Active learning with confidence-based answers for crowdsourcing labeling tasks
Collecting labels for data is important for many practical applications (e.g., data mining). However, this process can be expensive and time-consuming since it needs extensive efforts of domain experts. To decrease the cost, many recent works combine crowdsourcing, which outsources labeling tasks (u...
Saved in:
Published in | Knowledge-based systems Vol. 159; pp. 244 - 258 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.11.2018
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0950-7051 1872-7409 |
DOI | 10.1016/j.knosys.2018.07.010 |
Cover
Loading…
Abstract | Collecting labels for data is important for many practical applications (e.g., data mining). However, this process can be expensive and time-consuming since it needs extensive efforts of domain experts. To decrease the cost, many recent works combine crowdsourcing, which outsources labeling tasks (usually in the form of questions) to a large group of non-expert workers, and active learning, which actively selects the best instances to be labeled, to acquire labeled datasets. However, for difficult tasks where workers are uncertain about their answers, asking for discrete labels might lead to poor performance due to the low-quality labels. In this paper, we design questions to get continuous worker responses which are more informative and contain workers’ labels as well as their confidence. As crowd workers may make mistakes, multiple workers are hired to answer each question. Then, we propose a new aggregation method to integrate the responses. By considering workers’ confidence information, the accuracy of integrated labels is improved. Furthermore, based on the new answers, we propose a novel active learning framework to iteratively select instances for “labeling”. We define a score function for instance selection by combining the uncertainty derived from the classifier model and the uncertainty derived from the answer sets. The uncertainty derived from uncertain answers is more effective than that derived from labels. We also propose batch methods which select multiple instances at a time to further improve the efficiency of our approach. Experimental studies on both simulated and real data show that our methods are effective in increasing the labeling accuracy and achieve significantly better performance than existing methods. |
---|---|
AbstractList | Collecting labels for data is important for many practical applications (e.g., data mining). However, this process can be expensive and time-consuming since it needs extensive efforts of domain experts. To decrease the cost, many recent works combine crowdsourcing, which outsources labeling tasks (usually in the form of questions) to a large group of non-expert workers, and active learning, which actively selects the best instances to be labeled, to acquire labeled datasets. However, for difficult tasks where workers are uncertain about their answers, asking for discrete labels might lead to poor performance due to the low-quality labels. In this paper, we design questions to get continuous worker responses which are more informative and contain workers’ labels as well as their confidence. As crowd workers may make mistakes, multiple workers are hired to answer each question. Then, we propose a new aggregation method to integrate the responses. By considering workers’ confidence information, the accuracy of integrated labels is improved. Furthermore, based on the new answers, we propose a novel active learning framework to iteratively select instances for “labeling”. We define a score function for instance selection by combining the uncertainty derived from the classifier model and the uncertainty derived from the answer sets. The uncertainty derived from uncertain answers is more effective than that derived from labels. We also propose batch methods which select multiple instances at a time to further improve the efficiency of our approach. Experimental studies on both simulated and real data show that our methods are effective in increasing the labeling accuracy and achieve significantly better performance than existing methods. |
Author | Song, Jinhua Gao, Yang An, Bo Wang, Hao |
Author_xml | – sequence: 1 givenname: Jinhua surname: Song fullname: Song, Jinhua email: songjinhua2008@gmail.com organization: State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China – sequence: 2 givenname: Hao surname: Wang fullname: Wang, Hao email: wanghao@nju.edu.cn organization: State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China – sequence: 3 givenname: Yang orcidid: 0000-0002-2488-1813 surname: Gao fullname: Gao, Yang email: gaoy@nju.edu.cn organization: State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China – sequence: 4 givenname: Bo surname: An fullname: An, Bo email: boan@ntu.edu.sg organization: School of Computer Engineering, Nanyang Technological University, Blk N4-02c-110, Nanyang Avenue 639798, Singapore |
BookMark | eNqFkD9PwzAQxS1UJNrCN2CIxJxwTpw4YUBCiH9SBQvMluNcwG2wi-226rfHUZkYYHo3vPfu7jcjE2MNEnJOIaNAq8tltjLW732WA60z4BlQOCJTWvM85QyaCZlCU0LKoaQnZOb9EgDynNZT8nyjgt5iMqB0Rpv3ZKfDR6Ks6XWHRmHaSo9dIo3fofNJb12inN113m6cGv2DbHEYhyD9yp-S414OHs9-dE7e7u9ebx_TxcvD0-3NIlVFwUJa0qLsseNFXrYtL2uGTcOqKIzKru141IJJhUq2bQmS91UPfQ3YSKScFayYk4tD79rZrw36IJbxIBNXipzmVVmxgtPoujq44sneO-yF0kEGbU1wUg-Cghj5iaU48BMjPwFcRH4xzH6F105_Srf_L3Z9iGF8f6vRCa_0SLLTDlUQndV_F3wDGkyP7w |
CitedBy_id | crossref_primary_10_1145_3637443 crossref_primary_10_1007_s11042_019_08054_6 crossref_primary_10_1007_s11042_023_16685_z crossref_primary_10_1145_3432934 crossref_primary_10_2478_fcds_2023_0008 crossref_primary_10_1016_j_knosys_2020_106500 crossref_primary_10_1109_TPAMI_2021_3120012 crossref_primary_10_1007_s10619_020_07289_9 crossref_primary_10_1109_ACCESS_2019_2932149 crossref_primary_10_1016_j_dss_2020_113404 crossref_primary_10_1016_j_knosys_2021_107079 crossref_primary_10_1016_j_adhoc_2021_102594 crossref_primary_10_1016_j_knosys_2019_105044 crossref_primary_10_1145_3546916 crossref_primary_10_1145_3570347 crossref_primary_10_3390_math10071068 crossref_primary_10_1109_ACCESS_2021_3135514 crossref_primary_10_1007_s12065_023_00879_3 crossref_primary_10_1016_j_jjimei_2023_100167 |
Cites_doi | 10.1080/0266476042000214501 10.1007/s10115-012-0507-8 10.1023/A:1010933404324 10.1007/s10618-013-0306-1 10.1080/01621459.1963.10500830 10.3233/IDA-150720 10.1016/j.csda.2005.10.002 10.1016/j.knosys.2016.06.003 10.1016/j.knosys.2017.06.023 10.1109/TPAMI.2015.2437384 10.1016/j.knosys.2017.09.032 10.14778/2735471.2735474 10.1016/j.neucom.2015.11.062 |
ContentType | Journal Article |
Copyright | 2018 Copyright Elsevier Science Ltd. Nov 1, 2018 |
Copyright_xml | – notice: 2018 – notice: Copyright Elsevier Science Ltd. Nov 1, 2018 |
DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
DOI | 10.1016/j.knosys.2018.07.010 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-7409 |
EndPage | 258 |
ExternalDocumentID | 10_1016_j_knosys_2018_07_010 S0950705118303460 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW SSH UHS WUQ 7SC 8FD E3H EFKBS F2A JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c334t-5135fed7325bb7584e994684e41adbd7e4134acecabb50a7f6f0f80e9ae174343 |
IEDL.DBID | .~1 |
ISSN | 0950-7051 |
IngestDate | Sat Jul 26 02:29:58 EDT 2025 Tue Jul 01 04:37:55 EDT 2025 Thu Apr 24 23:04:34 EDT 2025 Fri Feb 23 02:18:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Crowdsourcing Labeling task Confidence-based answer Active learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-5135fed7325bb7584e994684e41adbd7e4134acecabb50a7f6f0f80e9ae174343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2488-1813 |
PQID | 2126564371 |
PQPubID | 2035257 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2126564371 crossref_citationtrail_10_1016_j_knosys_2018_07_010 crossref_primary_10_1016_j_knosys_2018_07_010 elsevier_sciencedirect_doi_10_1016_j_knosys_2018_07_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 2018-11-00 20181101 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Knowledge-based systems |
PublicationYear | 2018 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Li, Sheng, Jiang, Li (bib0009) 2016; 107 FG-NET Donmez, Carbonell, Schneider (bib0010) 2009 D. Dheeru, E. Karra Taniskidou, UCI machine learning repository, 2017. Wang, Du, Zhang, Zhang (bib0037) 2016; 179 Yan, Fung, Rosales, Dy (bib0011) 2011 Chen, Lin, Zhou (bib0013) 2015; 16 Davison, Hinkley (bib0032) 2013 Hoi, Jin, Lyu (bib0036) 2006 Sheng, Provost, Ipeirotis (bib0016) 2008 Krawczyk (bib0002) 2017; 138 Mozafari, Sarkar, Franklin, Jordan, Madden (bib0026) 2014; 8 Settles (bib0007) 2010 Ospina, Cribarineto, Vasconcellos (bib0029) 2006; 51 Girshick, Donahue, Darrell, Malik (bib0001) 2016; 38 Smatana, Koncz, Smatana, Paralic (bib0003) 2013 Witten, Frank, Hall (bib0040) 2011 Ho, Jabbari, Vaughan (bib0027) 2013 Tran, Nguyen, Fujita, Hoang, Hwang (bib0008) 2017; 132 Fu, Yang (bib0035) 2015; 19 Brew, Greene, Cunningham (bib0023) 2010 Fang, Yin, Tao (bib0020) 2014 Zhao, Sukthankar, Sukthankar (bib0025) 2011 Zheng, Scott, Deng (bib0022) 2010 Zhang, Wu, Shengs (bib0017) 2015; 45 Donmez, Carbonell (bib0021) 2008 Breiman (bib0039) 2001; 45 Efron, Tibshirani (bib0031) 1994 Zhang, Chaudhuri (bib0012) 2015 Ipeirotis, Provost, Sheng, Wang (bib0018) 2014; 28 Rahmanian, Davis (bib0004) 2014 Fu, Zhu, Li (bib0006) 2013; 35 Zhong, Tang, Zhou (bib0019) 2015 Snow, O’Connor, Jurafsky, Ng (bib0005) 2008 Laws, Scheible, Schütze (bib0024) 2011 2014. Brinker (bib0034) 2003 Raykar, Agrawal (bib0014) 2014 Delgado, Cernadas, Barro, Amorim (bib0041) 2014; 15 Hoeffding (bib0033) 1963; 58 Lin, Mausam, Weld (bib0015) 2016 Ferrari, Cribari-Neto (bib0028) 2004; 31 Press, Teukolsky, Vetterling, Flannery (bib0030) 1992 Breiman (10.1016/j.knosys.2018.07.010_bib0039) 2001; 45 10.1016/j.knosys.2018.07.010_bib0042 Zhang (10.1016/j.knosys.2018.07.010_bib0012) 2015 Ospina (10.1016/j.knosys.2018.07.010_bib0029) 2006; 51 Hoeffding (10.1016/j.knosys.2018.07.010_bib0033) 1963; 58 Smatana (10.1016/j.knosys.2018.07.010_bib0003) 2013 Donmez (10.1016/j.knosys.2018.07.010_bib0010) 2009 Brinker (10.1016/j.knosys.2018.07.010_bib0034) 2003 Press (10.1016/j.knosys.2018.07.010_bib0030) 1992 Davison (10.1016/j.knosys.2018.07.010_bib0032) 2013 Raykar (10.1016/j.knosys.2018.07.010_bib0014) 2014 Chen (10.1016/j.knosys.2018.07.010_bib0013) 2015; 16 Tran (10.1016/j.knosys.2018.07.010_bib0008) 2017; 132 Ferrari (10.1016/j.knosys.2018.07.010_bib0028) 2004; 31 Delgado (10.1016/j.knosys.2018.07.010_bib0041) 2014; 15 Fu (10.1016/j.knosys.2018.07.010_bib0006) 2013; 35 10.1016/j.knosys.2018.07.010_bib0038 Zhong (10.1016/j.knosys.2018.07.010_bib0019) 2015 Rahmanian (10.1016/j.knosys.2018.07.010_bib0004) 2014 Lin (10.1016/j.knosys.2018.07.010_bib0015) 2016 Ipeirotis (10.1016/j.knosys.2018.07.010_bib0018) 2014; 28 Fang (10.1016/j.knosys.2018.07.010_bib0020) 2014 Mozafari (10.1016/j.knosys.2018.07.010_bib0026) 2014; 8 Fu (10.1016/j.knosys.2018.07.010_bib0035) 2015; 19 Witten (10.1016/j.knosys.2018.07.010_bib0040) 2011 Brew (10.1016/j.knosys.2018.07.010_bib0023) 2010 Zhao (10.1016/j.knosys.2018.07.010_bib0025) 2011 Efron (10.1016/j.knosys.2018.07.010_bib0031) 1994 Wang (10.1016/j.knosys.2018.07.010_bib0037) 2016; 179 Yan (10.1016/j.knosys.2018.07.010_bib0011) 2011 Donmez (10.1016/j.knosys.2018.07.010_bib0021) 2008 Li (10.1016/j.knosys.2018.07.010_bib0009) 2016; 107 Sheng (10.1016/j.knosys.2018.07.010_bib0016) 2008 Settles (10.1016/j.knosys.2018.07.010_bib0007) 2010 Zhang (10.1016/j.knosys.2018.07.010_bib0017) 2015; 45 Hoi (10.1016/j.knosys.2018.07.010_bib0036) 2006 Krawczyk (10.1016/j.knosys.2018.07.010_bib0002) 2017; 138 Girshick (10.1016/j.knosys.2018.07.010_bib0001) 2016; 38 Laws (10.1016/j.knosys.2018.07.010_bib0024) 2011 Ho (10.1016/j.knosys.2018.07.010_bib0027) 2013 Snow (10.1016/j.knosys.2018.07.010_bib0005) 2008 Zheng (10.1016/j.knosys.2018.07.010_bib0022) 2010 |
References_xml | – volume: 107 start-page: 96 year: 2016 end-page: 103 ident: bib0009 article-title: Noise filtering to improve data and model quality for crowdsourcing publication-title: Knowl. Based Syst. – volume: 45 start-page: 1081 year: 2015 end-page: 1093 ident: bib0017 article-title: Active learning with imbalanced multiple noisy labeling publication-title: IEEE Trans. Cybern. – year: 2011 ident: bib0040 article-title: Data Mining: Practical Machine Learning Tools and Techniques – start-page: 633 year: 2006 end-page: 642 ident: bib0036 article-title: Large-scale text categorization by batch mode active learning publication-title: Proceedings of the 15th International Conference on World Wide Web – reference: D. Dheeru, E. Karra Taniskidou, UCI machine learning repository, 2017. – volume: 28 start-page: 402 year: 2014 end-page: 441 ident: bib0018 article-title: Repeated labeling using multiple noisy labelers publication-title: Data Min. Knowl. Discov. – start-page: 614 year: 2008 end-page: 622 ident: bib0016 article-title: Get another label? improving data quality and data mining using multiple, noisy labelers publication-title: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – start-page: 1546 year: 2011 end-page: 1556 ident: bib0024 article-title: Active learning with amazon mechanical turk publication-title: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing – year: 2010 ident: bib0007 article-title: Active Learning Literature Survey publication-title: Computer Sciences Technical Report 1648 – reference: , 2014. – volume: 31 start-page: 799 year: 2004 end-page: 815 ident: bib0028 article-title: Beta regression for modelling rates and proportions publication-title: J. Appl. Stat. – volume: 38 start-page: 142 year: 2016 end-page: 158 ident: bib0001 article-title: Region-based convolutional networks for accurate object detection and segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 132 start-page: 179 year: 2017 end-page: 187 ident: bib0008 article-title: A combination of active learning and self-learning for named entity recognition on twitter using conditional random fields publication-title: Knowl. Based Syst. – volume: 16 start-page: 1 year: 2015 end-page: 46 ident: bib0013 article-title: Statistical decision making for optimal budget allocation in crowd labeling publication-title: J. Mach. Learn. Res. – volume: 15 start-page: 3133 year: 2014 end-page: 3181 ident: bib0041 article-title: Do we need hundreds of classifiers to solve real world classification problems? publication-title: J. Mach. Learn. Res. – reference: FG-NET, – start-page: 1061 year: 2015 end-page: 1067 ident: bib0019 article-title: Active learning from crowds with unsure option publication-title: Proceedings of the 24th International Joint Conference on Artificial Intelligence – volume: 179 start-page: 88 year: 2016 end-page: 100 ident: bib0037 article-title: A batch-mode active learning framework by querying discriminative and representative samples for hyperspectral image classification publication-title: Neurocomputing – year: 1992 ident: bib0030 article-title: Numerical Recipes in C: The Art of Scientific Computing – volume: 138 start-page: 69 year: 2017 end-page: 78 ident: bib0002 article-title: Active and adaptive ensemble learning for online activity recognition from data streams publication-title: Knowl. Based Syst. – start-page: 1161 year: 2011 end-page: 1168 ident: bib0011 article-title: Active learning from crowds publication-title: Proceedings of the 28th International Conference on Machine Learning – start-page: 259 year: 2009 end-page: 268 ident: bib0010 article-title: Efficiently learning the accuracy of labeling sources for selective sampling publication-title: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0039 article-title: Random forests publication-title: Mach Learn – year: 1994 ident: bib0031 article-title: An Introduction to the Bootstrap – start-page: 191 year: 2013 end-page: 194 ident: bib0003 article-title: Active learning enhanced semi-automatic annotation tool for aspect-based sentiment analysis publication-title: Proceedings of the 11th IEEE International Symposium on Intelligent Systems and Informatics – start-page: 405 year: 2014 end-page: 408 ident: bib0004 article-title: User interface design for crowdsourcing systems publication-title: Proceedings of the 2014 International Working Conference on Advanced Visual Interfaces – start-page: 145 year: 2010 end-page: 150 ident: bib0023 article-title: Using crowdsourcing and active learning to track sentiment in online media publication-title: Proceedings of the 19th European Conference on Artificial Intelligence – start-page: 639 year: 2010 end-page: 648 ident: bib0022 article-title: Active learning from multiple noisy labelers with varied costs publication-title: Proceedings of The 10th IEEE International Conference on Data Mining – start-page: 254 year: 2008 end-page: 263 ident: bib0005 article-title: Cheap and fast - but is it good? evaluating non-expert annotations for natural language tasks publication-title: Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing – volume: 19 start-page: 345 year: 2015 end-page: 358 ident: bib0035 article-title: A batch-mode active learning SVM method based on semi-supervised clustering publication-title: Intell. Data Anal. – year: 2013 ident: bib0032 article-title: Bootstrap Methods and Their Application – start-page: 703 year: 2015 end-page: 711 ident: bib0012 article-title: Active learning from weak and strong labelers publication-title: Advances in Neural Information Processing Systems 28: 29th Annual Conference on Neural Information Processing Systems – start-page: 1809 year: 2014 end-page: 1815 ident: bib0020 article-title: Active learning for crowdsourcing using knowledge transfer publication-title: Proceedings of the 28th AAAI Conference on Artificial Intelligence – start-page: 728 year: 2011 end-page: 733 ident: bib0025 article-title: Incremental relabeling for active learning with noisy crowdsourced annotations publication-title: 2011 IEEE 3rd International Conference on Privacy, Security, Risk and Trust and 2011 IEEE 3rd International Conference on Social Computing – volume: 8 start-page: 125 year: 2014 end-page: 136 ident: bib0026 article-title: Scaling up crowd-sourcing to very large datasets: a case for active learning publication-title: Proc. VLDB Endowment – volume: 58 start-page: 13 year: 1963 end-page: 30 ident: bib0033 article-title: Probability inequalities for sums of bounded random variables publication-title: J. Am. Stat. Assoc. – start-page: 619 year: 2008 end-page: 628 ident: bib0021 article-title: Proactive learning: Cost-sensitive active learning with multiple imperfect oracles publication-title: Proceedings of the 17th ACM Conference on Information and Knowledge Management – start-page: 59 year: 2003 end-page: 66 ident: bib0034 article-title: Incorporating diversity in active learning with support vector machines publication-title: Proceedings of the 20th International Conference on Machine Learning – start-page: 832 year: 2014 end-page: 840 ident: bib0014 article-title: Sequential crowdsourced labeling as an epsilon-greedy exploration in a markov decision process publication-title: Proceedings of the 17th International Conference on Artificial Intelligence and Statistics – volume: 51 start-page: 960 year: 2006 end-page: 981 ident: bib0029 article-title: Improved point and interval estimation for a beta regression model publication-title: Comput. Stat. Data Anal. – start-page: 534 year: 2013 end-page: 542 ident: bib0027 article-title: Adaptive task assignment for crowdsourced classification publication-title: Proceedings of the 30th International Conference on Machine Learning – start-page: 1845 year: 2016 end-page: 1852 ident: bib0015 article-title: Re-active learning: Active learning with relabeling publication-title: Proceedings of the 30th AAAI Conference on Artificial Intelligence – volume: 35 start-page: 249 year: 2013 end-page: 283 ident: bib0006 article-title: A survey on instance selection for active learning publication-title: Knowl. Inf. Syst. – start-page: 639 year: 2010 ident: 10.1016/j.knosys.2018.07.010_bib0022 article-title: Active learning from multiple noisy labelers with varied costs – start-page: 1546 year: 2011 ident: 10.1016/j.knosys.2018.07.010_bib0024 article-title: Active learning with amazon mechanical turk – volume: 31 start-page: 799 issue: 7 year: 2004 ident: 10.1016/j.knosys.2018.07.010_bib0028 article-title: Beta regression for modelling rates and proportions publication-title: J. Appl. Stat. doi: 10.1080/0266476042000214501 – volume: 16 start-page: 1 year: 2015 ident: 10.1016/j.knosys.2018.07.010_bib0013 article-title: Statistical decision making for optimal budget allocation in crowd labeling publication-title: J. Mach. Learn. Res. – start-page: 619 year: 2008 ident: 10.1016/j.knosys.2018.07.010_bib0021 article-title: Proactive learning: Cost-sensitive active learning with multiple imperfect oracles – start-page: 1845 year: 2016 ident: 10.1016/j.knosys.2018.07.010_bib0015 article-title: Re-active learning: Active learning with relabeling – volume: 15 start-page: 3133 issue: 1 year: 2014 ident: 10.1016/j.knosys.2018.07.010_bib0041 article-title: Do we need hundreds of classifiers to solve real world classification problems? publication-title: J. Mach. Learn. Res. – volume: 35 start-page: 249 issue: 2 year: 2013 ident: 10.1016/j.knosys.2018.07.010_bib0006 article-title: A survey on instance selection for active learning publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-012-0507-8 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.knosys.2018.07.010_bib0039 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – start-page: 534 year: 2013 ident: 10.1016/j.knosys.2018.07.010_bib0027 article-title: Adaptive task assignment for crowdsourced classification – start-page: 1161 year: 2011 ident: 10.1016/j.knosys.2018.07.010_bib0011 article-title: Active learning from crowds – volume: 28 start-page: 402 issue: 2 year: 2014 ident: 10.1016/j.knosys.2018.07.010_bib0018 article-title: Repeated labeling using multiple noisy labelers publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-013-0306-1 – year: 2013 ident: 10.1016/j.knosys.2018.07.010_bib0032 – ident: 10.1016/j.knosys.2018.07.010_bib0038 – start-page: 145 year: 2010 ident: 10.1016/j.knosys.2018.07.010_bib0023 article-title: Using crowdsourcing and active learning to track sentiment in online media – start-page: 59 year: 2003 ident: 10.1016/j.knosys.2018.07.010_bib0034 article-title: Incorporating diversity in active learning with support vector machines – start-page: 191 year: 2013 ident: 10.1016/j.knosys.2018.07.010_bib0003 article-title: Active learning enhanced semi-automatic annotation tool for aspect-based sentiment analysis – year: 2011 ident: 10.1016/j.knosys.2018.07.010_bib0040 – volume: 58 start-page: 13 issue: 301 year: 1963 ident: 10.1016/j.knosys.2018.07.010_bib0033 article-title: Probability inequalities for sums of bounded random variables publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1963.10500830 – start-page: 728 year: 2011 ident: 10.1016/j.knosys.2018.07.010_bib0025 article-title: Incremental relabeling for active learning with noisy crowdsourced annotations – volume: 45 start-page: 1081 issue: 5 year: 2015 ident: 10.1016/j.knosys.2018.07.010_bib0017 article-title: Active learning with imbalanced multiple noisy labeling publication-title: IEEE Trans. Cybern. – volume: 19 start-page: 345 issue: 2 year: 2015 ident: 10.1016/j.knosys.2018.07.010_bib0035 article-title: A batch-mode active learning SVM method based on semi-supervised clustering publication-title: Intell. Data Anal. doi: 10.3233/IDA-150720 – volume: 51 start-page: 960 issue: 2 year: 2006 ident: 10.1016/j.knosys.2018.07.010_bib0029 article-title: Improved point and interval estimation for a beta regression model publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2005.10.002 – volume: 107 start-page: 96 issue: Supplement C year: 2016 ident: 10.1016/j.knosys.2018.07.010_bib0009 article-title: Noise filtering to improve data and model quality for crowdsourcing publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2016.06.003 – year: 1994 ident: 10.1016/j.knosys.2018.07.010_bib0031 – start-page: 405 year: 2014 ident: 10.1016/j.knosys.2018.07.010_bib0004 article-title: User interface design for crowdsourcing systems – volume: 132 start-page: 179 issue: Supplement C year: 2017 ident: 10.1016/j.knosys.2018.07.010_bib0008 article-title: A combination of active learning and self-learning for named entity recognition on twitter using conditional random fields publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2017.06.023 – start-page: 703 year: 2015 ident: 10.1016/j.knosys.2018.07.010_bib0012 article-title: Active learning from weak and strong labelers – ident: 10.1016/j.knosys.2018.07.010_bib0042 – volume: 38 start-page: 142 issue: 1 year: 2016 ident: 10.1016/j.knosys.2018.07.010_bib0001 article-title: Region-based convolutional networks for accurate object detection and segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2437384 – year: 1992 ident: 10.1016/j.knosys.2018.07.010_bib0030 – volume: 138 start-page: 69 issue: Supplement C year: 2017 ident: 10.1016/j.knosys.2018.07.010_bib0002 article-title: Active and adaptive ensemble learning for online activity recognition from data streams publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2017.09.032 – volume: 8 start-page: 125 issue: 2 year: 2014 ident: 10.1016/j.knosys.2018.07.010_bib0026 article-title: Scaling up crowd-sourcing to very large datasets: a case for active learning publication-title: Proc. VLDB Endowment doi: 10.14778/2735471.2735474 – start-page: 1061 year: 2015 ident: 10.1016/j.knosys.2018.07.010_bib0019 article-title: Active learning from crowds with unsure option – start-page: 1809 year: 2014 ident: 10.1016/j.knosys.2018.07.010_bib0020 article-title: Active learning for crowdsourcing using knowledge transfer – start-page: 254 year: 2008 ident: 10.1016/j.knosys.2018.07.010_bib0005 article-title: Cheap and fast - but is it good? evaluating non-expert annotations for natural language tasks – start-page: 259 year: 2009 ident: 10.1016/j.knosys.2018.07.010_bib0010 article-title: Efficiently learning the accuracy of labeling sources for selective sampling – year: 2010 ident: 10.1016/j.knosys.2018.07.010_bib0007 article-title: Active Learning Literature Survey – start-page: 614 year: 2008 ident: 10.1016/j.knosys.2018.07.010_bib0016 article-title: Get another label? improving data quality and data mining using multiple, noisy labelers – start-page: 832 year: 2014 ident: 10.1016/j.knosys.2018.07.010_bib0014 article-title: Sequential crowdsourced labeling as an epsilon-greedy exploration in a markov decision process – start-page: 633 year: 2006 ident: 10.1016/j.knosys.2018.07.010_bib0036 article-title: Large-scale text categorization by batch mode active learning – volume: 179 start-page: 88 year: 2016 ident: 10.1016/j.knosys.2018.07.010_bib0037 article-title: A batch-mode active learning framework by querying discriminative and representative samples for hyperspectral image classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.11.062 |
SSID | ssj0002218 |
Score | 2.3542895 |
Snippet | Collecting labels for data is important for many practical applications (e.g., data mining). However, this process can be expensive and time-consuming since it... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 244 |
SubjectTerms | Active learning Computer simulation Confidence-based answer Crowdsourcing Data mining Labeling Labeling task Labels Learning Subject specialists Uncertainty |
Title | Active learning with confidence-based answers for crowdsourcing labeling tasks |
URI | https://dx.doi.org/10.1016/j.knosys.2018.07.010 https://www.proquest.com/docview/2126564371 |
Volume | 159 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXrz4FtcXOXit2zRpuz0ui7Iq7EUXvIU8xQdV3Ip48bc7k6aKIix4Cm0nJUwm8wgz8xFybBVsuqngIA0RwsxlOlHW6wRMuzIebDbTIUF2Wkxm4uImv-mRcVcLg2mVUfe3Oj1o6_hmELk5eL67G1yBcwDyih4yqGFRYNyO3etApk8-vtM8sizc8SFxgtRd-VzI8Xqon-bv2LSbDUMLT6yj_ds8_VLUwfqcrZPV6DbSUbuyDdJz9SZZ6yAZaDyhW2Q6CvqLRjCIW4r3rBRiXt-ChyZotSwF-4TgaBQ8VgoLebPhDh_pQShChTpt1Pxhvk1mZ6fX40kSIRMSw7lokpzx3Dtb8izXGkIB4apKFDAIpqy2JYxcKOOM0jpPVekLn_ph6irlMDQRfIcs1U-12yWUVcYU3FrwGITwHuiZMZxp5pDtpe4T3nFKmthPHGEtHmWXOHYvW_5K5K9MSwn87ZPka9Zz209jAX3ZbYL8IRcSVP6CmQfdnsl4LuE7y8CBFbxke__-8T5Zwae2IPGALDUvr-4QPJNGHwXROyLLo_PLyfQTmkvk-w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lHvTiW6xWzcHr0maT3e0eS1Gq1l5swVvIU3zQFlsR_70z2aygCIKnwGayhMnkm5kwD0LOrYJDNyVcpB62MHOpTpT1OgHVrowHnc10CJAd58OpuL7P7htkUOfCYFhlxP4K0wNaxy-dyM3O4vGxcwfGAcgrWsgAwyIHv30Nq1OJJlnrX90Mx1-AnKbhmQ_pE1xQZ9CFMK_n2Xz5gXW7WS9U8cRU2t811A-sDgrocptsRsuR9qvN7ZCGm-2SrborA42XdI-M-wHCaOwH8UDxqZWC2-ur_qEJKi5LQUVhfzQKRiuFjbzb8IyP9CAXIUmdrtTyeblPppcXk8EwiV0TEsO5WCUZ45l3tuBppjV4A8KVpchhEExZbQsYuVDGGaV11lWFz33X97quVA69E8EPSHM2n7lDQllpTM6tBaNBCO-BnhnDmWYOOV_oFuE1p6SJJcWxs8WLrGPHnmTFX4n8ld1CAn9bJPlatahKavxBX9SHIL-JhgTU_2Nluz4zGa8mzLMUbFjBC3b07x-fkfXh5HYkR1fjm2OygTNVfmKbNFevb-4EDJWVPo2C-Al17ees |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+learning+with+confidence-based+answers+for+crowdsourcing+labeling+tasks&rft.jtitle=Knowledge-based+systems&rft.au=Song%2C+Jinhua&rft.au=Wang%2C+Hao&rft.au=Gao%2C+Yang&rft.au=An%2C+Bo&rft.date=2018-11-01&rft.issn=0950-7051&rft.volume=159&rft.spage=244&rft.epage=258&rft_id=info:doi/10.1016%2Fj.knosys.2018.07.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2018_07_010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |