Multi-feature based Question–Answerer Model Matching for predicting response time in CQA

Users of Community Question Answering (CQA) could not manage their time conveniently because their questions are often not answered quickly enough. To address this problem, we try to provide a function for CQA sites to inform users when their questions will be answered. In this paper, we propose a Q...

Full description

Saved in:
Bibliographic Details
Published inKnowledge-based systems Vol. 182; p. 104794
Main Authors YueLiu, Tang, Aihua, FeiCai, Ren, Pengfei, Sun, Zhibin
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.10.2019
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Users of Community Question Answering (CQA) could not manage their time conveniently because their questions are often not answered quickly enough. To address this problem, we try to provide a function for CQA sites to inform users when their questions will be answered. In this paper, we propose a Question–Answerer Model Matching based answerer’s response time prediction named (QAM2), which consists of two parts: the construction of the Multi-feature based Question–Answerer Model (MQAM, including the answerer model and the question model) and the prediction of question response time based on MQAM Matching Strategy (QAMMS). Firstly, the MQAM is built according to some extracted deep features (e.g., answerer’s interest, professional level, activity, question category and difficulty), which are neglected in most existing methods on the prediction of question response time. Herein, the Label Cluster Latent Dirichlet Allocation (LC-LDA) model was proposed to overcome the compulsive allocation behaviors caused by traditional topic models (e.g. LDA), which treats the words that are irrelevant or weakly related to the subject as the topic of short texts when extracting the feature of answerer’s interest and question category. Meanwhile, an improved PageRank algorithm-topic sensitive weighted PageRank (TSWPR) is used to eliminate the impact of “indiscriminate” users who have answered many questions with low quality of answers. Secondly, we use the model matching strategy based on multiple classifier for matching MQAM and calculating the question response time of each answerer. Experiments conducted on two real data sets of Stack Overflow show that the proposed method can improve significantly the accuracy of question response time prediction in CQA.
AbstractList Users of Community Question Answering (CQA) could not manage their time conveniently because their questions are often not answered quickly enough. To address this problem, we try to provide a function for CQA sites to inform users when their questions will be answered. In this paper, we propose a Question–Answerer Model Matching based answerer’s response time prediction named (QAM2), which consists of two parts: the construction of the Multi-feature based Question–Answerer Model (MQAM, including the answerer model and the question model) and the prediction of question response time based on MQAM Matching Strategy (QAMMS). Firstly, the MQAM is built according to some extracted deep features (e.g., answerer’s interest, professional level, activity, question category and difficulty), which are neglected in most existing methods on the prediction of question response time. Herein, the Label Cluster Latent Dirichlet Allocation (LC-LDA) model was proposed to overcome the compulsive allocation behaviors caused by traditional topic models (e.g. LDA), which treats the words that are irrelevant or weakly related to the subject as the topic of short texts when extracting the feature of answerer’s interest and question category. Meanwhile, an improved PageRank algorithm-topic sensitive weighted PageRank (TSWPR) is used to eliminate the impact of “indiscriminate” users who have answered many questions with low quality of answers. Secondly, we use the model matching strategy based on multiple classifier for matching MQAM and calculating the question response time of each answerer. Experiments conducted on two real data sets of Stack Overflow show that the proposed method can improve significantly the accuracy of question response time prediction in CQA.
ArticleNumber 104794
Author YueLiu
FeiCai
Tang, Aihua
Sun, Zhibin
Ren, Pengfei
Author_xml – sequence: 1
  surname: YueLiu
  fullname: YueLiu
  email: yueliu@shu.edu.cn
  organization: School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
– sequence: 2
  givenname: Aihua
  surname: Tang
  fullname: Tang, Aihua
  email: ah1995@shu.edu.cn
  organization: School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
– sequence: 3
  surname: FeiCai
  fullname: FeiCai
  email: cflovelei@shu.edu.cn
  organization: School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
– sequence: 4
  givenname: Pengfei
  surname: Ren
  fullname: Ren, Pengfei
  email: rpf5002@shu.edu.cn
  organization: School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
– sequence: 5
  givenname: Zhibin
  surname: Sun
  fullname: Sun, Zhibin
  email: zhibin.sun@colostate.edu
  organization: Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523, USA
BookMark eNqFkM1qGzEUhUVIIE7SN-hC0PVMrjQ_numiYEyTFGxCINlkIzTSVSvXkVxJ0-Jd3iFvmCepBmfVRbO6XDjn3Hu-M3LsvENCPjIoGbD2clP-dD7uY8mB9SW0JQA_IjPWzXkxr6E_JjPoGyjm0LBTchbjBrKCs25GHtfjNtnCoExjQDrIiJrejRiT9e71-WXh4h8MGOjaa9zStUzqh3XfqfGB7gJqq9K0Bow77yLSZJ-QWkeXd4sLcmLkNuKHt3lOHq6-3i9vitXt9bflYlWoqqpT0bSS885og7pj0GspdWtgMA32A9SD0ZLpWlZYV8N8kG0HGjVr-cDbiqk8qnPy6ZC7C_7X9LnY-DG4fFLwKgNhddPXWfX5oFLBxxjQCGWTnFqmIO1WMBATS7ERB5ZiYimgFZlUNtf_mHfBPsmwf8_25WDDXP-3xSCisuhUxhZQJaG9_X_AXxy3lUI
CitedBy_id crossref_primary_10_1016_j_knosys_2021_107278
crossref_primary_10_1002_asi_24731
crossref_primary_10_1007_s10489_022_03697_9
crossref_primary_10_1016_j_ipm_2021_102552
crossref_primary_10_1145_3511891
crossref_primary_10_1080_03772063_2022_2048715
crossref_primary_10_1049_cit2_12081
crossref_primary_10_1016_j_knosys_2020_106535
Cites_doi 10.1109/TKDE.2008.239
10.1080/01621459.1990.10474968
10.1109/ICMLC.2013.6890906
10.1002/acp.1331
10.1109/WI.2016.0114
10.1007/s13278-015-0263-3
10.1109/ICMLA.2015.190
10.1080/00401706.1997.10485132
10.4108/icst.collaboratecom.2014.257265
10.1016/j.knosys.2014.04.032
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier Science Ltd. Oct 15, 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Oct 15, 2019
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2019.06.002
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2019_06_002
S0950705119302576
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
SSH
UHS
WUQ
7SC
8FD
E3H
EFKBS
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-56a228fdfed8109daad6f0bf5e9b04bfda1d4a3e43b7ba680ded162b2631c2b23
IEDL.DBID .~1
ISSN 0950-7051
IngestDate Fri Jul 25 08:05:30 EDT 2025
Tue Jul 01 04:37:57 EDT 2025
Thu Apr 24 23:09:19 EDT 2025
Fri Feb 23 02:18:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Community Question Answering
The prediction of question response time
Topic-sensitive model
Stack overflow
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-56a228fdfed8109daad6f0bf5e9b04bfda1d4a3e43b7ba680ded162b2631c2b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2301914594
PQPubID 2035257
ParticipantIDs proquest_journals_2301914594
crossref_citationtrail_10_1016_j_knosys_2019_06_002
crossref_primary_10_1016_j_knosys_2019_06_002
elsevier_sciencedirect_doi_10_1016_j_knosys_2019_06_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-15
PublicationDateYYYYMMDD 2019-10-15
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2019
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Qu, Qiu, He, Zhang, Wu, Bu, Chen (b1) 2009
Liu, Liu, Yang (b19) 2010
P. Arunapuram, J.W. Bartel, P. Dewan, Distribution, correlation and prediction of response times in stack overflow, in: 10th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing, 2014, pp. 378–387
H. Hu, B. Liu, B. Wang, M. Liu, X. Wang, Exploring social features for answer quality prediction in CQA portals, in: 2013 International Conference on Machine Learning and Cybernetics, Vol. 04, 2013, pp. 1904–1909
Gasparini (b17) 1997; 39
Yan, Tourangeau (b10) 2010; 22
Asaduzzaman, Mashiyat, Roy, Schneider (b5) 2013
Goderie, Georgsson, van Graafeiland, Bacchelli (b7) 2015
Blei, Ng, Jordan (b14) 2003; 3
Ramage, Hall, Nallapati, Manning (b15) 2009
Gelfand, Hills, Racine-Poon, Smith (b18) 1990; 85
Ji, Xu, Wang, He (b2) 2012
.
Zhou, Lai, Liu, Zhao (b22) 2012
Van Dongen (b16) 2000
P. Berger, P. Hennig, T. Bocklisch, T. Herold, C. Meinel, A journey of bounty hunters: analyzing the influence of reward systems on stackoverflow question response times, in: 2016 IEEE/WIC/ACM International Conference on Web Intelligence, WI, 2016, pp. 644–649
Bhat, Gokhale, Jadhav, Pudipeddi, Akoglu (b4) 2015; 5
Yong (b12) 2015
Zhou, Zhao, He, Wu (b13) 2014; 66
Pal, Konstan (b3) 2010
He, Garcia (b21) 2009; 21
Page (b23) 1998
N. Burlutskiy, A. Fish, N. Ali, M. Petridis, Prediction of users’ response time in Q amp;amp;A communities, in: 2015 IEEE 14th International Conference on Machine Learning and Applications, ICMLA, 2015, pp. 618–623
Hoogeveen, Verspoor, Baldwin (b20) 2015
Bhat (10.1016/j.knosys.2019.06.002_b4) 2015; 5
Yan (10.1016/j.knosys.2019.06.002_b10) 2010; 22
Asaduzzaman (10.1016/j.knosys.2019.06.002_b5) 2013
Zhou (10.1016/j.knosys.2019.06.002_b13) 2014; 66
Zhou (10.1016/j.knosys.2019.06.002_b22) 2012
10.1016/j.knosys.2019.06.002_b9
10.1016/j.knosys.2019.06.002_b8
Hoogeveen (10.1016/j.knosys.2019.06.002_b20) 2015
He (10.1016/j.knosys.2019.06.002_b21) 2009; 21
Ji (10.1016/j.knosys.2019.06.002_b2) 2012
Pal (10.1016/j.knosys.2019.06.002_b3) 2010
Goderie (10.1016/j.knosys.2019.06.002_b7) 2015
10.1016/j.knosys.2019.06.002_b6
Blei (10.1016/j.knosys.2019.06.002_b14) 2003; 3
Gasparini (10.1016/j.knosys.2019.06.002_b17) 1997; 39
Qu (10.1016/j.knosys.2019.06.002_b1) 2009
10.1016/j.knosys.2019.06.002_b11
Van Dongen (10.1016/j.knosys.2019.06.002_b16) 2000
Gelfand (10.1016/j.knosys.2019.06.002_b18) 1990; 85
Page (10.1016/j.knosys.2019.06.002_b23) 1998
Liu (10.1016/j.knosys.2019.06.002_b19) 2010
Ramage (10.1016/j.knosys.2019.06.002_b15) 2009
Yong (10.1016/j.knosys.2019.06.002_b12) 2015
References_xml – start-page: 97
  year: 2013
  end-page: 100
  ident: b5
  article-title: Answering questions about unanswered questions of stack overflow
  publication-title: Proceedings of the 10th Working Conference on Mining Software Repositories
– start-page: 3:1
  year: 2015
  end-page: 3:8
  ident: b20
  article-title: CQADupStack: A benchmark data set for community question-answering research
  publication-title: Proceedings of the 20th Australasian Document Computing Symposium
– volume: 22
  start-page: 51
  year: 2010
  end-page: 68
  ident: b10
  article-title: Fast times and easy questions: The effect of age, experience, and question complexity on web survey response times
  publication-title: Appl. Cogn. Psychol.
– reference: H. Hu, B. Liu, B. Wang, M. Liu, X. Wang, Exploring social features for answer quality prediction in CQA portals, in: 2013 International Conference on Machine Learning and Cybernetics, Vol. 04, 2013, pp. 1904–1909,
– volume: 5
  start-page: 24
  year: 2015
  ident: b4
  article-title: Effects of tag usage on question response time
  publication-title: Soc. Netw. Anal. Min.
– start-page: 127
  year: 2010
  end-page: 138
  ident: b19
  article-title: Predicting best answerers for new questions in community question answering
  publication-title: Web-Age Information Management
– reference: N. Burlutskiy, A. Fish, N. Ali, M. Petridis, Prediction of users’ response time in Q amp;amp;A communities, in: 2015 IEEE 14th International Conference on Machine Learning and Applications, ICMLA, 2015, pp. 618–623,
– reference: .
– volume: 21
  start-page: 1263
  year: 2009
  end-page: 1284
  ident: b21
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 1662
  year: 2012
  end-page: 1666
  ident: b22
  article-title: Topic-sensitive probabilistic model for expert finding in question answer communities
  publication-title: Proceedings of the 21st ACM International Conference on Information and Knowledge Management
– reference: P. Arunapuram, J.W. Bartel, P. Dewan, Distribution, correlation and prediction of response times in stack overflow, in: 10th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing, 2014, pp. 378–387,
– start-page: 414
  year: 2015
  end-page: 417
  ident: b7
  article-title: ETA: Estimated time of answer predicting response time in stack overflow
  publication-title: Proceedings of the 12th Working Conference on Mining Software Repositories
– volume: 66
  start-page: 136
  year: 2014
  end-page: 145
  ident: b13
  article-title: An empirical study of topic-sensitive probabilistic model for expert finding in question answer communities
  publication-title: Knowl.-Based Syst.
– start-page: 1229
  year: 2009
  end-page: 1230
  ident: b1
  article-title: Probabilistic question recommendation for question answering communities
  publication-title: Proceedings of the 18th International Conference on World Wide Web
– start-page: 1505
  year: 2010
  end-page: 1508
  ident: b3
  article-title: Expert identification in community question answering: Exploring question selection bias
  publication-title: Proceedings of the 19th ACM International Conference on Information and Knowledge Management
– volume: 85
  start-page: 972
  year: 1990
  end-page: 985
  ident: b18
  article-title: Illustration of Bayesian inference in normal data models using gibbs sampling
  publication-title: J. Amer. Statist. Assoc.
– volume: 39
  year: 1997
  ident: b17
  article-title: Markov chain Monte Carlo in practice
  publication-title: Technometrics
– start-page: 1
  year: 1998
  end-page: 14
  ident: b23
  article-title: The pagerank citation ranking : Bringing order to the web, stanford digital libraries working paper
– volume: 3
  start-page: 993
  year: 2003
  end-page: 1022
  ident: b14
  article-title: Latent dirichlet allocation
  publication-title: J. Mach. Learn. Res.
– year: 2015
  ident: b12
  article-title: Research On Driving Factors Of Douban User Activity Based On User Experience
– start-page: 2471
  year: 2012
  end-page: 2474
  ident: b2
  article-title: Question-answer topic model for question retrieval in community question answering
  publication-title: Proceedings of the 21st ACM International Conference on Information and Knowledge Management
– reference: P. Berger, P. Hennig, T. Bocklisch, T. Herold, C. Meinel, A journey of bounty hunters: analyzing the influence of reward systems on stackoverflow question response times, in: 2016 IEEE/WIC/ACM International Conference on Web Intelligence, WI, 2016, pp. 644–649,
– start-page: 248
  year: 2009
  end-page: 256
  ident: b15
  article-title: Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora
  publication-title: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Vol. 1 – Vol. 1
– year: 2000
  ident: b16
  article-title: Graph Clustering by Flow Simulation
– volume: 21
  start-page: 1263
  issue: 9
  year: 2009
  ident: 10.1016/j.knosys.2019.06.002_b21
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2008.239
– volume: 85
  start-page: 972
  issue: 412
  year: 1990
  ident: 10.1016/j.knosys.2019.06.002_b18
  article-title: Illustration of Bayesian inference in normal data models using gibbs sampling
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1990.10474968
– start-page: 248
  year: 2009
  ident: 10.1016/j.knosys.2019.06.002_b15
  article-title: Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora
– start-page: 3:1
  year: 2015
  ident: 10.1016/j.knosys.2019.06.002_b20
  article-title: CQADupStack: A benchmark data set for community question-answering research
– start-page: 97
  year: 2013
  ident: 10.1016/j.knosys.2019.06.002_b5
  article-title: Answering questions about unanswered questions of stack overflow
– volume: 3
  start-page: 993
  year: 2003
  ident: 10.1016/j.knosys.2019.06.002_b14
  article-title: Latent dirichlet allocation
  publication-title: J. Mach. Learn. Res.
– start-page: 1
  year: 1998
  ident: 10.1016/j.knosys.2019.06.002_b23
– ident: 10.1016/j.knosys.2019.06.002_b8
  doi: 10.1109/ICMLC.2013.6890906
– volume: 22
  start-page: 51
  issue: 1
  year: 2010
  ident: 10.1016/j.knosys.2019.06.002_b10
  article-title: Fast times and easy questions: The effect of age, experience, and question complexity on web survey response times
  publication-title: Appl. Cogn. Psychol.
  doi: 10.1002/acp.1331
– ident: 10.1016/j.knosys.2019.06.002_b11
  doi: 10.1109/WI.2016.0114
– year: 2000
  ident: 10.1016/j.knosys.2019.06.002_b16
– volume: 5
  start-page: 24
  issue: 1
  year: 2015
  ident: 10.1016/j.knosys.2019.06.002_b4
  article-title: Effects of tag usage on question response time
  publication-title: Soc. Netw. Anal. Min.
  doi: 10.1007/s13278-015-0263-3
– start-page: 1662
  year: 2012
  ident: 10.1016/j.knosys.2019.06.002_b22
  article-title: Topic-sensitive probabilistic model for expert finding in question answer communities
– start-page: 2471
  year: 2012
  ident: 10.1016/j.knosys.2019.06.002_b2
  article-title: Question-answer topic model for question retrieval in community question answering
– year: 2015
  ident: 10.1016/j.knosys.2019.06.002_b12
– start-page: 1229
  year: 2009
  ident: 10.1016/j.knosys.2019.06.002_b1
  article-title: Probabilistic question recommendation for question answering communities
– ident: 10.1016/j.knosys.2019.06.002_b9
  doi: 10.1109/ICMLA.2015.190
– volume: 39
  issue: 3
  year: 1997
  ident: 10.1016/j.knosys.2019.06.002_b17
  article-title: Markov chain Monte Carlo in practice
  publication-title: Technometrics
  doi: 10.1080/00401706.1997.10485132
– ident: 10.1016/j.knosys.2019.06.002_b6
  doi: 10.4108/icst.collaboratecom.2014.257265
– volume: 66
  start-page: 136
  year: 2014
  ident: 10.1016/j.knosys.2019.06.002_b13
  article-title: An empirical study of topic-sensitive probabilistic model for expert finding in question answer communities
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2014.04.032
– start-page: 1505
  year: 2010
  ident: 10.1016/j.knosys.2019.06.002_b3
  article-title: Expert identification in community question answering: Exploring question selection bias
– start-page: 414
  year: 2015
  ident: 10.1016/j.knosys.2019.06.002_b7
  article-title: ETA: Estimated time of answer predicting response time in stack overflow
– start-page: 127
  year: 2010
  ident: 10.1016/j.knosys.2019.06.002_b19
  article-title: Predicting best answerers for new questions in community question answering
SSID ssj0002218
Score 2.3120468
Snippet Users of Community Question Answering (CQA) could not manage their time conveniently because their questions are often not answered quickly enough. To address...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104794
SubjectTerms Algorithms
Community Question Answering
Dirichlet problem
Feature extraction
Model matching
Predictions
Questions
Response time
Search engines
Stack overflow
The prediction of question response time
Topic-sensitive model
Title Multi-feature based Question–Answerer Model Matching for predicting response time in CQA
URI https://dx.doi.org/10.1016/j.knosys.2019.06.002
https://www.proquest.com/docview/2301914594
Volume 182
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS8MwEA9jvvjif3E6Rx58jWuTtGsfx3BMZQPRwfClNEsK09GNbSK-iN_Bb-gn8S5NFUUYSCmlba4tl8vvrsn9IeRMShQd47Es5PCDItKYAeZJ1ooCUMegA7XB2OH-IOwN5dUoGFVIp4yFQbdKh_0Fplu0dleajpvN-WTSvAXjAOQV18GEh2YzRrDLFkr5-eu3mwfndo4PGzNsXYbPWR-vx3y2fMGk3X5ss3i6yZU_1NMvoLbap7tDtpzZSNvFl-2Sisn3yHZZkoG6EbpP7m1ALcuMzddJUUdpaic1gf8fb-_tfPlsFkCBNdCmtA9AjFNQFExXOl_gog26QdNF4TlrKJaep5Ocdm7aB2TYvbjr9Jgrn8DGQsgVC8KU8yjTmdGR78U6TXWYeSoLTKw8qTKd-lqmwkihWioNI08b7Ydc8VD4YziIQ1LNZ7k5IhQIshB22Izk2o-l0iaC14BBwccqqhFRci0Zu9ziWOJimpROZA9JwesEeZ1YXzpeI-yLal7k1ljTvlV2SPJDRhKA_zWU9bL_EjdG4T5gW-zLIJbH_37wCdnEM1RmflAn1dXiyZyClbJSDSuGDbLRvrzuDT4BgfzpEQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5eHvTFu3g3D77GtUnatY9jKFO3gaggvoRmSWE6urFNxBfxP_gP_SWek6aKIghSSqFJ2nJy8p3Tk3Mh5EhKZB0bsDzm8IMispQB5klWTyIQxyADjcXY4U43bt3I89vodoY0q1gYdKv02F9iukNrf6fmqVkb9fu1K1AOgF9xH0wEqDbPknkJyxfLGBy_fPl5cO6MfNibYfcqfs45eT0Uw8kzZu0OU5fG01tXfpFPP5DaiZ_TFbLk9UbaKD9tlczYYo0sVzUZqF-i6-TORdSy3LqEnRSFlKHOqgkT8P761igmT3YMI7AI2oB2AInRBkVBd6WjMe7aoB80HZeus5Zi7XnaL2jzsrFBbk5Prpst5usnsJ4QcsqiOOM8yU1uTRIGqckyE-eBziOb6kDq3GShkZmwUui6zuIkMNaEMdc8FmEPLmKTzBXDwm4RCgPyGE44rOQmTKU2NoHXgEbBezrZJqKimur55OJY42KgKi-ye1XSWiGtlXOm49uEfY4alck1_uhfryZEfWMSBfj_x8i9av6UX6TQDuCWhjJK5c6_H3xIFlrXnbZqn3UvdskitqBkC6M9MjcdP9p9UFmm-sCx5Afgqeqf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-feature+based+Question%E2%80%93Answerer+Model+Matching+for+predicting+response+time+in+CQA&rft.jtitle=Knowledge-based+systems&rft.au=YueLiu&rft.au=Tang%2C+Aihua&rft.au=FeiCai&rft.au=Ren%2C+Pengfei&rft.date=2019-10-15&rft.pub=Elsevier+Science+Ltd&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=182&rft.spage=1&rft_id=info:doi/10.1016%2Fj.knosys.2019.06.002&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon