surname: Wang fullname: Wang, Deng-Shan email: wangdsh1980@163.com organization: School of Applied Science, Beijing Information Science and Technology University, Beijing 100192, China – sequence: 2 givenname: Xiaoli surname: Wang fullname: Wang, Xiaoli organization: School of Science, Qilu University of Technology, Daxue Road, Jinan, 250353, China |
BookMark | eNqFkM1KQzEQhYNU0Kpv4CLg-tZM778LQcQ_LAqi65CbO7GpbVKT3Epx4zv4hj6JaevKha5mOHxnhnP6pGesQUIOgQ2AQXE8GUTBvYnBkEEZpQGDbIvsQlVWSV5C3Yt7VlQJDKHaIX3vJyyCkMIueR9Z85wEPUMq_HI2DzZo6akwLQ1jpI3Tz-NA7xJvpzpYQ-PsgrbGU6vWxG1n2u7r4_NCvoxF5ym-dmIF0IUWa-BB40wYE5FrPW3QBSrmc2eFHO-TbSWmHg9-5h55urx4PL9ORvdXN-dno0SmaRaSvB5Cq1idQy0UKJnJRoEUBbISS1G0Tdo0IJtGKoZ1BUzmRZ4X9TADVdYKq3SPHG3uxrevHfrAJ7ZzJr7ksbCapXlsI1InG0o6671DxaUO6yjBCT3lwPiqbD7hm7JX3nKlxrKjOftlnjs9E275n-10Y8MYf6HRcS81GomtdigDb63--8A3C5SiOQ |
CitedBy_id | crossref_primary_10_1142_S0217984919501914 crossref_primary_10_4213_tmf10149 crossref_primary_10_1088_1742_6596_2012_1_012065 crossref_primary_10_3390_fractalfract6060327 crossref_primary_10_3390_math7070573 crossref_primary_10_1134_S0040577921090063 crossref_primary_10_1080_00207160_2020_1759804 crossref_primary_10_1002_mma_10430 crossref_primary_10_1002_mma_9587 crossref_primary_10_1016_j_amc_2018_07_061 crossref_primary_10_1007_s11071_019_04821_0 crossref_primary_10_1007_s11071_024_09351_y crossref_primary_10_1007_s11071_018_4522_5 crossref_primary_10_1088_1572_9494_acba81 crossref_primary_10_1063_1_5061793 crossref_primary_10_1142_S0217984922500580 crossref_primary_10_1140_epjp_s13360_021_01454_4 crossref_primary_10_1007_s11071_019_05226_9 crossref_primary_10_1155_2019_4072754 crossref_primary_10_1134_S0040577922120054 crossref_primary_10_12677_AAM_2023_125236 crossref_primary_10_1080_00207160_2022_2041194 crossref_primary_10_4213_tmf10653 crossref_primary_10_1016_j_physa_2019_121344 crossref_primary_10_1007_s11071_021_06592_z crossref_primary_10_1007_s11071_019_05359_x crossref_primary_10_1186_s13662_018_1751_3 crossref_primary_10_1134_S004057792409006X crossref_primary_10_1016_j_ijleo_2022_169350 crossref_primary_10_1007_s44198_023_00148_y crossref_primary_10_1007_s11071_021_06655_1 crossref_primary_10_1016_j_aml_2017_12_019 crossref_primary_10_1088_1402_4896_ab05f9 crossref_primary_10_1007_s44198_022_00076_3 crossref_primary_10_1016_j_camwa_2018_03_024 crossref_primary_10_1016_j_aml_2020_106326 crossref_primary_10_1142_S0217984920503327 crossref_primary_10_7498_aps_69_20191240 crossref_primary_10_1016_j_jmaa_2024_128127 crossref_primary_10_1134_S0040577922010020 crossref_primary_10_1142_S0217984920502243 crossref_primary_10_1016_j_camwa_2018_10_008 crossref_primary_10_1016_j_cnsns_2019_104887 crossref_primary_10_1007_s11071_024_09889_x crossref_primary_10_1016_j_aml_2024_109005 crossref_primary_10_1007_s11071_019_05222_z crossref_primary_10_1016_j_jde_2018_10_053 crossref_primary_10_1142_S0217984919501744 crossref_primary_10_1088_2399_6528_aaeaf5 crossref_primary_10_1088_1402_4896_abfcf0 crossref_primary_10_1016_j_geomphys_2021_104291 crossref_primary_10_1134_S0040577922010032 crossref_primary_10_1186_s13662_018_1748_y crossref_primary_10_1088_1674_1056_27_7_070201 crossref_primary_10_1142_S0217984920501286 crossref_primary_10_1142_S0217984921503218 crossref_primary_10_1088_1572_9494_abc3ac crossref_primary_10_1007_s11071_022_07767_y crossref_primary_10_1038_s41598_024_71821_5 crossref_primary_10_1007_s11071_022_08106_x crossref_primary_10_1016_j_physd_2025_134522 crossref_primary_10_1088_1402_4896_ac0c92 crossref_primary_10_4213_tmf10150 crossref_primary_10_1016_j_rinp_2021_104147 crossref_primary_10_1088_0253_6102_71_2_152 crossref_primary_10_1007_s10255_018_0765_7 crossref_primary_10_1088_1402_4896_acbac9 crossref_primary_10_1016_j_apm_2018_10_030 crossref_primary_10_1007_s11071_021_06541_w crossref_primary_10_1088_1402_4896_ad13dc crossref_primary_10_1007_s11071_021_06205_9 crossref_primary_10_1007_s11071_024_09835_x crossref_primary_10_1142_S0217979223501151 crossref_primary_10_1016_j_chaos_2022_112440 crossref_primary_10_1016_j_cjph_2022_07_001 crossref_primary_10_1016_j_physleta_2018_08_002 crossref_primary_10_1140_epjp_s13360_020_00348_1 crossref_primary_10_1007_s00033_023_01956_4 crossref_primary_10_1142_S0217984921506272 crossref_primary_10_1007_s10473_020_0306_3 crossref_primary_10_1016_j_jmaa_2021_125109 crossref_primary_10_1007_s44198_024_00173_5 crossref_primary_10_1016_j_padiff_2022_100260 crossref_primary_10_1016_j_jmaa_2020_123968 crossref_primary_10_1088_1361_6455_ac7ca5 crossref_primary_10_1142_S0217984919503500 crossref_primary_10_1007_s11425_018_9567_1 crossref_primary_10_3934_math_2020080 crossref_primary_10_1007_s11071_020_05573_y crossref_primary_10_1142_S0217984919500878 crossref_primary_10_4213_tmf10059 crossref_primary_10_1016_j_camwa_2019_03_005 crossref_primary_10_1016_j_rinp_2022_106084 crossref_primary_10_1080_14029251_2019_1613055 crossref_primary_10_1016_j_rinp_2019_102362 crossref_primary_10_11948_20190011 crossref_primary_10_4213_tmf10338 crossref_primary_10_1007_s11071_021_06322_5 crossref_primary_10_1016_j_aml_2024_109363 crossref_primary_10_1142_S021798492150233X crossref_primary_10_3389_fphy_2023_1131007 crossref_primary_10_1016_j_aml_2022_108390 crossref_primary_10_1016_j_aml_2023_108924 crossref_primary_10_1016_j_wavemoti_2022_103053 crossref_primary_10_1002_mma_5698 crossref_primary_10_1016_j_cnsns_2021_106131 crossref_primary_10_1142_S0217979221501538 crossref_primary_10_1088_1402_4896_abdf0d crossref_primary_10_1142_S0217984919504165 crossref_primary_10_4213_tmf10171 crossref_primary_10_1186_s13662_019_2271_5 crossref_primary_10_1007_s10255_024_1121_8 crossref_primary_10_1007_s11071_021_06706_7 crossref_primary_10_1142_S0217984919501331 crossref_primary_10_1088_0256_307X_36_11_110201 crossref_primary_10_1016_j_physa_2019_121780 crossref_primary_10_1016_j_camwa_2019_03_001 crossref_primary_10_1016_j_physd_2023_133838 crossref_primary_10_1007_s13324_020_00413_z crossref_primary_10_1016_j_aml_2018_07_012 crossref_primary_10_1016_j_chaos_2019_01_032 crossref_primary_10_1007_s11071_022_07363_0 crossref_primary_10_1016_j_ijleo_2021_167853 crossref_primary_10_1134_S0040577922090057 crossref_primary_10_1016_j_geomphys_2020_103669 crossref_primary_10_1088_0256_307X_35_7_070201 crossref_primary_10_1080_17455030_2019_1630785 crossref_primary_10_1007_s11071_024_10581_3 crossref_primary_10_1007_s11071_018_4563_9 crossref_primary_10_1088_1402_4896_ab6a3f crossref_primary_10_1016_j_aml_2020_106850 crossref_primary_10_1016_j_ijleo_2023_170548 crossref_primary_10_1007_s11005_024_01802_2 crossref_primary_10_1002_mma_6931 crossref_primary_10_1002_mma_5964 crossref_primary_10_1360_SCM_2020_0546 crossref_primary_10_1007_s11071_020_05514_9 crossref_primary_10_1007_s40819_023_01540_4 crossref_primary_10_1007_s11040_020_09347_1 crossref_primary_10_1142_S0217984921503139 crossref_primary_10_1088_1402_4896_ab2cdc crossref_primary_10_1140_epjp_i2019_12439_y crossref_primary_10_1016_j_rinp_2023_106283 crossref_primary_10_1142_S0217984919502919 crossref_primary_10_3389_fphy_2023_1108505 crossref_primary_10_1142_S0217984918503876 crossref_primary_10_1142_S0217984920504199 crossref_primary_10_1007_s11464_021_0918_5 crossref_primary_10_1016_j_aml_2018_09_011 crossref_primary_10_1088_1572_9494_ad1324 crossref_primary_10_1142_S0217984922502037 crossref_primary_10_1142_S021798492150041X crossref_primary_10_1088_1572_9494_ad1327 crossref_primary_10_1016_j_camwa_2018_10_035 crossref_primary_10_1016_j_physd_2024_134380 crossref_primary_10_1016_j_rinp_2021_104587 crossref_primary_10_1063_1_5020996 crossref_primary_10_1016_j_camwa_2019_05_012 crossref_primary_10_1016_j_chaos_2021_111507 |
Cites_doi | 10.1002/cpa.21494 10.2307/2946540 10.1007/BF01008354 10.1103/PhysRevLett.19.1095 10.1016/0378-4371(92)90117-9 10.1007/BF01016136 10.1143/JPSJ.68.1508 10.1016/j.physleta.2013.01.044 10.1063/1.3290736 10.1103/PhysRevA.74.023607 10.1002/cpa.20024 10.1063/1.526113 10.1002/cpa.20179 10.1007/s11040-013-9132-3 10.2969/jmsj/06630765 10.1143/JPSJ.79.074005 10.1016/j.cnsns.2014.04.002 10.1088/0031-8949/89/9/095210 10.1016/j.physd.2016.03.009 10.1088/0266-5611/4/1/005 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright Elsevier BV Jun 2018 |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier BV Jun 2018 |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.nonrwa.2017.10.014 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1878-5719 |
EndPage | 361 |
ExternalDocumentID | 10_1016_j_nonrwa_2017_10_014 S146812181730161X |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29N 4.4 457 4G. 5VS 6OB 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W J9A JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSW SSZ T5K XPP YQT ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH 7SC 7TB 8FD EFKBS FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c334t-5921df09519af1fc4cbf1ca6e07e7a6db3bb1cbbcf0e9810c565569241f79fe83 |
IEDL.DBID | .~1 |
ISSN | 1468-1218 |
IngestDate | Mon Jul 14 10:31:20 EDT 2025 Tue Jul 01 04:03:12 EDT 2025 Thu Apr 24 22:57:27 EDT 2025 Fri Feb 23 02:27:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Long-time asymptotics Soliton solutions Lax pair Kundu–Eckhaus equation Riemann–Hilbert approach |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-5921df09519af1fc4cbf1ca6e07e7a6db3bb1cbbcf0e9810c565569241f79fe83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2019035017 |
PQPubID | 2045088 |
PageCount | 28 |
ParticipantIDs | proquest_journals_2019035017 crossref_citationtrail_10_1016_j_nonrwa_2017_10_014 crossref_primary_10_1016_j_nonrwa_2017_10_014 elsevier_sciencedirect_doi_10_1016_j_nonrwa_2017_10_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2018 2018-06-00 20180601 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: June 2018 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Nonlinear analysis: real world applications |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Jenkins, McLaughlin (b22) 2014; 67 Yamane (b23) 2014; 6 Zakharov, Shabat (b1) 1972; 34 Deift, Its, Zhou (b6) 1993 Pethick, Smith (b10) 2004 Deift, Zhou (b7) 1993; 137 Zhaqilao (b15) 2013; 377 Geng (b13) 1992; 180 Tovbis, Venakides, Zhou (b20) 2004; 57 Calogerot, Eckhaus (b18) 1988; 4 Kumar, Radha, Wadati (b11) 2010; 79 Geng, Tam (b14) 1999; 68 Wang, Zhang, Yang (b5) 2010; 51 Zakharov, Manakov, Novikov, Pitaevskii (b3) 1984 Khaykovich, Malomed (b9) 2006; 74 Zhao, Liu, Yang (b16) 2015; 20 Gardner, Greene, Kruskal, Miura (b2) 1967; 19 Buckingham, Venakides (b24) 2007; 60 Xu, Fan, Chen (b21) 2013; 16 Yang (b4) 2010 Tovbis, El (b25) 2016; 333 Kundu (b12) 1984; 25 Kodama (b8) 1985; 39 Wang, Yang, Chen, Yang (b17) 2014; 89 Conte, Musette (b19) 1994; 99 Khaykovich (10.1016/j.nonrwa.2017.10.014_b9) 2006; 74 Geng (10.1016/j.nonrwa.2017.10.014_b14) 1999; 68 Conte (10.1016/j.nonrwa.2017.10.014_b19) 1994; 99 Wang (10.1016/j.nonrwa.2017.10.014_b17) 2014; 89 Kundu (10.1016/j.nonrwa.2017.10.014_b12) 1984; 25 Yamane (10.1016/j.nonrwa.2017.10.014_b23) 2014; 6 Zhao (10.1016/j.nonrwa.2017.10.014_b16) 2015; 20 Tovbis (10.1016/j.nonrwa.2017.10.014_b25) 2016; 333 Zakharov (10.1016/j.nonrwa.2017.10.014_b1) 1972; 34 Deift (10.1016/j.nonrwa.2017.10.014_b7) 1993; 137 Kumar (10.1016/j.nonrwa.2017.10.014_b11) 2010; 79 Xu (10.1016/j.nonrwa.2017.10.014_b21) 2013; 16 Pethick (10.1016/j.nonrwa.2017.10.014_b10) 2004 Buckingham (10.1016/j.nonrwa.2017.10.014_b24) 2007; 60 Zhaqilao (10.1016/j.nonrwa.2017.10.014_b15) 2013; 377 Tovbis (10.1016/j.nonrwa.2017.10.014_b20) 2004; 57 Geng (10.1016/j.nonrwa.2017.10.014_b13) 1992; 180 Deift (10.1016/j.nonrwa.2017.10.014_b6) 1993 Wang (10.1016/j.nonrwa.2017.10.014_b5) 2010; 51 Gardner (10.1016/j.nonrwa.2017.10.014_b2) 1967; 19 Zakharov (10.1016/j.nonrwa.2017.10.014_b3) 1984 Kodama (10.1016/j.nonrwa.2017.10.014_b8) 1985; 39 Yang (10.1016/j.nonrwa.2017.10.014_b4) 2010 Calogerot (10.1016/j.nonrwa.2017.10.014_b18) 1988; 4 Jenkins (10.1016/j.nonrwa.2017.10.014_b22) 2014; 67 |
References_xml | – volume: 16 start-page: 253 year: 2013 end-page: 288 ident: b21 article-title: Long-time asymptotic for the derivative nonlinear Schrödinger equation with step-like initial value publication-title: Math. Phys. Anal. Geom. – year: 2004 ident: b10 publication-title: Bose–Einstein Condensation in Dilute Gases – volume: 51 start-page: 023510 year: 2010 ident: b5 article-title: Integrable properties of the general coupled nonlinear Schrödinger equations publication-title: J. Math. Phys. – volume: 60 start-page: 1349 year: 2007 end-page: 1414 ident: b24 article-title: Long-time asymptotics of the nonlinear Schrödinger equation shock problem publication-title: Commum. Pure Appl. Math. – year: 1984 ident: b3 publication-title: The Theory of Solitons: The Inverse Scattering Method – volume: 67 start-page: 246 year: 2014 end-page: 320 ident: b22 article-title: The semiclassical limit of focusing NLS for a family of square barrier initial data publication-title: Comm. Pure Appl. Math. – volume: 333 start-page: 171 year: 2016 end-page: 184 ident: b25 article-title: Semiclassical limit of the focusing NLS: Whitham equations and the Riemann-Hilbert Problem approach publication-title: Physica D – volume: 68 start-page: 1508 year: 1999 ident: b14 article-title: Darboux transformation and soliton solutions for generalized nonlinear Schrödinger equations publication-title: J. Phys. Soc. Japan – volume: 74 start-page: 023607 year: 2006 ident: b9 article-title: Deviation from one dimensionality in stationary properties and collisional dynamics of matter-wave solitons publication-title: Phys. Rev. E – volume: 34 start-page: 62 year: 1972 end-page: 69 ident: b1 article-title: Exact theory of two-dimensional self-focusing and one-dimension self-modulation of waves in nonlinear media publication-title: Sov. Phys.—JETP – volume: 25 start-page: 3433 year: 1984 ident: b12 article-title: Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations publication-title: J. Math. Phys. – volume: 180 start-page: 241 year: 1992 ident: b13 article-title: A hierarchy of nonlinear evolution-equations, its hamiltonian-structure and classical integrable system publication-title: Physica A – volume: 4 start-page: 11 year: 1988 end-page: 33 ident: b18 article-title: Nonlinear evolution equations, rescalings, model PDES and their integrability: I publication-title: Inverse Problems – volume: 20 start-page: 9 year: 2015 end-page: 13 ident: b16 article-title: The rogue waves with quintic nonlinearity and nonlinear dispersion effects in nonlinear optical fibers publication-title: Commu. Nonl. Sci. Numer. Simul. – volume: 89 start-page: 095210 year: 2014 ident: b17 article-title: Higher-order rogue wave solutions of the Kundu-Eckhaus equation publication-title: Phys. Scr. – volume: 377 start-page: 855 year: 2013 ident: b15 article-title: On Nth-order rogue wave solution to the generalized nonlinear Schrödinger equation publication-title: Phys. Lett. A – volume: 6 start-page: 765 year: 2014 end-page: 803 ident: b23 article-title: Long-time asymptotics for the defocusing integrable discrete nonlinear Schrödinger equation publication-title: J. Math. Soc. Japan – volume: 19 start-page: 1095 year: 1967 ident: b2 article-title: Method for solving the Korteweg-deVries equation publication-title: Phys. Rev. Lett. – volume: 57 start-page: 877 year: 2004 end-page: 985 ident: b20 article-title: On semiclassical (zero dispersion limit) solutions of the focusing nonlinear Schrödinger equation publication-title: Commum. Pure Appl. Math. – year: 2010 ident: b4 publication-title: Nonlinear Waves in Integrable and Non-Integrable Systems – start-page: 181 year: 1993 end-page: 204 ident: b6 article-title: Long-time asymptotics for integrable nonlinear wave equations publication-title: Important Developments in Soliton Theory 1980-1990 – volume: 79 start-page: 074005 year: 2010 ident: b11 article-title: Phase engineering and solitons of Bose–Einstein condensates with two- and three-body interactions publication-title: J. Phys. Soc. Japan – volume: 99 start-page: 543 year: 1994 end-page: 548 ident: b19 article-title: Exact solutions to the partially integrable Eckhaus equation publication-title: Theoret. Math. Phys. – volume: 39 start-page: 597 year: 1985 end-page: 614 ident: b8 article-title: Optical solitons in a monomode fiber publication-title: J. Stat. Phys. – volume: 137 start-page: 295 year: 1993 end-page: 368 ident: b7 article-title: A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation publication-title: Ann. of Math. (2) – volume: 67 start-page: 246 year: 2014 ident: 10.1016/j.nonrwa.2017.10.014_b22 article-title: The semiclassical limit of focusing NLS for a family of square barrier initial data publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.21494 – year: 1984 ident: 10.1016/j.nonrwa.2017.10.014_b3 – start-page: 181 year: 1993 ident: 10.1016/j.nonrwa.2017.10.014_b6 article-title: Long-time asymptotics for integrable nonlinear wave equations – volume: 137 start-page: 295 issue: 2 year: 1993 ident: 10.1016/j.nonrwa.2017.10.014_b7 article-title: A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation publication-title: Ann. of Math. (2) doi: 10.2307/2946540 – volume: 39 start-page: 597 year: 1985 ident: 10.1016/j.nonrwa.2017.10.014_b8 article-title: Optical solitons in a monomode fiber publication-title: J. Stat. Phys. doi: 10.1007/BF01008354 – year: 2010 ident: 10.1016/j.nonrwa.2017.10.014_b4 – volume: 19 start-page: 1095 year: 1967 ident: 10.1016/j.nonrwa.2017.10.014_b2 article-title: Method for solving the Korteweg-deVries equation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.19.1095 – volume: 180 start-page: 241 year: 1992 ident: 10.1016/j.nonrwa.2017.10.014_b13 article-title: A hierarchy of nonlinear evolution-equations, its hamiltonian-structure and classical integrable system publication-title: Physica A doi: 10.1016/0378-4371(92)90117-9 – volume: 99 start-page: 543 year: 1994 ident: 10.1016/j.nonrwa.2017.10.014_b19 article-title: Exact solutions to the partially integrable Eckhaus equation publication-title: Theoret. Math. Phys. doi: 10.1007/BF01016136 – volume: 68 start-page: 1508 year: 1999 ident: 10.1016/j.nonrwa.2017.10.014_b14 article-title: Darboux transformation and soliton solutions for generalized nonlinear Schrödinger equations publication-title: J. Phys. Soc. Japan doi: 10.1143/JPSJ.68.1508 – volume: 377 start-page: 855 year: 2013 ident: 10.1016/j.nonrwa.2017.10.014_b15 article-title: On Nth-order rogue wave solution to the generalized nonlinear Schrödinger equation publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2013.01.044 – year: 2004 ident: 10.1016/j.nonrwa.2017.10.014_b10 – volume: 51 start-page: 023510 year: 2010 ident: 10.1016/j.nonrwa.2017.10.014_b5 article-title: Integrable properties of the general coupled nonlinear Schrödinger equations publication-title: J. Math. Phys. doi: 10.1063/1.3290736 – volume: 74 start-page: 023607 year: 2006 ident: 10.1016/j.nonrwa.2017.10.014_b9 article-title: Deviation from one dimensionality in stationary properties and collisional dynamics of matter-wave solitons publication-title: Phys. Rev. E doi: 10.1103/PhysRevA.74.023607 – volume: 57 start-page: 877 year: 2004 ident: 10.1016/j.nonrwa.2017.10.014_b20 article-title: On semiclassical (zero dispersion limit) solutions of the focusing nonlinear Schrödinger equation publication-title: Commum. Pure Appl. Math. doi: 10.1002/cpa.20024 – volume: 25 start-page: 3433 year: 1984 ident: 10.1016/j.nonrwa.2017.10.014_b12 article-title: Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations publication-title: J. Math. Phys. doi: 10.1063/1.526113 – volume: 60 start-page: 1349 year: 2007 ident: 10.1016/j.nonrwa.2017.10.014_b24 article-title: Long-time asymptotics of the nonlinear Schrödinger equation shock problem publication-title: Commum. Pure Appl. Math. doi: 10.1002/cpa.20179 – volume: 16 start-page: 253 year: 2013 ident: 10.1016/j.nonrwa.2017.10.014_b21 article-title: Long-time asymptotic for the derivative nonlinear Schrödinger equation with step-like initial value publication-title: Math. Phys. Anal. Geom. doi: 10.1007/s11040-013-9132-3 – volume: 6 start-page: 765 year: 2014 ident: 10.1016/j.nonrwa.2017.10.014_b23 article-title: Long-time asymptotics for the defocusing integrable discrete nonlinear Schrödinger equation publication-title: J. Math. Soc. Japan doi: 10.2969/jmsj/06630765 – volume: 79 start-page: 074005 year: 2010 ident: 10.1016/j.nonrwa.2017.10.014_b11 article-title: Phase engineering and solitons of Bose–Einstein condensates with two- and three-body interactions publication-title: J. Phys. Soc. Japan doi: 10.1143/JPSJ.79.074005 – volume: 20 start-page: 9 year: 2015 ident: 10.1016/j.nonrwa.2017.10.014_b16 article-title: The rogue waves with quintic nonlinearity and nonlinear dispersion effects in nonlinear optical fibers publication-title: Commu. Nonl. Sci. Numer. Simul. doi: 10.1016/j.cnsns.2014.04.002 – volume: 89 start-page: 095210 year: 2014 ident: 10.1016/j.nonrwa.2017.10.014_b17 article-title: Higher-order rogue wave solutions of the Kundu-Eckhaus equation publication-title: Phys. Scr. doi: 10.1088/0031-8949/89/9/095210 – volume: 34 start-page: 62 year: 1972 ident: 10.1016/j.nonrwa.2017.10.014_b1 article-title: Exact theory of two-dimensional self-focusing and one-dimension self-modulation of waves in nonlinear media publication-title: Sov. Phys.—JETP – volume: 333 start-page: 171 year: 2016 ident: 10.1016/j.nonrwa.2017.10.014_b25 article-title: Semiclassical limit of the focusing NLS: Whitham equations and the Riemann-Hilbert Problem approach publication-title: Physica D doi: 10.1016/j.physd.2016.03.009 – volume: 4 start-page: 11 year: 1988 ident: 10.1016/j.nonrwa.2017.10.014_b18 article-title: Nonlinear evolution equations, rescalings, model PDES and their integrability: I publication-title: Inverse Problems doi: 10.1088/0266-5611/4/1/005 |
SSID | ssj0017131 |
Score | 2.5550542 |
Snippet | The long-time asymptotics and bright N-soliton solutions of the Kundu–Eckhaus equation are studied by Riemann–Hilbert approach. Firstly, the initial value... The long-time asymptotics and bright N-soliton solutions of the Kundu-Eckhaus equation are studied by R.iemann-Hilbert approach. Firstly, the initial value... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 334 |
SubjectTerms | Asymptotic methods Asymptotic properties Boundary value problems Defocusing Kundu–Eckhaus equation Lax pair Long-time asymptotics Nonlinear equations Riemann–Hilbert approach Schrodinger equation Soliton solutions Steepest descent method |
Title | Long-time asymptotics and the bright N-soliton solutions of the Kundu–Eckhaus equation via the Riemann–Hilbert approach |
URI | https://dx.doi.org/10.1016/j.nonrwa.2017.10.014 https://www.proquest.com/docview/2019035017 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfOKjlj14Tdtt0jyOpbRUW4tUhd7C7mZX4yOtTaqIIP4H_6G_xJk8CgoieArZzCZhZzIP8s23hBwrpPxothTUJhZHUu2GIbgLhasDwY1pJpnG3uGzkd2_sk4nrUmJdIpeGIRV5r4_8-mpt85H6vlq1mdhWL_ApiGGEQqN1GYT7GC3HLTy2tsS5sGgCGNFhxFKF-1zKcYLKuz5M7IPMaeGGC9m_RaefjjqNPr0Nsh6njbSdvZmm6Skoi2ydrbkXI23yetwGl0buFc85fHLwyyZ4jjlUUBBioq0DKcjI0bE2zSiS6OjU51KDBZRsPh8_-jKuxu-iKl6zGjA6VPIU4FxCA-LIhDph0iNldCCkXyHXPW6l52-kW-tYEjTtBKj5TVZoDG98rhmWlpSgF64rRqOcrgdCFMIJoWQuqE8lzUk5H0tG2o1ph1PK9fcJWVYPLVHqGkH3IW0RliCW4FnChecqJAQ9nkgAubtE7NYUV_mvOO4_cW9XwDMbv1MDz7qAUdBD_vEWM6aZbwbf8g7hbL8b_bjQ2j4Y2al0K2ff78xXvfSf67Owb9vfEhW4czNcGUVUk7mC3UEGUwiqqmJVslKuzMenuPxZNAffQERjvZt |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4AHoCDEYWwitAHPc7u9s774MEIZHEfB2WTvQ3dPd0wirPrzqyEmBj_Az_Ff-QvoWpeCSSGxIRrd3XPpKqmHpmqrwDeaIL86LkacxNHEKh215IiwMTVR-fGDVfcUO_waOz1J87HqTtdgT91LwyVVVa2v7TphbWuVjoVNzvzJOl8pqYhTh6KlNTj06qycqCvrzBvy96dHKKQ3_Z6x0enH_pWNVrAUrbt5JYb9nhsKLwIheFGOUriewlPd33tCy-WtpRcSalMV4cB7yqMe1wPcxVu_NDowMZ7V-GJg-aCxia0fzV1JRyzPl63NNHr1f16RVEZpvSLK4I74n6bisq48y9_eM8zFO7u-Bk8reJU9r5kxRas6PQ5bI4akNfsBfwcztJzi4bTM5Fdf5vnM1pnIo0ZUjFZ5P1sbGVUYjdLWaPlbGYKisEyjZd_f98cqa8XYpkx_b3EHWc_ElEQfErwYWmKJP2EsLhyVkOgb8PkURi-A2vIPL0LzPZiEWAcJR0pnDi0ZYBWWyqMM0QsYx62wK45GqkK6JzmbVxGdUXbl6iUQ0RyoFWUQwus5tS8BPp4gN6vhRXdUdgIfdEDJ_dq2UaVwchoPyx-8vov__viA1jvn46G0fBkPHgFG7gTlEVte7CWL5b6NYZPudwv1JXB2WN_H7fSETHR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-time+asymptotics+and+the+bright+N-soliton+solutions+of+the+Kundu-Eckhaus+equation+via+the+Riemann-Hilbert+approach&rft.jtitle=Nonlinear+analysis%3A+real+world+applications&rft.au=Wang%2C+Deng-Shan&rft.au=Wang%2C+Xiaoli&rft.date=2018-06-01&rft.pub=Elsevier+BV&rft.issn=1468-1218&rft.eissn=1878-5719&rft.volume=41&rft.spage=334&rft_id=info:doi/10.1016%2Fj.nonrwa.2017.10.014&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-1218&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-1218&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-1218&client=summon |