Active learning with confidence-based answers for crowdsourcing labeling tasks

Collecting labels for data is important for many practical applications (e.g., data mining). However, this process can be expensive and time-consuming since it needs extensive efforts of domain experts. To decrease the cost, many recent works combine crowdsourcing, which outsources labeling tasks (u...

Full description

Saved in:
Bibliographic Details
Published inKnowledge-based systems Vol. 159; pp. 244 - 258
Main Authors Song, Jinhua, Wang, Hao, Gao, Yang, An, Bo
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.11.2018
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0950-7051
1872-7409
DOI10.1016/j.knosys.2018.07.010

Cover

Loading…
Abstract Collecting labels for data is important for many practical applications (e.g., data mining). However, this process can be expensive and time-consuming since it needs extensive efforts of domain experts. To decrease the cost, many recent works combine crowdsourcing, which outsources labeling tasks (usually in the form of questions) to a large group of non-expert workers, and active learning, which actively selects the best instances to be labeled, to acquire labeled datasets. However, for difficult tasks where workers are uncertain about their answers, asking for discrete labels might lead to poor performance due to the low-quality labels. In this paper, we design questions to get continuous worker responses which are more informative and contain workers’ labels as well as their confidence. As crowd workers may make mistakes, multiple workers are hired to answer each question. Then, we propose a new aggregation method to integrate the responses. By considering workers’ confidence information, the accuracy of integrated labels is improved. Furthermore, based on the new answers, we propose a novel active learning framework to iteratively select instances for “labeling”. We define a score function for instance selection by combining the uncertainty derived from the classifier model and the uncertainty derived from the answer sets. The uncertainty derived from uncertain answers is more effective than that derived from labels. We also propose batch methods which select multiple instances at a time to further improve the efficiency of our approach. Experimental studies on both simulated and real data show that our methods are effective in increasing the labeling accuracy and achieve significantly better performance than existing methods.
AbstractList Collecting labels for data is important for many practical applications (e.g., data mining). However, this process can be expensive and time-consuming since it needs extensive efforts of domain experts. To decrease the cost, many recent works combine crowdsourcing, which outsources labeling tasks (usually in the form of questions) to a large group of non-expert workers, and active learning, which actively selects the best instances to be labeled, to acquire labeled datasets. However, for difficult tasks where workers are uncertain about their answers, asking for discrete labels might lead to poor performance due to the low-quality labels. In this paper, we design questions to get continuous worker responses which are more informative and contain workers’ labels as well as their confidence. As crowd workers may make mistakes, multiple workers are hired to answer each question. Then, we propose a new aggregation method to integrate the responses. By considering workers’ confidence information, the accuracy of integrated labels is improved. Furthermore, based on the new answers, we propose a novel active learning framework to iteratively select instances for “labeling”. We define a score function for instance selection by combining the uncertainty derived from the classifier model and the uncertainty derived from the answer sets. The uncertainty derived from uncertain answers is more effective than that derived from labels. We also propose batch methods which select multiple instances at a time to further improve the efficiency of our approach. Experimental studies on both simulated and real data show that our methods are effective in increasing the labeling accuracy and achieve significantly better performance than existing methods.
Author Song, Jinhua
Gao, Yang
An, Bo
Wang, Hao
Author_xml – sequence: 1
  givenname: Jinhua
  surname: Song
  fullname: Song, Jinhua
  email: songjinhua2008@gmail.com
  organization: State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China
– sequence: 2
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
  email: wanghao@nju.edu.cn
  organization: State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China
– sequence: 3
  givenname: Yang
  orcidid: 0000-0002-2488-1813
  surname: Gao
  fullname: Gao, Yang
  email: gaoy@nju.edu.cn
  organization: State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China
– sequence: 4
  givenname: Bo
  surname: An
  fullname: An, Bo
  email: boan@ntu.edu.sg
  organization: School of Computer Engineering, Nanyang Technological University, Blk N4-02c-110, Nanyang Avenue 639798, Singapore
BookMark eNqFkD9PwzAQxS1UJNrCN2CIxJxwTpw4YUBCiH9SBQvMluNcwG2wi-226rfHUZkYYHo3vPfu7jcjE2MNEnJOIaNAq8tltjLW732WA60z4BlQOCJTWvM85QyaCZlCU0LKoaQnZOb9EgDynNZT8nyjgt5iMqB0Rpv3ZKfDR6Ks6XWHRmHaSo9dIo3fofNJb12inN113m6cGv2DbHEYhyD9yp-S414OHs9-dE7e7u9ebx_TxcvD0-3NIlVFwUJa0qLsseNFXrYtL2uGTcOqKIzKru141IJJhUq2bQmS91UPfQ3YSKScFayYk4tD79rZrw36IJbxIBNXipzmVVmxgtPoujq44sneO-yF0kEGbU1wUg-Cghj5iaU48BMjPwFcRH4xzH6F105_Srf_L3Z9iGF8f6vRCa_0SLLTDlUQndV_F3wDGkyP7w
CitedBy_id crossref_primary_10_1145_3637443
crossref_primary_10_1007_s11042_019_08054_6
crossref_primary_10_1007_s11042_023_16685_z
crossref_primary_10_1145_3432934
crossref_primary_10_2478_fcds_2023_0008
crossref_primary_10_1016_j_knosys_2020_106500
crossref_primary_10_1109_TPAMI_2021_3120012
crossref_primary_10_1007_s10619_020_07289_9
crossref_primary_10_1109_ACCESS_2019_2932149
crossref_primary_10_1016_j_dss_2020_113404
crossref_primary_10_1016_j_knosys_2021_107079
crossref_primary_10_1016_j_adhoc_2021_102594
crossref_primary_10_1016_j_knosys_2019_105044
crossref_primary_10_1145_3546916
crossref_primary_10_1145_3570347
crossref_primary_10_3390_math10071068
crossref_primary_10_1109_ACCESS_2021_3135514
crossref_primary_10_1007_s12065_023_00879_3
crossref_primary_10_1016_j_jjimei_2023_100167
Cites_doi 10.1080/0266476042000214501
10.1007/s10115-012-0507-8
10.1023/A:1010933404324
10.1007/s10618-013-0306-1
10.1080/01621459.1963.10500830
10.3233/IDA-150720
10.1016/j.csda.2005.10.002
10.1016/j.knosys.2016.06.003
10.1016/j.knosys.2017.06.023
10.1109/TPAMI.2015.2437384
10.1016/j.knosys.2017.09.032
10.14778/2735471.2735474
10.1016/j.neucom.2015.11.062
ContentType Journal Article
Copyright 2018
Copyright Elsevier Science Ltd. Nov 1, 2018
Copyright_xml – notice: 2018
– notice: Copyright Elsevier Science Ltd. Nov 1, 2018
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2018.07.010
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
EndPage 258
ExternalDocumentID 10_1016_j_knosys_2018_07_010
S0950705118303460
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
SSH
UHS
WUQ
7SC
8FD
E3H
EFKBS
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-5135fed7325bb7584e994684e41adbd7e4134acecabb50a7f6f0f80e9ae174343
IEDL.DBID .~1
ISSN 0950-7051
IngestDate Sat Jul 26 02:29:58 EDT 2025
Tue Jul 01 04:37:55 EDT 2025
Thu Apr 24 23:04:34 EDT 2025
Fri Feb 23 02:18:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Crowdsourcing
Labeling task
Confidence-based answer
Active learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-5135fed7325bb7584e994684e41adbd7e4134acecabb50a7f6f0f80e9ae174343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2488-1813
PQID 2126564371
PQPubID 2035257
PageCount 15
ParticipantIDs proquest_journals_2126564371
crossref_citationtrail_10_1016_j_knosys_2018_07_010
crossref_primary_10_1016_j_knosys_2018_07_010
elsevier_sciencedirect_doi_10_1016_j_knosys_2018_07_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-01
2018-11-00
20181101
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2018
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Li, Sheng, Jiang, Li (bib0009) 2016; 107
FG-NET
Donmez, Carbonell, Schneider (bib0010) 2009
D. Dheeru, E. Karra Taniskidou, UCI machine learning repository, 2017.
Wang, Du, Zhang, Zhang (bib0037) 2016; 179
Yan, Fung, Rosales, Dy (bib0011) 2011
Chen, Lin, Zhou (bib0013) 2015; 16
Davison, Hinkley (bib0032) 2013
Hoi, Jin, Lyu (bib0036) 2006
Sheng, Provost, Ipeirotis (bib0016) 2008
Krawczyk (bib0002) 2017; 138
Mozafari, Sarkar, Franklin, Jordan, Madden (bib0026) 2014; 8
Settles (bib0007) 2010
Ospina, Cribarineto, Vasconcellos (bib0029) 2006; 51
Girshick, Donahue, Darrell, Malik (bib0001) 2016; 38
Smatana, Koncz, Smatana, Paralic (bib0003) 2013
Witten, Frank, Hall (bib0040) 2011
Ho, Jabbari, Vaughan (bib0027) 2013
Tran, Nguyen, Fujita, Hoang, Hwang (bib0008) 2017; 132
Fu, Yang (bib0035) 2015; 19
Brew, Greene, Cunningham (bib0023) 2010
Fang, Yin, Tao (bib0020) 2014
Zhao, Sukthankar, Sukthankar (bib0025) 2011
Zheng, Scott, Deng (bib0022) 2010
Zhang, Wu, Shengs (bib0017) 2015; 45
Donmez, Carbonell (bib0021) 2008
Breiman (bib0039) 2001; 45
Efron, Tibshirani (bib0031) 1994
Zhang, Chaudhuri (bib0012) 2015
Ipeirotis, Provost, Sheng, Wang (bib0018) 2014; 28
Rahmanian, Davis (bib0004) 2014
Fu, Zhu, Li (bib0006) 2013; 35
Zhong, Tang, Zhou (bib0019) 2015
Snow, O’Connor, Jurafsky, Ng (bib0005) 2008
Laws, Scheible, Schütze (bib0024) 2011
2014.
Brinker (bib0034) 2003
Raykar, Agrawal (bib0014) 2014
Delgado, Cernadas, Barro, Amorim (bib0041) 2014; 15
Hoeffding (bib0033) 1963; 58
Lin, Mausam, Weld (bib0015) 2016
Ferrari, Cribari-Neto (bib0028) 2004; 31
Press, Teukolsky, Vetterling, Flannery (bib0030) 1992
Breiman (10.1016/j.knosys.2018.07.010_bib0039) 2001; 45
10.1016/j.knosys.2018.07.010_bib0042
Zhang (10.1016/j.knosys.2018.07.010_bib0012) 2015
Ospina (10.1016/j.knosys.2018.07.010_bib0029) 2006; 51
Hoeffding (10.1016/j.knosys.2018.07.010_bib0033) 1963; 58
Smatana (10.1016/j.knosys.2018.07.010_bib0003) 2013
Donmez (10.1016/j.knosys.2018.07.010_bib0010) 2009
Brinker (10.1016/j.knosys.2018.07.010_bib0034) 2003
Press (10.1016/j.knosys.2018.07.010_bib0030) 1992
Davison (10.1016/j.knosys.2018.07.010_bib0032) 2013
Raykar (10.1016/j.knosys.2018.07.010_bib0014) 2014
Chen (10.1016/j.knosys.2018.07.010_bib0013) 2015; 16
Tran (10.1016/j.knosys.2018.07.010_bib0008) 2017; 132
Ferrari (10.1016/j.knosys.2018.07.010_bib0028) 2004; 31
Delgado (10.1016/j.knosys.2018.07.010_bib0041) 2014; 15
Fu (10.1016/j.knosys.2018.07.010_bib0006) 2013; 35
10.1016/j.knosys.2018.07.010_bib0038
Zhong (10.1016/j.knosys.2018.07.010_bib0019) 2015
Rahmanian (10.1016/j.knosys.2018.07.010_bib0004) 2014
Lin (10.1016/j.knosys.2018.07.010_bib0015) 2016
Ipeirotis (10.1016/j.knosys.2018.07.010_bib0018) 2014; 28
Fang (10.1016/j.knosys.2018.07.010_bib0020) 2014
Mozafari (10.1016/j.knosys.2018.07.010_bib0026) 2014; 8
Fu (10.1016/j.knosys.2018.07.010_bib0035) 2015; 19
Witten (10.1016/j.knosys.2018.07.010_bib0040) 2011
Brew (10.1016/j.knosys.2018.07.010_bib0023) 2010
Zhao (10.1016/j.knosys.2018.07.010_bib0025) 2011
Efron (10.1016/j.knosys.2018.07.010_bib0031) 1994
Wang (10.1016/j.knosys.2018.07.010_bib0037) 2016; 179
Yan (10.1016/j.knosys.2018.07.010_bib0011) 2011
Donmez (10.1016/j.knosys.2018.07.010_bib0021) 2008
Li (10.1016/j.knosys.2018.07.010_bib0009) 2016; 107
Sheng (10.1016/j.knosys.2018.07.010_bib0016) 2008
Settles (10.1016/j.knosys.2018.07.010_bib0007) 2010
Zhang (10.1016/j.knosys.2018.07.010_bib0017) 2015; 45
Hoi (10.1016/j.knosys.2018.07.010_bib0036) 2006
Krawczyk (10.1016/j.knosys.2018.07.010_bib0002) 2017; 138
Girshick (10.1016/j.knosys.2018.07.010_bib0001) 2016; 38
Laws (10.1016/j.knosys.2018.07.010_bib0024) 2011
Ho (10.1016/j.knosys.2018.07.010_bib0027) 2013
Snow (10.1016/j.knosys.2018.07.010_bib0005) 2008
Zheng (10.1016/j.knosys.2018.07.010_bib0022) 2010
References_xml – volume: 107
  start-page: 96
  year: 2016
  end-page: 103
  ident: bib0009
  article-title: Noise filtering to improve data and model quality for crowdsourcing
  publication-title: Knowl. Based Syst.
– volume: 45
  start-page: 1081
  year: 2015
  end-page: 1093
  ident: bib0017
  article-title: Active learning with imbalanced multiple noisy labeling
  publication-title: IEEE Trans. Cybern.
– year: 2011
  ident: bib0040
  article-title: Data Mining: Practical Machine Learning Tools and Techniques
– start-page: 633
  year: 2006
  end-page: 642
  ident: bib0036
  article-title: Large-scale text categorization by batch mode active learning
  publication-title: Proceedings of the 15th International Conference on World Wide Web
– reference: D. Dheeru, E. Karra Taniskidou, UCI machine learning repository, 2017.
– volume: 28
  start-page: 402
  year: 2014
  end-page: 441
  ident: bib0018
  article-title: Repeated labeling using multiple noisy labelers
  publication-title: Data Min. Knowl. Discov.
– start-page: 614
  year: 2008
  end-page: 622
  ident: bib0016
  article-title: Get another label? improving data quality and data mining using multiple, noisy labelers
  publication-title: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– start-page: 1546
  year: 2011
  end-page: 1556
  ident: bib0024
  article-title: Active learning with amazon mechanical turk
  publication-title: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing
– year: 2010
  ident: bib0007
  article-title: Active Learning Literature Survey
  publication-title: Computer Sciences Technical Report 1648
– reference: , 2014.
– volume: 31
  start-page: 799
  year: 2004
  end-page: 815
  ident: bib0028
  article-title: Beta regression for modelling rates and proportions
  publication-title: J. Appl. Stat.
– volume: 38
  start-page: 142
  year: 2016
  end-page: 158
  ident: bib0001
  article-title: Region-based convolutional networks for accurate object detection and segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 132
  start-page: 179
  year: 2017
  end-page: 187
  ident: bib0008
  article-title: A combination of active learning and self-learning for named entity recognition on twitter using conditional random fields
  publication-title: Knowl. Based Syst.
– volume: 16
  start-page: 1
  year: 2015
  end-page: 46
  ident: bib0013
  article-title: Statistical decision making for optimal budget allocation in crowd labeling
  publication-title: J. Mach. Learn. Res.
– volume: 15
  start-page: 3133
  year: 2014
  end-page: 3181
  ident: bib0041
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
  publication-title: J. Mach. Learn. Res.
– reference: FG-NET,
– start-page: 1061
  year: 2015
  end-page: 1067
  ident: bib0019
  article-title: Active learning from crowds with unsure option
  publication-title: Proceedings of the 24th International Joint Conference on Artificial Intelligence
– volume: 179
  start-page: 88
  year: 2016
  end-page: 100
  ident: bib0037
  article-title: A batch-mode active learning framework by querying discriminative and representative samples for hyperspectral image classification
  publication-title: Neurocomputing
– year: 1992
  ident: bib0030
  article-title: Numerical Recipes in C: The Art of Scientific Computing
– volume: 138
  start-page: 69
  year: 2017
  end-page: 78
  ident: bib0002
  article-title: Active and adaptive ensemble learning for online activity recognition from data streams
  publication-title: Knowl. Based Syst.
– start-page: 1161
  year: 2011
  end-page: 1168
  ident: bib0011
  article-title: Active learning from crowds
  publication-title: Proceedings of the 28th International Conference on Machine Learning
– start-page: 259
  year: 2009
  end-page: 268
  ident: bib0010
  article-title: Efficiently learning the accuracy of labeling sources for selective sampling
  publication-title: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0039
  article-title: Random forests
  publication-title: Mach Learn
– year: 1994
  ident: bib0031
  article-title: An Introduction to the Bootstrap
– start-page: 191
  year: 2013
  end-page: 194
  ident: bib0003
  article-title: Active learning enhanced semi-automatic annotation tool for aspect-based sentiment analysis
  publication-title: Proceedings of the 11th IEEE International Symposium on Intelligent Systems and Informatics
– start-page: 405
  year: 2014
  end-page: 408
  ident: bib0004
  article-title: User interface design for crowdsourcing systems
  publication-title: Proceedings of the 2014 International Working Conference on Advanced Visual Interfaces
– start-page: 145
  year: 2010
  end-page: 150
  ident: bib0023
  article-title: Using crowdsourcing and active learning to track sentiment in online media
  publication-title: Proceedings of the 19th European Conference on Artificial Intelligence
– start-page: 639
  year: 2010
  end-page: 648
  ident: bib0022
  article-title: Active learning from multiple noisy labelers with varied costs
  publication-title: Proceedings of The 10th IEEE International Conference on Data Mining
– start-page: 254
  year: 2008
  end-page: 263
  ident: bib0005
  article-title: Cheap and fast - but is it good? evaluating non-expert annotations for natural language tasks
  publication-title: Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing
– volume: 19
  start-page: 345
  year: 2015
  end-page: 358
  ident: bib0035
  article-title: A batch-mode active learning SVM method based on semi-supervised clustering
  publication-title: Intell. Data Anal.
– year: 2013
  ident: bib0032
  article-title: Bootstrap Methods and Their Application
– start-page: 703
  year: 2015
  end-page: 711
  ident: bib0012
  article-title: Active learning from weak and strong labelers
  publication-title: Advances in Neural Information Processing Systems 28: 29th Annual Conference on Neural Information Processing Systems
– start-page: 1809
  year: 2014
  end-page: 1815
  ident: bib0020
  article-title: Active learning for crowdsourcing using knowledge transfer
  publication-title: Proceedings of the 28th AAAI Conference on Artificial Intelligence
– start-page: 728
  year: 2011
  end-page: 733
  ident: bib0025
  article-title: Incremental relabeling for active learning with noisy crowdsourced annotations
  publication-title: 2011 IEEE 3rd International Conference on Privacy, Security, Risk and Trust and 2011 IEEE 3rd International Conference on Social Computing
– volume: 8
  start-page: 125
  year: 2014
  end-page: 136
  ident: bib0026
  article-title: Scaling up crowd-sourcing to very large datasets: a case for active learning
  publication-title: Proc. VLDB Endowment
– volume: 58
  start-page: 13
  year: 1963
  end-page: 30
  ident: bib0033
  article-title: Probability inequalities for sums of bounded random variables
  publication-title: J. Am. Stat. Assoc.
– start-page: 619
  year: 2008
  end-page: 628
  ident: bib0021
  article-title: Proactive learning: Cost-sensitive active learning with multiple imperfect oracles
  publication-title: Proceedings of the 17th ACM Conference on Information and Knowledge Management
– start-page: 59
  year: 2003
  end-page: 66
  ident: bib0034
  article-title: Incorporating diversity in active learning with support vector machines
  publication-title: Proceedings of the 20th International Conference on Machine Learning
– start-page: 832
  year: 2014
  end-page: 840
  ident: bib0014
  article-title: Sequential crowdsourced labeling as an epsilon-greedy exploration in a markov decision process
  publication-title: Proceedings of the 17th International Conference on Artificial Intelligence and Statistics
– volume: 51
  start-page: 960
  year: 2006
  end-page: 981
  ident: bib0029
  article-title: Improved point and interval estimation for a beta regression model
  publication-title: Comput. Stat. Data Anal.
– start-page: 534
  year: 2013
  end-page: 542
  ident: bib0027
  article-title: Adaptive task assignment for crowdsourced classification
  publication-title: Proceedings of the 30th International Conference on Machine Learning
– start-page: 1845
  year: 2016
  end-page: 1852
  ident: bib0015
  article-title: Re-active learning: Active learning with relabeling
  publication-title: Proceedings of the 30th AAAI Conference on Artificial Intelligence
– volume: 35
  start-page: 249
  year: 2013
  end-page: 283
  ident: bib0006
  article-title: A survey on instance selection for active learning
  publication-title: Knowl. Inf. Syst.
– start-page: 639
  year: 2010
  ident: 10.1016/j.knosys.2018.07.010_bib0022
  article-title: Active learning from multiple noisy labelers with varied costs
– start-page: 1546
  year: 2011
  ident: 10.1016/j.knosys.2018.07.010_bib0024
  article-title: Active learning with amazon mechanical turk
– volume: 31
  start-page: 799
  issue: 7
  year: 2004
  ident: 10.1016/j.knosys.2018.07.010_bib0028
  article-title: Beta regression for modelling rates and proportions
  publication-title: J. Appl. Stat.
  doi: 10.1080/0266476042000214501
– volume: 16
  start-page: 1
  year: 2015
  ident: 10.1016/j.knosys.2018.07.010_bib0013
  article-title: Statistical decision making for optimal budget allocation in crowd labeling
  publication-title: J. Mach. Learn. Res.
– start-page: 619
  year: 2008
  ident: 10.1016/j.knosys.2018.07.010_bib0021
  article-title: Proactive learning: Cost-sensitive active learning with multiple imperfect oracles
– start-page: 1845
  year: 2016
  ident: 10.1016/j.knosys.2018.07.010_bib0015
  article-title: Re-active learning: Active learning with relabeling
– volume: 15
  start-page: 3133
  issue: 1
  year: 2014
  ident: 10.1016/j.knosys.2018.07.010_bib0041
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
  publication-title: J. Mach. Learn. Res.
– volume: 35
  start-page: 249
  issue: 2
  year: 2013
  ident: 10.1016/j.knosys.2018.07.010_bib0006
  article-title: A survey on instance selection for active learning
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-012-0507-8
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.knosys.2018.07.010_bib0039
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– start-page: 534
  year: 2013
  ident: 10.1016/j.knosys.2018.07.010_bib0027
  article-title: Adaptive task assignment for crowdsourced classification
– start-page: 1161
  year: 2011
  ident: 10.1016/j.knosys.2018.07.010_bib0011
  article-title: Active learning from crowds
– volume: 28
  start-page: 402
  issue: 2
  year: 2014
  ident: 10.1016/j.knosys.2018.07.010_bib0018
  article-title: Repeated labeling using multiple noisy labelers
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-013-0306-1
– year: 2013
  ident: 10.1016/j.knosys.2018.07.010_bib0032
– ident: 10.1016/j.knosys.2018.07.010_bib0038
– start-page: 145
  year: 2010
  ident: 10.1016/j.knosys.2018.07.010_bib0023
  article-title: Using crowdsourcing and active learning to track sentiment in online media
– start-page: 59
  year: 2003
  ident: 10.1016/j.knosys.2018.07.010_bib0034
  article-title: Incorporating diversity in active learning with support vector machines
– start-page: 191
  year: 2013
  ident: 10.1016/j.knosys.2018.07.010_bib0003
  article-title: Active learning enhanced semi-automatic annotation tool for aspect-based sentiment analysis
– year: 2011
  ident: 10.1016/j.knosys.2018.07.010_bib0040
– volume: 58
  start-page: 13
  issue: 301
  year: 1963
  ident: 10.1016/j.knosys.2018.07.010_bib0033
  article-title: Probability inequalities for sums of bounded random variables
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1963.10500830
– start-page: 728
  year: 2011
  ident: 10.1016/j.knosys.2018.07.010_bib0025
  article-title: Incremental relabeling for active learning with noisy crowdsourced annotations
– volume: 45
  start-page: 1081
  issue: 5
  year: 2015
  ident: 10.1016/j.knosys.2018.07.010_bib0017
  article-title: Active learning with imbalanced multiple noisy labeling
  publication-title: IEEE Trans. Cybern.
– volume: 19
  start-page: 345
  issue: 2
  year: 2015
  ident: 10.1016/j.knosys.2018.07.010_bib0035
  article-title: A batch-mode active learning SVM method based on semi-supervised clustering
  publication-title: Intell. Data Anal.
  doi: 10.3233/IDA-150720
– volume: 51
  start-page: 960
  issue: 2
  year: 2006
  ident: 10.1016/j.knosys.2018.07.010_bib0029
  article-title: Improved point and interval estimation for a beta regression model
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2005.10.002
– volume: 107
  start-page: 96
  issue: Supplement C
  year: 2016
  ident: 10.1016/j.knosys.2018.07.010_bib0009
  article-title: Noise filtering to improve data and model quality for crowdsourcing
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2016.06.003
– year: 1994
  ident: 10.1016/j.knosys.2018.07.010_bib0031
– start-page: 405
  year: 2014
  ident: 10.1016/j.knosys.2018.07.010_bib0004
  article-title: User interface design for crowdsourcing systems
– volume: 132
  start-page: 179
  issue: Supplement C
  year: 2017
  ident: 10.1016/j.knosys.2018.07.010_bib0008
  article-title: A combination of active learning and self-learning for named entity recognition on twitter using conditional random fields
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2017.06.023
– start-page: 703
  year: 2015
  ident: 10.1016/j.knosys.2018.07.010_bib0012
  article-title: Active learning from weak and strong labelers
– ident: 10.1016/j.knosys.2018.07.010_bib0042
– volume: 38
  start-page: 142
  issue: 1
  year: 2016
  ident: 10.1016/j.knosys.2018.07.010_bib0001
  article-title: Region-based convolutional networks for accurate object detection and segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2437384
– year: 1992
  ident: 10.1016/j.knosys.2018.07.010_bib0030
– volume: 138
  start-page: 69
  issue: Supplement C
  year: 2017
  ident: 10.1016/j.knosys.2018.07.010_bib0002
  article-title: Active and adaptive ensemble learning for online activity recognition from data streams
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2017.09.032
– volume: 8
  start-page: 125
  issue: 2
  year: 2014
  ident: 10.1016/j.knosys.2018.07.010_bib0026
  article-title: Scaling up crowd-sourcing to very large datasets: a case for active learning
  publication-title: Proc. VLDB Endowment
  doi: 10.14778/2735471.2735474
– start-page: 1061
  year: 2015
  ident: 10.1016/j.knosys.2018.07.010_bib0019
  article-title: Active learning from crowds with unsure option
– start-page: 1809
  year: 2014
  ident: 10.1016/j.knosys.2018.07.010_bib0020
  article-title: Active learning for crowdsourcing using knowledge transfer
– start-page: 254
  year: 2008
  ident: 10.1016/j.knosys.2018.07.010_bib0005
  article-title: Cheap and fast - but is it good? evaluating non-expert annotations for natural language tasks
– start-page: 259
  year: 2009
  ident: 10.1016/j.knosys.2018.07.010_bib0010
  article-title: Efficiently learning the accuracy of labeling sources for selective sampling
– year: 2010
  ident: 10.1016/j.knosys.2018.07.010_bib0007
  article-title: Active Learning Literature Survey
– start-page: 614
  year: 2008
  ident: 10.1016/j.knosys.2018.07.010_bib0016
  article-title: Get another label? improving data quality and data mining using multiple, noisy labelers
– start-page: 832
  year: 2014
  ident: 10.1016/j.knosys.2018.07.010_bib0014
  article-title: Sequential crowdsourced labeling as an epsilon-greedy exploration in a markov decision process
– start-page: 633
  year: 2006
  ident: 10.1016/j.knosys.2018.07.010_bib0036
  article-title: Large-scale text categorization by batch mode active learning
– volume: 179
  start-page: 88
  year: 2016
  ident: 10.1016/j.knosys.2018.07.010_bib0037
  article-title: A batch-mode active learning framework by querying discriminative and representative samples for hyperspectral image classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.11.062
SSID ssj0002218
Score 2.3542895
Snippet Collecting labels for data is important for many practical applications (e.g., data mining). However, this process can be expensive and time-consuming since it...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 244
SubjectTerms Active learning
Computer simulation
Confidence-based answer
Crowdsourcing
Data mining
Labeling
Labeling task
Labels
Learning
Subject specialists
Uncertainty
Title Active learning with confidence-based answers for crowdsourcing labeling tasks
URI https://dx.doi.org/10.1016/j.knosys.2018.07.010
https://www.proquest.com/docview/2126564371
Volume 159
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXrz4FtcXOXit2zRpuz0ui7Iq7EUXvIU8xQdV3Ip48bc7k6aKIix4Cm0nJUwm8wgz8xFybBVsuqngIA0RwsxlOlHW6wRMuzIebDbTIUF2Wkxm4uImv-mRcVcLg2mVUfe3Oj1o6_hmELk5eL67G1yBcwDyih4yqGFRYNyO3etApk8-vtM8sizc8SFxgtRd-VzI8Xqon-bv2LSbDUMLT6yj_ds8_VLUwfqcrZPV6DbSUbuyDdJz9SZZ6yAZaDyhW2Q6CvqLRjCIW4r3rBRiXt-ChyZotSwF-4TgaBQ8VgoLebPhDh_pQShChTpt1Pxhvk1mZ6fX40kSIRMSw7lokpzx3Dtb8izXGkIB4apKFDAIpqy2JYxcKOOM0jpPVekLn_ph6irlMDQRfIcs1U-12yWUVcYU3FrwGITwHuiZMZxp5pDtpe4T3nFKmthPHGEtHmWXOHYvW_5K5K9MSwn87ZPka9Zz209jAX3ZbYL8IRcSVP6CmQfdnsl4LuE7y8CBFbxke__-8T5Zwae2IPGALDUvr-4QPJNGHwXROyLLo_PLyfQTmkvk-w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lHvTiW6xWzcHr0maT3e0eS1Gq1l5swVvIU3zQFlsR_70z2aygCIKnwGayhMnkm5kwD0LOrYJDNyVcpB62MHOpTpT1OgHVrowHnc10CJAd58OpuL7P7htkUOfCYFhlxP4K0wNaxy-dyM3O4vGxcwfGAcgrWsgAwyIHv30Nq1OJJlnrX90Mx1-AnKbhmQ_pE1xQZ9CFMK_n2Xz5gXW7WS9U8cRU2t811A-sDgrocptsRsuR9qvN7ZCGm-2SrborA42XdI-M-wHCaOwH8UDxqZWC2-ur_qEJKi5LQUVhfzQKRiuFjbzb8IyP9CAXIUmdrtTyeblPppcXk8EwiV0TEsO5WCUZ45l3tuBppjV4A8KVpchhEExZbQsYuVDGGaV11lWFz33X97quVA69E8EPSHM2n7lDQllpTM6tBaNBCO-BnhnDmWYOOV_oFuE1p6SJJcWxs8WLrGPHnmTFX4n8ld1CAn9bJPlatahKavxBX9SHIL-JhgTU_2Nluz4zGa8mzLMUbFjBC3b07x-fkfXh5HYkR1fjm2OygTNVfmKbNFevb-4EDJWVPo2C-Al17ees
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+learning+with+confidence-based+answers+for+crowdsourcing+labeling+tasks&rft.jtitle=Knowledge-based+systems&rft.au=Song%2C+Jinhua&rft.au=Wang%2C+Hao&rft.au=Gao%2C+Yang&rft.au=An%2C+Bo&rft.date=2018-11-01&rft.issn=0950-7051&rft.volume=159&rft.spage=244&rft.epage=258&rft_id=info:doi/10.1016%2Fj.knosys.2018.07.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2018_07_010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon