Data-Driven Process Monitoring and Fault Diagnosis: A Comprehensive Survey
This paper presents a comprehensive review of the historical development, the current state of the art, and prospects of data-driven approaches for industrial process monitoring. The subject covers a vast and diverse range of works, which are compiled and critically evaluated based on the different...
Saved in:
Published in | Processes Vol. 12; no. 2; p. 251 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a comprehensive review of the historical development, the current state of the art, and prospects of data-driven approaches for industrial process monitoring. The subject covers a vast and diverse range of works, which are compiled and critically evaluated based on the different perspectives they provide. Data-driven modeling techniques are surveyed and categorized into two main groups: multivariate statistics and machine learning. Representative models, namely principal component analysis, partial least squares and artificial neural networks, are detailed in a didactic manner. Topics not typically covered by other reviews, such as process data exploration and treatment, software and benchmarks availability, and real-world industrial implementations, are thoroughly analyzed. Finally, future research perspectives are discussed, covering aspects related to system performance, the significance and usefulness of the approaches, and the development environment. This work aims to be a reference for practitioners and researchers navigating the extensive literature on data-driven industrial process monitoring. |
---|---|
AbstractList | This paper presents a comprehensive review of the historical development, the current state of the art, and prospects of data-driven approaches for industrial process monitoring. The subject covers a vast and diverse range of works, which are compiled and critically evaluated based on the different perspectives they provide. Data-driven modeling techniques are surveyed and categorized into two main groups: multivariate statistics and machine learning. Representative models, namely principal component analysis, partial least squares and artificial neural networks, are detailed in a didactic manner. Topics not typically covered by other reviews, such as process data exploration and treatment, software and benchmarks availability, and real-world industrial implementations, are thoroughly analyzed. Finally, future research perspectives are discussed, covering aspects related to system performance, the significance and usefulness of the approaches, and the development environment. This work aims to be a reference for practitioners and researchers navigating the extensive literature on data-driven industrial process monitoring. |
Audience | Academic |
Author | Câmara, Maurício Melo Pinto, José Carlos Melo, Afrânio |
Author_xml | – sequence: 1 givenname: Afrânio orcidid: 0000-0002-7279-3981 surname: Melo fullname: Melo, Afrânio – sequence: 2 givenname: Maurício Melo orcidid: 0000-0001-7639-1480 surname: Câmara fullname: Câmara, Maurício Melo – sequence: 3 givenname: José Carlos orcidid: 0000-0003-2631-1811 surname: Pinto fullname: Pinto, José Carlos |
BookMark | eNptkE9LAzEQxYNUsNZe_AQBb8LWJJvdZL2V1vqHioJ6XrJpUlO2yZpkC_32Rioo4sxhhuH35sE7BQPrrALgHKNJnlfoqvOYoNQFPgJDQgjLKobZ4Nd-AsYhbFCqCue8KIfgYS6iyObe7JSFz95JFQJ8dNZE541dQ2FXcCH6NsK5EWvrggnXcApnbtt59a5sSEL40vud2p-BYy3aoMbfcwTeFjevs7ts-XR7P5suM5nnNGZUYdIQzrSivGCCNAVvtKSY84ZKVZa4UqWgCK8S1HBcyEqxEmNdNrSUrND5CFwc_nbeffQqxHrjem-TZU2qHKOi5BVJ1ORArUWramO1i17I1Cu1NTIFp026TxmnGFHCaRJcHgTSuxC80nXnzVb4fY1R_ZVv_ZNvgtEfWJooonE2uZj2P8knAKt9HA |
CitedBy_id | crossref_primary_10_3390_pr12092053 crossref_primary_10_1002_cjce_25562 crossref_primary_10_1002_cjce_25671 crossref_primary_10_1007_s41101_024_00286_4 crossref_primary_10_1016_j_dche_2024_100162 crossref_primary_10_3390_technologies12120237 crossref_primary_10_1177_01423312241286566 crossref_primary_10_3390_asi7060121 crossref_primary_10_3390_pr12081620 crossref_primary_10_1016_j_dche_2024_100182 crossref_primary_10_22395_rium_v23n44a1 crossref_primary_10_1007_s12257_024_00174_7 crossref_primary_10_3390_s24227299 |
Cites_doi | 10.1016/j.ins.2020.06.034 10.1109/TNNLS.2023.3282047 10.1016/j.isatra.2021.01.039 10.1016/j.cherd.2021.05.002 10.1145/2594473.2594479 10.1016/0098-1354(95)00011-P 10.1016/j.ces.2013.08.007 10.1109/TSM.2007.907607 10.1016/j.eng.2021.03.019 10.3390/pr9030544 10.1016/j.compchemeng.2020.106809 10.3390/pr6020017 10.1021/acs.iecr.9b01752 10.1016/j.compchemeng.2022.107964 10.1016/j.procir.2018.03.150 10.1002/cjce.24207 10.1016/S0098-1354(97)00262-7 10.1002/cjce.23923 10.1109/ACCESS.2018.2810079 10.1108/02656711211258508 10.1016/j.jprocont.2019.12.004 10.1016/j.jfda.2018.10.006 10.1016/j.pnucene.2010.12.001 10.1016/j.jprocont.2022.08.008 10.9734/ajrcos/2021/v12i430302 10.1137/1.9780898718461 10.1002/aic.690370209 10.1016/j.cherd.2022.03.031 10.1021/acs.iecr.8b02913 10.1016/0098-1354(92)80051-A 10.1145/3559540 10.1002/wics.51 10.1016/j.jprocont.2023.01.011 10.1016/j.chemolab.2018.11.001 10.1146/annurev-statistics-040120-010930 10.1145/2939672.2939785 10.1016/j.cie.2017.12.006 10.1515/revce-2013-0013 10.1016/j.chemolab.2010.08.012 10.1002/cjce.20090 10.1109/ICIP46576.2022.9897283 10.1007/s41060-021-00265-1 10.1002/9781118391686 10.1016/j.jprocont.2012.06.009 10.1016/j.chemolab.2016.08.014 10.1016/S0098-1354(00)00374-4 10.1016/j.ifacol.2015.08.167 10.1002/9780470061626 10.1016/j.compchemeng.2019.04.003 10.1016/S0959-1524(99)00043-8 10.1016/j.sigpro.2003.07.018 10.1007/s10845-009-0351-1 10.1016/j.isatra.2021.08.040 10.1007/s11265-010-0513-6 10.1002/(SICI)1099-128X(199905/08)13:3/4<379::AID-CEM556>3.0.CO;2-N 10.1021/acs.iecr.2c01788 10.1002/aic.14013 10.1002/ett.3647 10.1016/j.chemolab.2022.104728 10.1016/j.conengprac.2018.07.012 10.1002/(SICI)1097-0290(19960905)51:5<558::AID-BIT8>3.0.CO;2-B 10.1080/07408170490473060 10.1109/AdCONIP55568.2022.9894124 10.1007/s10462-019-09779-4 10.1016/j.chemolab.2017.09.021 10.1016/j.conengprac.2020.104627 10.1016/j.conengprac.2021.104784 10.1021/acs.iecr.0c04038 10.1016/j.jprocont.2021.08.014 10.1021/bp015514w 10.3390/pr8010024 10.1016/j.neucom.2015.09.081 10.1002/cjce.23762 10.1007/s12530-023-09523-y 10.1109/TASE.2023.3253285 10.1016/j.compchemeng.2020.106787 10.1081/PRE-120026883 10.1021/acs.iecr.0c03901 10.1016/S1474-6670(17)40218-7 10.1002/9780470517253 10.1002/aic.10260 10.1016/0959-1524(94)80040-5 10.1016/j.ins.2016.10.028 10.1080/10618600.2019.1617160 10.1515/revce-2015-0022 10.1016/j.compchemeng.2006.09.004 10.23919/ACC45564.2020.9147890 10.1016/j.engappai.2020.103475 10.1016/j.inffus.2020.01.005 10.1002/(SICI)1099-128X(199707)11:4<339::AID-CEM476>3.0.CO;2-L 10.3390/pr9091686 10.1016/j.neucom.2017.02.025 10.1016/j.jprocont.2023.103062 10.1007/978-3-030-83819-5 10.1016/j.conengprac.2022.105308 10.1016/j.chemolab.2022.104711 10.1016/j.ces.2003.09.012 10.1016/j.engappai.2022.104811 10.1109/CAC.2017.8243540 10.23919/CCC50068.2020.9189106 10.1080/00207721.2014.886136 10.1002/cjce.25085 10.1021/acs.iecr.0c02552 10.1021/acs.iecr.0c01512 10.1039/D1RE00541C 10.1016/0893-6080(89)90020-8 10.1016/0009-2509(74)80089-8 10.1016/S1474-6670(17)43138-7 10.1021/acs.iecr.1c03860 10.1016/0165-1684(94)90029-9 10.1109/RIVF.2019.8713738 10.3390/pr7070436 10.1145/3313831.3376219 10.1109/TIE.2019.2962468 10.1016/j.eswa.2009.09.053 10.1016/j.jprocont.2004.06.010 10.1021/acs.iecr.2c03570 10.1142/3823 10.1016/j.chemolab.2019.02.006 10.1016/j.cherd.2019.09.026 10.3390/pr8091123 10.1016/j.ifacol.2023.10.921 10.1016/S0009-2509(03)00132-5 10.1016/j.jprocont.2010.10.005 10.1016/j.neucom.2020.04.057 10.3390/pr11061608 10.1016/j.jprocont.2022.11.010 10.1002/aic.16489 10.1016/j.sigpro.2003.07.019 10.1016/j.jprocont.2020.05.010 10.1002/cjce.24511 10.1017/S0890060417000518 10.1109/TII.2021.3053128 10.1016/j.jprocont.2019.11.010 10.1016/j.arcontrol.2016.09.001 10.1252/jcej.16we280 10.1016/j.eswa.2022.118260 10.1016/j.jtice.2010.03.015 10.1016/j.neucom.2015.07.099 10.1016/j.ces.2023.118900 10.1080/01621459.1989.10478797 10.1016/j.neunet.2018.09.010 10.1016/j.arcontrol.2022.09.005 10.1016/0169-7439(95)00076-3 10.1007/978-1-4471-6410-4 10.1016/j.jenvman.2018.06.087 10.1016/j.jprocont.2015.02.007 10.1002/cjce.24401 10.1038/323533a0 10.1016/j.ces.2023.118581 10.1177/0142331219898937 10.1007/s10489-022-03344-3 10.1021/acs.iecr.3c01565 10.3390/min10110958 10.1016/0169-7439(93)E0075-F 10.1007/s40313-014-0128-4 10.1002/aic.17986 10.1021/op400337x 10.1002/cjce.23249 10.1002/cem.667 10.1002/aic.17282 10.1007/s12555-011-0407-9 10.3390/fi12060097 10.1016/j.jprocont.2021.07.007 10.1016/j.aei.2005.01.009 10.1007/s12065-020-00422-8 10.1002/qre.978 10.1016/j.jprocont.2022.12.007 10.1080/00401706.1995.10485888 10.1016/0967-0661(95)00014-L 10.1016/j.psep.2022.07.043 10.1016/j.cie.2016.03.003 10.1016/j.knosys.2020.105596 10.1016/j.compchemeng.2019.05.037 10.1109/CVPR.2016.90 10.1371/journal.pone.0152173 10.1016/j.isatra.2019.07.001 10.1016/j.knosys.2014.01.020 10.3182/20140824-6-ZA-1003.02329 10.1016/j.psep.2015.02.003 10.1016/j.eswa.2019.01.011 10.1016/j.ins.2018.03.010 10.1016/0098-1354(93)80018-I 10.1109/TKDE.2019.2958342 10.1007/s00521-020-05171-4 10.1016/j.jprocont.2020.06.014 10.1109/JSEN.2020.3033153 10.1016/j.neucom.2015.03.082 10.1016/j.cjche.2020.05.003 10.1002/cjce.24066 10.1016/j.psep.2023.03.017 10.1002/aic.10325 10.1016/j.neucom.2013.12.002 10.1016/j.jprocont.2005.04.001 10.1021/acs.iecr.5b04023 10.1002/widm.1147 10.1016/j.patrec.2021.11.013 10.1016/j.conengprac.2022.105304 10.1017/CBO9780511755798 10.3233/IDA-1997-1203 10.1109/CONTROL.2016.7737588 10.1021/acs.iecr.9b02391 10.1214/16-STS587 10.1016/j.jprocont.2003.09.004 10.1016/j.neucom.2022.06.042 10.1016/j.jprocont.2023.102999 10.1016/j.psep.2020.03.017 10.1021/acs.iecr.0c01749 10.1016/j.compchemeng.2003.09.031 10.1016/j.eswa.2023.120854 10.1016/j.neucom.2018.12.024 10.1016/j.psep.2022.09.039 10.3182/20120710-4-SG-2026.00172 10.1016/j.ymssp.2006.12.007 10.1007/s10994-019-05840-z 10.1002/aic.12200 10.1021/ie500815a 10.3182/20020721-6-ES-1901.01632 10.1109/ICMLA.2015.141 10.1016/j.dsp.2020.102868 10.1162/089976601750264965 10.1016/j.arcontrol.2016.09.008 10.3390/pr7030152 10.1016/j.energy.2010.06.001 10.1109/TCYB.2022.3178878 10.1016/j.ifacol.2019.06.140 10.1021/ie302069q 10.1016/j.compchemeng.2010.07.034 10.1109/IJCNN.2018.8489385 10.1016/0098-1354(96)00132-9 10.1016/j.isatra.2017.09.004 10.1016/j.chemolab.2020.104092 10.1080/00051144.2011.11828430 10.1016/j.chemolab.2022.104684 10.1080/00224065.2016.11918148 10.1016/j.ces.2020.115928 10.1002/cjce.24949 10.1007/s10115-016-0987-z 10.1016/j.compchemeng.2015.08.018 10.1016/j.ces.2004.04.031 10.1016/j.compchemeng.2020.106841 10.1109/IECON.2017.8217236 10.3390/pr5030038 10.1016/S0169-7439(98)00119-1 10.3390/pr10112408 10.1016/j.chemolab.2017.12.008 10.1109/RAIIC59453.2023.10280857 10.1016/j.compchemeng.2019.05.029 10.1093/jalm/jfac114 10.1021/ie301945s 10.1016/j.automatica.2009.02.027 10.1016/j.eswa.2016.06.035 10.1021/acs.iecr.9b03077 10.1016/j.jprocont.2013.05.007 10.1016/j.compchemeng.2021.107549 10.3390/pr5040056 10.1177/0003702817704587 10.1109/EALS.2014.7009497 10.1016/j.petrol.2022.110716 10.3390/pr7120958 10.1002/int.21899 10.1016/j.jprocont.2020.09.007 10.1016/S0967-0661(02)00096-5 10.1109/TCST.2021.3094512 10.1016/j.jprocont.2021.01.005 10.1021/acs.iecr.2c00335 10.1002/acs.859 10.1016/S1474-6670(17)44952-4 10.1109/TKDE.2015.2441713 10.1016/j.protcy.2013.12.483 10.1016/j.compchemeng.2007.07.005 10.1002/cjce.24750 10.1016/j.compchemeng.2022.107884 10.1109/SMC.2019.8914596 10.1016/j.sigpro.2019.107299 10.1016/j.compchemeng.2022.108014 10.1016/j.ces.2021.117221 10.1016/j.isatra.2020.08.017 10.1021/acsomega.1c06649 10.1016/j.conengprac.2007.04.006 10.1016/j.ifacol.2020.12.126 10.1002/cem.800 10.1016/j.engappai.2022.104743 10.1016/0959-1524(95)00019-M 10.1016/j.neucom.2020.04.075 10.1007/978-3-540-78293-3 10.23919/ACC.1992.4792557 10.1177/095440620121500907 10.1007/s00521-022-08017-3 10.23919/ACC53348.2022.9867763 10.1016/j.jprocont.2018.12.016 10.1007/s12247-018-9348-7 10.1016/j.isatra.2018.10.011 10.1021/acs.iecr.0c06307 10.3390/s22062205 10.1007/s13042-022-01621-8 10.1002/cjce.22200 10.1016/j.compchemeng.2017.10.029 10.1016/j.jprocont.2015.04.014 10.1007/11752790_2 10.1016/j.asoc.2017.09.019 10.1007/s43153-021-00125-2 10.1109/JSAIT.2021.3072962 10.1007/s11668-023-01817-2 10.1016/j.neucom.2017.01.078 10.1002/cben.202200030 10.1016/j.coche.2021.100758 10.1016/j.compchemeng.2009.08.007 10.1145/5666.5673 10.1109/CCDC.2013.6561830 10.1109/TII.2018.2875067 10.1109/TIM.2022.3218574 10.3389/fceng.2020.582126 10.1016/j.compchemeng.2021.107587 10.1021/acs.chas.0c00075 10.1021/ie061094+ 10.1109/JPROC.2021.3052449 10.1016/S0167-8655(99)00087-2 10.1016/j.arcontrol.2009.08.001 10.1109/ICIEEM.2009.5344265 10.1016/j.fuel.2018.11.045 10.1016/j.chemolab.2009.07.003 10.1016/B978-0-444-63577-8.50149-2 10.1016/j.jprocont.2022.07.012 10.1109/TII.2009.2033181 10.1177/09544089231213778 10.1016/S0098-1354(02)00093-5 10.1016/j.ejor.2018.06.011 10.1016/j.jprocont.2004.02.001 10.1007/978-1-4471-5185-2 10.1016/S0169-7439(00)00062-9 10.18653/v1/D16-1053 10.1016/j.eswa.2021.115234 10.1016/0098-1354(95)00003-K 10.1016/j.cherd.2012.06.004 10.1146/annurev-statistics-022513-115657 10.1021/ie901975c 10.1016/j.conengprac.2009.11.002 10.1016/j.chemolab.2016.07.014 10.1016/j.jfranklin.2020.03.005 10.1016/B978-0-323-88506-5.50184-4 10.1016/j.jprocont.2019.11.007 10.1016/j.jfranklin.2016.10.033 10.1007/s10845-023-02118-z 10.1016/S0009-2509(01)00366-9 10.1021/ie401027b 10.1002/jctb.503300140 10.1002/cjce.23750 10.1016/j.engappai.2017.10.016 10.1002/aic.690490412 10.1007/s10489-022-04342-1 10.1109/TII.2013.2243743 10.1016/j.jprocont.2017.05.002 10.1021/acs.iecr.3c01481 10.14778/3401960.3401973 10.1016/j.jprocont.2017.02.006 10.1016/j.cherd.2019.06.016 10.1002/cjce.25124 10.1162/neco.2006.18.7.1527 10.1016/j.compchemeng.2019.01.014 10.1109/JAS.2016.7471613 10.1016/j.neucom.2017.04.070 10.1137/1.9781611974348.41 10.1007/978-0-387-84858-7 10.3390/pr10010122 10.1007/s12530-016-9168-2 10.1016/j.conengprac.2021.104811 10.1109/ACCESS.2019.2932017 10.1109/ACCESS.2020.3002257 10.1016/j.procs.2017.11.440 10.1016/j.compchemeng.2021.107304 10.1201/9781315155135 10.1109/JIOT.2021.3116785 10.1016/j.chemolab.2004.05.001 10.1111/j.1469-1809.1936.tb02137.x 10.1016/j.jprocont.2015.01.003 10.1109/CCDC49329.2020.9164262 10.1016/j.compchemeng.2022.107853 10.1109/ACCESS.2018.2794765 10.1109/TIE.2014.2301773 10.1016/j.ifacol.2015.09.595 10.1177/014233129701900507 10.2166/wst.2003.0627 10.1016/j.cjche.2022.06.029 10.1002/cem.785 10.1016/S1570-7946(09)70228-7 10.1007/978-3-030-65965-3 10.1093/oso/9780198782933.003.0001 10.1016/j.isatra.2023.04.035 10.1109/TKDE.2011.226 10.1016/j.engappai.2023.105988 10.1016/j.compchemeng.2018.04.009 10.1016/j.compchemeng.2003.09.011 10.1002/aic.690370112 10.1109/SMC.2016.7844219 10.1109/TNNLS.2021.3105827 10.1016/j.sigpro.2013.12.026 10.1016/S0098-1354(02)00153-9 10.1109/TASE.2022.3230687 10.1016/j.compchemeng.2020.107197 10.1016/j.chemolab.2018.10.010 10.1016/j.cie.2017.08.035 10.3182/20110828-6-IT-1002.00934 10.1016/j.eswa.2017.03.056 10.1002/aic.690351210 10.1016/j.jprocont.2021.12.005 10.1007/s00500-022-06894-3 10.1162/089976602317318938 10.1016/j.compchemeng.2023.108453 10.1002/cjce.24494 10.3390/pr8040391 10.1021/acs.iecr.2c03330 10.1021/acs.iecr.8b06205 10.1016/S0167-7799(00)01528-6 10.1109/RAM.2017.7889650 10.1016/j.isatra.2023.09.027 10.1021/acs.iecr.0c03492 10.1016/j.chemolab.2015.02.016 10.1016/j.neucom.2021.03.091 10.1016/S0967-0661(99)00105-7 10.1007/978-3-642-33275-3 10.1145/2939672.2939778 10.1016/j.isatra.2021.04.014 10.1016/j.compchemeng.2017.10.008 10.1016/S1474-6670(17)35884-6 10.1080/00224065.2015.11918137 10.1016/j.compchemeng.2020.106755 10.1080/00207179408923103 10.3390/pr10122557 10.1002/aic.10568 10.1002/cem.2719 10.1016/j.chemolab.2013.07.001 10.1016/j.chemolab.2023.104758 10.1002/cem.1262 10.1021/acs.iecr.7b00027 10.1145/130385.130401 10.1016/j.arcontrol.2020.09.004 10.1016/j.compchemeng.2008.12.012 10.1109/TNNLS.2016.2635111 10.1016/j.ces.2010.10.008 10.1016/j.arcontrol.2012.09.004 10.1016/j.aci.2018.08.006 10.1109/TII.2020.3015034 10.1109/79.91217 10.1109/JSTSP.2012.2234082 10.3390/pr10112311 10.1007/s10845-011-0533-5 10.1016/j.bushor.2018.08.004 10.1021/ie990110i 10.1016/j.epsr.2022.107990 10.1016/j.jprocont.2010.06.001 10.1016/j.cviu.2013.11.009 10.1007/s11814-014-0151-y 10.1007/s10462-020-09934-2 10.1007/s00521-021-06711-2 10.1016/j.chemolab.2005.01.002 10.1016/j.chemolab.2019.103863 10.1016/j.neucom.2005.12.126 10.1002/cben.202000027 10.1002/aic.15062 10.1016/j.jprocont.2021.08.003 10.1016/j.compchemeng.2021.107467 10.1016/j.compchemeng.2020.106895 10.1016/S0169-7439(02)00140-5 10.1021/acs.iecr.1c01990 10.1007/978-3-031-21867-5 10.1016/j.conengprac.2019.05.021 10.1002/cjce.23740 10.1016/j.neucom.2021.12.093 10.1016/j.physa.2004.10.026 10.1080/01621459.2014.920613 10.2478/v10006-008-0038-3 10.1002/cjce.23832 10.1016/j.jprocont.2019.04.009 10.1016/j.psep.2023.06.018 10.1002/cjce.24689 10.1016/j.jprocont.2016.08.007 10.1016/S0098-1354(02)00127-8 10.1016/j.compchemeng.2021.107392 10.1016/j.compchemeng.2021.107456 10.1515/revce-2017-0069 10.1109/TASE.2020.3022924 10.1016/j.compchemeng.2020.106756 10.1016/j.jprocont.2020.12.006 10.1016/j.conengprac.2007.04.014 10.1016/0165-1684(91)90079-X 10.3390/pr11020369 10.1016/j.compchemeng.2020.106938 10.1016/j.isatra.2020.06.008 10.1016/j.ces.2022.117637 10.1016/j.jlp.2017.01.008 10.1002/bit.1102 10.1016/j.engappai.2023.106424 10.1016/j.compchemeng.2021.107535 10.1016/j.petrol.2021.109772 10.1016/j.eswa.2021.116429 10.1016/j.compchemeng.2023.108391 10.1016/j.jfranklin.2022.06.022 10.1016/j.jprocont.2015.06.007 10.1016/j.jlp.2023.105185 10.1016/j.chemolab.2007.02.005 10.1016/j.conengprac.2020.104558 10.1002/cae.21837 10.3390/electronics8080832 10.1016/j.chemolab.2017.09.015 10.1016/j.conengprac.2015.04.012 10.1016/j.jprocont.2005.06.002 10.1016/j.eswa.2006.05.010 10.1016/j.jbiotec.2014.10.029 10.1016/j.compchemeng.2023.108264 10.1016/j.compchemeng.2021.107512 10.1016/j.jprocont.2023.01.012 10.1016/j.jprocont.2008.12.001 10.1016/S0042-6989(97)00169-7 10.1093/biomet/28.3-4.321 10.1016/j.eswa.2022.117919 10.1111/j.1467-9876.2006.00560.x 10.1109/TSM.2014.2302011 10.1016/j.eswa.2023.121434 10.1021/ie901911p 10.1016/j.ces.2021.117373 10.3390/app122312377 10.1017/CBO9780511809682 10.1109/TII.2020.3012989 10.1016/j.jfranklin.2023.10.004 10.1016/j.compchemeng.2022.107807 10.1016/j.psep.2022.11.062 10.3758/s13428-016-0754-9 10.1016/j.ifacol.2018.09.548 10.1038/s41598-017-19067-2 10.1016/j.ins.2011.08.030 10.1109/TASE.2019.2957232 10.1162/coli_a_00429 10.1016/j.compchemeng.2022.107905 10.1016/j.isatra.2022.09.019 10.1016/j.vibspec.2019.02.001 10.1016/j.jmsy.2020.05.005 10.1007/978-3-030-02384-3 10.1016/j.jprocont.2020.03.012 10.1162/089976698300017467 10.1016/j.chemolab.2016.09.006 10.1016/j.jprocont.2005.12.002 10.1002/(SICI)1099-128X(199905/08)13:3/4<397::AID-CEM559>3.0.CO;2-I 10.1007/978-1-4471-0347-9 10.1016/j.cie.2010.03.011 10.1016/j.compchemeng.2022.108125 10.1109/JSEN.2022.3189484 10.1016/j.compchemeng.2019.106669 10.1016/j.jprocont.2021.07.004 10.1016/j.jprocont.2023.103069 10.1109/TIE.2017.2668987 10.1016/j.chemolab.2020.104167 10.1016/j.chemolab.2019.03.012 10.1016/0959-1524(96)00009-1 10.1021/ie049582+ 10.1016/j.jtice.2020.07.007 10.1016/j.eswa.2017.11.045 10.1002/aic.12247 10.1016/j.neucom.2016.03.015 10.1016/j.ymssp.2018.02.016 10.1007/978-1-4471-0421-6 10.1080/00207720050197848 10.1016/j.compchemeng.2022.107694 10.1109/TCYB.2018.2830338 10.1002/aic.13953 10.1080/14786440109462720 10.1016/j.jprocont.2020.06.005 10.1145/3373464.3373470 10.1016/j.chemolab.2015.10.006 10.1016/J.ENG.2016.04.018 10.1016/S1474-6670(17)43143-0 10.1007/978-3-642-69878-1 10.1016/j.compchemeng.2021.107365 10.1007/s10618-018-0571-0 10.1021/ie980243o 10.1002/cjce.25016 10.1016/j.jprocont.2023.103087 10.1177/0142331220905951 10.1109/MCSE.2016.74 10.1016/j.compchemeng.2020.106970 10.1002/j.1538-7305.1926.tb00125.x 10.1016/j.ifacol.2015.09.589 10.1109/TIE.2014.2301761 10.1016/j.chemolab.2015.12.011 10.1016/j.ifacsc.2019.100071 10.1016/j.compchemeng.2017.02.041 10.1016/j.neucom.2014.05.086 10.1016/j.jprocont.2021.05.008 10.3182/20110828-6-IT-1002.02842 10.1016/j.isatra.2018.01.003 10.1016/S0165-0114(97)00011-0 10.1016/j.engappai.2006.11.009 10.1109/ICAIS50930.2021.9395905 10.1016/j.jwpe.2020.101556 10.1145/3394486.3406704 10.1080/00401706.1979.10489779 10.1111/1467-9868.00196 10.1109/TIE.2014.2308133 10.1016/0169-7439(95)80006-U 10.1109/TII.2023.3240601 10.1002/cite.202100083 10.1016/j.jprocont.2022.06.011 10.1016/j.compchemeng.2020.106843 10.1016/j.compchemeng.2022.107898 10.1016/j.conengprac.2021.104843 10.1016/j.jprocont.2023.103023 10.1016/j.measurement.2020.108782 10.1016/j.vibspec.2019.05.001 10.1016/j.compchemeng.2020.106875 10.1109/TNNLS.2022.3201621 10.1016/j.conengprac.2023.105750 10.3182/20140824-6-ZA-1003.00399 10.3390/pr5030035 10.1016/j.psep.2022.07.019 10.1016/j.jprocont.2009.07.011 10.1007/978-1-4471-4513-4 10.1021/acs.iecr.5b03525 10.1016/j.conengprac.2020.104386 10.1016/j.asoc.2014.02.008 10.1016/j.chemolab.2020.104095 10.1016/j.compchemeng.2022.108055 10.1002/cjce.24153 10.1002/aic.17715 10.1016/j.jprocont.2023.04.001 10.1109/TASE.2015.2417882 10.1109/NAFIPS.2011.5751925 10.1016/j.psep.2022.05.073 10.3182/20090630-4-ES-2003.00184 10.1016/S0098-1354(02)00162-X 10.3897/nucet.7.63675 10.1007/978-3-030-79519-1 10.1007/978-81-322-3972-7 10.1016/j.aca.2009.02.001 10.1007/s10618-020-00698-5 10.1016/j.ifacol.2018.09.522 10.1002/1099-128X(200009/12)14:5/6<383::AID-CEM616>3.0.CO;2-5 10.1016/j.chemolab.2014.08.008 10.1016/S1474-6670(17)42376-7 10.1007/978-3-319-94463-0 10.1177/01423312231157118 10.1016/j.jprocont.2013.12.018 10.1007/s10489-020-02128-x 10.1016/j.conengprac.2022.105182 10.1016/j.chemolab.2012.10.005 10.1002/asmb.716 10.3390/pr11113233 10.1016/j.conengprac.2020.104344 10.1002/9781118481769 10.1109/TKDE.2013.184 10.1016/j.compchemeng.2023.108207 10.1021/acs.iecr.3c00995 10.1021/acs.iecr.2c02072 10.1016/j.chemolab.2021.104369 10.1016/j.compchemeng.2023.108289 10.1007/s00500-020-05384-8 10.1016/j.jprocont.2018.12.009 10.1016/j.neucom.2018.04.069 10.1016/j.conengprac.2005.06.015 10.1109/TCST.2018.2865413 10.1016/j.conengprac.2019.104195 10.1145/1273496.1273629 10.1002/cjce.25014 10.3390/pr8010123 10.1016/j.chemolab.2018.12.004 10.1002/aic.690400509 10.1016/j.neucom.2016.01.027 10.1016/S0169-7439(98)00090-2 10.1016/S0959-1524(00)00022-6 10.1002/qre.2797 10.1016/j.cie.2008.01.013 10.1007/s11831-022-09727-6 10.1109/ACCESS.2020.3001379 10.14778/3538598.3538602 10.1016/j.ins.2021.01.036 10.1021/ie102564d 10.1016/j.future.2022.04.005 10.3390/pr8091035 10.1016/j.cie.2020.106376 10.1016/j.compchemeng.2022.107900 10.1109/ACCESS.2023.3256719 10.3390/s22010227 10.1002/aic.690490414 10.1109/CSIE.2009.348 10.1007/s10044-017-0634-7 10.3182/20100802-3-ZA-2014.00020 10.1016/j.compchemeng.2023.108448 10.1016/S1474-6670(17)37032-5 10.1214/21-SS133 10.3390/pr7020061 10.1016/j.chemolab.2017.03.011 10.1002/aic.690400809 10.1002/qre.1070 10.1613/jair.1.12228 10.1016/j.ces.2021.117236 10.1016/j.inffus.2019.03.006 10.1109/5.58325 10.1002/aic.690440712 10.1016/j.net.2023.11.033 10.1016/j.jprocont.2012.01.005 10.1016/j.jprocont.2017.06.012 10.1016/j.jprocont.2018.02.005 10.1002/aic.690410612 10.1016/S1474-6670(17)33862-4 10.33899/rengj.2020.127782.1051 10.1002/aic.14523 10.1002/9781119600800 10.1016/0009-2509(94)00456-2 10.1111/rssb.12447 10.1016/j.jprocont.2011.07.003 10.1016/j.conengprac.2020.104692 10.1016/j.measurement.2023.112504 10.1016/j.jprocont.2006.03.005 10.1016/j.psep.2022.12.018 10.1016/S0959-1524(00)00046-9 10.1021/acs.iecr.0c00515 10.1021/acs.iecr.8b00936 10.1016/j.inffus.2018.10.005 10.1016/j.compchemeng.2020.106886 10.1109/COMST.2022.3205643 10.1021/acs.iecr.0c02288 10.1016/j.ifacsc.2022.100189 10.1109/ROBIO.2012.6491087 10.1016/j.jprocont.2016.07.006 10.1016/j.icte.2015.09.003 10.1109/FUZZ-IEEE.2018.8491547 10.1016/j.compchemeng.2015.03.016 10.1016/j.compeleceng.2014.12.015 10.1109/MCS.2002.1035214 10.1007/978-3-658-16756-1 10.1002/aic.10805 10.1016/j.compchemeng.2023.108442 10.1109/TIE.2017.2745452 10.1016/j.engappai.2022.105730 10.1016/j.jtice.2020.06.016 10.1016/j.neunet.2022.11.001 10.1080/00031305.1984.10483183 10.1109/ACCESS.2021.3131949 10.1007/978-3-540-74048-3 10.1007/978-0-387-78189-1 10.1109/TASE.2020.2983061 10.1016/j.jprocont.2013.02.003 10.1016/j.compchemeng.2016.04.011 10.1021/ie071022y 10.1016/j.jprocont.2023.103086 10.1049/cp:19971197 10.1002/cem.1180070606 10.3390/machines11121066 10.1109/TMM.2019.2923097 10.1016/j.arcontrol.2018.09.003 10.1016/j.jprocont.2017.03.004 10.1021/ie050850t 10.1016/j.jprocont.2019.05.002 10.1016/j.neucom.2018.02.051 10.1016/j.compchemeng.2015.03.001 10.1016/j.psep.2022.12.055 10.1016/j.compchemeng.2020.107023 10.1016/j.compchemeng.2012.06.017 10.1016/j.compchemeng.2020.106762 10.3390/e23010018 10.1016/j.inffus.2017.02.004 10.1016/j.petrol.2019.106223 10.1021/acs.iecr.0c00895 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SR 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ JG9 KB. LK8 M7P PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.3390/pr12020251 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest Central Student SciTech Premium Collection Materials Research Database Materials Science Database Biological Sciences Biological Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) Statistics |
EISSN | 2227-9717 |
ExternalDocumentID | A784104284 10_3390_pr12020251 |
GeographicLocations | Brazil United Kingdom United States Tennessee Germany |
GeographicLocations_xml | – name: United Kingdom – name: Tennessee – name: Germany – name: United States – name: Brazil |
GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ACIWK ACPRK ADBBV ADMLS AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I HCIFZ IAO IGS ITC KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PROAC RNS PMFND 7SR 8FD ABUWG AZQEC DWQXO GNUQQ JG9 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c334t-4e12b287fe4857a2b58bfc4188b4ce6619e6a401db28b815c9e7611f6b46c75f3 |
IEDL.DBID | BENPR |
ISSN | 2227-9717 |
IngestDate | Fri Jul 25 11:59:58 EDT 2025 Tue Jun 10 21:12:40 EDT 2025 Tue Jul 01 02:38:43 EDT 2025 Thu Apr 24 23:11:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-4e12b287fe4857a2b58bfc4188b4ce6619e6a401db28b815c9e7611f6b46c75f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2631-1811 0000-0001-7639-1480 0000-0002-7279-3981 |
OpenAccessLink | https://www.proquest.com/docview/2931056892?pq-origsite=%requestingapplication% |
PQID | 2931056892 |
PQPubID | 2032344 |
ParticipantIDs | proquest_journals_2931056892 gale_infotracacademiconefile_A784104284 crossref_primary_10_3390_pr12020251 crossref_citationtrail_10_3390_pr12020251 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Processes |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_499 Alauddin (ref_807) 2018; 57 ref_492 Wiskott (ref_264) 2002; 14 ref_495 Wang (ref_535) 2017; 50 Xu (ref_257) 2021; 60 Spies (ref_706) 2023; 8 Abid (ref_749) 2020; 54 Nawaz (ref_122) 2020; 59 Jiang (ref_128) 2015; 32 Sivaram (ref_327) 2020; 134 Zhao (ref_350) 2019; 109 ref_481 ref_240 Xiong (ref_361) 2022; 56 ref_242 Peng (ref_386) 2022; 207 Fu (ref_507) 2019; 58 Vitale (ref_58) 2019; 187 Alobaidy (ref_750) 2020; 25 Zheng (ref_368) 2020; 135 Liu (ref_532) 2022; 164 He (ref_228) 2009; 19 Wang (ref_462) 2015; 29 Khan (ref_294) 2023; 10 Kourti (ref_632) 2005; 19 Cui (ref_508) 2022; 100 Yang (ref_778) 2023; 69 Piovoso (ref_616) 1994; 59 Cano (ref_764) 2020; 109 Deng (ref_91) 2013; 127 Guh (ref_482) 2008; 55 Li (ref_73) 2014; 61 Bhonsale (ref_501) 2020; 2 Niu (ref_734) 2016; 31 Zhao (ref_3) 2022; 116 Yang (ref_533) 2022; 127 Chen (ref_436) 2012; 90 Fontes (ref_544) 2017; 71 Alcala (ref_56) 2011; 21 Gallo (ref_719) 2022; 155 Gajjar (ref_489) 2020; 59 Ruff (ref_703) 2021; 109 Lee (ref_204) 2009; 98 He (ref_574) 2011; 57 ref_698 ref_457 Pimentel (ref_722) 2014; 99 ref_459 Abdi (ref_162) 2010; 2 ref_219 Wu (ref_349) 2018; 115 Xu (ref_279) 2021; 98 ref_690 Kong (ref_2) 2022; 54 Deng (ref_93) 2018; 27 Stief (ref_606) 2019; 79 ref_693 Ji (ref_364) 2023; 170 Buratti (ref_439) 2018; 72 ref_695 Xu (ref_253) 2016; 200 Zhang (ref_503) 2011; 50 Lu (ref_70) 2005; 51 Dong (ref_83) 1996; 20 Li (ref_650) 2020; 206 ref_687 ref_444 ref_689 Shah (ref_579) 2020; 141 Yin (ref_825) 2012; 22 ref_681 Zhang (ref_385) 2022; 117 ref_685 ref_684 Boldt (ref_452) 2017; 239 Naghoosi (ref_776) 2013; 23 Aldrich (ref_484) 2010; 43 Kano (ref_636) 2008; 32 Rudin (ref_674) 2022; 16 Ku (ref_45) 1995; 30 Fernandes (ref_831) 2022; 231 Cabrieto (ref_730) 2018; 8 Chiang (ref_772) 2003; 65 ref_233 Ge (ref_135) 2010; 56 Zhang (ref_376) 2022; 53 Nhat (ref_531) 2020; 138 Zhou (ref_463) 2016; 63 Melo (ref_569) 2023; 62 Rauber (ref_576) 2020; 357 Alizadeh (ref_596) 2018; 51 Wang (ref_839) 2015; 26 Zhang (ref_477) 2020; 98 ref_466 ref_469 ref_229 Shewhart (ref_6) 1926; 5 Bi (ref_654) 2022; 164 Hsu (ref_250) 2010; 59 Dai (ref_658) 2013; 9 ref_465 ref_464 Zheng (ref_494) 2022; 20 Evsukoff (ref_443) 2005; 19 Lee (ref_244) 2004; 14 Liu (ref_87) 2011; 21 Jeong (ref_761) 2020; 139 Li (ref_299) 2020; 140 Hotelling (ref_155) 1936; 28 Westerhuis (ref_65) 1999; 13 Zhu (ref_212) 2022; 118 PhridviRaj (ref_752) 2014; 12 Zhang (ref_830) 2017; 354 Gregersen (ref_171) 1997; 30 Liu (ref_381) 2024; 180 Sabuhi (ref_343) 2021; 9 Ganesan (ref_796) 2004; 36 Ketelaere (ref_46) 2015; 47 Chen (ref_196) 2021; 107 Andrade (ref_33) 2022; 208 Carletti (ref_694) 2023; 119 Zhong (ref_230) 2014; 138 Comon (ref_262) 1994; 36 Yin (ref_28) 2014; 61 Khatibisepehr (ref_801) 2013; 23 Lan (ref_183) 2020; 112 Wentzell (ref_138) 1999; 45 Huang (ref_520) 2022; 53 Hussain (ref_15) 2020; 36 Goldrick (ref_602) 2019; 130 Kumar (ref_644) 2020; 136 Janardan (ref_755) 2017; 122 Yang (ref_517) 2019; 332 Dong (ref_177) 2015; 48 He (ref_460) 2007; 20 Liu (ref_490) 2019; 10 He (ref_226) 2005; 51 He (ref_483) 2013; 24 Feital (ref_104) 2013; 59 Qin (ref_41) 2000; 10 Chen (ref_731) 2022; 84 Fernandes (ref_609) 2019; 58 Shahnazari (ref_354) 2020; 153 Lou (ref_239) 2022; 111 Li (ref_274) 2022; 7 Choi (ref_90) 2005; 75 Puggini (ref_486) 2015; 48 Yu (ref_504) 2016; 45 Shin (ref_302) 2019; 127 Ge (ref_800) 2013; 52 Wang (ref_808) 2018; 96 Wentzell (ref_139) 1997; 11 ref_296 Hansen (ref_833) 2023; 178 ref_298 ref_297 Alakent (ref_61) 2023; 101 Ding (ref_714) 2014; 135 Monteiro (ref_133) 2017; 71 Qin (ref_665) 2020; 50 Peres (ref_4) 2018; 115 ref_283 ref_284 Lee (ref_148) 2015; 1 Kok (ref_568) 2022; 26 Qin (ref_25) 2009; 42 Cejnek (ref_711) 2018; 309 Aradhye (ref_116) 2003; 49 Wise (ref_11) 1988; 88 Tan (ref_86) 1995; 41 Jiao (ref_815) 2020; 27 Sadik (ref_770) 2014; 15 Fleming (ref_597) 1986; 29 Peng (ref_357) 2020; 407 Das (ref_10) 2012; 29 Xiao (ref_472) 2014; 59 Qin (ref_189) 2021; 152 Qin (ref_217) 2022; 124 Tax (ref_470) 1999; 20 Tipping (ref_134) 1999; 61 Wu (ref_578) 2020; 136 Pirdashti (ref_332) 2013; 29 Venkatasubramanian (ref_313) 2003; 27 Zhang (ref_427) 2017; 107 Xing (ref_375) 2022; 22 Verron (ref_526) 2010; 20 Gao (ref_275) 2021; 105 Kramer (ref_311) 1992; 16 Miletic (ref_631) 2004; 14 Jiang (ref_536) 2016; 55 Wang (ref_145) 2005; 15 Costa (ref_557) 2014; 25 Wu (ref_44) 2022; 30 Sliskovic (ref_799) 2011; 52 Barros (ref_763) 2019; 52 Krawczyk (ref_768) 2017; 239 Guo (ref_75) 2020; 85 Jutten (ref_241) 1991; 24 Nogueira (ref_493) 2022; 165 Perera (ref_663) 2023; 121 Gholizadeh (ref_446) 2019; 22 Saini (ref_743) 2022; 29 Dong (ref_71) 2018; 67 Rodgers (ref_53) 1984; 38 Zhang (ref_185) 2021; 108 Garg (ref_697) 2022; 33 Markou (ref_721) 2003; 83 Feng (ref_468) 2020; 85 Clavijo (ref_786) 2022; 248 Chen (ref_211) 2020; 18 Talagala (ref_707) 2019; 29 Taylor (ref_622) 1998; 31 Narasimhan (ref_137) 2008; 16 Wise (ref_64) 1999; 13 Domingues (ref_715) 2020; 53 ref_713 Nazemzadeh (ref_563) 2021; 155 Dudzic (ref_626) 2000; 33 Lejeune (ref_546) 2019; 275 He (ref_809) 2018; 67 Charte (ref_338) 2020; 404 ref_718 Guo (ref_397) 2021; 113 Verde (ref_103) 2019; 189 Nasaruddin (ref_691) 2022; 33 ref_702 ref_701 Xia (ref_709) 2022; 493 Ren (ref_513) 2014; 27 Song (ref_209) 2020; 17 Qin (ref_19) 2014; 60 Bao (ref_374) 2022; 100 Koyejo (ref_699) 2022; Volume 35 Lee (ref_288) 2018; 114 Jeng (ref_80) 2010; 41 Yi (ref_419) 2023; 122 Zarghami (ref_565) 2021; 103 Lee (ref_245) 2004; 59 Zhang (ref_418) 2022; 34 Lu (ref_435) 2020; 56 Scholkopf (ref_471) 2001; 13 Bakshi (ref_113) 1998; 44 Pinto (ref_789) 1995; 50 Wang (ref_325) 2016; 3 Nomikos (ref_62) 1994; 40 Abiola (ref_378) 2023; 176 Severson (ref_165) 2016; 42 Gao (ref_399) 2023; 139 Tian (ref_652) 2022; 181 Reis (ref_118) 2006; 52 Agarwal (ref_173) 2022; 159 Conde (ref_692) 2022; 54 Jiang (ref_590) 2019; 15 Choi (ref_207) 2005; 15 Camacho (ref_588) 2015; 143 Prata (ref_30) 2009; Volume 27 Wold (ref_77) 1994; 23 Wei (ref_300) 2020; 67 Zhang (ref_454) 2019; 7 Ragab (ref_550) 2018; 95 Wang (ref_573) 2010; 49 Zhang (ref_260) 2016; 55 Deng (ref_416) 2023; 72 Schaeffer (ref_594) 2022; 167 Scholkopf (ref_88) 1998; 10 Miletic (ref_637) 2008; 86 Xu (ref_272) 2022; 248 Chen (ref_249) 2014; 53 Li (ref_223) 2020; 227 Zhu (ref_69) 2020; 85 Kramer (ref_82) 1991; 37 Qin (ref_125) 2001; 15 Zheng (ref_214) 2016; 158 Lu (ref_76) 2020; 8 Melo (ref_787) 2003; 58 Zhu (ref_405) 2023; 130 Vanlaer (ref_60) 2013; 104 Truong (ref_738) 2020; 167 Peng (ref_456) 2022; 501 Bradley (ref_659) 2022; 166 Ge (ref_142) 2018; 57 ref_539 Tang (ref_430) 2018; 51 Zhang (ref_202) 2023; 271 Camacho (ref_50) 2018; 172 Tharrault (ref_147) 2008; 18 Zhong (ref_151) 2022; 61 Huang (ref_781) 2023; 176 Gerretzen (ref_172) 2020; 139 Nomikos (ref_614) 1995; 37 Xie (ref_740) 2021; 2 Saccenti (ref_43) 2015; 149 Yang (ref_339) 2020; 92 ref_523 ref_767 Faria (ref_716) 2015; 27 Zhang (ref_400) 2023; 123 Zhong (ref_277) 2020; 104 Zhu (ref_154) 2018; 46 Wei (ref_417) 2022; 167 ref_762 Dumarey (ref_641) 2018; 14 Zhao (ref_352) 2018; 6 Lemos (ref_538) 2013; 220 Zhang (ref_478) 2022; 101 Yu (ref_438) 2014; 53 Bai (ref_422) 2023; 169 Staudacher (ref_736) 2005; 349 Ragab (ref_549) 2019; 122 Yuan (ref_476) 2020; 42 ref_554 Rehmani (ref_708) 2023; 25 Zavala (ref_295) 2023; 62 ref_315 ref_314 ref_556 ref_317 ref_559 MacGregor (ref_26) 2012; 47 ref_316 Jackson (ref_55) 1979; 21 ref_791 ref_551 ref_793 ref_792 ref_553 ref_552 ref_794 Carter (ref_679) 2023; 170 Zhang (ref_191) 2023; 123 Hu (ref_773) 2015; 97 Lee (ref_218) 2007; 46 Lemos (ref_360) 2021; 155 Qin (ref_176) 1996; 20 Hilal (ref_700) 2022; 193 Liu (ref_528) 2014; 24 ref_304 ref_303 ref_545 ref_306 ref_548 ref_307 Kathari (ref_774) 2022; 61 Wu (ref_195) 2020; 59 Ahmed (ref_812) 2020; 37 Mowbray (ref_291) 2022; 7 Khoukhi (ref_747) 2015; 43 MacGregor (ref_12) 1995; 3 Li (ref_79) 2000; 10 Ourique (ref_788) 2002; 26 Zhang (ref_388) 2021; 111 Ding (ref_798) 2011; 44 Rajulapati (ref_661) 2022; 68 Liu (ref_666) 2021; 155 ref_737 Zhang (ref_119) 2011; 66 Angelov (ref_555) 2017; 32 Yi (ref_592) 2019; 194 Lee (ref_248) 2003; 47 Sun (ref_842) 2019; 27 Pearson (ref_34) 1901; 2 Barragan (ref_543) 2016; 95 Hornik (ref_318) 1989; 2 Xu (ref_273) 2022; 110 Zhuo (ref_411) 2020; 92 Ge (ref_130) 2017; 171 Huang (ref_518) 2020; 98 ref_724 Xu (ref_572) 2015; 31 ref_723 ref_726 Yang (ref_474) 2016; 190 ref_725 Nespeca (ref_840) 2019; 102 Wang (ref_777) 2023; 233 Wang (ref_782) 2023; 129 Qian (ref_340) 2022; 231 Das (ref_328) 2020; 139 Wise (ref_13) 1996; 6 Ng (ref_437) 2008; 47 ref_511 ref_753 Yin (ref_220) 2014; 45 Liu (ref_259) 2023; 102 ref_512 AlGhazzawi (ref_638) 2008; 16 Barker (ref_161) 2003; 17 ref_759 Zhan (ref_506) 2019; 75 Liu (ref_487) 2018; 64 Jiang (ref_210) 2020; 59 Wang (ref_281) 2020; 59 Kadlec (ref_797) 2011; 35 Qin (ref_14) 2003; 17 Kumar (ref_629) 2003; 11 Kosanovich (ref_111) 1997; 30 Lu (ref_440) 2021; 562 ref_519 Zhang (ref_633) 2006; 16 Kuncheva (ref_733) 2013; 25 ref_741 Widodo (ref_480) 2007; 21 Kang (ref_358) 2020; 112 Liu (ref_813) 2020; 89 Ning (ref_514) 2015; 48 Yu (ref_527) 2013; 59 Melo (ref_5) 2022; 165 ref_509 Chen (ref_107) 2010; 34 Souza (ref_805) 2016; 152 Clavijo (ref_785) 2022; 215 Niu (ref_335) 2021; 452 Subbaraj (ref_448) 2014; 19 Yao (ref_68) 2009; 33 ref_371 Camacho (ref_66) 2009; 642 Hastie (ref_84) 1989; 84 Nigam (ref_293) 2022; 61 Bezerra (ref_560) 2016; 63 ref_132 Zhu (ref_181) 2020; 137 ref_380 Li (ref_215) 2017; 171 Kourti (ref_170) 1995; 5 Li (ref_366) 2023; 175 Zhang (ref_270) 2022; 100 Sheriff (ref_121) 2017; 54 Lennox (ref_620) 2001; 74 Goldrick (ref_603) 2015; 193 ref_362 ref_363 ref_123 Wang (ref_402) 2023; 102 Gao (ref_265) 2022; 61 Dash (ref_795) 2000; 24 Sansana (ref_660) 2021; 151 Korbicz (ref_450) 2007; 20 Pearson (ref_570) 2001; 11 Abonyi (ref_571) 2007; 35 Westerhuis (ref_59) 2000; 51 ref_159 Blei (ref_23) 2014; 1 Liu (ref_267) 2023; 173 ref_392 ref_153 Dong (ref_74) 2018; 114 Guo (ref_784) 2021; 53 ref_156 ref_398 Shabanian (ref_447) 2011; 9 Gopaluni (ref_810) 2020; 53 Paul (ref_604) 1996; 51 Li (ref_282) 2024; 361 Bouguelia (ref_710) 2018; 32 Yuan (ref_779) 2012; 45 Peng (ref_515) 2017; 64 Zhou (ref_420) 2023; 170 Wang (ref_819) 2022; 100 Zhang (ref_160) 2018; 290 Kong (ref_197) 2023; 72 Li (ref_266) 2023; 121 Lomov (ref_410) 2021; 23 ref_140 ref_382 Hoskins (ref_310) 1991; 37 Chen (ref_529) 2020; 97 Huang (ref_516) 2019; 89 Palla (ref_263) 2023; 209 Liu (ref_367) 2023; 86 ref_390 Yang (ref_432) 2021; 108 Kadlec ( |
References_xml | – volume: 537 start-page: 425 year: 2020 ident: ref_256 article-title: On-line anomaly detection with advanced independent component analysis of multi-variate residual signals from causal relation networks publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.06.034 – ident: ref_9 – ident: ref_404 doi: 10.1109/TNNLS.2023.3282047 – volume: 117 start-page: 210 year: 2021 ident: ref_221 article-title: Robust adaptive boosted canonical correlation analysis for quality-relevant process monitoring of wastewater treatment publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.01.039 – volume: 171 start-page: 100 year: 2021 ident: ref_562 article-title: Monitoring of the bubble columns hydrodynamics by recurrence quantification data analysis publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2021.05.002 – volume: 15 start-page: 33 year: 2014 ident: ref_770 article-title: Research issues in outlier detection for data streams publication-title: ACM SIGKDD Explor. Newsl. doi: 10.1145/2594473.2594479 – volume: 20 start-page: 147 year: 1996 ident: ref_176 article-title: Nonlinear FIR modeling via a neural net PLS approach publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(95)00011-P – ident: ref_321 – volume: 104 start-page: 285 year: 2013 ident: ref_60 article-title: Analysis of smearing-out in contribution plot based fault isolation for Statistical Process Control publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2013.08.007 – volume: 20 start-page: 345 year: 2007 ident: ref_460 article-title: Fault Detection Using the k-Nearest Neighbor Rule for Semiconductor Manufacturing Processes publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2007.907607 – volume: 7 start-page: 1201 year: 2021 ident: ref_290 article-title: Machine Learning in Chemical Engineering: Strengths, Weaknesses, Opportunities, and Threats publication-title: Engineering doi: 10.1016/j.eng.2021.03.019 – ident: ref_580 doi: 10.3390/pr9030544 – volume: 137 start-page: 106809 year: 2020 ident: ref_181 article-title: Dynamic Latent Variable Regression for Inferential Sensor Modeling and Monitoring publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.106809 – ident: ref_567 doi: 10.3390/pr6020017 – volume: 58 start-page: 17871 year: 2019 ident: ref_609 article-title: Mechanistic Modeling and Simulation for Process Data Generation publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b01752 – volume: 165 start-page: 107964 year: 2022 ident: ref_5 article-title: Open benchmarks for assessment of process monitoring and fault diagnosis techniques: A review and critical analysis publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2022.107964 – volume: 72 start-page: 480 year: 2018 ident: ref_439 article-title: Self-Organizing Maps for Anomaly Localization and Predictive Maintenance in Cyber-Physical Production Systems publication-title: Procedia CIRP doi: 10.1016/j.procir.2018.03.150 – volume: 100 start-page: S141 year: 2022 ident: ref_270 article-title: Dynamic industrial process monitoring based on concurrent fast and slow-time-varying feature analytics publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.24207 – volume: 22 start-page: 503 year: 1998 ident: ref_175 article-title: Recursive PLS algorithms for adaptive data modeling publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(97)00262-7 – volume: 99 start-page: 986 year: 2020 ident: ref_187 article-title: Dynamic process monitoring using dynamic latent variable and canonical correlation analysis model publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.23923 – volume: 6 start-page: 10160 year: 2018 ident: ref_216 article-title: Process Modeling and Monitoring With Incomplete Data Based on Robust Probabilistic Partial Least Square Method publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2810079 – volume: 29 start-page: 720 year: 2012 ident: ref_10 article-title: Process monitoring and fault detection strategies: A review publication-title: Int. J. Qual. Reliab. Manag. doi: 10.1108/02656711211258508 – volume: 85 start-page: 184 year: 2020 ident: ref_69 article-title: Multiphase two-dimensional time-slice dynamic system for batch process monitoring publication-title: J. Process Control doi: 10.1016/j.jprocont.2019.12.004 – volume: 27 start-page: 365 year: 2019 ident: ref_842 article-title: Comparative investigation for raw and processed Aconiti Lateralis Radix using chemical UPLC-MS profiling and multivariate classification techniques publication-title: J. Food Drug Anal. doi: 10.1016/j.jfda.2018.10.006 – volume: 53 start-page: 255 year: 2011 ident: ref_745 article-title: Applications of fault detection and diagnosis methods in nuclear power plants: A review publication-title: Prog. Nucl. Energy doi: 10.1016/j.pnucene.2010.12.001 – ident: ref_333 – volume: 118 start-page: 1 year: 2022 ident: ref_212 article-title: Enhanced multicorrelation block process monitoring and abnormity root cause analysis for distributed industrial process: A visual data-driven approach publication-title: J. Process Control doi: 10.1016/j.jprocont.2022.08.008 – ident: ref_459 doi: 10.9734/ajrcos/2021/v12i430302 – ident: ref_836 doi: 10.1137/1.9780898718461 – volume: 37 start-page: 233 year: 1991 ident: ref_82 article-title: Nonlinear principal component analysis using autoassociative neural networks publication-title: AIChE J. doi: 10.1002/aic.690370209 – volume: 181 start-page: 304 year: 2022 ident: ref_652 article-title: Intelligent prediction and early warning of abnormal conditions for fluid catalytic cracking process publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2022.03.031 – volume: 57 start-page: 12646 year: 2018 ident: ref_142 article-title: Process Data Analytics via Probabilistic Latent Variable Models: A Tutorial Review publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b02913 – volume: 16 start-page: 313 year: 1992 ident: ref_311 article-title: Autoassociative neural networks publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(92)80051-A – volume: 55 start-page: 199:1 year: 2023 ident: ref_342 article-title: Generative Adversarial Networks in Time Series: A Systematic Literature Review publication-title: ACM Comput. Surv. doi: 10.1145/3559540 – volume: 2 start-page: 97 year: 2010 ident: ref_162 article-title: Partial least squares regression and projection on latent structure regression (PLS Regression) publication-title: Wiley Interdiscip. Rev. Comput. Stat. doi: 10.1002/wics.51 – volume: 124 start-page: 54 year: 2023 ident: ref_190 article-title: Structured fault information-aided canonical variate analysis model for dynamic process monitoring publication-title: J. Process Control doi: 10.1016/j.jprocont.2023.01.011 – ident: ref_607 – volume: 183 start-page: 122 year: 2018 ident: ref_591 article-title: MVBatch: A matlab toolbox for batch process modeling and monitoring publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2018.11.001 – volume: 9 start-page: 289 year: 2022 ident: ref_783 article-title: Granger Causality: A Review and Recent Advances publication-title: Annu. Rev. Stat. Its Appl. doi: 10.1146/annurev-statistics-040120-010930 – ident: ref_681 doi: 10.1145/2939672.2939785 – volume: 115 start-page: 603 year: 2018 ident: ref_4 article-title: Variable selection methods in multivariate statistical process control: A systematic literature review publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2017.12.006 – volume: 29 start-page: 205 year: 2013 ident: ref_332 article-title: Artificial neural networks: Applications in chemical engineering publication-title: Rev. Chem. Eng. doi: 10.1515/revce-2013-0013 – volume: 104 start-page: 223 year: 2010 ident: ref_136 article-title: A unified statistical framework for monitoring multivariate systems with unknown source and error signals publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2010.08.012 – volume: 86 start-page: 937 year: 2008 ident: ref_637 article-title: Experiences in applying data-driven modelling technology to steelmaking processes publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.20090 – ident: ref_689 doi: 10.1109/ICIP46576.2022.9897283 – volume: 12 start-page: 297 year: 2021 ident: ref_696 article-title: On the nature and types of anomalies: A review of deviations in data publication-title: Int. J. Data Sci. Anal. doi: 10.1007/s41060-021-00265-1 – ident: ref_21 doi: 10.1002/9781118391686 – volume: 22 start-page: 1567 year: 2012 ident: ref_825 article-title: A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process publication-title: J. Process Control doi: 10.1016/j.jprocont.2012.06.009 – volume: 158 start-page: 80 year: 2016 ident: ref_214 article-title: Probabilistic learning of partial least squares regression model: Theory and industrial applications publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2016.08.014 – volume: 24 start-page: 785 year: 2000 ident: ref_795 article-title: Challenges in the industrial applications of fault diagnostic systems publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(00)00374-4 – ident: ref_457 – volume: 48 start-page: 117 year: 2015 ident: ref_177 article-title: Dynamic-Inner Partial Least Squares for Dynamic Data Modeling publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2015.08.167 – ident: ref_724 doi: 10.1002/9780470061626 – volume: 126 start-page: 465 year: 2019 ident: ref_16 article-title: Advances and opportunities in machine learning for process data analytics publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2019.04.003 – volume: 23 start-page: 100216 year: 2021 ident: ref_410 article-title: Fault detection in Tennessee Eastman process with temporal deep learning models publication-title: J. Ind. Inf. Integr. – volume: 10 start-page: 245 year: 2000 ident: ref_41 article-title: Determining the number of principal components for best reconstruction publication-title: J. Process Control doi: 10.1016/S0959-1524(99)00043-8 – volume: 83 start-page: 2481 year: 2003 ident: ref_720 article-title: Novelty detection: A review—Part 1: Statistical approaches publication-title: Signal Process. doi: 10.1016/j.sigpro.2003.07.018 – volume: 23 start-page: 289 year: 2012 ident: ref_547 article-title: Rogue components: Their effect and control using logical analysis of data publication-title: J. Intell. Manuf. doi: 10.1007/s10845-009-0351-1 – volume: 127 start-page: 259 year: 2022 ident: ref_98 article-title: Criteria for optimizing kernel methods in fault monitoring process: A survey publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.08.040 – volume: 65 start-page: 371 year: 2011 ident: ref_712 article-title: Novelty Detection with Multivariate Extreme Value Statistics publication-title: J. Signal Process. Syst. doi: 10.1007/s11265-010-0513-6 – volume: 13 start-page: 379 year: 1999 ident: ref_64 article-title: A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process publication-title: J. Chemom. doi: 10.1002/(SICI)1099-128X(199905/08)13:3/4<379::AID-CEM556>3.0.CO;2-N – volume: 30 start-page: 100410 year: 2022 ident: ref_394 article-title: Toward robust process monitoring of complex process industries based on denoising sparse auto-encoder publication-title: J. Ind. Inf. Integr. – ident: ref_38 – volume: 61 start-page: 8357 year: 2022 ident: ref_292 article-title: Machine Learning and Data Science in Chemical Engineering publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.2c01788 – volume: 59 start-page: 2348 year: 2013 ident: ref_527 article-title: A novel dynamic bayesian network-based networked process monitoring approach for fault detection, propagation identification, and root cause diagnosis publication-title: AIChE J. doi: 10.1002/aic.14013 – volume: 33 start-page: e3647 year: 2022 ident: ref_691 article-title: Clustering-based real-time anomaly detection—A breakthrough in big data technologies publication-title: Trans. Emerg. Telecommun. Technol. doi: 10.1002/ett.3647 – ident: ref_7 – volume: 233 start-page: 104728 year: 2023 ident: ref_777 article-title: Root cause diagnosis for complex industrial process faults via spatiotemporal coalescent based time series prediction and optimized Granger causality publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2022.104728 – volume: 80 start-page: 17 year: 2018 ident: ref_95 article-title: Parallel PCA–KPCA for nonlinear process monitoring publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2018.07.012 – volume: 51 start-page: 558 year: 1996 ident: ref_604 article-title: A structured model for hyphal differentiation and penicillin production using Penicillium chrysogenum publication-title: Biotechnol. Bioeng. doi: 10.1002/(SICI)1097-0290(19960905)51:5<558::AID-BIT8>3.0.CO;2-B – volume: 36 start-page: 787 year: 2004 ident: ref_796 article-title: Wavelet-based multiscale statistical process monitoring: A literature review publication-title: IIE Trans. doi: 10.1080/07408170490473060 – ident: ref_670 doi: 10.1109/AdCONIP55568.2022.9894124 – volume: 53 start-page: 3787 year: 2020 ident: ref_715 article-title: A comparative evaluation of novelty detection algorithms for discrete sequences publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-019-09779-4 – volume: 171 start-page: 16 year: 2017 ident: ref_130 article-title: Review on data-driven modeling and monitoring for plant-wide industrial processes publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2017.09.021 – ident: ref_838 – volume: 104 start-page: 104627 year: 2020 ident: ref_277 article-title: Distributed dynamic process monitoring based on dynamic slow feature analysis with minimal redundancy maximal relevance publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2020.104627 – volume: 111 start-page: 104784 year: 2021 ident: ref_129 article-title: Hierarchical hybrid distributed PCA for plant-wide monitoring of chemical processes publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2021.104784 – volume: 60 start-page: 1684 year: 2021 ident: ref_201 article-title: C IPLS IKPLS for Modeling and Detecting Nonlinear Multimode Processes publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c04038 – volume: 106 start-page: 20 year: 2021 ident: ref_372 article-title: Meticulous process monitoring with multiscale convolutional feature extraction publication-title: J. Process Control doi: 10.1016/j.jprocont.2021.08.014 – volume: 19 start-page: 1591 year: 2003 ident: ref_628 article-title: Data-Based Modeling and Analysis of Bioprocesses: Some Real Experiences publication-title: Biotechnol. Prog. doi: 10.1021/bp015514w – ident: ref_101 doi: 10.3390/pr8010024 – volume: 174 start-page: 643 year: 2016 ident: ref_479 article-title: Recent advances on SVM based fault diagnosis and process monitoring in complicated industrial processes publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.09.081 – volume: 98 start-page: 2109 year: 2020 ident: ref_477 article-title: Two step support vector data description for dynamic, non linear, and non Gaussian processes monitoring publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.23762 – ident: ref_382 doi: 10.1007/s12530-023-09523-y – ident: ref_108 doi: 10.1109/TASE.2023.3253285 – volume: 136 start-page: 106787 year: 2020 ident: ref_578 article-title: Multimode process monitoring based on fault dependent variable selection and moving window-negative log likelihood probability publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.106787 – volume: 11 start-page: 1017 year: 2003 ident: ref_629 article-title: Multivariate Statistical Monitoring of a High-Pressure Polymerization Process publication-title: Polym. React. Eng. doi: 10.1081/PRE-120026883 – volume: 59 start-page: 21124 year: 2020 ident: ref_188 article-title: Online Quality Relevant Monitoring with Dynamic Weighted Partial Least Squares publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c03901 – volume: 31 start-page: 399 year: 1998 ident: ref_619 article-title: Multivariate Statistical Monitoring Procedures for Fermentation Supervision: An Industrial Case Study publication-title: IFAC Proc. Vol. doi: 10.1016/S1474-6670(17)40218-7 – ident: ref_27 doi: 10.1002/9780470517253 – volume: 50 start-page: 2891 year: 2004 ident: ref_117 article-title: Principal-component analysis of multiscale data for process monitoring and fault diagnosis publication-title: AIChE J. doi: 10.1002/aic.10260 – volume: 4 start-page: 179 year: 1994 ident: ref_109 article-title: Analysis of operating data for evaluation, diagnosis and control of batch operations publication-title: J. Process Control doi: 10.1016/0959-1524(94)80040-5 – ident: ref_341 – volume: 381 start-page: 46 year: 2017 ident: ref_766 article-title: How to adjust an ensemble size in stream data mining? publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.10.028 – volume: 29 start-page: 13 year: 2019 ident: ref_707 article-title: Anomaly Detection in Streaming Nonstationary Temporal Data publication-title: J. Comput. Graph. Stat. doi: 10.1080/10618600.2019.1617160 – volume: 31 start-page: 453 year: 2015 ident: ref_572 article-title: Data cleaning in the process industries publication-title: Rev. Chem. Eng. doi: 10.1515/revce-2015-0022 – volume: 31 start-page: 1035 year: 2007 ident: ref_42 article-title: A study on the number of principal components and sensitivity of fault detection using PCA publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2006.09.004 – ident: ref_184 doi: 10.23919/ACC45564.2020.9147890 – volume: 89 start-page: 103475 year: 2020 ident: ref_150 article-title: Dynamic Bayesian network for robust latent variable modeling and fault classification publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103475 – volume: 59 start-page: 44 year: 2020 ident: ref_496 article-title: Overview and comparative study of dimensionality reduction techniques for high dimensional data publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.01.005 – volume: 11 start-page: 339 year: 1997 ident: ref_139 article-title: Maximum likelihood principal component analysis publication-title: J. Chemom. doi: 10.1002/(SICI)1099-128X(199707)11:4<339::AID-CEM476>3.0.CO;2-L – ident: ref_140 doi: 10.3390/pr9091686 – volume: 239 start-page: 238 year: 2017 ident: ref_452 article-title: Cascade Feature Selection and ELM for automatic fault diagnosis of the Tennessee Eastman process publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.02.025 – volume: 129 start-page: 103062 year: 2023 ident: ref_782 article-title: Data-driven root cause diagnosis of process disturbances by exploring causality change among variables publication-title: J. Process Control doi: 10.1016/j.jprocont.2023.103062 – ident: ref_690 doi: 10.1007/978-3-030-83819-5 – volume: 127 start-page: 105308 year: 2022 ident: ref_268 article-title: A quality-related distributed fault detection method for large-scale sequential processes publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2022.105308 – volume: 231 start-page: 104711 year: 2022 ident: ref_340 article-title: A review on autoencoder based representation learning for fault detection and diagnosis in industrial processes publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2022.104711 – volume: 59 start-page: 223 year: 2004 ident: ref_89 article-title: Nonlinear process monitoring using kernel principal component analysis publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2003.09.012 – volume: 111 start-page: 104811 year: 2022 ident: ref_239 article-title: Novel online discriminant analysis based schemes to deal with observations from known and new classes: Application to industrial systems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.104811 – ident: ref_595 doi: 10.1109/CAC.2017.8243540 – ident: ref_762 doi: 10.23919/CCC50068.2020.9189106 – volume: 45 start-page: 1375 year: 2014 ident: ref_220 article-title: Robust PLS approach for KPI-related prediction and diagnosis against outliers and missing data publication-title: Int. J. Syst. Sci. doi: 10.1080/00207721.2014.886136 – volume: 102 start-page: 781 year: 2023 ident: ref_259 article-title: Fault detection and diagnosis in a non-Gaussian process with modified kernel independent component regression publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.25085 – volume: 59 start-page: 16695 year: 2020 ident: ref_210 article-title: Neighborhood Stable Correlation Analysis for Robust Monitoring of Multiunit Chemical Processes publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c02552 – volume: 59 start-page: 12504 year: 2020 ident: ref_281 article-title: Robust Slow Feature Analysis for Statistical Process Monitoring publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c01512 – volume: 7 start-page: 1471 year: 2022 ident: ref_291 article-title: Industrial data science – a review of machine learning applications for chemical and process industries publication-title: React. Chem. Eng. doi: 10.1039/D1RE00541C – volume: 2 start-page: 359 year: 1989 ident: ref_318 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw. doi: 10.1016/0893-6080(89)90020-8 – volume: 29 start-page: 967 year: 1974 ident: ref_790 article-title: On the dynamic behavior of continuous stirred tank reactors publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(74)80089-8 – volume: 30 start-page: 49 year: 1997 ident: ref_171 article-title: Industrial Fed-Batch Fermentation Monitoring publication-title: IFAC Proc. Vol. doi: 10.1016/S1474-6670(17)43138-7 – volume: 61 start-page: 580 year: 2022 ident: ref_151 article-title: Distributed Missing Values Imputation Schemes for Plant-Wide Industrial Process Using Variational Bayesian Principal Component Analysis publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.1c03860 – volume: 36 start-page: 287 year: 1994 ident: ref_262 article-title: Independent component analysis, A new concept? publication-title: Signal Process. doi: 10.1016/0165-1684(94)90029-9 – ident: ref_737 doi: 10.1109/RIVF.2019.8713738 – ident: ref_648 doi: 10.3390/pr7070436 – ident: ref_673 doi: 10.1145/3313831.3376219 – volume: 67 start-page: 10876 year: 2020 ident: ref_300 article-title: Generalized Semisupervised Self-Optimizing Kernel Model for Quality-Related Industrial Process Monitoring publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2019.2962468 – volume: 37 start-page: 3264 year: 2010 ident: ref_251 article-title: Intelligent ICA–SVM fault detector for non-Gaussian multivariate process monitoring publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.09.053 – volume: 15 start-page: 295 year: 2005 ident: ref_207 article-title: Multiblock PLS-based localized process diagnosis publication-title: J. Process Control doi: 10.1016/j.jprocont.2004.06.010 – volume: 62 start-page: 4002 year: 2023 ident: ref_780 article-title: Transfer Entropy-Based Automated Fault Traversal and Root Cause Identification in Complex Nonlinear Industrial Processes publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.2c03570 – ident: ref_559 – ident: ref_791 doi: 10.1142/3823 – volume: 187 start-page: 41 year: 2019 ident: ref_58 article-title: Data-driven supervised fault diagnosis methods based on latent variable models: A comparative study publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2019.02.006 – ident: ref_81 – volume: 153 start-page: 233 year: 2020 ident: ref_354 article-title: Fault diagnosis of nonlinear systems using recurrent neural networks publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2019.09.026 – ident: ref_656 doi: 10.3390/pr8091123 – ident: ref_581 doi: 10.1016/j.ifacol.2023.10.921 – volume: 58 start-page: 2805 year: 2003 ident: ref_787 article-title: The bifurcation behavior of continuous free-radical solution loop polymerization reactors publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(03)00132-5 – volume: 21 start-page: 322 year: 2011 ident: ref_56 article-title: Analysis and generalization of fault diagnosis methods for process monitoring publication-title: J. Process Control doi: 10.1016/j.jprocont.2010.10.005 – volume: 404 start-page: 93 year: 2020 ident: ref_338 article-title: An analysis on the use of autoencoders for representation learning: Fundamentals, learning task case studies, explainability and challenges publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.04.057 – ident: ref_821 doi: 10.3390/pr11061608 – volume: 121 start-page: 1 year: 2023 ident: ref_266 article-title: Slowness or Autocorrelation? A serial correlation feature analysis method and its application in process monitoring publication-title: J. Process Control doi: 10.1016/j.jprocont.2022.11.010 – volume: 65 start-page: 466 year: 2019 ident: ref_285 article-title: The promise of artificial intelligence in chemical engineering: Is it here, finally? publication-title: AIChE J. doi: 10.1002/aic.16489 – volume: 34 start-page: 9523 year: 2022 ident: ref_754 article-title: Concept Drift Detection in Data Stream Mining: A literature review publication-title: J. King Saud Univ. Comput. Inf. Sci. – volume: 83 start-page: 2499 year: 2003 ident: ref_721 article-title: Novelty detection: A review—Part 2: Neural network based approaches publication-title: Signal Process. doi: 10.1016/j.sigpro.2003.07.019 – ident: ref_22 – volume: 92 start-page: 19 year: 2020 ident: ref_339 article-title: Monitoring and prediction of big process data with deep latent variable models and parallel computing publication-title: J. Process Control doi: 10.1016/j.jprocont.2020.05.010 – volume: 101 start-page: 1485 year: 2022 ident: ref_478 article-title: A novel quality-related process monitoring method for multi-unit industrial processes under incomplete data conditions publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.24511 – volume: 33 start-page: 1 year: 2019 ident: ref_441 article-title: Feature evaluation and selection for condition monitoring using a self-organizing map and spatial statistics publication-title: Artif. Intell. Eng. Des. Anal. Manuf. doi: 10.1017/S0890060417000518 – volume: 17 start-page: 5853 year: 2021 ident: ref_818 article-title: A Survey on Deep Learning for Data-Driven Soft Sensors publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2021.3053128 – volume: 85 start-page: 159 year: 2020 ident: ref_75 article-title: A multi-feature extraction technique based on principal component analysis for nonlinear dynamic process monitoring publication-title: J. Process Control doi: 10.1016/j.jprocont.2019.11.010 – volume: 42 start-page: 190 year: 2016 ident: ref_165 article-title: Perspectives on process monitoring of industrial systems publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2016.09.001 – volume: 50 start-page: 648 year: 2017 ident: ref_535 article-title: Efficient Monitoring of Nonlinear Chemical Processes based on Fault-Relevant Kernel Principal Component Subspace Construction and Bayesian Inference publication-title: J. Chem. Eng. Jpn. doi: 10.1252/jcej.16we280 – volume: 209 start-page: 118260 year: 2022 ident: ref_732 article-title: Real-time Change-Point Detection: A deep neural network-based adaptive approach for detecting changes in multivariate time series data publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118260 – volume: 41 start-page: 475 year: 2010 ident: ref_80 article-title: Adaptive process monitoring using efficient recursive PCA and moving window PCA algorithms publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2010.03.015 – volume: 171 start-page: 1344 year: 2016 ident: ref_232 article-title: Exponential discriminant analysis for fault diagnosis publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.07.099 – volume: 278 start-page: 118900 year: 2023 ident: ref_379 article-title: Spatial Correlation Extraction for Chemical Process Fault Detection Using Image Enhancement Technique aided Convolutional Autoencoder publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2023.118900 – volume: 84 start-page: 502 year: 1989 ident: ref_84 article-title: Principal Curves publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1989.10478797 – volume: 109 start-page: 6 year: 2019 ident: ref_350 article-title: Neighborhood preserving neural network for fault detection publication-title: Neural Netw. doi: 10.1016/j.neunet.2018.09.010 – volume: 54 start-page: 167 year: 2022 ident: ref_2 article-title: Latent variable models in the era of industrial big data: Extension and beyond publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2022.09.005 – volume: 30 start-page: 179 year: 1995 ident: ref_45 article-title: Disturbance detection and isolation by dynamic principal component analysis publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/0169-7439(95)00076-3 – ident: ref_164 doi: 10.1007/978-1-4471-6410-4 – volume: 223 start-page: 807 year: 2018 ident: ref_646 article-title: Statistical monitoring of a wastewater treatment plant: A case study publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2018.06.087 – volume: 28 start-page: 56 year: 2015 ident: ref_92 article-title: On-line monitoring of batch processes using generalized additive kernel principal component analysis publication-title: J. Process Control doi: 10.1016/j.jprocont.2015.02.007 – volume: 101 start-page: 400 year: 2023 ident: ref_174 article-title: Slow-varying batch process monitoring based on canonical variate analysis publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.24401 – volume: 323 start-page: 533 year: 1986 ident: ref_319 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 271 start-page: 118581 year: 2023 ident: ref_202 article-title: Common canonical variate analysis (CCVA) based modeling and monitoring for multimode processes publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2023.118581 – volume: 42 start-page: 014233121989893 year: 2020 ident: ref_455 article-title: Sparse representation preserving embedding based on extreme learning machine for process monitoring publication-title: Trans. Inst. Meas. Control doi: 10.1177/0142331219898937 – volume: 52 start-page: 14246 year: 2022 ident: ref_744 article-title: Machine learning techniques applied to mechanical fault diagnosis and fault prognosis in the context of real industrial manufacturing use-cases: A systematic literature review publication-title: Appl. Intell. doi: 10.1007/s10489-022-03344-3 – volume: 62 start-page: 8995 year: 2023 ident: ref_295 article-title: Outlook: How I Learned to Love Machine Learning (A Personal Perspective on Machine Learning in Process Systems Engineering) publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.3c01565 – ident: ref_371 doi: 10.3390/min10110958 – volume: 23 start-page: 149 year: 1994 ident: ref_77 article-title: Exponentially weighted moving principal components analysis and projections to latent structures publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/0169-7439(93)E0075-F – volume: 25 start-page: 428 year: 2014 ident: ref_557 article-title: Real-Time Fault Detection Using Recursive Density Estimation publication-title: J. Control. Autom. Electr. Syst. doi: 10.1007/s40313-014-0128-4 – volume: 69 start-page: e17986 year: 2023 ident: ref_778 article-title: Observational process data analytics using causal inference publication-title: AIChE J. doi: 10.1002/aic.17986 – volume: 19 start-page: 145 year: 2015 ident: ref_120 article-title: Multiscale Multiblock Batch Monitoring: Sensor and Process Drift and Degradation publication-title: Org. Process Res. Dev. doi: 10.1021/op400337x – volume: 96 start-page: 2073 year: 2018 ident: ref_808 article-title: Survey on the theoretical research and engineering applications of multivariate statistics process monitoring algorithms: 2008–2017 publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.23249 – volume: 15 start-page: 715 year: 2001 ident: ref_125 article-title: On unifying multiblock analysis with application to decentralized process monitoring publication-title: J. Chemom. doi: 10.1002/cem.667 – volume: 67 start-page: e17282 year: 2021 ident: ref_458 article-title: Convolutional neural nets in chemical engineering: Foundations, computations, and applications publication-title: AIChE J. doi: 10.1002/aic.17282 – volume: 9 start-page: 665 year: 2011 ident: ref_447 article-title: A neuro-fuzzy online fault detection and diagnosis algorithm for nonlinear and dynamic systems publication-title: Int. J. Control. Autom. Syst. doi: 10.1007/s12555-011-0407-9 – ident: ref_814 doi: 10.3390/fi12060097 – volume: 105 start-page: 27 year: 2021 ident: ref_275 article-title: Dynamic system modelling and process monitoring based on long-term dependency slow feature analysis publication-title: J. Process Control doi: 10.1016/j.jprocont.2021.07.007 – volume: 19 start-page: 55 year: 2005 ident: ref_443 article-title: Recurrent neuro-fuzzy system for fault detection and isolation in nuclear reactors publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2005.01.009 – volume: 14 start-page: 1547 year: 2021 ident: ref_540 article-title: Genetic algorithm-based fuzzy clustering applied to multivariate time series publication-title: Evol. Intell. doi: 10.1007/s12065-020-00422-8 – volume: 25 start-page: 409 year: 2009 ident: ref_524 article-title: Bayesian belief networks for system fault diagnostics publication-title: Qual. Reliab. Eng. Int. doi: 10.1002/qre.978 – volume: 122 start-page: 13 year: 2023 ident: ref_419 article-title: A local–global transformer for distributed monitoring of multi-unit nonlinear processes publication-title: J. Process Control doi: 10.1016/j.jprocont.2022.12.007 – volume: 37 start-page: 41 year: 1995 ident: ref_614 article-title: Multivariate SPC Charts for Monitoring Batch Processes publication-title: Technometrics doi: 10.1080/00401706.1995.10485888 – volume: 3 start-page: 403 year: 1995 ident: ref_12 article-title: Statistical process control of multivariate processes publication-title: Control Eng. Pract. doi: 10.1016/0967-0661(95)00014-L – volume: 165 start-page: 716 year: 2022 ident: ref_493 article-title: Faulty Scenarios in Sour Water Treatment Units: Simulation and AI-Based Diagnosis publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2022.07.043 – volume: 95 start-page: 144 year: 2016 ident: ref_543 article-title: A wavelet-based clustering of multivariate time series using a Multiscale SPCA approach publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2016.03.003 – volume: 194 start-page: 105596 year: 2020 ident: ref_329 article-title: A review of deep learning with special emphasis on architectures, applications and recent trends publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105596 – volume: 130 start-page: 106471 year: 2019 ident: ref_602 article-title: Modern day monitoring and control challenges outlined on an industrial-scale benchmark fermentation process publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2019.05.037 – ident: ref_337 doi: 10.1109/CVPR.2016.90 – ident: ref_698 doi: 10.1371/journal.pone.0152173 – volume: 96 start-page: 457 year: 2020 ident: ref_429 article-title: A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network publication-title: ISA Trans. doi: 10.1016/j.isatra.2019.07.001 – volume: 59 start-page: 75 year: 2014 ident: ref_472 article-title: Two methods of selecting Gaussian kernel parameters for one-class SVM and their application to fault detection publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2014.01.020 – volume: 47 start-page: 2740 year: 2014 ident: ref_179 article-title: Quality-Relevant Monitoring and Diagnosis with Dynamic Concurrent Projection to Latent Structures publication-title: IFAC Proc. Vol. doi: 10.3182/20140824-6-ZA-1003.02329 – volume: 97 start-page: 25 year: 2015 ident: ref_773 article-title: Fault propagation behavior study and root cause reasoning with dynamic Bayesian network based framework publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2015.02.003 – volume: 122 start-page: 388 year: 2019 ident: ref_549 article-title: Deep understanding in industrial processes by complementing human expertise with interpretable patterns of machine learning publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.01.011 – volume: 447 start-page: 117 year: 2018 ident: ref_729 article-title: Capturing correlation changes by applying kernel change point detection on the running correlations publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.03.010 – volume: 17 start-page: 245 year: 1993 ident: ref_49 article-title: A plant-wide industrial process control problem publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(93)80018-I – volume: 33 start-page: 2349 year: 2021 ident: ref_224 article-title: A Survey on Canonical Correlation Analysis publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2019.2958342 – volume: 33 start-page: 3085 year: 2020 ident: ref_370 article-title: Multichannel one-dimensional convolutional neural network-based feature learning for fault diagnosis of industrial processes publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05171-4 – volume: 92 start-page: 271 year: 2020 ident: ref_411 article-title: Gaussian Discriminative Analysis aided GAN for imbalanced big data augmentation and fault classification publication-title: J. Process Control doi: 10.1016/j.jprocont.2020.06.014 – volume: 21 start-page: 12868 year: 2020 ident: ref_664 article-title: A Review on Soft Sensors for Monitoring, Control and Optimization of Industrial Processes publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3033153 – ident: ref_326 – volume: 167 start-page: 636 year: 2015 ident: ref_827 article-title: SVM and PCA based fault classification approaches for complicated industrial process publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.03.082 – volume: 28 start-page: 1875 year: 2020 ident: ref_412 article-title: Identification of abnormal conditions in high-dimensional chemical process based on feature selection and deep learning publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2020.05.003 – volume: 100 start-page: 67 year: 2022 ident: ref_508 article-title: Nonparametric manifold learning approach for improved process monitoring publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.24066 – volume: 173 start-page: 163 year: 2023 ident: ref_421 article-title: Large-scale chemical process causal discovery from big data with transformer-based deep learning publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2023.03.017 – volume: 51 start-page: 555 year: 2005 ident: ref_226 article-title: A new fault diagnosis method using fault directions in Fisher discriminant analysis publication-title: AIChE J. doi: 10.1002/aic.10325 – volume: 135 start-page: 313 year: 2014 ident: ref_714 article-title: An experimental evaluation of novelty detection methods publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.12.002 – volume: 15 start-page: 869 year: 2005 ident: ref_145 article-title: Robust multi-scale principal components analysis with applications to process monitoring publication-title: J. Process Control doi: 10.1016/j.jprocont.2005.04.001 – volume: 55 start-page: 4979 year: 2016 ident: ref_536 article-title: PCA-ICA Integrated with Bayesian Method for Non-Gaussian Fault Diagnosis publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b04023 – volume: 5 start-page: 51 year: 2015 ident: ref_497 article-title: Data visualization by nonlinear dimensionality reduction publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. doi: 10.1002/widm.1147 – volume: 155 start-page: 114 year: 2022 ident: ref_719 article-title: OCmst: One-class novelty detection using convolutional neural network and minimum spanning trees publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2021.11.013 – volume: 127 start-page: 105304 year: 2022 ident: ref_533 article-title: An interpretable unsupervised Bayesian network model for fault detection and diagnosis publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2022.105304 – ident: ref_545 – ident: ref_794 doi: 10.1017/CBO9780511755798 – volume: 1 start-page: 85 year: 1997 ident: ref_112 article-title: PCA of wavelet transformed process data for monitoring publication-title: Intell. Data Anal. doi: 10.3233/IDA-1997-1203 – ident: ref_233 doi: 10.1109/CONTROL.2016.7737588 – volume: 58 start-page: 12899 year: 2019 ident: ref_131 article-title: Review and Perspectives of Data-Driven Distributed Monitoring for Industrial Plant-Wide Processes publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b02391 – volume: 31 start-page: 611 year: 2016 ident: ref_734 article-title: Multiple Change-Point Detection: A Selective Overview publication-title: Stat. Sci. doi: 10.1214/16-STS587 – volume: 14 start-page: 467 year: 2004 ident: ref_244 article-title: Statistical process monitoring with independent component analysis publication-title: J. Process Control doi: 10.1016/j.jprocont.2003.09.004 – volume: 501 start-page: 596 year: 2022 ident: ref_456 article-title: An extreme learning machine for unsupervised online anomaly detection in multivariate time series publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.06.042 – volume: 127 start-page: 102999 year: 2023 ident: ref_401 article-title: Stacked supervised auto-encoder with graph regularization for feature extraction and fault classification in chemical processes publication-title: J. Process Control doi: 10.1016/j.jprocont.2023.102999 – volume: 138 start-page: 130 year: 2020 ident: ref_531 article-title: Data-driven Bayesian network model for early kick detection in industrial drilling process publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2020.03.017 – volume: 59 start-page: 15656 year: 2020 ident: ref_489 article-title: Least Squares Sparse Principal Component Analysis and Parallel Coordinates for Real-Time Process Monitoring publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c01749 – volume: 28 start-page: 1377 year: 2004 ident: ref_105 article-title: Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2003.09.031 – volume: 232 start-page: 120854 year: 2023 ident: ref_301 article-title: Integrated intelligent fault diagnosis approach of offshore wind turbine bearing based on information stream fusion and semi-supervised learning publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.120854 – volume: 332 start-page: 305 year: 2019 ident: ref_517 article-title: Multimode process monitoring based on robust dictionary learning with application to aluminium electrolysis process publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.12.024 – volume: 167 start-page: 480 year: 2022 ident: ref_417 article-title: A novel deep learning model based on target transformer for fault diagnosis of chemical process publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2022.09.039 – volume: 45 start-page: 160 year: 2012 ident: ref_779 article-title: Root cause diagnosis of plant-wide oscillations using Granger causality publication-title: IFAC Proc. Vol. doi: 10.3182/20120710-4-SG-2026.00172 – volume: 21 start-page: 2560 year: 2007 ident: ref_480 article-title: Support vector machine in machine condition monitoring and fault diagnosis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2006.12.007 – volume: 109 start-page: 175 year: 2020 ident: ref_764 article-title: Kappa Updated Ensemble for drifting data stream mining publication-title: Mach. Learn. doi: 10.1007/s10994-019-05840-z – volume: 56 start-page: 2838 year: 2010 ident: ref_135 article-title: Mixture Bayesian regularization method of PPCA for multimode process monitoring publication-title: AIChE J. doi: 10.1002/aic.12200 – volume: 53 start-page: 8831 year: 2014 ident: ref_438 article-title: Self-Organizing Map Based Fault Diagnosis Technique for Non-Gaussian Processes publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie500815a – volume: 35 start-page: 471 year: 2002 ident: ref_451 article-title: Fault diagnosis of an industrial gas turbine using neuro-fuzzy methods publication-title: IFAC Proc. Vol. doi: 10.3182/20020721-6-ES-1901.01632 – ident: ref_702 doi: 10.1109/ICMLA.2015.141 – volume: 108 start-page: 102868 year: 2021 ident: ref_432 article-title: A pairwise graph regularized constraint based on deep belief network for fault diagnosis publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2020.102868 – volume: 13 start-page: 1443 year: 2001 ident: ref_471 article-title: Estimating the Support of a High-Dimensional Distribution publication-title: Neural Comput. doi: 10.1162/089976601750264965 – volume: 42 start-page: 63 year: 2016 ident: ref_803 article-title: Bridging data-driven and model-based approaches for process fault diagnosis and health monitoring: A review of researches and future challenges publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2016.09.008 – ident: ref_353 doi: 10.3390/pr7030152 – volume: 35 start-page: 5472 year: 2010 ident: ref_449 article-title: Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers publication-title: Energy doi: 10.1016/j.energy.2010.06.001 – volume: 53 start-page: 3974 year: 2022 ident: ref_520 article-title: Adaptive Multimode Process Monitoring Based on Mode-Matching and Similarity-Preserving Dictionary Learning publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2022.3178878 – volume: 52 start-page: 673 year: 2019 ident: ref_575 article-title: Variable Selection for Fault Detection and Identification based on Mutual Information of Alarm Series publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2019.06.140 – volume: 52 start-page: 3543 year: 2013 ident: ref_800 article-title: Review of Recent Research on Data-Based Process Monitoring publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie302069q – volume: 35 start-page: 1 year: 2011 ident: ref_797 article-title: Review of adaptation mechanisms for data-driven soft sensors publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2010.07.034 – ident: ref_351 doi: 10.1109/IJCNN.2018.8489385 – volume: 20 start-page: S745 year: 1996 ident: ref_617 article-title: Experiences with industrial applications of projection methods for multivariate statistical process control publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(96)00132-9 – volume: 71 start-page: 513 year: 2017 ident: ref_544 article-title: A hybrid clustering approach for multivariate time series—A case study applied to failure analysis in a gas turbine publication-title: ISA Trans. doi: 10.1016/j.isatra.2017.09.004 – volume: 204 start-page: 104092 year: 2020 ident: ref_208 article-title: Multiblock global orthogonal projections to latent structures for fault diagnosis publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2020.104092 – volume: 52 start-page: 306 year: 2011 ident: ref_799 article-title: Methods for Plant Data-Based Process Modeling in Soft-Sensor Development publication-title: Automatika doi: 10.1080/00051144.2011.11828430 – volume: 231 start-page: 104684 year: 2022 ident: ref_831 article-title: Modeling in the observable or latent space? A comparison of dynamic latent variable based monitoring methods for sensor fault detection publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2022.104684 – volume: 48 start-page: 4 year: 2016 ident: ref_17 article-title: Statistical Learning Methods Applied to Process Monitoring: An Overview and Perspective publication-title: J. Qual. Technol. doi: 10.1080/00224065.2016.11918148 – volume: 227 start-page: 115928 year: 2020 ident: ref_223 article-title: Effect of dataset size on modeling and monitoring of chemical processes publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2020.115928 – volume: 101 start-page: 6944 year: 2023 ident: ref_415 article-title: A novel imbalanced fault diagnosis method based on area identification conditional generative adversarial networks publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.24949 – volume: 51 start-page: 339 year: 2017 ident: ref_727 article-title: A survey of methods for time series change point detection publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-016-0987-z – volume: 84 start-page: 104 year: 2016 ident: ref_828 article-title: Fault diagnosis of chemical processes with incomplete observations: A comparative study publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2015.08.018 – volume: 59 start-page: 2995 year: 2004 ident: ref_245 article-title: Statistical monitoring of dynamic processes based on dynamic independent component analysis publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2004.04.031 – volume: 139 start-page: 106841 year: 2020 ident: ref_172 article-title: Understanding chemical production processes by using PLS path model parameters as soft sensors publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.106841 – ident: ref_306 doi: 10.1109/IECON.2017.8217236 – ident: ref_153 doi: 10.3390/pr5030038 – volume: 44 start-page: 319 year: 1998 ident: ref_621 article-title: The introduction of process chemometrics into an industrial pilot plant laboratory publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(98)00119-1 – ident: ref_336 – ident: ref_392 doi: 10.3390/pr10112408 – volume: 172 start-page: 194 year: 2018 ident: ref_50 article-title: Evaluation of diagnosis methods in PCA-based Multivariate Statistical Process Control publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2017.12.008 – ident: ref_424 doi: 10.1109/RAIIC59453.2023.10280857 – volume: 127 start-page: 282 year: 2019 ident: ref_302 article-title: Reinforcement Learning—Overview of recent progress and implications for process control publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2019.05.029 – volume: 8 start-page: 162 year: 2023 ident: ref_706 article-title: Data-Driven Anomaly Detection in Laboratory Medicine: Past, Present, and Future publication-title: J. Appl. Lab. Med. doi: 10.1093/jalm/jfac114 – volume: 52 start-page: 1947 year: 2013 ident: ref_127 article-title: Distributed PCA Model for Plant-Wide Process Monitoring publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie301945s – volume: 45 start-page: 1593 year: 2009 ident: ref_57 article-title: Reconstruction-based contribution for process monitoring publication-title: Automatica doi: 10.1016/j.automatica.2009.02.027 – volume: 63 start-page: 134 year: 2016 ident: ref_560 article-title: An evolving approach to unsupervised and Real-Time fault detection in industrial processes publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.06.035 – volume: 58 start-page: 20667 year: 2019 ident: ref_507 article-title: Joint Structure Preserving Embedding Model and Its Application for Process Monitoring publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b03077 – volume: 23 start-page: 1575 year: 2013 ident: ref_801 article-title: Design of inferential sensors in the process industry: A review of Bayesian methods publication-title: J. Process Control doi: 10.1016/j.jprocont.2013.05.007 – volume: 155 start-page: 107549 year: 2021 ident: ref_563 article-title: Fault Diagnosis of Chemical Processes based on Joint Recurrence Quantification Analysis publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2021.107549 – ident: ref_31 doi: 10.3390/pr5040056 – volume: 71 start-page: 1665 year: 2017 ident: ref_133 article-title: Statistical Aspects of Near-Infrared Spectroscopy for the Characterization of Errors and Model Building publication-title: Appl. Spectrosc. doi: 10.1177/0003702817704587 – ident: ref_553 doi: 10.1109/EALS.2014.7009497 – volume: 215 start-page: 110716 year: 2022 ident: ref_785 article-title: Chaotic dynamics induced by anti-slug control in offshore oil production plants publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2022.110716 – ident: ref_585 doi: 10.3390/pr7120958 – ident: ref_612 – volume: 32 start-page: 1261 year: 2017 ident: ref_555 article-title: Empirical Data Analytics publication-title: Int. J. Intell. Syst. doi: 10.1002/int.21899 – volume: 95 start-page: 32 year: 2020 ident: ref_186 article-title: Auto-regressive modeling with dynamic weighted canonical correlation analysis publication-title: J. Process Control doi: 10.1016/j.jprocont.2020.09.007 – volume: 11 start-page: 613 year: 2003 ident: ref_178 article-title: Recursive partial least squares algorithms for monitoring complex industrial processes publication-title: Control Eng. Pract. doi: 10.1016/S0967-0661(02)00096-5 – volume: 30 start-page: 1171 year: 2022 ident: ref_44 article-title: Performance-Driven Component Selection in the Framework of PCA for Process Monitoring: A Dynamic Selection Approach publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2021.3094512 – volume: 99 start-page: 107 year: 2021 ident: ref_384 article-title: Unsupervised isolation of abnormal process variables using sparse autoencoders publication-title: J. Process Control doi: 10.1016/j.jprocont.2021.01.005 – ident: ref_464 – volume: 61 start-page: 8932 year: 2022 ident: ref_293 article-title: Machine Learning Algorithms Used in PSE Environments: A Didactic Approach and Critical Perspective publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.2c00335 – volume: 19 start-page: 213 year: 2005 ident: ref_632 article-title: Application of latent variable methods to process control and multivariate statistical process control in industry publication-title: Int. J. Adapt. Control Signal Process. doi: 10.1002/acs.859 – volume: 31 start-page: 347 year: 1998 ident: ref_624 article-title: Multivariate Statistical Process Control and Process Performance Monitoring publication-title: IFAC Proc. Vol. doi: 10.1016/S1474-6670(17)44952-4 – volume: 27 start-page: 2961 year: 2015 ident: ref_716 article-title: Evaluation of Multiclass Novelty Detection Algorithms for Data Streams publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2015.2441713 – volume: 12 start-page: 255 year: 2014 ident: ref_752 article-title: Data Mining—Past, Present and Future—A Typical Survey on Data Streams publication-title: Procedia Technol. doi: 10.1016/j.protcy.2013.12.483 – volume: 32 start-page: 12 year: 2008 ident: ref_636 article-title: Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2007.07.005 – volume: 101 start-page: 3998 year: 2022 ident: ref_393 article-title: Feature learning based on entropy estimation density peak clustering and stacked autoencoder for industrial process monitoring publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.24750 – volume: 164 start-page: 107884 year: 2022 ident: ref_654 article-title: One step forward for smart chemical process fault detection and diagnosis publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2022.107884 – ident: ref_348 – ident: ref_431 doi: 10.1109/SMC.2019.8914596 – volume: 167 start-page: 107299 year: 2020 ident: ref_738 article-title: Selective review of offline change point detection methods publication-title: Signal Process. doi: 10.1016/j.sigpro.2019.107299 – volume: 167 start-page: 108014 year: 2022 ident: ref_594 article-title: Latent Variable Method Demonstrator—Software for understanding multivariate data analytics algorithms publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2022.108014 – volume: 248 start-page: 117221 year: 2022 ident: ref_786 article-title: Continuous diabatic free-radical solution polymerization reactors: Search engines for non-linear dynamical solutions publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2021.117221 – volume: 108 start-page: 106 year: 2021 ident: ref_185 article-title: Modified canonical variate analysis based on dynamic kernel decomposition for dynamic nonlinear process quality monitoring publication-title: ISA Trans. doi: 10.1016/j.isatra.2020.08.017 – ident: ref_51 – volume: 7 start-page: 6978 year: 2022 ident: ref_274 article-title: Fault Detection of Non-Gaussian and Nonlinear Processes Based on Independent Slow Feature Analysis publication-title: ACS Omega doi: 10.1021/acsomega.1c06649 – volume: 71 start-page: 1 year: 2022 ident: ref_308 article-title: Distributed Robust Process Monitoring Based on Optimized Denoising Autoencoder With Reinforcement Learning publication-title: IEEE Trans. Instrum. Meas. – volume: 16 start-page: 146 year: 2008 ident: ref_137 article-title: Model identification and error covariance matrix estimation from noisy data using PCA publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2007.04.006 – volume: 53 start-page: 218 year: 2020 ident: ref_810 article-title: Modern Machine Learning Tools for Monitoring and Control of Industrial Processes: A Survey publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2020.12.126 – volume: 17 start-page: 480 year: 2003 ident: ref_14 article-title: Statistical process monitoring: Basics and beyond publication-title: J. Chemom. doi: 10.1002/cem.800 – volume: 110 start-page: 104743 year: 2022 ident: ref_542 article-title: A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.104743 – volume: 68 start-page: 12 year: 2021 ident: ref_200 article-title: A Just In Time Learning Aided Canonical Correlation Analysis Method for Multimode Process Monitoring and Fault Detection publication-title: IEEE Trans. Ind. Electron. – volume: 5 start-page: 277 year: 1995 ident: ref_170 article-title: Analysis, monitoring and fault diagnosis of batch processes using multiblock and multiway PLS publication-title: J. Process Control doi: 10.1016/0959-1524(95)00019-M – volume: 407 start-page: 232 year: 2020 ident: ref_357 article-title: Cost sensitive active learning using bidirectional gated recurrent neural networks for imbalanced fault diagnosis publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.04.075 – ident: ref_347 doi: 10.1007/978-3-540-78293-3 – ident: ref_615 doi: 10.23919/ACC.1992.4792557 – volume: 215 start-page: 1065 year: 2001 ident: ref_312 article-title: Support vector machines for detection and characterization of rolling element bearing faults publication-title: Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. doi: 10.1177/095440620121500907 – volume: 35 start-page: 211 year: 2023 ident: ref_1 article-title: Challenges and opportunities of deep learning-based process fault detection and diagnosis: A review publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-08017-3 – ident: ref_307 doi: 10.23919/ACC53348.2022.9867763 – volume: 75 start-page: 107 year: 2019 ident: ref_506 article-title: Improved process monitoring based on global–local manifold analysis and statistical local approach for industrial process publication-title: J. Process Control doi: 10.1016/j.jprocont.2018.12.016 – volume: 14 start-page: 359 year: 2018 ident: ref_641 article-title: Advances in Continuous Active Pharmaceutical Ingredient (API) Manufacturing: Real-time Monitoring Using Multivariate Tools publication-title: J. Pharm. Innov. doi: 10.1007/s12247-018-9348-7 – volume: 84 start-page: 247 year: 2019 ident: ref_345 article-title: Active features extracted by deep belief network for process monitoring publication-title: ISA Trans. doi: 10.1016/j.isatra.2018.10.011 – volume: 60 start-page: 3038 year: 2021 ident: ref_564 article-title: Data-Driven Fault Diagnosis of Chemical Processes Based on Recurrence Plots publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c06307 – ident: ref_820 doi: 10.3390/s22062205 – volume: 13 start-page: 3711 year: 2022 ident: ref_97 article-title: A reduced nonstationary discrete convolution kernel for multimode process monitoring publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-022-01621-8 – volume: 93 start-page: 1063 year: 2015 ident: ref_645 article-title: Detection of decomposition for high pressure ethylene/vinyl acetate copolymerization in autoclave reactor using principal component analysis on heat balance model publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.22200 – volume: 114 start-page: 69 year: 2018 ident: ref_74 article-title: Dynamic latent variable analytics for process operations and control publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2017.10.029 – volume: 32 start-page: 38 year: 2015 ident: ref_128 article-title: Nonlinear plant-wide process monitoring using MI-spectral clustering and Bayesian inference-based multiblock KPCA publication-title: J. Process Control doi: 10.1016/j.jprocont.2015.04.014 – volume: Volume 3940 start-page: 34 year: 2006 ident: ref_163 article-title: Overview and Recent Advances in Partial Least Squares publication-title: Subspace, Latent Structure and Feature Selection doi: 10.1007/11752790_2 – volume: 61 start-page: 959 year: 2017 ident: ref_236 article-title: Fault diagnosis and classification framework using multi-scale classification based on kernel Fisher discriminant analysis for chemical process system publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.09.019 – volume: 39 start-page: 327 year: 2022 ident: ref_102 article-title: Non-linear process monitoring using kernel principal component analysis: A review of the basic and modified techniques with industrial applications publication-title: Braz. J. Chem. Eng. doi: 10.1007/s43153-021-00125-2 – volume: 2 start-page: 494 year: 2021 ident: ref_740 article-title: Sequential (Quickest) Change Detection: Classical Results and New Directions publication-title: IEEE J. Sel. Areas Inf. Theory doi: 10.1109/JSAIT.2021.3072962 – ident: ref_653 doi: 10.1007/s11668-023-01817-2 – volume: 239 start-page: 39 year: 2017 ident: ref_768 article-title: A survey on data preprocessing for data stream mining: Current status and future directions publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.01.078 – volume: 10 start-page: 195 year: 2023 ident: ref_294 article-title: Machine Learning an Intelligent Approach in Process Industries: A Perspective and Overview publication-title: ChemBioEng Rev. doi: 10.1002/cben.202200030 – volume: 34 start-page: 100758 year: 2021 ident: ref_158 article-title: A decade in review: Use of data analytics within the biopharmaceutical sector publication-title: Curr. Opin. Chem. Eng. doi: 10.1016/j.coche.2021.100758 – volume: 88 start-page: 811 year: 1988 ident: ref_11 article-title: Principal components analysis for monitoring the West Valley Liquid Fed Ceramic Melter publication-title: Waste Manag. – volume: 34 start-page: 500 year: 2010 ident: ref_107 article-title: On-line multivariate statistical monitoring of batch processes using Gaussian mixture model publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2009.08.007 – volume: 29 start-page: 218 year: 1986 ident: ref_597 article-title: How not to lie with statistics: The correct way to summarize benchmark results publication-title: Commun. ACM doi: 10.1145/5666.5673 – ident: ref_219 doi: 10.1109/CCDC.2013.6561830 – volume: 15 start-page: 2849 year: 2019 ident: ref_590 article-title: Recent Advances in Key-Performance-Indicator Oriented Prognosis and Diagnosis with a MATLAB Toolbox: DB-KIT publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2018.2875067 – volume: 71 start-page: 1 year: 2022 ident: ref_271 article-title: Toward Interpretable Process Monitoring: Slow Feature Analysis-Aided Autoencoder for Spatiotemporal Process Feature Learning publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2022.3218574 – volume: 2 start-page: 582126 year: 2020 ident: ref_501 article-title: Manifold Learning and Clustering for Automated Phase Identification and Alignment in Data Driven Modeling of Batch Processes publication-title: Front. Chem. Eng. doi: 10.3389/fceng.2020.582126 – volume: 157 start-page: 107587 year: 2022 ident: ref_832 article-title: Retrospective comparison of several typical linear dynamic latent variable models for industrial process monitoring publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2021.107587 – ident: ref_297 – volume: 27 start-page: 316 year: 2020 ident: ref_815 article-title: Machine Learning and Deep Learning in Chemical Health and Safety: A Systematic Review of Techniques and Applications publication-title: ACS Chem. Health Saf. doi: 10.1021/acs.chas.0c00075 – volume: 46 start-page: 955 year: 2007 ident: ref_218 article-title: Robust Adaptive Partial Least Squares Modeling of a Full-Scale Industrial Wastewater Treatment Process publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie061094+ – volume: 109 start-page: 756 year: 2021 ident: ref_703 article-title: A Unifying Review of Deep and Shallow Anomaly Detection publication-title: Proc. IEEE doi: 10.1109/JPROC.2021.3052449 – volume: 20 start-page: 1191 year: 1999 ident: ref_470 article-title: Support vector domain description publication-title: Pattern Recognit. Lett. doi: 10.1016/S0167-8655(99)00087-2 – volume: 33 start-page: 172 year: 2009 ident: ref_68 article-title: A survey on multistage/multiphase statistical modeling methods for batch processes publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2009.08.001 – ident: ref_523 doi: 10.1109/ICIEEM.2009.5344265 – ident: ref_589 – volume: 239 start-page: 421 year: 2019 ident: ref_647 article-title: Multivariate data analysis applied in the evaluation of crude oil blends publication-title: Fuel doi: 10.1016/j.fuel.2018.11.045 – volume: 98 start-page: 201 year: 2009 ident: ref_204 article-title: Multi-scale extension of PLS algorithm for advanced on-line process monitoring publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2009.07.003 – volume: Volume 37 start-page: 1823 year: 2015 ident: ref_235 article-title: Process Monitoring and Fault Detection in Non-Linear Chemical Process Based On Multi-Scale Kernel Fisher Discriminant Analysis publication-title: Computer Aided Chemical Engineering doi: 10.1016/B978-0-444-63577-8.50149-2 – volume: 117 start-page: 140 year: 2022 ident: ref_385 article-title: Condition-driven probabilistic adversarial autoencoder with nonlinear Gaussian feature learning for nonstationary process monitoring publication-title: J. Process Control doi: 10.1016/j.jprocont.2022.07.012 – ident: ref_511 – volume: 6 start-page: 3 year: 2010 ident: ref_193 article-title: Decentralized Fault Diagnosis of Large-Scale Processes Using Multiblock Kernel Partial Least Squares publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2009.2033181 – ident: ref_495 doi: 10.1177/09544089231213778 – volume: 26 start-page: 1281 year: 2002 ident: ref_115 article-title: Multivariate process monitoring and fault diagnosis by multi-scale PCA publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(02)00093-5 – volume: 275 start-page: 1 year: 2019 ident: ref_546 article-title: Recent advances in the theory and practice of Logical Analysis of Data publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2018.06.011 – volume: 14 start-page: 821 year: 2004 ident: ref_631 article-title: An industrial perspective on implementing on-line applications of multivariate statistics publication-title: J. Process Control doi: 10.1016/j.jprocont.2004.02.001 – ident: ref_314 doi: 10.1007/978-1-4471-5185-2 – volume: 51 start-page: 95 year: 2000 ident: ref_59 article-title: Generalized contribution plots in multivariate statistical process monitoring publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(00)00062-9 – ident: ref_334 doi: 10.18653/v1/D16-1053 – volume: 182 start-page: 115234 year: 2021 ident: ref_408 article-title: An interpretable data augmentation scheme for machine fault diagnosis based on a sparsity-constrained generative adversarial network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115234 – volume: 72 start-page: 1 year: 2023 ident: ref_416 article-title: One-dimensional residual GANomaly network-based deep feature extraction model for complex industrial system fault detection publication-title: IEEE Trans. Instrum. Meas. – volume: 20 start-page: 65 year: 1996 ident: ref_83 article-title: Nonlinear principal component analysis—Based on principal curves and neural networks publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(95)00003-K – volume: 90 start-page: 2262 year: 2012 ident: ref_436 article-title: Using improved self-organizing map for fault diagnosis in chemical industry process publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2012.06.004 – volume: 1 start-page: 203 year: 2014 ident: ref_23 article-title: Build, Compute, Critique, Repeat: Data Analysis with Latent Variable Models publication-title: Annu. Rev. Stat. Its Appl. doi: 10.1146/annurev-statistics-022513-115657 – volume: 49 start-page: 9184 year: 2010 ident: ref_485 article-title: Unsupervised Process Fault Detection with Random Forests publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie901975c – volume: 18 start-page: 242 year: 2010 ident: ref_252 article-title: A novel process monitoring approach with dynamic independent component analysis publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2009.11.002 – volume: 157 start-page: 177 year: 2016 ident: ref_505 article-title: Nonlocal and local structure preserving projection and its application to fault detection publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2016.07.014 – volume: 357 start-page: 6294 year: 2020 ident: ref_576 article-title: Feature Selection for Multivariate Contribution Analysis in Fault Detection and Isolation publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2020.03.005 – volume: Volume 50 start-page: 1195 year: 2021 ident: ref_409 article-title: Adversarial Autoencoder Based Nonlinear Process Monitoring publication-title: Computer Aided Chemical Engineering doi: 10.1016/B978-0-323-88506-5.50184-4 – volume: 85 start-page: 149 year: 2020 ident: ref_468 article-title: MRS kNN fault detection method for multirate sampling process based variable grouping threshold publication-title: J. Process Control doi: 10.1016/j.jprocont.2019.11.007 – volume: 354 start-page: 668 year: 2017 ident: ref_830 article-title: Assessment of T2- and Q-statistics for detecting additive and multiplicative faults in multivariate statistical process monitoring publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2016.10.033 – ident: ref_362 doi: 10.1007/s10845-023-02118-z – volume: 57 start-page: 63 year: 2002 ident: ref_169 article-title: On-line batch process monitoring using dynamic PCA and dynamic PLS models publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(01)00366-9 – volume: 53 start-page: 5055 year: 2014 ident: ref_249 article-title: Independent Component Analysis Mixture Model Based Dissimilarity Method for Performance Monitoring of Non-Gaussian Dynamic Processes with Shifting Operating Conditions publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie401027b – volume: 30 start-page: 332 year: 1980 ident: ref_598 article-title: A mechanistic model for penicillin production publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.503300140 – volume: 98 start-page: 1293 year: 2020 ident: ref_428 article-title: Research on TE process fault diagnosis method based on DBN and Dropout publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.23750 – volume: 68 start-page: 18 year: 2018 ident: ref_475 article-title: Time-adaptive support vector data description for nonstationary process monitoring publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2017.10.016 – volume: 49 start-page: 939 year: 2003 ident: ref_116 article-title: Multiscale SPC using wavelets: Theoretical analysis and properties publication-title: AIChE J. doi: 10.1002/aic.690490412 – volume: 53 start-page: 16041 year: 2022 ident: ref_376 article-title: An effective zero-shot learning approach for intelligent fault detection using 1D CNN publication-title: Appl. Intell. doi: 10.1007/s10489-022-04342-1 – volume: 9 start-page: 2226 year: 2013 ident: ref_658 article-title: From Model, Signal to Knowledge: A Data-Driven Perspective of Fault Detection and Diagnosis publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2013.2243743 – volume: 67 start-page: 1 year: 2018 ident: ref_71 article-title: A novel dynamic PCA algorithm for dynamic data modeling and process monitoring publication-title: J. Process Control doi: 10.1016/j.jprocont.2017.05.002 – ident: ref_63 – volume: 62 start-page: 13889 year: 2023 ident: ref_569 article-title: Distance matrix patterns for visual and interpretable process data analytics publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.3c01481 – volume: 13 start-page: 1779 year: 2020 ident: ref_771 article-title: Data Stream Event Prediction Based on Timing Knowledge and State Transitions publication-title: Proc. VLDB Endow. doi: 10.14778/3401960.3401973 – volume: 67 start-page: 160 year: 2018 ident: ref_584 article-title: Data mining and clustering in chemical process databases for monitoring and knowledge discovery publication-title: J. Process Control doi: 10.1016/j.jprocont.2017.02.006 – volume: 148 start-page: 321 year: 2019 ident: ref_180 article-title: Computing meaningful models of continuous data publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2019.06.016 – ident: ref_192 doi: 10.1002/cjce.25124 – volume: 18 start-page: 1527 year: 2006 ident: ref_322 article-title: A Fast Learning Algorithm for Deep Belief Nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 124 start-page: 1 year: 2019 ident: ref_67 article-title: Data-driven methods for batch data analysis—A critical overview and mapping on the complexity scale publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2019.01.014 – volume: 3 start-page: 113 year: 2016 ident: ref_325 article-title: Where does AlphaGo go: From church-turing thesis to AlphaGo thesis and beyond publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2016.7471613 – volume: 262 start-page: 134 year: 2017 ident: ref_688 article-title: Unsupervised real-time anomaly detection for streaming data publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.070 – ident: ref_767 doi: 10.1137/1.9781611974348.41 – ident: ref_29 doi: 10.1007/978-0-387-84858-7 – ident: ref_509 doi: 10.3390/pr10010122 – volume: 9 start-page: 1 year: 2018 ident: ref_757 article-title: Discussion and review on evolving data streams and concept drift adapting publication-title: Evol. Syst. doi: 10.1007/s12530-016-9168-2 – volume: 111 start-page: 104811 year: 2021 ident: ref_388 article-title: Sparsity and manifold regularized convolutional auto-encoders-based feature learning for fault detection of multivariate processes publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2021.104811 – volume: 7 start-page: 106053 year: 2019 ident: ref_454 article-title: Nonlinear Process Monitoring Based on Global Preserving Unsupervised Kernel Extreme Learning Machine publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2932017 – volume: 8 start-page: 112092 year: 2020 ident: ref_76 article-title: Segmentation of Multivariate Industrial Time Series Data Based on Dynamic Latent Variable Predictability publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3002257 – ident: ref_693 – volume: 122 start-page: 804 year: 2017 ident: ref_755 article-title: Concept drift in Streaming Data Classification: Algorithms, Platforms and Issues publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2017.11.440 – volume: 150 start-page: 107304 year: 2021 ident: ref_651 article-title: Representation Learning and Predictive Classification: Application with an Electric Arc Furnace publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2021.107304 – ident: ref_47 doi: 10.1201/9781315155135 – volume: 9 start-page: 8892 year: 2022 ident: ref_407 article-title: Fault Detection and Classification in Industrial IoT in Case of Missing Sensor Data publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3116785 – volume: 75 start-page: 55 year: 2005 ident: ref_90 article-title: Fault detection and identification of nonlinear processes based on kernel PCA publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2004.05.001 – volume: 7 start-page: 179 year: 1936 ident: ref_225 article-title: The Use of Multiple Measurements in Taxonomic Problems publication-title: Ann. Eugen. doi: 10.1111/j.1469-1809.1936.tb02137.x – volume: 26 start-page: 56 year: 2015 ident: ref_839 article-title: Comparison of variable selection methods for PLS-based soft sensor modeling publication-title: J. Process Control doi: 10.1016/j.jprocont.2015.01.003 – ident: ref_414 doi: 10.1109/CCDC49329.2020.9164262 – volume: 163 start-page: 107853 year: 2022 ident: ref_395 article-title: A novel fault detection and diagnosis approach based on orthogonal autoencoders publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2022.107853 – volume: 6 start-page: 12929 year: 2018 ident: ref_352 article-title: Sequential Fault Diagnosis Based on LSTM Neural Network publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2794765 – volume: 61 start-page: 6418 year: 2014 ident: ref_28 article-title: A Review on Basic Data-Driven Approaches for Industrial Process Monitoring publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2014.2301773 – volume: 48 start-page: 619 year: 2015 ident: ref_514 article-title: Sparse Contribution Plot for Fault Diagnosis of Multimodal Chemical Processes publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2015.09.595 – volume: 19 start-page: 271 year: 1997 ident: ref_618 article-title: Multivariate statistical methods in bioprocess fault detection and performance forecasting publication-title: Trans. Inst. Meas. Control doi: 10.1177/014233129701900507 – volume: 47 start-page: 49 year: 2003 ident: ref_248 article-title: New monitoring technique with an ICA algorithm in the wastewater treatment process publication-title: Water Sci. Technol. doi: 10.2166/wst.2003.0627 – volume: 56 start-page: 1 year: 2022 ident: ref_361 article-title: Attention-based LSTM fully convolutional network for chemical process fault diagnosis publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2022.06.029 – volume: 17 start-page: 166 year: 2003 ident: ref_161 article-title: Partial least squares for discrimination publication-title: J. Chemom. doi: 10.1002/cem.785 – volume: Volume 27 start-page: 47 year: 2009 ident: ref_30 article-title: Nonlinear Dynamic Data Reconciliation in Real Time in Actual Processes publication-title: Computer Aided Chemical Engineering doi: 10.1016/S1570-7946(09)70228-7 – ident: ref_676 doi: 10.1007/978-3-030-65965-3 – ident: ref_793 doi: 10.1093/oso/9780198782933.003.0001 – volume: 72 start-page: 1 year: 2023 ident: ref_197 article-title: A General Quality-Related Nonlinear Process Monitoring Approach Based on Input–Output Kernel PLS publication-title: IEEE Trans. Instrum. Meas. – volume: 139 start-page: 216 year: 2023 ident: ref_399 article-title: Decentralized adaptively weighted stacked autoencoder-based incipient fault detection for nonlinear industrial processes publication-title: ISA Trans. doi: 10.1016/j.isatra.2023.04.035 – volume: 25 start-page: 1175 year: 2013 ident: ref_733 article-title: Change Detection in Streaming Multivariate Data Using Likelihood Detectors publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2011.226 – volume: 121 start-page: 105988 year: 2023 ident: ref_663 article-title: The role of artificial intelligence-driven soft sensors in advanced sustainable process industries: A critical review publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.105988 – volume: 115 start-page: 185 year: 2018 ident: ref_349 article-title: Deep convolutional neural network model based chemical process fault diagnosis publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2018.04.009 – volume: 28 start-page: 1157 year: 2004 ident: ref_243 article-title: Evolution of multivariate statistical process control: Application of independent component analysis and external analysis publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2003.09.011 – volume: 37 start-page: 137 year: 1991 ident: ref_310 article-title: Fault diagnosis in complex chemical plants using artificial neural networks publication-title: AIChE J. doi: 10.1002/aic.690370112 – ident: ref_554 doi: 10.1109/SMC.2016.7844219 – volume: 33 start-page: 2508 year: 2022 ident: ref_697 article-title: An Evaluation of Anomaly Detection and Diagnosis in Multivariate Time Series publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3105827 – volume: 99 start-page: 215 year: 2014 ident: ref_722 article-title: A review of novelty detection publication-title: Signal Process. doi: 10.1016/j.sigpro.2013.12.026 – volume: 26 start-page: 1783 year: 2002 ident: ref_788 article-title: The use of particle swarm optimization for dynamical analysis in chemical processes publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(02)00153-9 – volume: 21 start-page: 593 year: 2022 ident: ref_198 article-title: Operating Performance Assessment of Complex Nonlinear Industrial Process Based on Kernel Locally Linear Embedding PLS publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2022.3230687 – volume: 145 start-page: 107197 year: 2021 ident: ref_816 article-title: An analysis of process fault diagnosis methods from safety perspectives publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.107197 – volume: 183 start-page: 79 year: 2018 ident: ref_500 article-title: Nonlinear fault detection of batch processes based on functional kernel locality preserving projections publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2018.10.010 – volume: 112 start-page: 320 year: 2017 ident: ref_255 article-title: Correlated and weakly correlated fault detection based on variable division and ICA publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2017.08.035 – volume: 44 start-page: 12886 year: 2011 ident: ref_72 article-title: Dynamic latent variable modeling for statistical process monitoring publication-title: IFAC Proc. Vol. doi: 10.3182/20110828-6-IT-1002.00934 – volume: 81 start-page: 332 year: 2017 ident: ref_522 article-title: A Bayesian network-based approach for fault analysis publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.03.056 – volume: 35 start-page: 1993 year: 1989 ident: ref_309 article-title: A neural network methodology for process fault diagnosis publication-title: AIChE J. doi: 10.1002/aic.690351210 – volume: 110 start-page: 59 year: 2022 ident: ref_273 article-title: A novel kernel dynamic inner slow feature analysis method for dynamic nonlinear process concurrent monitoring of operating point deviations and process dynamics anomalies publication-title: J. Process Control doi: 10.1016/j.jprocont.2021.12.005 – volume: 26 start-page: 10477 year: 2022 ident: ref_568 article-title: Application of unthresholded recurrence plots and texture analysis for industrial loops with faulty valves publication-title: Soft Comput. doi: 10.1007/s00500-022-06894-3 – volume: 14 start-page: 715 year: 2002 ident: ref_264 article-title: Slow Feature Analysis: Unsupervised Learning of Invariances publication-title: Neural Comput. doi: 10.1162/089976602317318938 – volume: 180 start-page: 108453 year: 2024 ident: ref_381 article-title: Graph attention network with Granger causality map for fault detection and root cause diagnosis publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2023.108453 – volume: 100 start-page: 2093 year: 2022 ident: ref_819 article-title: Survey on recursive statistical process monitoring methods publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.24494 – ident: ref_355 doi: 10.3390/pr8040391 – ident: ref_298 – volume: 61 start-page: 18004 year: 2022 ident: ref_265 article-title: EVOLVE·INFOMAX: An Unsupervised Learning Principle of Invariances for Nonlinear Dynamic Systems publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.2c03330 – volume: 58 start-page: 11338 year: 2019 ident: ref_642 article-title: Applications of Advanced Analytics at Saudi Aramco: A Practitioners’ Perspective publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b06205 – volume: 19 start-page: 53 year: 2001 ident: ref_627 article-title: Multivariate statistical monitoring of batch processes: An industrial case study of fermentation supervision publication-title: Trends Biotechnol. doi: 10.1016/S0167-7799(00)01528-6 – ident: ref_551 doi: 10.1109/RAM.2017.7889650 – volume: 143 start-page: 255 year: 2023 ident: ref_822 article-title: Semi-supervised learning for industrial fault detection and diagnosis: A systemic review publication-title: ISA Trans. doi: 10.1016/j.isatra.2023.09.027 – volume: 59 start-page: 21439 year: 2020 ident: ref_195 article-title: Novel Quality Relevant Process Monitoring based on Dynamic Locally Linear Embedding Concurrent Canonical Correlation Analysis publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c03492 – ident: ref_242 – volume: 143 start-page: 49 year: 2015 ident: ref_588 article-title: Multivariate Exploratory Data Analysis (MEDA) Toolbox for Matlab publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2015.02.016 – volume: 452 start-page: 48 year: 2021 ident: ref_335 article-title: A review on the attention mechanism of deep learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.091 – volume: 7 start-page: 1357 year: 1999 ident: ref_625 article-title: Monitoring the performance of the paper making process publication-title: Control Eng. Pract. doi: 10.1016/S0967-0661(99)00105-7 – ident: ref_344 doi: 10.1007/978-3-642-33275-3 – ident: ref_671 doi: 10.1145/2939672.2939778 – volume: 121 start-page: 105 year: 2022 ident: ref_373 article-title: Nonlinear process modeling via unidimensional convolutional neural networks with self-attention on global and local inter-variable structures and its application to process monitoring publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.04.014 – volume: 114 start-page: 111 year: 2018 ident: ref_288 article-title: Machine learning: Overview of the recent progresses and implications for the process systems engineering field publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2017.10.008 – volume: 31 start-page: 223 year: 1998 ident: ref_622 article-title: The Application of Principal Component Analysis for Predicting Blast Furnace Stability publication-title: IFAC Proc. Vol. doi: 10.1016/S1474-6670(17)35884-6 – volume: 47 start-page: 318 year: 2015 ident: ref_46 article-title: Overview of PCA-Based Statistical Process-Monitoring Methods for Time-Dependent, High-Dimensional Data publication-title: J. Qual. Technol. doi: 10.1080/00224065.2015.11918137 – volume: 135 start-page: 106755 year: 2020 ident: ref_368 article-title: A new unsupervised data mining method based on the stacked autoencoder for chemical process fault diagnosis publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.106755 – volume: 59 start-page: 743 year: 1994 ident: ref_616 article-title: Applications of multivariate statistical methods to process monitoring and controller design publication-title: Int. J. Control doi: 10.1080/00207179408923103 – ident: ref_363 doi: 10.3390/pr10122557 – volume: 51 start-page: 3300 year: 2005 ident: ref_70 article-title: Two-dimensional dynamic PCA for batch process monitoring publication-title: AIChE J. doi: 10.1002/aic.10568 – volume: 29 start-page: 399 year: 2015 ident: ref_462 article-title: Fault diagnosis using kNN reconstruction on MRI variables: Fault diagnosis publication-title: J. Chemom. doi: 10.1002/cem.2719 – volume: 127 start-page: 195 year: 2013 ident: ref_91 article-title: Modified kernel principal component analysis based on local structure analysis and its application to nonlinear process fault diagnosis publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2013.07.001 – volume: 235 start-page: 104758 year: 2023 ident: ref_391 article-title: Nonlocal, local and global preserving stacked autoencoder based fault detection method for nonlinear process monitoring publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2023.104758 – volume: 23 start-page: 636 year: 2009 ident: ref_534 article-title: Multimode process monitoring based on Bayesian method publication-title: J. Chemom. doi: 10.1002/cem.1262 – ident: ref_723 – ident: ref_8 – volume: 56 start-page: 8906 year: 2017 ident: ref_254 article-title: Novel Multidimensional Feature Pattern Classification Method and Its Application to Fault Diagnosis publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b00027 – ident: ref_469 doi: 10.1145/130385.130401 – volume: 50 start-page: 29 year: 2020 ident: ref_665 article-title: Bridging systems theory and data science: A unifying review of dynamic latent variable analytics and process monitoring publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2020.09.004 – volume: 33 start-page: 795 year: 2009 ident: ref_760 article-title: Data-driven Soft Sensors in the process industry publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2008.12.012 – volume: 29 start-page: 560 year: 2018 ident: ref_94 article-title: Nonlinear Process Fault Diagnosis Based on Serial Principal Component Analysis publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2635111 – volume: 66 start-page: 64 year: 2011 ident: ref_119 article-title: Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2010.10.008 – volume: 36 start-page: 220 year: 2012 ident: ref_18 article-title: Survey on data-driven industrial process monitoring and diagnosis publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2012.09.004 – volume: 17 start-page: 222 year: 2021 ident: ref_261 article-title: Independent component analysis: An introduction publication-title: Appl. Comput. Inform. doi: 10.1016/j.aci.2018.08.006 – volume: 17 start-page: 6368 year: 2020 ident: ref_209 article-title: Multi-Subspace Orthogonal Canonical Correlation Analysis for Quality Related Plant Wide Process Monitoring publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2020.3015034 – volume: 8 start-page: 14 year: 1991 ident: ref_110 article-title: Wavelets and signal processing publication-title: Signal Process. Mag. IEEE doi: 10.1109/79.91217 – volume: 7 start-page: 12 year: 2013 ident: ref_739 article-title: Change-Point Detection for High-Dimensional Time Series With Missing Data publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2012.2234082 – ident: ref_304 doi: 10.3390/pr10112311 – volume: 24 start-page: 25 year: 2013 ident: ref_483 article-title: Online monitoring and fault identification of mean shifts in bivariate processes using decision tree learning techniques publication-title: J. Intell. Manuf. doi: 10.1007/s10845-011-0533-5 – volume: 62 start-page: 15 year: 2019 ident: ref_287 article-title: Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence publication-title: Bus. Horizons doi: 10.1016/j.bushor.2018.08.004 – volume: 38 start-page: 4389 year: 1999 ident: ref_40 article-title: Selection of the Number of Principal Components: The Variance of the Reconstruction Error Criterion with a Comparison to Other Methods publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie990110i – volume: 209 start-page: 107990 year: 2022 ident: ref_748 article-title: Fault detection and diagnosis in power transformers: A comprehensive review and classification of publications and methods publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2022.107990 – volume: 20 start-page: 902 year: 2010 ident: ref_526 article-title: Fault detection and isolation of faults in a multivariate process with Bayesian network publication-title: J. Process Control doi: 10.1016/j.jprocont.2010.06.001 – volume: 122 start-page: 22 year: 2014 ident: ref_152 article-title: Robust PCA via Principal Component Pursuit: A review for a comparative evaluation in video surveillance publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2013.11.009 – volume: 31 start-page: 1935 year: 2014 ident: ref_96 article-title: Improved fault detection in nonlinear chemical processes using WKPCA-SVDD publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-014-0151-y – ident: ref_320 – volume: 54 start-page: 3639 year: 2020 ident: ref_749 article-title: A review on fault detection and diagnosis techniques: Basics and beyond publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09934-2 – volume: 34 start-page: 8575 year: 2022 ident: ref_418 article-title: Generalized transformer in fault diagnosis of Tennessee Eastman process publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06711-2 – volume: 76 start-page: 215 year: 2005 ident: ref_630 article-title: Abnormal situation detection and projection methods—Industrial applications. October 28–29, 2003. Hamilton, Ontario, Canada publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2005.01.002 – ident: ref_37 – volume: 194 start-page: 103863 year: 2019 ident: ref_592 article-title: A MATLAB toolbox for data pre-processing and multivariate statistical process control publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2019.103863 – volume: 70 start-page: 489 year: 2006 ident: ref_331 article-title: Extreme learning machine: Theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 8 start-page: 239 year: 2021 ident: ref_817 article-title: A Review on Data Driven Learning Approaches for Fault Detection and Diagnosis in Chemical Processes publication-title: ChemBioEng Rev. doi: 10.1002/cben.202000027 – volume: 62 start-page: 1478 year: 2016 ident: ref_829 article-title: A systematic comparison of PCA-based Statistical Process Monitoring methods for high-dimensional, time-dependent Processes publication-title: AIChE J. doi: 10.1002/aic.15062 – volume: 105 start-page: 236 year: 2021 ident: ref_238 article-title: Group-sparsity-enforcing fault discrimination and estimation with dynamic process data publication-title: J. Process Control doi: 10.1016/j.jprocont.2021.08.003 – volume: 154 start-page: 107467 year: 2021 ident: ref_668 article-title: Explainability: Relevance based Dynamic Deep Learning Algorithm for Fault Detection and Diagnosis in Chemical Processes publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2021.107467 – volume: 139 start-page: 106895 year: 2020 ident: ref_328 article-title: Hidden representations in deep neural networks: Part 2. Regression problems publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.106895 – volume: 65 start-page: 159 year: 2003 ident: ref_772 article-title: Process monitoring using causal map and multivariate statistics: Fault detection and identification publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(02)00140-5 – volume: 60 start-page: 13914 year: 2021 ident: ref_257 article-title: Novel Process Monitoring Approach Enhanced by a Complex Independent Component Analysis Algorithm with Applications for Wastewater Treatment publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.1c01990 – ident: ref_713 doi: 10.1007/978-3-031-21867-5 – volume: 89 start-page: 94 year: 2019 ident: ref_516 article-title: Nonlinear process monitoring using kernel dictionary learning with application to aluminum electrolysis process publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2019.05.021 – volume: 98 start-page: 1280 year: 2020 ident: ref_369 article-title: A process fault diagnosis method using multi-time scale dynamic feature extraction based on convolutional neural network publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.23740 – ident: ref_481 – volume: 493 start-page: 497 year: 2022 ident: ref_709 article-title: GAN-based anomaly detection: A review publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.12.093 – volume: 349 start-page: 582 year: 2005 ident: ref_736 article-title: A new method for change-point detection developed for on-line analysis of the heart beat variability during sleep publication-title: Phys. A Stat. Mech. Its Appl. doi: 10.1016/j.physa.2004.10.026 – volume: 110 start-page: 654 year: 2015 ident: ref_735 article-title: Detection of Multiple Structural Breaks in Multivariate Time Series publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2014.920613 – volume: 18 start-page: 429 year: 2008 ident: ref_147 article-title: Fault Detection and Isolation with Robust Principal Component Analysis publication-title: Int. J. Appl. Math. Comput. Sci. doi: 10.2478/v10006-008-0038-3 – volume: 99 start-page: 306 year: 2021 ident: ref_280 article-title: Dynamic nonlinear batch process fault detection and identification based on two-directional dynamic kernel slow feature analysis publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.23832 – volume: 79 start-page: 41 year: 2019 ident: ref_606 article-title: A heterogeneous benchmark dataset for data analytics: Multiphase flow facility case study publication-title: J. Process Control doi: 10.1016/j.jprocont.2019.04.009 – volume: 176 start-page: 155 year: 2023 ident: ref_781 article-title: CausalViT: Domain generalization for chemical engineering process fault detection and diagnosis publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2023.06.018 – volume: 101 start-page: 2768 year: 2023 ident: ref_61 article-title: Reducing smearing effect in contribution plots and improving fault detection via polynomial approximated isomap embeddings publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.24689 – ident: ref_759 – volume: 44 start-page: 014233122093570 year: 2020 ident: ref_811 article-title: On wavelet based statistical process monitoring publication-title: Trans. Inst. Meas. Control – volume: 67 start-page: 69 year: 2016 ident: ref_48 article-title: Comparative study on monitoring schemes for non-Gaussian distributed processes publication-title: J. Process Control doi: 10.1016/j.jprocont.2016.08.007 – volume: 26 start-page: 1553 year: 2002 ident: ref_599 article-title: A modular simulation package for fed-batch fermentation: Penicillin production publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(02)00127-8 – volume: 152 start-page: 107392 year: 2021 ident: ref_189 article-title: Plant-wide troubleshooting and diagnosis using dynamic embedded latent feature analysis publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2021.107392 – volume: 154 start-page: 107456 year: 2021 ident: ref_276 article-title: Complex probabilistic slow feature extraction with applications in process data analytics publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2021.107456 – volume: 36 start-page: 513 year: 2020 ident: ref_15 article-title: A review of data-driven fault detection and diagnosis methods: Applications in chemical process systems publication-title: Rev. Chem. Eng. doi: 10.1515/revce-2017-0069 – volume: 18 start-page: 1892 year: 2020 ident: ref_211 article-title: Complex System Monitoring Based on Distributed Least Squares Method publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2020.3022924 – ident: ref_685 – volume: 136 start-page: 106756 year: 2020 ident: ref_644 article-title: Data-driven process monitoring and fault analysis of reformer units in hydrogen plants: Industrial application and perspectives publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.106756 – volume: 98 start-page: 79 year: 2021 ident: ref_279 article-title: Decentralized dynamic process monitoring based on manifold regularized slow feature analysis publication-title: J. Process Control doi: 10.1016/j.jprocont.2020.12.006 – volume: 16 start-page: 294 year: 2008 ident: ref_638 article-title: Monitoring a complex refining process using multivariate statistics publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2007.04.014 – volume: 24 start-page: 1 year: 1991 ident: ref_241 article-title: Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture publication-title: Signal Process. doi: 10.1016/0165-1684(91)90079-X – ident: ref_662 doi: 10.3390/pr11020369 – volume: 140 start-page: 106938 year: 2020 ident: ref_586 article-title: Synchronizing process variables in time for industrial process monitoring and control publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.106938 – volume: 105 start-page: 221 year: 2020 ident: ref_182 article-title: Quality monitoring method based on enhanced canonical component analysis publication-title: ISA Trans. doi: 10.1016/j.isatra.2020.06.008 – volume: 254 start-page: 117637 year: 2022 ident: ref_396 article-title: Graph dynamic autoencoder for fault detection publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2022.117637 – volume: 46 start-page: 143 year: 2017 ident: ref_205 article-title: Multiscale PLS-based GLRT for fault detection of chemical processes publication-title: J. Loss Prev. Process Ind. doi: 10.1016/j.jlp.2017.01.008 – volume: 63 start-page: 2578 year: 2016 ident: ref_463 article-title: Fault Isolation Based On k-Nearest Neighbor Rule For Industrial Processes publication-title: IEEE Trans. Ind. Electron. – volume: 74 start-page: 125 year: 2001 ident: ref_620 article-title: Process monitoring of an industrial fed-batch fermentation publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.1102 – volume: 123 start-page: 106424 year: 2023 ident: ref_400 article-title: Process monitoring using recurrent Kalman variational auto-encoder for general complex dynamic processes publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106424 – volume: 155 start-page: 107535 year: 2021 ident: ref_666 article-title: Explainable fault diagnosis of gas-liquid separator based on fully convolutional neural network publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2021.107535 – volume: 208 start-page: 109772 year: 2022 ident: ref_33 article-title: Virtual flow metering of production flow rates of individual wells in oil and gas platforms through data reconciliation publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2021.109772 – volume: 193 start-page: 116429 year: 2022 ident: ref_700 article-title: Financial Fraud: A Review of Anomaly Detection Techniques and Recent Advances publication-title: Expert Syst. Appl. Int. J. doi: 10.1016/j.eswa.2021.116429 – volume: 178 start-page: 108391 year: 2023 ident: ref_833 article-title: Statistical process control versus deep learning for power plant condition monitoring publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2023.108391 – volume: 359 start-page: 7115 year: 2022 ident: ref_541 article-title: Fault detection and diagnosis strategy based on k-nearest neighbors and fuzzy C-means clustering algorithm for industrial processes publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2022.06.022 – volume: 33 start-page: 112 year: 2015 ident: ref_826 article-title: A comparison and evaluation of key performance indicator-based multivariate statistics process monitoring approaches publication-title: J. Process Control doi: 10.1016/j.jprocont.2015.06.007 – volume: 86 start-page: 105185 year: 2023 ident: ref_367 article-title: A method for the early prediction of abnormal conditions in chemical processes combined with physical knowledge and the data-driven model publication-title: J. Loss Prev. Process Ind. doi: 10.1016/j.jlp.2023.105185 – volume: 88 start-page: 143 year: 2007 ident: ref_635 article-title: Industrial implementation of on-line multivariate quality control publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2007.02.005 – volume: 102 start-page: 104558 year: 2020 ident: ref_278 article-title: Slow feature analysis-independent component analysis based integrated monitoring approach for industrial processes incorporating dynamic and static characteristics publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2020.104558 – volume: 25 start-page: 800 year: 2017 ident: ref_686 article-title: Computer programming with Python for industrial and systems engineers: Perspectives from an instructor and students publication-title: Comput. Appl. Eng. Educ. doi: 10.1002/cae.21837 – ident: ref_678 doi: 10.3390/electronics8080832 – ident: ref_655 – volume: 171 start-page: 40 year: 2017 ident: ref_215 article-title: Concurrent probabilistic PLS regression model and its applications in process monitoring publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2017.09.015 – volume: 42 start-page: 74 year: 2015 ident: ref_605 article-title: Statistical process monitoring of a multiphase flow facility publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2015.04.012 – volume: 16 start-page: 179 year: 2006 ident: ref_634 article-title: Semiconductor manufacturing process control and monitoring: A fab-wide framework publication-title: J. Process Control doi: 10.1016/j.jprocont.2005.06.002 – volume: 33 start-page: 274 year: 2007 ident: ref_227 article-title: Identification of contributing variables using kernel-based discriminant modeling and reconstruction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2006.05.010 – volume: 193 start-page: 70 year: 2015 ident: ref_603 article-title: The development of an industrial-scale fed-batch fermentation simulation publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2014.10.029 – volume: 175 start-page: 108264 year: 2023 ident: ref_366 article-title: Applying and dissecting LSTM neural networks and regularized learning for dynamic inferential modeling publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2023.108264 – volume: 155 start-page: 107512 year: 2021 ident: ref_360 article-title: Echo State network based soft sensor for Monitoring and Fault Detection of Industrial Processes publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2021.107512 – volume: 123 start-page: 50 year: 2023 ident: ref_191 article-title: Dynamic transfer soft sensor for concept drift adaptation publication-title: J. Process Control doi: 10.1016/j.jprocont.2023.01.012 – volume: 19 start-page: 923 year: 2009 ident: ref_228 article-title: Variable-weighted Fisher discriminant analysis for process fault diagnosis publication-title: J. Process Control doi: 10.1016/j.jprocont.2008.12.001 – volume: 37 start-page: 3311 year: 1997 ident: ref_510 article-title: Sparse coding with an overcomplete basis set: A strategy employed by V1? publication-title: Vis. Res. doi: 10.1016/S0042-6989(97)00169-7 – volume: 28 start-page: 321 year: 1936 ident: ref_155 article-title: Relations Between Two Sets of Variates publication-title: Biometrika doi: 10.1093/biomet/28.3-4.321 – volume: 207 start-page: 117919 year: 2022 ident: ref_386 article-title: Monitoring of wastewater treatment process based on multi-stage variational autoencoder publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117919 – ident: ref_330 – volume: 55 start-page: 699 year: 2006 ident: ref_106 article-title: Probability density estimation via an infinite Gaussian mixture model: Application to statistical process monitoring publication-title: J. R. Stat. Soc. Ser. C Appl. Stat. doi: 10.1111/j.1467-9876.2006.00560.x – ident: ref_701 – volume: 27 start-page: 252 year: 2014 ident: ref_513 article-title: Fault Detection via Sparse Representation for Semiconductor Manufacturing Processes publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2014.2302011 – volume: 236 start-page: 121434 year: 2024 ident: ref_222 article-title: Robust and sparse canonical correlation analysis for fault detection and diagnosis using training data with outliers publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121434 – volume: 49 start-page: 7858 year: 2010 ident: ref_573 article-title: Multivariate Statistical Process Monitoring Based on Statistics Pattern Analysis publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie901911p – volume: 250 start-page: 117373 year: 2022 ident: ref_669 article-title: An explainable artificial intelligence based approach for interpretation of fault classification results from deep neural networks publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2021.117373 – ident: ref_303 doi: 10.3390/app122312377 – ident: ref_36 doi: 10.1017/CBO9780511809682 – volume: 17 start-page: 4036 year: 2021 ident: ref_667 article-title: An Explainable Convolutional Neural Network for Fault Diagnosis in Linear Motion Guide publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2020.3012989 – volume: 361 start-page: 234 year: 2024 ident: ref_282 article-title: An industrial process fault diagnosis method based on independent slow feature analysis and stacked sparse autoencoder network publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2023.10.004 – volume: 164 start-page: 107807 year: 2022 ident: ref_377 article-title: Fault diagnosis of a semi-batch crystallization process through deep learning method publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2022.107807 – volume: 169 start-page: 937 year: 2023 ident: ref_422 article-title: A novel transformer-based multi-variable multi-step prediction method for chemical process fault prognosis publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2022.11.062 – volume: 49 start-page: 988 year: 2017 ident: ref_728 article-title: Detecting correlation changes in multivariate time series: A comparison of four non-parametric change point detection methods publication-title: Behav. Res. Methods doi: 10.3758/s13428-016-0754-9 – volume: 51 start-page: 147 year: 2018 ident: ref_596 article-title: A Data-Driven Causality Analysis Tool for Fault Diagnosis in Industrial Processes publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.09.548 – ident: ref_548 – volume: 8 start-page: 769 year: 2018 ident: ref_730 article-title: Testing for the Presence of Correlation Changes in a Multivariate Time Series: A Permutation Based Approach publication-title: Sci. Rep. doi: 10.1038/s41598-017-19067-2 – volume: 220 start-page: 64 year: 2013 ident: ref_538 article-title: Adaptive fault detection and diagnosis using an evolving fuzzy classifier publication-title: Inf. Sci. doi: 10.1016/j.ins.2011.08.030 – volume: 17 start-page: 1432 year: 2020 ident: ref_413 article-title: A Fine-Grained Adversarial Network Method for Cross-Domain Industrial Fault Diagnosis publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2019.2957232 – volume: 48 start-page: 77 year: 2022 ident: ref_717 article-title: Novelty Detection: A Perspective from Natural Language Processing publication-title: Comput. Linguist. doi: 10.1162/coli_a_00429 – volume: 164 start-page: 107905 year: 2022 ident: ref_269 article-title: Improved manifold sparse slow feature analysis for process monitoring publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2022.107905 – ident: ref_561 – volume: 135 start-page: 213 year: 2023 ident: ref_258 article-title: A complex-valued slow independent component analysis based incipient fault detection and diagnosis method with applications to wastewater treatment processes publication-title: ISA Trans. doi: 10.1016/j.isatra.2022.09.019 – volume: 101 start-page: 40 year: 2019 ident: ref_841 article-title: FTIR fingerprints associated with a PLS-DA model for rapid detection of smuggled non-compliant diesel marketed in Morocco publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2019.02.001 – volume: 56 start-page: 241 year: 2020 ident: ref_435 article-title: Deep fisher autoencoder combined with self-organizing map for visual industrial process monitoring publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2020.05.005 – ident: ref_556 doi: 10.1007/978-3-030-02384-3 – ident: ref_792 – volume: 89 start-page: 58 year: 2020 ident: ref_813 article-title: Rebooting data-driven soft-sensors in process industries: A review of kernel methods publication-title: J. Process Control doi: 10.1016/j.jprocont.2020.03.012 – volume: 10 start-page: 1299 year: 1998 ident: ref_88 article-title: Nonlinear Component Analysis as a Kernel Eigenvalue Problem publication-title: Neural Comput. doi: 10.1162/089976698300017467 – volume: 159 start-page: 1 year: 2016 ident: ref_775 article-title: Data-driven root cause diagnosis of faults in process industries publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2016.09.006 – volume: 16 start-page: 763 year: 2006 ident: ref_199 article-title: Performance monitoring of processes with multiple operating modes through multiple PLS models publication-title: J. Process Control doi: 10.1016/j.jprocont.2005.12.002 – volume: 13 start-page: 397 year: 1999 ident: ref_65 article-title: Comparing alternative approaches for multivariate statistical analysis of batch process data publication-title: J. Chemom. doi: 10.1002/(SICI)1099-128X(199905/08)13:3/4<397::AID-CEM559>3.0.CO;2-I – ident: ref_725 – ident: ref_20 doi: 10.1007/978-1-4471-0347-9 – volume: 59 start-page: 145 year: 2010 ident: ref_250 article-title: Integrating independent component analysis and support vector machine for multivariate process monitoring publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2010.03.011 – volume: 170 start-page: 108125 year: 2023 ident: ref_364 article-title: Profitability related industrial-scale batch processes monitoring via deep learning based soft sensor development publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2022.108125 – volume: 22 start-page: 16314 year: 2022 ident: ref_375 article-title: An Improved Convolutional Neural Network for Recognition of Incipient Faults publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3189484 – volume: 134 start-page: 106669 year: 2020 ident: ref_327 article-title: Hidden representations in deep neural networks: Part 1. Classification problems publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2019.106669 – volume: 104 start-page: 158 year: 2021 ident: ref_491 article-title: A novel AdaBoost ensemble model based on the reconstruction of local tangent space alignment and its application to multiple faults recognition publication-title: J. Process Control doi: 10.1016/j.jprocont.2021.07.004 – volume: 130 start-page: 103069 year: 2023 ident: ref_425 article-title: Multi-scale Transformer-CNN domain adaptation network for complex processes fault diagnosis publication-title: J. Process Control doi: 10.1016/j.jprocont.2023.103069 – volume: 64 start-page: 4866 year: 2017 ident: ref_515 article-title: Multimode Process Monitoring and Fault Detection: A Sparse Modeling and Dictionary Learning Method publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2668987 – volume: 206 start-page: 104167 year: 2020 ident: ref_650 article-title: A recursively updated Map-Reduce based PCA for monitoring the time-varying fluorochemical engineering processes with big data publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2020.104167 – volume: 53 start-page: 1 year: 2021 ident: ref_784 article-title: A Survey of Learning Causality with Data: Problems and Methods publication-title: ACM Comput. Surv. – volume: 189 start-page: 56 year: 2019 ident: ref_103 article-title: Data-driven monitoring of multimode continuous processes: A review publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2019.03.012 – volume: 6 start-page: 329 year: 1996 ident: ref_13 article-title: The process chemometrics approach to process monitoring and fault detection publication-title: J. Process Control doi: 10.1016/0959-1524(96)00009-1 – volume: 43 start-page: 6731 year: 2004 ident: ref_246 article-title: Statistical Process Control Charts for Batch Operations Based on Independent Component Analysis publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie049582+ – volume: 112 start-page: 78 year: 2020 ident: ref_183 article-title: Dynamic statistical process monitoring based on generalized canonical variate analysis publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2020.07.007 – volume: 95 start-page: 368 year: 2018 ident: ref_550 article-title: Fault diagnosis in industrial chemical processes using interpretable patterns based on Logical Analysis of Data publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.11.045 – volume: 57 start-page: 107 year: 2011 ident: ref_574 article-title: Statistics pattern analysis: A new process monitoring framework and its application to semiconductor batch processes publication-title: AIChE J. doi: 10.1002/aic.12247 – volume: 200 start-page: 70 year: 2016 ident: ref_253 article-title: Fault detection of multimode non-Gaussian dynamic process using dynamic Bayesian independent component analysis publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.03.015 – volume: 108 start-page: 33 year: 2018 ident: ref_742 article-title: Artificial intelligence for fault diagnosis of rotating machinery: A review publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.02.016 – ident: ref_835 doi: 10.1007/978-1-4471-0421-6 – ident: ref_317 – volume: 31 start-page: 1473 year: 2000 ident: ref_85 article-title: Non-linear principal components analysis with application to process fault detection publication-title: Int. J. Syst. Sci. doi: 10.1080/00207720050197848 – volume: 159 start-page: 107694 year: 2022 ident: ref_173 article-title: A novel unsupervised approach for batch process monitoring using deep learning publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2022.107694 – volume: 48 start-page: 3403 year: 2018 ident: ref_453 article-title: Fault Diagnosis of Tennessee-Eastman Process Using Orthogonal Incremental Extreme Learning Machine Based on Driving Amount publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2830338 – volume: 59 start-page: 1557 year: 2013 ident: ref_104 article-title: Modeling and performance monitoring of multivariate multimodal processes publication-title: AIChE J. doi: 10.1002/aic.13953 – volume: 2 start-page: 559 year: 1901 ident: ref_34 article-title: LIII—On lines and planes of closest fit to systems of points in space publication-title: Lond. Edinb. Dublin Philos. Mag. J. Sci. doi: 10.1080/14786440109462720 – volume: 92 start-page: 161 year: 2020 ident: ref_356 article-title: An optimized long short-term memory network based fault diagnosis model for chemical processes publication-title: J. Process Control doi: 10.1016/j.jprocont.2020.06.005 – volume: 21 start-page: 6 year: 2019 ident: ref_751 article-title: Machine learning for streaming data: State of the art, challenges, and opportunities publication-title: ACM SIGKDD Explor. Newsl. doi: 10.1145/3373464.3373470 – volume: 149 start-page: 99 year: 2015 ident: ref_43 article-title: Determining the number of components in principal components analysis: A comparison of statistical, crossvalidation and approximated methods publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2015.10.006 – ident: ref_132 – volume: 2 start-page: 409 year: 2016 ident: ref_286 article-title: Heading toward Artificial Intelligence 2.0 publication-title: Engineering doi: 10.1016/J.ENG.2016.04.018 – volume: 30 start-page: 79 year: 1997 ident: ref_78 article-title: Development and Benchmarking of Multivariate Statistical Process Control Tools for a Semiconductor Etch Process: Improving Robustness through Model Updating publication-title: IFAC Proc. Vol. doi: 10.1016/S1474-6670(17)43143-0 – ident: ref_167 doi: 10.1007/978-3-642-69878-1 – volume: 151 start-page: 107365 year: 2021 ident: ref_660 article-title: Recent trends on hybrid modeling for Industry 4.0 publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2021.107365 – volume: 32 start-page: 1597 year: 2018 ident: ref_710 article-title: An adaptive algorithm for anomaly and novelty detection in evolving data streams publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-018-0571-0 – volume: 37 start-page: 3971 year: 1998 ident: ref_623 article-title: Multivariate Statistical Analysis of an Emulsion Batch Process publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie980243o – volume: 102 start-page: 291 year: 2023 ident: ref_402 article-title: Mechanistic block-based attention mechanism stacked autoencoder for describing typical unit connection industrial processes and their monitoring publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.25016 – volume: 130 start-page: 103087 year: 2023 ident: ref_405 article-title: An unsupervised fault monitoring framework for blast furnace: Information extraction enhanced GRU-GMM-autoencoder publication-title: J. Process Control doi: 10.1016/j.jprocont.2023.103087 – volume: 42 start-page: 014233122090595 year: 2020 ident: ref_476 article-title: A pruned support vector data description -based outlier detection method: Applied to robust process monitoring publication-title: Trans. Inst. Meas. Control doi: 10.1177/0142331220905951 – ident: ref_601 – volume: 18 start-page: 4 year: 2016 ident: ref_324 article-title: The Evolution of Computing: AlphaGo publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2016.74 – volume: 141 start-page: 106970 year: 2020 ident: ref_579 article-title: Feature engineering in big data analytics for IoT-enabled smart manufacturing – Comparison between deep learning and statistical learning publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.106970 – volume: 5 start-page: 593 year: 1926 ident: ref_6 article-title: Quality control charts publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1926.tb00125.x – volume: 48 start-page: 583 year: 2015 ident: ref_486 article-title: Fault Detection using Random Forest Similarity Distance publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2015.09.589 – volume: 61 start-page: 6438 year: 2014 ident: ref_73 article-title: A New Method of Dynamic Latent-Variable Modeling for Process Monitoring publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2014.2301761 – volume: 152 start-page: 69 year: 2016 ident: ref_805 article-title: Review of soft sensor methods for regression applications publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2015.12.011 – volume: 10 start-page: 100071 year: 2019 ident: ref_490 article-title: Deep ensemble forests for industrial fault classification publication-title: IFAC J. Syst. Control doi: 10.1016/j.ifacsc.2019.100071 – volume: 107 start-page: 395 year: 2017 ident: ref_427 article-title: A deep belief network based fault diagnosis model for complex chemical processes publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2017.02.041 – ident: ref_465 – volume: 150 start-page: 289 year: 2015 ident: ref_558 article-title: Fully unsupervised fault detection and identification based on recursive density estimation and self-evolving cloud-based classifier publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.05.086 – volume: 103 start-page: 19 year: 2021 ident: ref_565 article-title: Joint recurrence based root cause analysis of nonlinear multivariate chemical processes publication-title: J. Process Control doi: 10.1016/j.jprocont.2021.05.008 – volume: 44 start-page: 12380 year: 2011 ident: ref_798 article-title: A survey of the application of basic data-driven and model-based methods in process monitoring and fault diagnosis publication-title: IFAC Proc. Vol. doi: 10.3182/20110828-6-IT-1002.02842 – volume: 73 start-page: 257 year: 2018 ident: ref_126 article-title: Relevant and independent multi-block approach for plant-wide process and quality-related monitoring based on KPCA and SVDD publication-title: ISA Trans. doi: 10.1016/j.isatra.2018.01.003 – volume: 89 start-page: 289 year: 1997 ident: ref_442 article-title: Neuro-fuzzy systems for diagnosis publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(97)00011-0 – volume: 20 start-page: 609 year: 2007 ident: ref_450 article-title: Neuro-fuzzy networks and their application to fault detection of dynamical systems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2006.11.009 – ident: ref_492 doi: 10.1109/ICAIS50930.2021.9395905 – volume: 38 start-page: 101556 year: 2020 ident: ref_643 article-title: Case studies in real-time fault isolation in a decentralized wastewater treatment facility publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2020.101556 – volume: 35 start-page: 85 year: 2007 ident: ref_571 article-title: Application of Exploratory Data Analysis to Historical Process Data of Polyethylene Production publication-title: Bulg. J. Ind. Chem. – ident: ref_695 doi: 10.1145/3394486.3406704 – volume: 21 start-page: 341 year: 1979 ident: ref_55 article-title: Control Procedures for Residuals Associated with Principal Component Analysis publication-title: Technometrics doi: 10.1080/00401706.1979.10489779 – volume: 61 start-page: 611 year: 1999 ident: ref_134 article-title: Probabilistic principal component analysis publication-title: J. R. Stat. Soc. doi: 10.1111/1467-9868.00196 – volume: 62 start-page: 657 year: 2015 ident: ref_802 article-title: Data-Based Techniques Focused on Modern Industry: An Overview publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2014.2308133 – volume: 27 start-page: 41 year: 1995 ident: ref_143 article-title: Robust principal components regression as a detection tool for outliers publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/0169-7439(95)80006-U – ident: ref_390 doi: 10.1109/TII.2023.3240601 – volume: 93 start-page: 2029 year: 2021 ident: ref_289 article-title: Machine Learning in Chemical Engineering: A Perspective publication-title: Chem. Ing. Tech. doi: 10.1002/cite.202100083 – volume: 116 start-page: 255 year: 2022 ident: ref_3 article-title: Perspectives on nonstationary process monitoring in the era of industrial artificial intelligence publication-title: J. Process Control doi: 10.1016/j.jprocont.2022.06.011 – volume: 140 start-page: 106843 year: 2020 ident: ref_299 article-title: Semi-supervised process fault classification based on convolutional ladder network with local and global feature fusion publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.106843 – volume: 166 start-page: 107898 year: 2022 ident: ref_659 article-title: Perspectives on the integration between first-principles and data-driven modeling publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2022.107898 – volume: 113 start-page: 104843 year: 2021 ident: ref_397 article-title: A novel similarity metric with application to big process data analytics publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2021.104843 – volume: 128 start-page: 103023 year: 2023 ident: ref_611 article-title: The arc loss challenge: A novel industrial benchmark for process analytics and machine learning publication-title: J. Process Control doi: 10.1016/j.jprocont.2023.103023 – ident: ref_726 – ident: ref_672 – volume: 171 start-page: 108782 year: 2021 ident: ref_387 article-title: Nonlinear process monitoring based on load weighted denoising autoencoder publication-title: Measurement doi: 10.1016/j.measurement.2020.108782 – ident: ref_499 – ident: ref_613 – volume: 102 start-page: 97 year: 2019 ident: ref_840 article-title: Multivariate filters combined with interval partial least square method: A strategy for optimizing PLS models developed with near infrared data of multicomponent solutions publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2019.05.001 – volume: 139 start-page: 106875 year: 2020 ident: ref_761 article-title: Ensemble learning based latent variable model predictive control for batch trajectory tracking under concept drift publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.106875 – ident: ref_283 doi: 10.1109/TNNLS.2022.3201621 – volume: 142 start-page: 105750 year: 2024 ident: ref_521 article-title: Variable partition based parallel dictionary learning for linearity and nonlinearity coexisting dynamic process monitoring publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2023.105750 – ident: ref_687 doi: 10.1016/j.neucom.2017.04.070 – volume: 47 start-page: 8879 year: 2014 ident: ref_640 article-title: Real-time application of multivariate statistical methods for early event detection in an industrial slurry stripper publication-title: IFAC Proc. Vol. doi: 10.3182/20140824-6-ZA-1003.00399 – ident: ref_806 doi: 10.3390/pr5030035 – volume: 165 start-page: 463 year: 2022 ident: ref_680 article-title: XFDDC: eXplainable Fault Detection Diagnosis and Correction framework for chemical process systems publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2022.07.019 – volume: 19 start-page: 1627 year: 2009 ident: ref_473 article-title: Fault detection and diagnosis in process data using one-class support vector machines publication-title: J. Process Control doi: 10.1016/j.jprocont.2009.07.011 – ident: ref_837 doi: 10.1007/978-1-4471-4513-4 – volume: 55 start-page: 1642 year: 2016 ident: ref_260 article-title: A Novel Strategy of the Data Characteristics Test for Selecting a Process Monitoring Method Automatically publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b03525 – volume: 98 start-page: 104386 year: 2020 ident: ref_518 article-title: Distributed dictionary learning for high-dimensional process monitoring publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2020.104386 – volume: 19 start-page: 362 year: 2014 ident: ref_448 article-title: Fault detection and diagnosis of pneumatic valve using Adaptive Neuro-Fuzzy Inference System approach publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.02.008 – volume: 204 start-page: 104095 year: 2020 ident: ref_537 article-title: Conjugate exponential family graphical models in process monitoring: A tutorial review publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2020.104095 – volume: 168 start-page: 108055 year: 2022 ident: ref_124 article-title: Analysis of multiscale process monitoring in industrial processes from a bibliometric perspective publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2022.108055 – volume: 100 start-page: 54 year: 2022 ident: ref_374 article-title: Chemical process fault diagnosis based on a combined deep learning method publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.24153 – volume: 68 start-page: e17715 year: 2022 ident: ref_661 article-title: Integration of machine learning and first principles models publication-title: AIChE J. doi: 10.1002/aic.17715 – volume: 125 start-page: 28 year: 2023 ident: ref_406 article-title: Fault diagnosis for dynamic system based on the independent latent space reconstruction of generative adversarial network publication-title: J. Process Control doi: 10.1016/j.jprocont.2023.04.001 – volume: 13 start-page: 122 year: 2016 ident: ref_234 article-title: Fault Diagnosis Method of Joint Fisher Discriminant Analysis Based on the Local and Global Manifold Learning and Its Kernel Version publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2015.2417882 – ident: ref_156 – ident: ref_444 doi: 10.1109/NAFIPS.2011.5751925 – volume: 164 start-page: 15 year: 2022 ident: ref_532 article-title: Fault detection and diagnosis using Bayesian network model combining mechanism correlation analysis and process data: Application to unmonitored root cause variables type faults publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2022.05.073 – volume: 42 start-page: 1115 year: 2009 ident: ref_25 article-title: Data-driven Fault Detection and Diagnosis for Complex Industrial Processes publication-title: IFAC Proc. Vol. doi: 10.3182/20090630-4-ES-2003.00184 – ident: ref_684 – volume: 27 start-page: 327 year: 2003 ident: ref_313 article-title: A review of process fault detection and diagnosis Part III: Process history based methods publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(02)00162-X – volume: 7 start-page: 111 year: 2021 ident: ref_746 article-title: Data pre-processing methods for NPP equipment diagnostics algorithms: An overview publication-title: Nucl. Energy Technol. doi: 10.3897/nucet.7.63675 – ident: ref_166 doi: 10.1007/978-3-030-79519-1 – volume: 54 start-page: 1 year: 2022 ident: ref_692 article-title: A Review on Outlier/Anomaly Detection in Time Series Data publication-title: ACM Comput. Surv. – ident: ref_316 doi: 10.1007/978-81-322-3972-7 – volume: 642 start-page: 59 year: 2009 ident: ref_66 article-title: The best approaches in the on-line monitoring of batch processes based on PCA: Does the modelling structure matter? publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2009.02.001 – volume: 34 start-page: 1805 year: 2020 ident: ref_758 article-title: Challenges in benchmarking stream learning algorithms with real-world data publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-020-00698-5 – volume: 51 start-page: 9 year: 2018 ident: ref_430 article-title: A Deep Belief Network-based Fault Detection Method for Nonlinear Processes publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.09.522 – volume: 14 start-page: 383 year: 2000 ident: ref_203 article-title: Wavelet-PLS regression models for both exploratory data analysis and process monitoring publication-title: J. Chemom. doi: 10.1002/1099-128X(200009/12)14:5/6<383::AID-CEM616>3.0.CO;2-5 – volume: 138 start-page: 203 year: 2014 ident: ref_230 article-title: Semi-supervised Fisher discriminant analysis model for fault classification in industrial processes publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2014.08.008 – volume: 30 start-page: 29 year: 1997 ident: ref_111 article-title: Improvements in the Development of Models for Monitoring & Detection publication-title: IFAC Proc. Vol. doi: 10.1016/S1474-6670(17)42376-7 – ident: ref_315 doi: 10.1007/978-3-319-94463-0 – ident: ref_823 doi: 10.1177/01423312231157118 – volume: 24 start-page: 1 year: 2014 ident: ref_528 article-title: Bayesian filtering of the smearing effect: Fault isolation in chemical process monitoring publication-title: J. Process Control doi: 10.1016/j.jprocont.2013.12.018 – ident: ref_359 – ident: ref_519 doi: 10.1007/s10489-020-02128-x – volume: 124 start-page: 105182 year: 2022 ident: ref_217 article-title: An analytical partial least squares method for process monitoring publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2022.105182 – volume: 120 start-page: 1 year: 2013 ident: ref_445 article-title: Fault diagnosis of Tennessee Eastman process with multi-scale PCA and ANFIS publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2012.10.005 – volume: 24 start-page: 551 year: 2008 ident: ref_168 article-title: PLS: A versatile tool for industrial process improvement and optimization publication-title: Appl. Stoch. Model. Bus. Ind. doi: 10.1002/asmb.716 – ident: ref_380 doi: 10.3390/pr11113233 – volume: 97 start-page: 104344 year: 2020 ident: ref_529 article-title: Robust Bayesian networks for low-quality data modeling and process monitoring applications publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2020.104344 – ident: ref_552 doi: 10.1002/9781118481769 – volume: 26 start-page: 2250 year: 2014 ident: ref_769 article-title: Outlier Detection for Temporal Data: A Survey publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2013.184 – volume: 173 start-page: 108207 year: 2023 ident: ref_267 article-title: Tensor slow feature analysis and its applications for batch process monitoring publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2023.108207 – volume: 62 start-page: 9773 year: 2023 ident: ref_403 article-title: Unsupervised Fault Detection of Pharmaceutical Processes Using Long Short-Term Memory Autoencoders publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.3c00995 – volume: 61 start-page: 18426 year: 2022 ident: ref_774 article-title: A Novel Framework for Causality Analysis of Deterministic Dynamical Processes publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.2c02072 – volume: 215 start-page: 104369 year: 2021 ident: ref_502 article-title: Improving the sensitivity of statistical process monitoring of manifolds embedded in high-dimensional spaces: The truncated-Q statistic publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2021.104369 – volume: 176 start-page: 108289 year: 2023 ident: ref_378 article-title: Improving convolutional neural networks for fault diagnosis in chemical processes by incorporating global correlations publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2023.108289 – volume: 25 start-page: 3531 year: 2021 ident: ref_389 article-title: Stacked sparse autoencoders monitoring model based on fault-related variable selection publication-title: Soft Comput. doi: 10.1007/s00500-020-05384-8 – volume: 73 start-page: 103 year: 2019 ident: ref_434 article-title: Monitoring of quality-relevant and quality-irrelevant blocks with characteristic-similar variables based on self-organizing map and kernel approaches publication-title: J. Process Control doi: 10.1016/j.jprocont.2018.12.009 – volume: 309 start-page: 46 year: 2018 ident: ref_711 article-title: Concept drift robust adaptive novelty detection for data streams publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.04.069 – volume: 14 start-page: 577 year: 2006 ident: ref_600 article-title: Introduction to the DAMADICS actuator FDI benchmark study publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2005.06.015 – volume: 27 start-page: 2526 year: 2018 ident: ref_93 article-title: Deep Principal Component Analysis Based on Layerwise Feature Extraction and Its Application to Nonlinear Process Monitoring publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2018.2865413 – ident: ref_39 – volume: 94 start-page: 104195 year: 2020 ident: ref_530 article-title: Fault detection and identification combining process measurements and statistical alarms publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2019.104195 – ident: ref_741 doi: 10.1145/1273496.1273629 – volume: 101 start-page: 6055 year: 2023 ident: ref_582 article-title: Experimental methods in chemical engineering: Data processing and data usage in decision-making publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.25014 – ident: ref_433 doi: 10.3390/pr8010123 – volume: 185 start-page: 135 year: 2019 ident: ref_593 article-title: A graphical user interface for PCA-based MSPC: A benchmark software for multivariate statistical process control in MATLAB publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2018.12.004 – volume: 40 start-page: 826 year: 1994 ident: ref_206 article-title: Process monitoring and diagnosis by multiblock PLS methods publication-title: AIChE J. doi: 10.1002/aic.690400509 – volume: 190 start-page: 117 year: 2016 ident: ref_474 article-title: Fed-batch fermentation penicillin process fault diagnosis and detection based on support vector machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.01.027 – volume: 45 start-page: 65 year: 1999 ident: ref_138 article-title: Maximum likelihood principal component analysis with correlated measurement errors: Theoretical and practical considerations publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(98)00090-2 – volume: 10 start-page: 471 year: 2000 ident: ref_79 article-title: Recursive PCA for adaptive process monitoring publication-title: J. Process Control doi: 10.1016/S0959-1524(00)00022-6 – ident: ref_296 – volume: 37 start-page: 1307 year: 2020 ident: ref_812 article-title: Reliability based fault analysis models with industrial applications: A systematic literature review publication-title: Qual. Reliab. Eng. Int. doi: 10.1002/qre.2797 – volume: 55 start-page: 475 year: 2008 ident: ref_482 article-title: An effective application of decision tree learning for on-line detection of mean shifts in multivariate control charts publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2008.01.013 – volume: 29 start-page: 4005 year: 2022 ident: ref_743 article-title: Predictive Monitoring of Incipient Faults in Rotating Machinery: A Systematic Review from Data Acquisition to Artificial Intelligence publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-022-09727-6 – ident: ref_718 – volume: 8 start-page: 108359 year: 2020 ident: ref_467 article-title: A Data-Driven Fault Detection Framework Using Mahalanobis Distance Based Dynamic Time Warping publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3001379 – volume: 15 start-page: 1779 year: 2022 ident: ref_704 article-title: Anomaly detection in time series: A comprehensive evaluation publication-title: Proc. VLDB Endow. doi: 10.14778/3538598.3538602 – volume: 562 start-page: 13 year: 2021 ident: ref_440 article-title: Deep model based on mode elimination and Fisher criterion combined with self-organizing map for visual multimodal chemical process monitoring publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.01.036 – volume: 50 start-page: 6837 year: 2011 ident: ref_503 article-title: Global–Local Structure Analysis Model and Its Application for Fault Detection and Identification publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie102564d – volume: 134 start-page: 170 year: 2022 ident: ref_705 article-title: A systematic literature review of IoT time series anomaly detection solutions publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2022.04.005 – ident: ref_32 doi: 10.3390/pr8091035 – volume: 142 start-page: 106376 year: 2020 ident: ref_99 article-title: A review of machine learning kernel methods in statistical process monitoring publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106376 – volume: 164 start-page: 107900 year: 2022 ident: ref_610 article-title: An open source fluid catalytic cracker-fractionator model to support the development and benchmarking of process control, machine learning and operation strategies publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2022.107900 – volume: 11 start-page: 26611 year: 2023 ident: ref_213 article-title: Dynamic Decentralized Monitoring for Large-Scale Industrial Processes Using Multiblock Canonical Variate Analysis Based Regression publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3256719 – ident: ref_398 doi: 10.3390/s22010227 – volume: 49 start-page: 969 year: 2003 ident: ref_247 article-title: Monitoring independent components for fault detection publication-title: AIChE J. doi: 10.1002/aic.690490414 – ident: ref_229 doi: 10.1109/CSIE.2009.348 – volume: 22 start-page: 359 year: 2019 ident: ref_446 article-title: Fault detection and identification using combination of EKF and neuro-fuzzy network applied to a chemical process (CSTR) publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-017-0634-7 – volume: 43 start-page: 79 year: 2010 ident: ref_484 article-title: Fault detection and diagnosis with random forest feature extraction and variable importance methods publication-title: IFAC Proc. Vol. doi: 10.3182/20100802-3-ZA-2014.00020 – volume: 180 start-page: 108448 year: 2024 ident: ref_587 article-title: Automated outlier detection and estimation of missing data publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2023.108448 – volume: 33 start-page: 425 year: 2000 ident: ref_626 article-title: On-line applications of multivariate statistics at Dofasco publication-title: IFAC Proc. Vol. doi: 10.1016/S1474-6670(17)37032-5 – volume: 16 start-page: 1 year: 2022 ident: ref_674 article-title: Interpretable machine learning: Fundamental principles and 10 grand challenges publication-title: Stat. Surv. doi: 10.1214/21-SS133 – ident: ref_123 doi: 10.3390/pr7020061 – volume: 164 start-page: 76 year: 2017 ident: ref_157 article-title: Comparison of CCA and PLS to explore and model NIR data publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2017.03.011 – volume: 40 start-page: 1361 year: 1994 ident: ref_62 article-title: Monitoring batch processes using multiway principal component analysis publication-title: AIChE J. doi: 10.1002/aic.690400809 – volume: 26 start-page: 495 year: 2010 ident: ref_639 article-title: Multivariate process monitoring of an experimental blast furnace publication-title: Qual. Reliab. Eng. Int. doi: 10.1002/qre.1070 – volume: 70 start-page: 245 year: 2021 ident: ref_675 article-title: A Survey on the Explainability of Supervised Machine Learning publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.1.12228 – volume: 248 start-page: 117236 year: 2022 ident: ref_272 article-title: A novel auto-regressive dynamic slow feature analysis method for dynamic chemical process monitoring publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2021.117236 – volume: 52 start-page: 213 year: 2019 ident: ref_763 article-title: An overview and comprehensive comparison of ensembles for concept drift publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.03.006 – volume: 78 start-page: 1464 year: 1990 ident: ref_346 article-title: The self-organizing map publication-title: Proc. IEEE doi: 10.1109/5.58325 – ident: ref_834 – volume: 44 start-page: 1596 year: 1998 ident: ref_113 article-title: Multiscale PCA with application to multivariate statistical process monitoring publication-title: AIChE J. doi: 10.1002/aic.690440712 – ident: ref_423 doi: 10.1016/j.net.2023.11.033 – volume: 22 start-page: 583 year: 2012 ident: ref_461 article-title: Source identification of plant-wide faults based on k nearest neighbor time delay estimation publication-title: J. Process Control doi: 10.1016/j.jprocont.2012.01.005 – volume: 67 start-page: 35 year: 2018 ident: ref_809 article-title: Statistical process monitoring as a big data analytics tool for smart manufacturing publication-title: J. Process Control doi: 10.1016/j.jprocont.2017.06.012 – volume: 64 start-page: 62 year: 2018 ident: ref_487 article-title: Weighted random forests for fault classification in industrial processes with hierarchical clustering model selection publication-title: J. Process Control doi: 10.1016/j.jprocont.2018.02.005 – volume: 41 start-page: 1471 year: 1995 ident: ref_86 article-title: Reducing data dimensionality through optimizing neural network inputs publication-title: AIChE J. doi: 10.1002/aic.690410612 – volume: 34 start-page: 433 year: 2001 ident: ref_114 article-title: Unifying PCA and multiscale approaches to fault detection and isolation publication-title: IFAC Proc. Vol. doi: 10.1016/S1474-6670(17)33862-4 – volume: 25 start-page: 166 year: 2020 ident: ref_750 article-title: Faults Diagnosis in Robot Systems: A Review publication-title: Al-Rafidain Eng. J. (AREJ) doi: 10.33899/rengj.2020.127782.1051 – ident: ref_284 – volume: 60 start-page: 3092 year: 2014 ident: ref_19 article-title: Process data analytics in the era of big data publication-title: AIChE J. doi: 10.1002/aic.14523 – ident: ref_54 doi: 10.1002/9781119600800 – volume: 50 start-page: 715 year: 1995 ident: ref_789 article-title: The dynamic behavior of continuous solution polymerization reactors—VII. Experimental study of a copolymerization reactor publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(94)00456-2 – volume: 84 start-page: 234 year: 2022 ident: ref_731 article-title: High-Dimensional, Multiscale Online Changepoint Detection publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/rssb.12447 – volume: 21 start-page: 1306 year: 2011 ident: ref_87 article-title: Improved nonlinear PCA for process monitoring using support vector data description publication-title: J. Process Control doi: 10.1016/j.jprocont.2011.07.003 – volume: 107 start-page: 104692 year: 2021 ident: ref_196 article-title: Key performance indicator related state monitoring based on kernel canonical correlation analysis publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2020.104692 – ident: ref_426 – volume: 209 start-page: 112504 year: 2023 ident: ref_263 article-title: Independent component analysis application for fault detection in process industries: Literature review and an application case study for fault detection in multiphase flow systems publication-title: Measurement doi: 10.1016/j.measurement.2023.112504 – volume: 16 start-page: 819 year: 2006 ident: ref_633 article-title: Online monitoring of steel casting processes using multivariate statistical technologies: From continuous to transitional operations publication-title: J. Process Control doi: 10.1016/j.jprocont.2006.03.005 – volume: 170 start-page: 647 year: 2023 ident: ref_679 article-title: Review of interpretable machine learning for process industries publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2022.12.018 – ident: ref_566 – volume: 11 start-page: 179 year: 2001 ident: ref_570 article-title: Exploring process data publication-title: J. Process Control doi: 10.1016/S0959-1524(00)00046-9 – volume: 59 start-page: 7732 year: 2020 ident: ref_649 article-title: Multivariate Analysis of Industrial Biorefinery Processes: Strategy for Improved Process Understanding with Case Studies in Fatty Acid Production publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c00515 – volume: 57 start-page: 10719 year: 2018 ident: ref_807 article-title: A Bibliometric Review and Analysis of Data-Driven Fault Detection and Diagnosis Methods for Process Systems publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b00936 – volume: 50 start-page: 92 year: 2019 ident: ref_657 article-title: Data fusion and machine learning for industrial prognosis: Trends and perspectives towards Industry 4.0 publication-title: Inf. Fusion doi: 10.1016/j.inffus.2018.10.005 – volume: 139 start-page: 106886 year: 2020 ident: ref_305 article-title: A review On reinforcement learning: Introduction and applications in industrial process control publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.106886 – volume: Volume 35 start-page: 32142 year: 2022 ident: ref_699 article-title: ADBench: Anomaly Detection Benchmark publication-title: Advances in Neural Information Processing Systems, Proceedings of the NeurIPS 2022, New Orleans, LA, USA, 28 November–9 December 2022 – volume: 25 start-page: 289 year: 2023 ident: ref_708 article-title: Anomaly Detection in Blockchain Networks: A Comprehensive Survey publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2022.3205643 – volume: 59 start-page: 18595 year: 2020 ident: ref_122 article-title: Multiscale Framework for Real-Time Process Monitoring of Nonlinear Chemical Process Systems publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c02288 – volume: 20 start-page: 100189 year: 2022 ident: ref_494 article-title: Dynamic ensemble selection based improved random forests for fault classification in industrial processes publication-title: IFAC J. Syst. Control doi: 10.1016/j.ifacsc.2022.100189 – ident: ref_512 doi: 10.1109/ROBIO.2012.6491087 – volume: 45 start-page: 84 year: 2016 ident: ref_504 article-title: Process monitoring through manifold regularization-based GMM with global/local information publication-title: J. Process Control doi: 10.1016/j.jprocont.2016.07.006 – volume: 1 start-page: 59 year: 2015 ident: ref_148 article-title: Online update techniques for projection based Robust Principal Component Analysis publication-title: ICT Express doi: 10.1016/j.icte.2015.09.003 – ident: ref_539 doi: 10.1109/FUZZ-IEEE.2018.8491547 – volume: 77 start-page: 74 year: 2015 ident: ref_141 article-title: Deconstructing principal component analysis using a data reconciliation perspective publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2015.03.016 – volume: 43 start-page: 17 year: 2015 ident: ref_747 article-title: Hybrid computing techniques for fault detection and isolation, a review publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2014.12.015 – volume: 22 start-page: 10 year: 2002 ident: ref_24 article-title: Process analysis and abnormal situation detection: From theory to practice publication-title: IEEE Control Syst. doi: 10.1109/MCS.2002.1035214 – ident: ref_159 doi: 10.1007/978-3-658-16756-1 – volume: 52 start-page: 2107 year: 2006 ident: ref_118 article-title: Multiscale statistical process control with multiresolution data publication-title: AIChE J. doi: 10.1002/aic.10805 – volume: 179 start-page: 108442 year: 2023 ident: ref_682 article-title: Alarm-based explanations of process monitoring results from deep neural networks publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2023.108442 – volume: 65 start-page: 2683 year: 2018 ident: ref_583 article-title: Linearity Evaluation and Variable Subset Partition Based Hierarchical Process Modeling and Monitoring publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2745452 – ident: ref_52 – volume: 119 start-page: 105730 year: 2023 ident: ref_694 article-title: Interpretable Anomaly Detection with DIFFI: Depth-based feature importance of Isolation Forest publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105730 – volume: 112 start-page: 137 year: 2020 ident: ref_358 article-title: Visualization analysis for fault diagnosis in chemical processes using recurrent neural networks publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2020.06.016 – volume: 158 start-page: 30 year: 2023 ident: ref_365 article-title: LSTMED: An uneven dynamic process monitoring method based on LSTM and Autoencoder neural network publication-title: Neural Netw. doi: 10.1016/j.neunet.2022.11.001 – volume: 38 start-page: 133 year: 1984 ident: ref_53 article-title: Linearly Independent, Orthogonal, and Uncorrelated Variables publication-title: Am. Stat. doi: 10.1080/00031305.1984.10483183 – volume: 9 start-page: 161003 year: 2021 ident: ref_343 article-title: Applications of Generative Adversarial Networks in Anomaly Detection: A Systematic Literature Review publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3131949 – ident: ref_466 doi: 10.1007/978-3-540-74048-3 – ident: ref_35 doi: 10.1007/978-0-387-78189-1 – volume: 17 start-page: 1925 year: 2020 ident: ref_488 article-title: Data-Driven Approach for Fault Detection and Diagnostic in Semiconductor Manufacturing publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2020.2983061 – volume: 23 start-page: 1296 year: 2013 ident: ref_776 article-title: Information transfer methods in causality analysis of process variables with an industrial application publication-title: J. Process Control doi: 10.1016/j.jprocont.2013.02.003 – volume: 91 start-page: 104 year: 2016 ident: ref_804 article-title: Abnormal situation management: Challenges and opportunities in the big data era publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2016.04.011 – volume: 47 start-page: 7758 year: 2008 ident: ref_437 article-title: Multivariate Temporal Data Analysis Using Self-Organizing Maps. 2. Monitoring and Diagnosis of Multistate Operations publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie071022y – volume: Volume 16 start-page: 91 year: 2016 ident: ref_756 article-title: An Overview of Concept Drift Applications publication-title: Big Data Analysis: New Algorithms for a New Society – volume: 131 start-page: 103086 year: 2023 ident: ref_683 article-title: Interpret what a Convolutional Neural Network learns for fault detection and diagnosis in process systems publication-title: J. Process Control doi: 10.1016/j.jprocont.2023.103086 – volume: 9 start-page: 2579 year: 2008 ident: ref_498 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – ident: ref_100 doi: 10.1049/cp:19971197 – volume: 7 start-page: 527 year: 1993 ident: ref_144 article-title: Robust principal component analysis by projection pursuit publication-title: J. Chemom. doi: 10.1002/cem.1180070606 – ident: ref_323 – ident: ref_240 doi: 10.3390/machines11121066 – ident: ref_824 – volume: 22 start-page: 59 year: 2020 ident: ref_149 article-title: Online Robust Principal Component Analysis with Change Point Detection publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2019.2923097 – volume: 46 start-page: 107 year: 2018 ident: ref_154 article-title: Review and big data perspectives on robust data mining approaches for industrial process modeling with outliers and missing data publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2018.09.003 – volume: 54 start-page: 47 year: 2017 ident: ref_121 article-title: Fault detection using multiscale PCA-based moving window GLRT publication-title: J. Process Control doi: 10.1016/j.jprocont.2017.03.004 – volume: 45 start-page: 696 year: 2006 ident: ref_146 article-title: Robust Recursive Principal Component Analysis Modeling for Adaptive Monitoring publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie050850t – volume: 79 start-page: 1 year: 2019 ident: ref_383 article-title: A deep autoencoder feature learning method for process pattern recognition publication-title: J. Process Control doi: 10.1016/j.jprocont.2019.05.002 – volume: 290 start-page: 172 year: 2018 ident: ref_160 article-title: Implementing multivariate statistics-based process monitoring: A comparison of basic data modeling approaches publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.02.051 – volume: 77 start-page: 1 year: 2015 ident: ref_231 article-title: A combined canonical variate analysis and Fisher discriminant analysis (CVA–FDA) approach for fault diagnosis publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2015.03.001 – volume: 170 start-page: 660 year: 2023 ident: ref_420 article-title: Exploring global attention mechanism on fault detection and diagnosis for complex engineering processes publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2022.12.055 – volume: 141 start-page: 107023 year: 2020 ident: ref_237 article-title: Local class-specific discriminant analysis with variable weighting and its application in fault diagnosis publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.107023 – volume: 47 start-page: 111 year: 2012 ident: ref_26 article-title: Monitoring, fault diagnosis, fault-tolerant control and optimization: Data driven methods publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2012.06.017 – volume: 135 start-page: 106762 year: 2020 ident: ref_577 article-title: Extracting nonstationary features for process data analytics and application in fouling detection publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.106762 – ident: ref_753 – ident: ref_677 doi: 10.3390/e23010018 – volume: 37 start-page: 132 year: 2017 ident: ref_765 article-title: Ensemble learning for data stream analysis: A survey publication-title: Inf. Fusion doi: 10.1016/j.inffus.2017.02.004 – volume: 181 start-page: 106223 year: 2019 ident: ref_608 article-title: A realistic and public dataset with rare undesirable real events in oil wells publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2019.106223 – volume: 59 start-page: 8757 year: 2020 ident: ref_194 article-title: Concurrent Quality-Relevant Canonical Correlation Analysis for Nonlinear Continuous Process Decomposition and Monitoring publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c00895 – volume: 5 start-page: 28 year: 2010 ident: ref_525 article-title: Bayesian Network Method for Fault Diagnosis in a Continuous Tubular Reactor publication-title: Chem. Prod. Process Model. |
RelatedPersons | Fisher, Ronald Aylmer |
RelatedPersons_xml | – fullname: Fisher, Ronald Aylmer |
SSID | ssj0000913856 |
Score | 2.4147093 |
SecondaryResourceType | review_article |
Snippet | This paper presents a comprehensive review of the historical development, the current state of the art, and prospects of data-driven approaches for industrial... |
SourceID | proquest gale crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 251 |
SubjectTerms | Algorithms Artificial intelligence Artificial neural networks Chemical industry Control charts Data processing Didacticism Fault diagnosis Fisher, Ronald Aylmer Herbicides Machine learning Methods Monitoring Multivariate analysis Neural networks Pesticides industry Principal components analysis Production processes Software Software development Statistical analysis Statistics Surveys Variables |
Title | Data-Driven Process Monitoring and Fault Diagnosis: A Comprehensive Survey |
URI | https://www.proquest.com/docview/2931056892 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSyMxEB_UvngPclaPq_YkcAenD8Hb3SSbvZejZ1uLoIgf4NuSZLMoSFu3W8EX__ab6aZ-gNzjskN2mcl8ZvIbgB9GRs5lLuXKJAkXsS955tOUm6xQxhDy5KIOeXqmRtfi5EbehILbLLRVLm3iwlAXE0c18kN0SzQkXmfxn-kDp6lRdLoaRmisQgtNsMbkq_V3cHZ-8VJlIdRLLVWDS5pgfn84rSLM9ymyfueJPrbHCycz_AwbITpkvUacm7Dix2349AYzsA2bQRtnbD9ARh-0YZ1ixgZyeQtO-qY2vF-RHWPhIgBrdJeWYGZcsKGZ39es3_TZ3c1-sx4jy1D526ahnV3Oq0f_tA3Xw8HV0YiHkQncJYmoufBRbJERpRdapia2UtvSiUhrK5xHX5x5ZTClKpDI6kg6FIyKolJZoVwqy-QLrI0nY_8VWGqTWBufmkKWwqbKmiLOZBH_ElYp9GEdOFiyL3cBT5zGWtznmFcQq_NXVnfg-wvttEHR-JDqJ0khJ9XClZwJNwTwfwikKu_RGSnleKID3aWg8qBzs_x1h-z8__UurOP3RNN73YW1upr7bxha1HYPVvXweC_sInw6fR78A4t0z1s |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ8gPogPRE6Nh6hN1CgPDWy37XZNjLl4nsfni5DwtrbdbiQhx7m3B-Gf4m905roLmhDfeG7TNtP5bGd-A_DOqsT73Gdc2zTlUoSK5yHLuM1LbS0hTy7eIQ8O9fhY7p6okyW47mphKK2y04kLRV2ee3oj30KzRE3iTS6-TH9z6hpFv6tdC43IFnvh6hJDttnnnSHe73shRt-Ovo5521WA-zSVDZchEQ7jhCpIozIrnDKu8jIxxkkf0FzlQVuMOkqc5EyiPJ5dJ0mlndQ-U1WK6z6AhzJNc5IoM_p-86ZDGJtG6YiCiuPbW9M6EeiQCZX8Y_fu1v4LkzZ6AqutL8oGkXnWYClMevD4L4TCHqy1sj9jH1uA6s0erJCHGgGen8Lu0DaWD2vSmqwtO2BRU9ASzE5KNrLzs4YNY1bf6ewTGzDSQ3X4FdPn2Y95fRGunsHxvZDyOSxPzifhBbDMpcLYkNlSVdJl2tlS5KoU29JpjRazD5sd-QrfopdTE42zAqMYInVxS-o-vL2ZO42YHXfO-kC3UJAg40retvUIeB6CxCoG9CNLEaXsw0Z3UUUr4bPilh_X_z_8Bh6Njw72i_2dw72XsIJ7y5j1vQHLTT0Pr9CpadzrBScx-HnfrPsH0LEIVw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLjAbEComOAJUCwB6uN448ECaFCVu0DqgmYtLdgO46YNHUlTUH71_jrONfOBtLE255jXZK78335_DuAF1ok1uZWUanTlHLmapo7pajOK6m1R55c1SE_TeXeMT84ESdr8Lu7C-PbKjubuDLU1bn1NfIhuiU_JD7L2bCObRFHxeTd_Af1E6T8SWs3TiOoyKG7-IXp2-LtfoGyfsnYZPfrhz0aJwxQm6a8pdwlzGDOUDueCaWZEZmpLU-yzHDr0HXlTmrMQCpcZLJEWPwPmSS1NFxaJeoU6d6CdYVZ0agH6-93p0efLys8HnEzEzJgoqZpPhrOm4RheMZE8o8XvN4XrBzc5B7cjZEpGQdV2oQ1N-vDnb_wCvuwGS3BgryOcNU7fdjw8WqAe74PB4VuNS0ab0NJvIRAgt3wJIieVWSil2ctKUKP3-niDRkTb5Ua9z0005Mvy-anu3gAxzfCzIfQm53P3CMgyqQs007pStTcKGl0xXJRsRE3UqL_HMBOx77SRixzP1LjrMScxrO6vGL1AJ5frp0HBI9rV73yUij9tkZKVsfbCfg9HiCrHPvzWZ9f8gFsd4Iq435flFfaufX_x8_gNqpt-XF_evgYNvDVPLSAb0OvbZbuCUY4rXkaVYnAt5vW3j90iw3p |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Process+Monitoring+and+Fault+Diagnosis%3A+A+Comprehensive+Survey&rft.jtitle=Processes&rft.au=Melo%2C+Afr%C3%A2nio&rft.au=Maur%C3%ADcio+Melo+C%C3%A2mara&rft.au=Pinto%2C+Jos%C3%A9+Carlos&rft.date=2024-02-01&rft.pub=MDPI+AG&rft.eissn=2227-9717&rft.volume=12&rft.issue=2&rft.spage=251&rft_id=info:doi/10.3390%2Fpr12020251&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon |