Multi-feature based Question–Answerer Model Matching for predicting response time in CQA
Users of Community Question Answering (CQA) could not manage their time conveniently because their questions are often not answered quickly enough. To address this problem, we try to provide a function for CQA sites to inform users when their questions will be answered. In this paper, we propose a Q...
Saved in:
Published in | Knowledge-based systems Vol. 182; p. 104794 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.10.2019
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Users of Community Question Answering (CQA) could not manage their time conveniently because their questions are often not answered quickly enough. To address this problem, we try to provide a function for CQA sites to inform users when their questions will be answered. In this paper, we propose a Question–Answerer Model Matching based answerer’s response time prediction named (QAM2), which consists of two parts: the construction of the Multi-feature based Question–Answerer Model (MQAM, including the answerer model and the question model) and the prediction of question response time based on MQAM Matching Strategy (QAMMS). Firstly, the MQAM is built according to some extracted deep features (e.g., answerer’s interest, professional level, activity, question category and difficulty), which are neglected in most existing methods on the prediction of question response time. Herein, the Label Cluster Latent Dirichlet Allocation (LC-LDA) model was proposed to overcome the compulsive allocation behaviors caused by traditional topic models (e.g. LDA), which treats the words that are irrelevant or weakly related to the subject as the topic of short texts when extracting the feature of answerer’s interest and question category. Meanwhile, an improved PageRank algorithm-topic sensitive weighted PageRank (TSWPR) is used to eliminate the impact of “indiscriminate” users who have answered many questions with low quality of answers. Secondly, we use the model matching strategy based on multiple classifier for matching MQAM and calculating the question response time of each answerer. Experiments conducted on two real data sets of Stack Overflow show that the proposed method can improve significantly the accuracy of question response time prediction in CQA. |
---|---|
AbstractList | Users of Community Question Answering (CQA) could not manage their time conveniently because their questions are often not answered quickly enough. To address this problem, we try to provide a function for CQA sites to inform users when their questions will be answered. In this paper, we propose a Question–Answerer Model Matching based answerer’s response time prediction named (QAM2), which consists of two parts: the construction of the Multi-feature based Question–Answerer Model (MQAM, including the answerer model and the question model) and the prediction of question response time based on MQAM Matching Strategy (QAMMS). Firstly, the MQAM is built according to some extracted deep features (e.g., answerer’s interest, professional level, activity, question category and difficulty), which are neglected in most existing methods on the prediction of question response time. Herein, the Label Cluster Latent Dirichlet Allocation (LC-LDA) model was proposed to overcome the compulsive allocation behaviors caused by traditional topic models (e.g. LDA), which treats the words that are irrelevant or weakly related to the subject as the topic of short texts when extracting the feature of answerer’s interest and question category. Meanwhile, an improved PageRank algorithm-topic sensitive weighted PageRank (TSWPR) is used to eliminate the impact of “indiscriminate” users who have answered many questions with low quality of answers. Secondly, we use the model matching strategy based on multiple classifier for matching MQAM and calculating the question response time of each answerer. Experiments conducted on two real data sets of Stack Overflow show that the proposed method can improve significantly the accuracy of question response time prediction in CQA. |
ArticleNumber | 104794 |
Author | YueLiu FeiCai Tang, Aihua Sun, Zhibin Ren, Pengfei |
Author_xml | – sequence: 1 surname: YueLiu fullname: YueLiu email: yueliu@shu.edu.cn organization: School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China – sequence: 2 givenname: Aihua surname: Tang fullname: Tang, Aihua email: ah1995@shu.edu.cn organization: School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China – sequence: 3 surname: FeiCai fullname: FeiCai email: cflovelei@shu.edu.cn organization: School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China – sequence: 4 givenname: Pengfei surname: Ren fullname: Ren, Pengfei email: rpf5002@shu.edu.cn organization: School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China – sequence: 5 givenname: Zhibin surname: Sun fullname: Sun, Zhibin email: zhibin.sun@colostate.edu organization: Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523, USA |
BookMark | eNqFkM1qGzEUhUVIIE7SN-hC0PVMrjQ_numiYEyTFGxCINlkIzTSVSvXkVxJ0-Jd3iFvmCepBmfVRbO6XDjn3Hu-M3LsvENCPjIoGbD2clP-dD7uY8mB9SW0JQA_IjPWzXkxr6E_JjPoGyjm0LBTchbjBrKCs25GHtfjNtnCoExjQDrIiJrejRiT9e71-WXh4h8MGOjaa9zStUzqh3XfqfGB7gJqq9K0Bow77yLSZJ-QWkeXd4sLcmLkNuKHt3lOHq6-3i9vitXt9bflYlWoqqpT0bSS885og7pj0GspdWtgMA32A9SD0ZLpWlZYV8N8kG0HGjVr-cDbiqk8qnPy6ZC7C_7X9LnY-DG4fFLwKgNhddPXWfX5oFLBxxjQCGWTnFqmIO1WMBATS7ERB5ZiYimgFZlUNtf_mHfBPsmwf8_25WDDXP-3xSCisuhUxhZQJaG9_X_AXxy3lUI |
CitedBy_id | crossref_primary_10_1016_j_knosys_2021_107278 crossref_primary_10_1002_asi_24731 crossref_primary_10_1007_s10489_022_03697_9 crossref_primary_10_1016_j_ipm_2021_102552 crossref_primary_10_1145_3511891 crossref_primary_10_1080_03772063_2022_2048715 crossref_primary_10_1049_cit2_12081 crossref_primary_10_1016_j_knosys_2020_106535 |
Cites_doi | 10.1109/TKDE.2008.239 10.1080/01621459.1990.10474968 10.1109/ICMLC.2013.6890906 10.1002/acp.1331 10.1109/WI.2016.0114 10.1007/s13278-015-0263-3 10.1109/ICMLA.2015.190 10.1080/00401706.1997.10485132 10.4108/icst.collaboratecom.2014.257265 10.1016/j.knosys.2014.04.032 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier Science Ltd. Oct 15, 2019 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Oct 15, 2019 |
DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
DOI | 10.1016/j.knosys.2019.06.002 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-7409 |
ExternalDocumentID | 10_1016_j_knosys_2019_06_002 S0950705119302576 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW SSH UHS WUQ 7SC 8FD E3H EFKBS F2A JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c334t-56a228fdfed8109daad6f0bf5e9b04bfda1d4a3e43b7ba680ded162b2631c2b23 |
IEDL.DBID | .~1 |
ISSN | 0950-7051 |
IngestDate | Fri Jul 25 08:05:30 EDT 2025 Tue Jul 01 04:37:57 EDT 2025 Thu Apr 24 23:09:19 EDT 2025 Fri Feb 23 02:18:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Community Question Answering The prediction of question response time Topic-sensitive model Stack overflow |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-56a228fdfed8109daad6f0bf5e9b04bfda1d4a3e43b7ba680ded162b2631c2b23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2301914594 |
PQPubID | 2035257 |
ParticipantIDs | proquest_journals_2301914594 crossref_citationtrail_10_1016_j_knosys_2019_06_002 crossref_primary_10_1016_j_knosys_2019_06_002 elsevier_sciencedirect_doi_10_1016_j_knosys_2019_06_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-15 |
PublicationDateYYYYMMDD | 2019-10-15 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Knowledge-based systems |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Qu, Qiu, He, Zhang, Wu, Bu, Chen (b1) 2009 Liu, Liu, Yang (b19) 2010 P. Arunapuram, J.W. Bartel, P. Dewan, Distribution, correlation and prediction of response times in stack overflow, in: 10th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing, 2014, pp. 378–387 H. Hu, B. Liu, B. Wang, M. Liu, X. Wang, Exploring social features for answer quality prediction in CQA portals, in: 2013 International Conference on Machine Learning and Cybernetics, Vol. 04, 2013, pp. 1904–1909 Gasparini (b17) 1997; 39 Yan, Tourangeau (b10) 2010; 22 Asaduzzaman, Mashiyat, Roy, Schneider (b5) 2013 Goderie, Georgsson, van Graafeiland, Bacchelli (b7) 2015 Blei, Ng, Jordan (b14) 2003; 3 Ramage, Hall, Nallapati, Manning (b15) 2009 Gelfand, Hills, Racine-Poon, Smith (b18) 1990; 85 Ji, Xu, Wang, He (b2) 2012 . Zhou, Lai, Liu, Zhao (b22) 2012 Van Dongen (b16) 2000 P. Berger, P. Hennig, T. Bocklisch, T. Herold, C. Meinel, A journey of bounty hunters: analyzing the influence of reward systems on stackoverflow question response times, in: 2016 IEEE/WIC/ACM International Conference on Web Intelligence, WI, 2016, pp. 644–649 Bhat, Gokhale, Jadhav, Pudipeddi, Akoglu (b4) 2015; 5 Yong (b12) 2015 Zhou, Zhao, He, Wu (b13) 2014; 66 Pal, Konstan (b3) 2010 He, Garcia (b21) 2009; 21 Page (b23) 1998 N. Burlutskiy, A. Fish, N. Ali, M. Petridis, Prediction of users’ response time in Q amp;amp;A communities, in: 2015 IEEE 14th International Conference on Machine Learning and Applications, ICMLA, 2015, pp. 618–623 Hoogeveen, Verspoor, Baldwin (b20) 2015 Bhat (10.1016/j.knosys.2019.06.002_b4) 2015; 5 Yan (10.1016/j.knosys.2019.06.002_b10) 2010; 22 Asaduzzaman (10.1016/j.knosys.2019.06.002_b5) 2013 Zhou (10.1016/j.knosys.2019.06.002_b13) 2014; 66 Zhou (10.1016/j.knosys.2019.06.002_b22) 2012 10.1016/j.knosys.2019.06.002_b9 10.1016/j.knosys.2019.06.002_b8 Hoogeveen (10.1016/j.knosys.2019.06.002_b20) 2015 He (10.1016/j.knosys.2019.06.002_b21) 2009; 21 Ji (10.1016/j.knosys.2019.06.002_b2) 2012 Pal (10.1016/j.knosys.2019.06.002_b3) 2010 Goderie (10.1016/j.knosys.2019.06.002_b7) 2015 10.1016/j.knosys.2019.06.002_b6 Blei (10.1016/j.knosys.2019.06.002_b14) 2003; 3 Gasparini (10.1016/j.knosys.2019.06.002_b17) 1997; 39 Qu (10.1016/j.knosys.2019.06.002_b1) 2009 10.1016/j.knosys.2019.06.002_b11 Van Dongen (10.1016/j.knosys.2019.06.002_b16) 2000 Gelfand (10.1016/j.knosys.2019.06.002_b18) 1990; 85 Page (10.1016/j.knosys.2019.06.002_b23) 1998 Liu (10.1016/j.knosys.2019.06.002_b19) 2010 Ramage (10.1016/j.knosys.2019.06.002_b15) 2009 Yong (10.1016/j.knosys.2019.06.002_b12) 2015 |
References_xml | – start-page: 97 year: 2013 end-page: 100 ident: b5 article-title: Answering questions about unanswered questions of stack overflow publication-title: Proceedings of the 10th Working Conference on Mining Software Repositories – start-page: 3:1 year: 2015 end-page: 3:8 ident: b20 article-title: CQADupStack: A benchmark data set for community question-answering research publication-title: Proceedings of the 20th Australasian Document Computing Symposium – volume: 22 start-page: 51 year: 2010 end-page: 68 ident: b10 article-title: Fast times and easy questions: The effect of age, experience, and question complexity on web survey response times publication-title: Appl. Cogn. Psychol. – reference: H. Hu, B. Liu, B. Wang, M. Liu, X. Wang, Exploring social features for answer quality prediction in CQA portals, in: 2013 International Conference on Machine Learning and Cybernetics, Vol. 04, 2013, pp. 1904–1909, – volume: 5 start-page: 24 year: 2015 ident: b4 article-title: Effects of tag usage on question response time publication-title: Soc. Netw. Anal. Min. – start-page: 127 year: 2010 end-page: 138 ident: b19 article-title: Predicting best answerers for new questions in community question answering publication-title: Web-Age Information Management – reference: N. Burlutskiy, A. Fish, N. Ali, M. Petridis, Prediction of users’ response time in Q amp;amp;A communities, in: 2015 IEEE 14th International Conference on Machine Learning and Applications, ICMLA, 2015, pp. 618–623, – reference: . – volume: 21 start-page: 1263 year: 2009 end-page: 1284 ident: b21 article-title: Learning from imbalanced data publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 1662 year: 2012 end-page: 1666 ident: b22 article-title: Topic-sensitive probabilistic model for expert finding in question answer communities publication-title: Proceedings of the 21st ACM International Conference on Information and Knowledge Management – reference: P. Arunapuram, J.W. Bartel, P. Dewan, Distribution, correlation and prediction of response times in stack overflow, in: 10th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing, 2014, pp. 378–387, – start-page: 414 year: 2015 end-page: 417 ident: b7 article-title: ETA: Estimated time of answer predicting response time in stack overflow publication-title: Proceedings of the 12th Working Conference on Mining Software Repositories – volume: 66 start-page: 136 year: 2014 end-page: 145 ident: b13 article-title: An empirical study of topic-sensitive probabilistic model for expert finding in question answer communities publication-title: Knowl.-Based Syst. – start-page: 1229 year: 2009 end-page: 1230 ident: b1 article-title: Probabilistic question recommendation for question answering communities publication-title: Proceedings of the 18th International Conference on World Wide Web – start-page: 1505 year: 2010 end-page: 1508 ident: b3 article-title: Expert identification in community question answering: Exploring question selection bias publication-title: Proceedings of the 19th ACM International Conference on Information and Knowledge Management – volume: 85 start-page: 972 year: 1990 end-page: 985 ident: b18 article-title: Illustration of Bayesian inference in normal data models using gibbs sampling publication-title: J. Amer. Statist. Assoc. – volume: 39 year: 1997 ident: b17 article-title: Markov chain Monte Carlo in practice publication-title: Technometrics – start-page: 1 year: 1998 end-page: 14 ident: b23 article-title: The pagerank citation ranking : Bringing order to the web, stanford digital libraries working paper – volume: 3 start-page: 993 year: 2003 end-page: 1022 ident: b14 article-title: Latent dirichlet allocation publication-title: J. Mach. Learn. Res. – year: 2015 ident: b12 article-title: Research On Driving Factors Of Douban User Activity Based On User Experience – start-page: 2471 year: 2012 end-page: 2474 ident: b2 article-title: Question-answer topic model for question retrieval in community question answering publication-title: Proceedings of the 21st ACM International Conference on Information and Knowledge Management – reference: P. Berger, P. Hennig, T. Bocklisch, T. Herold, C. Meinel, A journey of bounty hunters: analyzing the influence of reward systems on stackoverflow question response times, in: 2016 IEEE/WIC/ACM International Conference on Web Intelligence, WI, 2016, pp. 644–649, – start-page: 248 year: 2009 end-page: 256 ident: b15 article-title: Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora publication-title: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Vol. 1 – Vol. 1 – year: 2000 ident: b16 article-title: Graph Clustering by Flow Simulation – volume: 21 start-page: 1263 issue: 9 year: 2009 ident: 10.1016/j.knosys.2019.06.002_b21 article-title: Learning from imbalanced data publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2008.239 – volume: 85 start-page: 972 issue: 412 year: 1990 ident: 10.1016/j.knosys.2019.06.002_b18 article-title: Illustration of Bayesian inference in normal data models using gibbs sampling publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.1990.10474968 – start-page: 248 year: 2009 ident: 10.1016/j.knosys.2019.06.002_b15 article-title: Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora – start-page: 3:1 year: 2015 ident: 10.1016/j.knosys.2019.06.002_b20 article-title: CQADupStack: A benchmark data set for community question-answering research – start-page: 97 year: 2013 ident: 10.1016/j.knosys.2019.06.002_b5 article-title: Answering questions about unanswered questions of stack overflow – volume: 3 start-page: 993 year: 2003 ident: 10.1016/j.knosys.2019.06.002_b14 article-title: Latent dirichlet allocation publication-title: J. Mach. Learn. Res. – start-page: 1 year: 1998 ident: 10.1016/j.knosys.2019.06.002_b23 – ident: 10.1016/j.knosys.2019.06.002_b8 doi: 10.1109/ICMLC.2013.6890906 – volume: 22 start-page: 51 issue: 1 year: 2010 ident: 10.1016/j.knosys.2019.06.002_b10 article-title: Fast times and easy questions: The effect of age, experience, and question complexity on web survey response times publication-title: Appl. Cogn. Psychol. doi: 10.1002/acp.1331 – ident: 10.1016/j.knosys.2019.06.002_b11 doi: 10.1109/WI.2016.0114 – year: 2000 ident: 10.1016/j.knosys.2019.06.002_b16 – volume: 5 start-page: 24 issue: 1 year: 2015 ident: 10.1016/j.knosys.2019.06.002_b4 article-title: Effects of tag usage on question response time publication-title: Soc. Netw. Anal. Min. doi: 10.1007/s13278-015-0263-3 – start-page: 1662 year: 2012 ident: 10.1016/j.knosys.2019.06.002_b22 article-title: Topic-sensitive probabilistic model for expert finding in question answer communities – start-page: 2471 year: 2012 ident: 10.1016/j.knosys.2019.06.002_b2 article-title: Question-answer topic model for question retrieval in community question answering – year: 2015 ident: 10.1016/j.knosys.2019.06.002_b12 – start-page: 1229 year: 2009 ident: 10.1016/j.knosys.2019.06.002_b1 article-title: Probabilistic question recommendation for question answering communities – ident: 10.1016/j.knosys.2019.06.002_b9 doi: 10.1109/ICMLA.2015.190 – volume: 39 issue: 3 year: 1997 ident: 10.1016/j.knosys.2019.06.002_b17 article-title: Markov chain Monte Carlo in practice publication-title: Technometrics doi: 10.1080/00401706.1997.10485132 – ident: 10.1016/j.knosys.2019.06.002_b6 doi: 10.4108/icst.collaboratecom.2014.257265 – volume: 66 start-page: 136 year: 2014 ident: 10.1016/j.knosys.2019.06.002_b13 article-title: An empirical study of topic-sensitive probabilistic model for expert finding in question answer communities publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2014.04.032 – start-page: 1505 year: 2010 ident: 10.1016/j.knosys.2019.06.002_b3 article-title: Expert identification in community question answering: Exploring question selection bias – start-page: 414 year: 2015 ident: 10.1016/j.knosys.2019.06.002_b7 article-title: ETA: Estimated time of answer predicting response time in stack overflow – start-page: 127 year: 2010 ident: 10.1016/j.knosys.2019.06.002_b19 article-title: Predicting best answerers for new questions in community question answering |
SSID | ssj0002218 |
Score | 2.3120468 |
Snippet | Users of Community Question Answering (CQA) could not manage their time conveniently because their questions are often not answered quickly enough. To address... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 104794 |
SubjectTerms | Algorithms Community Question Answering Dirichlet problem Feature extraction Model matching Predictions Questions Response time Search engines Stack overflow The prediction of question response time Topic-sensitive model |
Title | Multi-feature based Question–Answerer Model Matching for predicting response time in CQA |
URI | https://dx.doi.org/10.1016/j.knosys.2019.06.002 https://www.proquest.com/docview/2301914594 |
Volume | 182 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS8MwEA9jvvjif3E6Rx58jWuTtGsfx3BMZQPRwfClNEsK09GNbSK-iN_Bb-gn8S5NFUUYSCmlba4tl8vvrsn9IeRMShQd47Es5PCDItKYAeZJ1ooCUMegA7XB2OH-IOwN5dUoGFVIp4yFQbdKh_0Fplu0dleajpvN-WTSvAXjAOQV18GEh2YzRrDLFkr5-eu3mwfndo4PGzNsXYbPWR-vx3y2fMGk3X5ss3i6yZU_1NMvoLbap7tDtpzZSNvFl-2Sisn3yHZZkoG6EbpP7m1ALcuMzddJUUdpaic1gf8fb-_tfPlsFkCBNdCmtA9AjFNQFExXOl_gog26QdNF4TlrKJaep5Ocdm7aB2TYvbjr9Jgrn8DGQsgVC8KU8yjTmdGR78U6TXWYeSoLTKw8qTKd-lqmwkihWioNI08b7Ydc8VD4YziIQ1LNZ7k5IhQIshB22Izk2o-l0iaC14BBwccqqhFRci0Zu9ziWOJimpROZA9JwesEeZ1YXzpeI-yLal7k1ljTvlV2SPJDRhKA_zWU9bL_EjdG4T5gW-zLIJbH_37wCdnEM1RmflAn1dXiyZyClbJSDSuGDbLRvrzuDT4BgfzpEQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5eHvTFu3g3D77GtUnatY9jKFO3gaggvoRmSWE6urFNxBfxP_gP_SWek6aKIghSSqFJ2nJy8p3Tk3Mh5EhKZB0bsDzm8IMispQB5klWTyIQxyADjcXY4U43bt3I89vodoY0q1gYdKv02F9iukNrf6fmqVkb9fu1K1AOgF9xH0wEqDbPknkJyxfLGBy_fPl5cO6MfNibYfcqfs45eT0Uw8kzZu0OU5fG01tXfpFPP5DaiZ_TFbLk9UbaKD9tlczYYo0sVzUZqF-i6-TORdSy3LqEnRSFlKHOqgkT8P761igmT3YMI7AI2oB2AInRBkVBd6WjMe7aoB80HZeus5Zi7XnaL2jzsrFBbk5Prpst5usnsJ4QcsqiOOM8yU1uTRIGqckyE-eBziOb6kDq3GShkZmwUui6zuIkMNaEMdc8FmEPLmKTzBXDwm4RCgPyGE44rOQmTKU2NoHXgEbBezrZJqKimur55OJY42KgKi-ye1XSWiGtlXOm49uEfY4alck1_uhfryZEfWMSBfj_x8i9av6UX6TQDuCWhjJK5c6_H3xIFlrXnbZqn3UvdskitqBkC6M9MjcdP9p9UFmm-sCx5Afgqeqf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-feature+based+Question%E2%80%93Answerer+Model+Matching+for+predicting+response+time+in+CQA&rft.jtitle=Knowledge-based+systems&rft.au=YueLiu&rft.au=Tang%2C+Aihua&rft.au=FeiCai&rft.au=Ren%2C+Pengfei&rft.date=2019-10-15&rft.pub=Elsevier+Science+Ltd&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=182&rft.spage=1&rft_id=info:doi/10.1016%2Fj.knosys.2019.06.002&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |