Data-Driven Process Monitoring and Fault Diagnosis: A Comprehensive Survey

This paper presents a comprehensive review of the historical development, the current state of the art, and prospects of data-driven approaches for industrial process monitoring. The subject covers a vast and diverse range of works, which are compiled and critically evaluated based on the different...

Full description

Saved in:
Bibliographic Details
Published inProcesses Vol. 12; no. 2; p. 251
Main Authors Melo, Afrânio, Câmara, Maurício Melo, Pinto, José Carlos
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a comprehensive review of the historical development, the current state of the art, and prospects of data-driven approaches for industrial process monitoring. The subject covers a vast and diverse range of works, which are compiled and critically evaluated based on the different perspectives they provide. Data-driven modeling techniques are surveyed and categorized into two main groups: multivariate statistics and machine learning. Representative models, namely principal component analysis, partial least squares and artificial neural networks, are detailed in a didactic manner. Topics not typically covered by other reviews, such as process data exploration and treatment, software and benchmarks availability, and real-world industrial implementations, are thoroughly analyzed. Finally, future research perspectives are discussed, covering aspects related to system performance, the significance and usefulness of the approaches, and the development environment. This work aims to be a reference for practitioners and researchers navigating the extensive literature on data-driven industrial process monitoring.
AbstractList This paper presents a comprehensive review of the historical development, the current state of the art, and prospects of data-driven approaches for industrial process monitoring. The subject covers a vast and diverse range of works, which are compiled and critically evaluated based on the different perspectives they provide. Data-driven modeling techniques are surveyed and categorized into two main groups: multivariate statistics and machine learning. Representative models, namely principal component analysis, partial least squares and artificial neural networks, are detailed in a didactic manner. Topics not typically covered by other reviews, such as process data exploration and treatment, software and benchmarks availability, and real-world industrial implementations, are thoroughly analyzed. Finally, future research perspectives are discussed, covering aspects related to system performance, the significance and usefulness of the approaches, and the development environment. This work aims to be a reference for practitioners and researchers navigating the extensive literature on data-driven industrial process monitoring.
Audience Academic
Author Câmara, Maurício Melo
Pinto, José Carlos
Melo, Afrânio
Author_xml – sequence: 1
  givenname: Afrânio
  orcidid: 0000-0002-7279-3981
  surname: Melo
  fullname: Melo, Afrânio
– sequence: 2
  givenname: Maurício Melo
  orcidid: 0000-0001-7639-1480
  surname: Câmara
  fullname: Câmara, Maurício Melo
– sequence: 3
  givenname: José Carlos
  orcidid: 0000-0003-2631-1811
  surname: Pinto
  fullname: Pinto, José Carlos
BookMark eNptkE9LAzEQxYNUsNZe_AQBb8LWJJvdZL2V1vqHioJ6XrJpUlO2yZpkC_32Rioo4sxhhuH35sE7BQPrrALgHKNJnlfoqvOYoNQFPgJDQgjLKobZ4Nd-AsYhbFCqCue8KIfgYS6iyObe7JSFz95JFQJ8dNZE541dQ2FXcCH6NsK5EWvrggnXcApnbtt59a5sSEL40vud2p-BYy3aoMbfcwTeFjevs7ts-XR7P5suM5nnNGZUYdIQzrSivGCCNAVvtKSY84ZKVZa4UqWgCK8S1HBcyEqxEmNdNrSUrND5CFwc_nbeffQqxHrjem-TZU2qHKOi5BVJ1ORArUWramO1i17I1Cu1NTIFp026TxmnGFHCaRJcHgTSuxC80nXnzVb4fY1R_ZVv_ZNvgtEfWJooonE2uZj2P8knAKt9HA
CitedBy_id crossref_primary_10_3390_pr12092053
crossref_primary_10_1002_cjce_25562
crossref_primary_10_1002_cjce_25671
crossref_primary_10_1007_s41101_024_00286_4
crossref_primary_10_1016_j_dche_2024_100162
crossref_primary_10_3390_technologies12120237
crossref_primary_10_1177_01423312241286566
crossref_primary_10_3390_asi7060121
crossref_primary_10_3390_pr12081620
crossref_primary_10_1016_j_dche_2024_100182
crossref_primary_10_22395_rium_v23n44a1
crossref_primary_10_1007_s12257_024_00174_7
crossref_primary_10_3390_s24227299
Cites_doi 10.1016/j.ins.2020.06.034
10.1109/TNNLS.2023.3282047
10.1016/j.isatra.2021.01.039
10.1016/j.cherd.2021.05.002
10.1145/2594473.2594479
10.1016/0098-1354(95)00011-P
10.1016/j.ces.2013.08.007
10.1109/TSM.2007.907607
10.1016/j.eng.2021.03.019
10.3390/pr9030544
10.1016/j.compchemeng.2020.106809
10.3390/pr6020017
10.1021/acs.iecr.9b01752
10.1016/j.compchemeng.2022.107964
10.1016/j.procir.2018.03.150
10.1002/cjce.24207
10.1016/S0098-1354(97)00262-7
10.1002/cjce.23923
10.1109/ACCESS.2018.2810079
10.1108/02656711211258508
10.1016/j.jprocont.2019.12.004
10.1016/j.jfda.2018.10.006
10.1016/j.pnucene.2010.12.001
10.1016/j.jprocont.2022.08.008
10.9734/ajrcos/2021/v12i430302
10.1137/1.9780898718461
10.1002/aic.690370209
10.1016/j.cherd.2022.03.031
10.1021/acs.iecr.8b02913
10.1016/0098-1354(92)80051-A
10.1145/3559540
10.1002/wics.51
10.1016/j.jprocont.2023.01.011
10.1016/j.chemolab.2018.11.001
10.1146/annurev-statistics-040120-010930
10.1145/2939672.2939785
10.1016/j.cie.2017.12.006
10.1515/revce-2013-0013
10.1016/j.chemolab.2010.08.012
10.1002/cjce.20090
10.1109/ICIP46576.2022.9897283
10.1007/s41060-021-00265-1
10.1002/9781118391686
10.1016/j.jprocont.2012.06.009
10.1016/j.chemolab.2016.08.014
10.1016/S0098-1354(00)00374-4
10.1016/j.ifacol.2015.08.167
10.1002/9780470061626
10.1016/j.compchemeng.2019.04.003
10.1016/S0959-1524(99)00043-8
10.1016/j.sigpro.2003.07.018
10.1007/s10845-009-0351-1
10.1016/j.isatra.2021.08.040
10.1007/s11265-010-0513-6
10.1002/(SICI)1099-128X(199905/08)13:3/4<379::AID-CEM556>3.0.CO;2-N
10.1021/acs.iecr.2c01788
10.1002/aic.14013
10.1002/ett.3647
10.1016/j.chemolab.2022.104728
10.1016/j.conengprac.2018.07.012
10.1002/(SICI)1097-0290(19960905)51:5<558::AID-BIT8>3.0.CO;2-B
10.1080/07408170490473060
10.1109/AdCONIP55568.2022.9894124
10.1007/s10462-019-09779-4
10.1016/j.chemolab.2017.09.021
10.1016/j.conengprac.2020.104627
10.1016/j.conengprac.2021.104784
10.1021/acs.iecr.0c04038
10.1016/j.jprocont.2021.08.014
10.1021/bp015514w
10.3390/pr8010024
10.1016/j.neucom.2015.09.081
10.1002/cjce.23762
10.1007/s12530-023-09523-y
10.1109/TASE.2023.3253285
10.1016/j.compchemeng.2020.106787
10.1081/PRE-120026883
10.1021/acs.iecr.0c03901
10.1016/S1474-6670(17)40218-7
10.1002/9780470517253
10.1002/aic.10260
10.1016/0959-1524(94)80040-5
10.1016/j.ins.2016.10.028
10.1080/10618600.2019.1617160
10.1515/revce-2015-0022
10.1016/j.compchemeng.2006.09.004
10.23919/ACC45564.2020.9147890
10.1016/j.engappai.2020.103475
10.1016/j.inffus.2020.01.005
10.1002/(SICI)1099-128X(199707)11:4<339::AID-CEM476>3.0.CO;2-L
10.3390/pr9091686
10.1016/j.neucom.2017.02.025
10.1016/j.jprocont.2023.103062
10.1007/978-3-030-83819-5
10.1016/j.conengprac.2022.105308
10.1016/j.chemolab.2022.104711
10.1016/j.ces.2003.09.012
10.1016/j.engappai.2022.104811
10.1109/CAC.2017.8243540
10.23919/CCC50068.2020.9189106
10.1080/00207721.2014.886136
10.1002/cjce.25085
10.1021/acs.iecr.0c02552
10.1021/acs.iecr.0c01512
10.1039/D1RE00541C
10.1016/0893-6080(89)90020-8
10.1016/0009-2509(74)80089-8
10.1016/S1474-6670(17)43138-7
10.1021/acs.iecr.1c03860
10.1016/0165-1684(94)90029-9
10.1109/RIVF.2019.8713738
10.3390/pr7070436
10.1145/3313831.3376219
10.1109/TIE.2019.2962468
10.1016/j.eswa.2009.09.053
10.1016/j.jprocont.2004.06.010
10.1021/acs.iecr.2c03570
10.1142/3823
10.1016/j.chemolab.2019.02.006
10.1016/j.cherd.2019.09.026
10.3390/pr8091123
10.1016/j.ifacol.2023.10.921
10.1016/S0009-2509(03)00132-5
10.1016/j.jprocont.2010.10.005
10.1016/j.neucom.2020.04.057
10.3390/pr11061608
10.1016/j.jprocont.2022.11.010
10.1002/aic.16489
10.1016/j.sigpro.2003.07.019
10.1016/j.jprocont.2020.05.010
10.1002/cjce.24511
10.1017/S0890060417000518
10.1109/TII.2021.3053128
10.1016/j.jprocont.2019.11.010
10.1016/j.arcontrol.2016.09.001
10.1252/jcej.16we280
10.1016/j.eswa.2022.118260
10.1016/j.jtice.2010.03.015
10.1016/j.neucom.2015.07.099
10.1016/j.ces.2023.118900
10.1080/01621459.1989.10478797
10.1016/j.neunet.2018.09.010
10.1016/j.arcontrol.2022.09.005
10.1016/0169-7439(95)00076-3
10.1007/978-1-4471-6410-4
10.1016/j.jenvman.2018.06.087
10.1016/j.jprocont.2015.02.007
10.1002/cjce.24401
10.1038/323533a0
10.1016/j.ces.2023.118581
10.1177/0142331219898937
10.1007/s10489-022-03344-3
10.1021/acs.iecr.3c01565
10.3390/min10110958
10.1016/0169-7439(93)E0075-F
10.1007/s40313-014-0128-4
10.1002/aic.17986
10.1021/op400337x
10.1002/cjce.23249
10.1002/cem.667
10.1002/aic.17282
10.1007/s12555-011-0407-9
10.3390/fi12060097
10.1016/j.jprocont.2021.07.007
10.1016/j.aei.2005.01.009
10.1007/s12065-020-00422-8
10.1002/qre.978
10.1016/j.jprocont.2022.12.007
10.1080/00401706.1995.10485888
10.1016/0967-0661(95)00014-L
10.1016/j.psep.2022.07.043
10.1016/j.cie.2016.03.003
10.1016/j.knosys.2020.105596
10.1016/j.compchemeng.2019.05.037
10.1109/CVPR.2016.90
10.1371/journal.pone.0152173
10.1016/j.isatra.2019.07.001
10.1016/j.knosys.2014.01.020
10.3182/20140824-6-ZA-1003.02329
10.1016/j.psep.2015.02.003
10.1016/j.eswa.2019.01.011
10.1016/j.ins.2018.03.010
10.1016/0098-1354(93)80018-I
10.1109/TKDE.2019.2958342
10.1007/s00521-020-05171-4
10.1016/j.jprocont.2020.06.014
10.1109/JSEN.2020.3033153
10.1016/j.neucom.2015.03.082
10.1016/j.cjche.2020.05.003
10.1002/cjce.24066
10.1016/j.psep.2023.03.017
10.1002/aic.10325
10.1016/j.neucom.2013.12.002
10.1016/j.jprocont.2005.04.001
10.1021/acs.iecr.5b04023
10.1002/widm.1147
10.1016/j.patrec.2021.11.013
10.1016/j.conengprac.2022.105304
10.1017/CBO9780511755798
10.3233/IDA-1997-1203
10.1109/CONTROL.2016.7737588
10.1021/acs.iecr.9b02391
10.1214/16-STS587
10.1016/j.jprocont.2003.09.004
10.1016/j.neucom.2022.06.042
10.1016/j.jprocont.2023.102999
10.1016/j.psep.2020.03.017
10.1021/acs.iecr.0c01749
10.1016/j.compchemeng.2003.09.031
10.1016/j.eswa.2023.120854
10.1016/j.neucom.2018.12.024
10.1016/j.psep.2022.09.039
10.3182/20120710-4-SG-2026.00172
10.1016/j.ymssp.2006.12.007
10.1007/s10994-019-05840-z
10.1002/aic.12200
10.1021/ie500815a
10.3182/20020721-6-ES-1901.01632
10.1109/ICMLA.2015.141
10.1016/j.dsp.2020.102868
10.1162/089976601750264965
10.1016/j.arcontrol.2016.09.008
10.3390/pr7030152
10.1016/j.energy.2010.06.001
10.1109/TCYB.2022.3178878
10.1016/j.ifacol.2019.06.140
10.1021/ie302069q
10.1016/j.compchemeng.2010.07.034
10.1109/IJCNN.2018.8489385
10.1016/0098-1354(96)00132-9
10.1016/j.isatra.2017.09.004
10.1016/j.chemolab.2020.104092
10.1080/00051144.2011.11828430
10.1016/j.chemolab.2022.104684
10.1080/00224065.2016.11918148
10.1016/j.ces.2020.115928
10.1002/cjce.24949
10.1007/s10115-016-0987-z
10.1016/j.compchemeng.2015.08.018
10.1016/j.ces.2004.04.031
10.1016/j.compchemeng.2020.106841
10.1109/IECON.2017.8217236
10.3390/pr5030038
10.1016/S0169-7439(98)00119-1
10.3390/pr10112408
10.1016/j.chemolab.2017.12.008
10.1109/RAIIC59453.2023.10280857
10.1016/j.compchemeng.2019.05.029
10.1093/jalm/jfac114
10.1021/ie301945s
10.1016/j.automatica.2009.02.027
10.1016/j.eswa.2016.06.035
10.1021/acs.iecr.9b03077
10.1016/j.jprocont.2013.05.007
10.1016/j.compchemeng.2021.107549
10.3390/pr5040056
10.1177/0003702817704587
10.1109/EALS.2014.7009497
10.1016/j.petrol.2022.110716
10.3390/pr7120958
10.1002/int.21899
10.1016/j.jprocont.2020.09.007
10.1016/S0967-0661(02)00096-5
10.1109/TCST.2021.3094512
10.1016/j.jprocont.2021.01.005
10.1021/acs.iecr.2c00335
10.1002/acs.859
10.1016/S1474-6670(17)44952-4
10.1109/TKDE.2015.2441713
10.1016/j.protcy.2013.12.483
10.1016/j.compchemeng.2007.07.005
10.1002/cjce.24750
10.1016/j.compchemeng.2022.107884
10.1109/SMC.2019.8914596
10.1016/j.sigpro.2019.107299
10.1016/j.compchemeng.2022.108014
10.1016/j.ces.2021.117221
10.1016/j.isatra.2020.08.017
10.1021/acsomega.1c06649
10.1016/j.conengprac.2007.04.006
10.1016/j.ifacol.2020.12.126
10.1002/cem.800
10.1016/j.engappai.2022.104743
10.1016/0959-1524(95)00019-M
10.1016/j.neucom.2020.04.075
10.1007/978-3-540-78293-3
10.23919/ACC.1992.4792557
10.1177/095440620121500907
10.1007/s00521-022-08017-3
10.23919/ACC53348.2022.9867763
10.1016/j.jprocont.2018.12.016
10.1007/s12247-018-9348-7
10.1016/j.isatra.2018.10.011
10.1021/acs.iecr.0c06307
10.3390/s22062205
10.1007/s13042-022-01621-8
10.1002/cjce.22200
10.1016/j.compchemeng.2017.10.029
10.1016/j.jprocont.2015.04.014
10.1007/11752790_2
10.1016/j.asoc.2017.09.019
10.1007/s43153-021-00125-2
10.1109/JSAIT.2021.3072962
10.1007/s11668-023-01817-2
10.1016/j.neucom.2017.01.078
10.1002/cben.202200030
10.1016/j.coche.2021.100758
10.1016/j.compchemeng.2009.08.007
10.1145/5666.5673
10.1109/CCDC.2013.6561830
10.1109/TII.2018.2875067
10.1109/TIM.2022.3218574
10.3389/fceng.2020.582126
10.1016/j.compchemeng.2021.107587
10.1021/acs.chas.0c00075
10.1021/ie061094+
10.1109/JPROC.2021.3052449
10.1016/S0167-8655(99)00087-2
10.1016/j.arcontrol.2009.08.001
10.1109/ICIEEM.2009.5344265
10.1016/j.fuel.2018.11.045
10.1016/j.chemolab.2009.07.003
10.1016/B978-0-444-63577-8.50149-2
10.1016/j.jprocont.2022.07.012
10.1109/TII.2009.2033181
10.1177/09544089231213778
10.1016/S0098-1354(02)00093-5
10.1016/j.ejor.2018.06.011
10.1016/j.jprocont.2004.02.001
10.1007/978-1-4471-5185-2
10.1016/S0169-7439(00)00062-9
10.18653/v1/D16-1053
10.1016/j.eswa.2021.115234
10.1016/0098-1354(95)00003-K
10.1016/j.cherd.2012.06.004
10.1146/annurev-statistics-022513-115657
10.1021/ie901975c
10.1016/j.conengprac.2009.11.002
10.1016/j.chemolab.2016.07.014
10.1016/j.jfranklin.2020.03.005
10.1016/B978-0-323-88506-5.50184-4
10.1016/j.jprocont.2019.11.007
10.1016/j.jfranklin.2016.10.033
10.1007/s10845-023-02118-z
10.1016/S0009-2509(01)00366-9
10.1021/ie401027b
10.1002/jctb.503300140
10.1002/cjce.23750
10.1016/j.engappai.2017.10.016
10.1002/aic.690490412
10.1007/s10489-022-04342-1
10.1109/TII.2013.2243743
10.1016/j.jprocont.2017.05.002
10.1021/acs.iecr.3c01481
10.14778/3401960.3401973
10.1016/j.jprocont.2017.02.006
10.1016/j.cherd.2019.06.016
10.1002/cjce.25124
10.1162/neco.2006.18.7.1527
10.1016/j.compchemeng.2019.01.014
10.1109/JAS.2016.7471613
10.1016/j.neucom.2017.04.070
10.1137/1.9781611974348.41
10.1007/978-0-387-84858-7
10.3390/pr10010122
10.1007/s12530-016-9168-2
10.1016/j.conengprac.2021.104811
10.1109/ACCESS.2019.2932017
10.1109/ACCESS.2020.3002257
10.1016/j.procs.2017.11.440
10.1016/j.compchemeng.2021.107304
10.1201/9781315155135
10.1109/JIOT.2021.3116785
10.1016/j.chemolab.2004.05.001
10.1111/j.1469-1809.1936.tb02137.x
10.1016/j.jprocont.2015.01.003
10.1109/CCDC49329.2020.9164262
10.1016/j.compchemeng.2022.107853
10.1109/ACCESS.2018.2794765
10.1109/TIE.2014.2301773
10.1016/j.ifacol.2015.09.595
10.1177/014233129701900507
10.2166/wst.2003.0627
10.1016/j.cjche.2022.06.029
10.1002/cem.785
10.1016/S1570-7946(09)70228-7
10.1007/978-3-030-65965-3
10.1093/oso/9780198782933.003.0001
10.1016/j.isatra.2023.04.035
10.1109/TKDE.2011.226
10.1016/j.engappai.2023.105988
10.1016/j.compchemeng.2018.04.009
10.1016/j.compchemeng.2003.09.011
10.1002/aic.690370112
10.1109/SMC.2016.7844219
10.1109/TNNLS.2021.3105827
10.1016/j.sigpro.2013.12.026
10.1016/S0098-1354(02)00153-9
10.1109/TASE.2022.3230687
10.1016/j.compchemeng.2020.107197
10.1016/j.chemolab.2018.10.010
10.1016/j.cie.2017.08.035
10.3182/20110828-6-IT-1002.00934
10.1016/j.eswa.2017.03.056
10.1002/aic.690351210
10.1016/j.jprocont.2021.12.005
10.1007/s00500-022-06894-3
10.1162/089976602317318938
10.1016/j.compchemeng.2023.108453
10.1002/cjce.24494
10.3390/pr8040391
10.1021/acs.iecr.2c03330
10.1021/acs.iecr.8b06205
10.1016/S0167-7799(00)01528-6
10.1109/RAM.2017.7889650
10.1016/j.isatra.2023.09.027
10.1021/acs.iecr.0c03492
10.1016/j.chemolab.2015.02.016
10.1016/j.neucom.2021.03.091
10.1016/S0967-0661(99)00105-7
10.1007/978-3-642-33275-3
10.1145/2939672.2939778
10.1016/j.isatra.2021.04.014
10.1016/j.compchemeng.2017.10.008
10.1016/S1474-6670(17)35884-6
10.1080/00224065.2015.11918137
10.1016/j.compchemeng.2020.106755
10.1080/00207179408923103
10.3390/pr10122557
10.1002/aic.10568
10.1002/cem.2719
10.1016/j.chemolab.2013.07.001
10.1016/j.chemolab.2023.104758
10.1002/cem.1262
10.1021/acs.iecr.7b00027
10.1145/130385.130401
10.1016/j.arcontrol.2020.09.004
10.1016/j.compchemeng.2008.12.012
10.1109/TNNLS.2016.2635111
10.1016/j.ces.2010.10.008
10.1016/j.arcontrol.2012.09.004
10.1016/j.aci.2018.08.006
10.1109/TII.2020.3015034
10.1109/79.91217
10.1109/JSTSP.2012.2234082
10.3390/pr10112311
10.1007/s10845-011-0533-5
10.1016/j.bushor.2018.08.004
10.1021/ie990110i
10.1016/j.epsr.2022.107990
10.1016/j.jprocont.2010.06.001
10.1016/j.cviu.2013.11.009
10.1007/s11814-014-0151-y
10.1007/s10462-020-09934-2
10.1007/s00521-021-06711-2
10.1016/j.chemolab.2005.01.002
10.1016/j.chemolab.2019.103863
10.1016/j.neucom.2005.12.126
10.1002/cben.202000027
10.1002/aic.15062
10.1016/j.jprocont.2021.08.003
10.1016/j.compchemeng.2021.107467
10.1016/j.compchemeng.2020.106895
10.1016/S0169-7439(02)00140-5
10.1021/acs.iecr.1c01990
10.1007/978-3-031-21867-5
10.1016/j.conengprac.2019.05.021
10.1002/cjce.23740
10.1016/j.neucom.2021.12.093
10.1016/j.physa.2004.10.026
10.1080/01621459.2014.920613
10.2478/v10006-008-0038-3
10.1002/cjce.23832
10.1016/j.jprocont.2019.04.009
10.1016/j.psep.2023.06.018
10.1002/cjce.24689
10.1016/j.jprocont.2016.08.007
10.1016/S0098-1354(02)00127-8
10.1016/j.compchemeng.2021.107392
10.1016/j.compchemeng.2021.107456
10.1515/revce-2017-0069
10.1109/TASE.2020.3022924
10.1016/j.compchemeng.2020.106756
10.1016/j.jprocont.2020.12.006
10.1016/j.conengprac.2007.04.014
10.1016/0165-1684(91)90079-X
10.3390/pr11020369
10.1016/j.compchemeng.2020.106938
10.1016/j.isatra.2020.06.008
10.1016/j.ces.2022.117637
10.1016/j.jlp.2017.01.008
10.1002/bit.1102
10.1016/j.engappai.2023.106424
10.1016/j.compchemeng.2021.107535
10.1016/j.petrol.2021.109772
10.1016/j.eswa.2021.116429
10.1016/j.compchemeng.2023.108391
10.1016/j.jfranklin.2022.06.022
10.1016/j.jprocont.2015.06.007
10.1016/j.jlp.2023.105185
10.1016/j.chemolab.2007.02.005
10.1016/j.conengprac.2020.104558
10.1002/cae.21837
10.3390/electronics8080832
10.1016/j.chemolab.2017.09.015
10.1016/j.conengprac.2015.04.012
10.1016/j.jprocont.2005.06.002
10.1016/j.eswa.2006.05.010
10.1016/j.jbiotec.2014.10.029
10.1016/j.compchemeng.2023.108264
10.1016/j.compchemeng.2021.107512
10.1016/j.jprocont.2023.01.012
10.1016/j.jprocont.2008.12.001
10.1016/S0042-6989(97)00169-7
10.1093/biomet/28.3-4.321
10.1016/j.eswa.2022.117919
10.1111/j.1467-9876.2006.00560.x
10.1109/TSM.2014.2302011
10.1016/j.eswa.2023.121434
10.1021/ie901911p
10.1016/j.ces.2021.117373
10.3390/app122312377
10.1017/CBO9780511809682
10.1109/TII.2020.3012989
10.1016/j.jfranklin.2023.10.004
10.1016/j.compchemeng.2022.107807
10.1016/j.psep.2022.11.062
10.3758/s13428-016-0754-9
10.1016/j.ifacol.2018.09.548
10.1038/s41598-017-19067-2
10.1016/j.ins.2011.08.030
10.1109/TASE.2019.2957232
10.1162/coli_a_00429
10.1016/j.compchemeng.2022.107905
10.1016/j.isatra.2022.09.019
10.1016/j.vibspec.2019.02.001
10.1016/j.jmsy.2020.05.005
10.1007/978-3-030-02384-3
10.1016/j.jprocont.2020.03.012
10.1162/089976698300017467
10.1016/j.chemolab.2016.09.006
10.1016/j.jprocont.2005.12.002
10.1002/(SICI)1099-128X(199905/08)13:3/4<397::AID-CEM559>3.0.CO;2-I
10.1007/978-1-4471-0347-9
10.1016/j.cie.2010.03.011
10.1016/j.compchemeng.2022.108125
10.1109/JSEN.2022.3189484
10.1016/j.compchemeng.2019.106669
10.1016/j.jprocont.2021.07.004
10.1016/j.jprocont.2023.103069
10.1109/TIE.2017.2668987
10.1016/j.chemolab.2020.104167
10.1016/j.chemolab.2019.03.012
10.1016/0959-1524(96)00009-1
10.1021/ie049582+
10.1016/j.jtice.2020.07.007
10.1016/j.eswa.2017.11.045
10.1002/aic.12247
10.1016/j.neucom.2016.03.015
10.1016/j.ymssp.2018.02.016
10.1007/978-1-4471-0421-6
10.1080/00207720050197848
10.1016/j.compchemeng.2022.107694
10.1109/TCYB.2018.2830338
10.1002/aic.13953
10.1080/14786440109462720
10.1016/j.jprocont.2020.06.005
10.1145/3373464.3373470
10.1016/j.chemolab.2015.10.006
10.1016/J.ENG.2016.04.018
10.1016/S1474-6670(17)43143-0
10.1007/978-3-642-69878-1
10.1016/j.compchemeng.2021.107365
10.1007/s10618-018-0571-0
10.1021/ie980243o
10.1002/cjce.25016
10.1016/j.jprocont.2023.103087
10.1177/0142331220905951
10.1109/MCSE.2016.74
10.1016/j.compchemeng.2020.106970
10.1002/j.1538-7305.1926.tb00125.x
10.1016/j.ifacol.2015.09.589
10.1109/TIE.2014.2301761
10.1016/j.chemolab.2015.12.011
10.1016/j.ifacsc.2019.100071
10.1016/j.compchemeng.2017.02.041
10.1016/j.neucom.2014.05.086
10.1016/j.jprocont.2021.05.008
10.3182/20110828-6-IT-1002.02842
10.1016/j.isatra.2018.01.003
10.1016/S0165-0114(97)00011-0
10.1016/j.engappai.2006.11.009
10.1109/ICAIS50930.2021.9395905
10.1016/j.jwpe.2020.101556
10.1145/3394486.3406704
10.1080/00401706.1979.10489779
10.1111/1467-9868.00196
10.1109/TIE.2014.2308133
10.1016/0169-7439(95)80006-U
10.1109/TII.2023.3240601
10.1002/cite.202100083
10.1016/j.jprocont.2022.06.011
10.1016/j.compchemeng.2020.106843
10.1016/j.compchemeng.2022.107898
10.1016/j.conengprac.2021.104843
10.1016/j.jprocont.2023.103023
10.1016/j.measurement.2020.108782
10.1016/j.vibspec.2019.05.001
10.1016/j.compchemeng.2020.106875
10.1109/TNNLS.2022.3201621
10.1016/j.conengprac.2023.105750
10.3182/20140824-6-ZA-1003.00399
10.3390/pr5030035
10.1016/j.psep.2022.07.019
10.1016/j.jprocont.2009.07.011
10.1007/978-1-4471-4513-4
10.1021/acs.iecr.5b03525
10.1016/j.conengprac.2020.104386
10.1016/j.asoc.2014.02.008
10.1016/j.chemolab.2020.104095
10.1016/j.compchemeng.2022.108055
10.1002/cjce.24153
10.1002/aic.17715
10.1016/j.jprocont.2023.04.001
10.1109/TASE.2015.2417882
10.1109/NAFIPS.2011.5751925
10.1016/j.psep.2022.05.073
10.3182/20090630-4-ES-2003.00184
10.1016/S0098-1354(02)00162-X
10.3897/nucet.7.63675
10.1007/978-3-030-79519-1
10.1007/978-81-322-3972-7
10.1016/j.aca.2009.02.001
10.1007/s10618-020-00698-5
10.1016/j.ifacol.2018.09.522
10.1002/1099-128X(200009/12)14:5/6<383::AID-CEM616>3.0.CO;2-5
10.1016/j.chemolab.2014.08.008
10.1016/S1474-6670(17)42376-7
10.1007/978-3-319-94463-0
10.1177/01423312231157118
10.1016/j.jprocont.2013.12.018
10.1007/s10489-020-02128-x
10.1016/j.conengprac.2022.105182
10.1016/j.chemolab.2012.10.005
10.1002/asmb.716
10.3390/pr11113233
10.1016/j.conengprac.2020.104344
10.1002/9781118481769
10.1109/TKDE.2013.184
10.1016/j.compchemeng.2023.108207
10.1021/acs.iecr.3c00995
10.1021/acs.iecr.2c02072
10.1016/j.chemolab.2021.104369
10.1016/j.compchemeng.2023.108289
10.1007/s00500-020-05384-8
10.1016/j.jprocont.2018.12.009
10.1016/j.neucom.2018.04.069
10.1016/j.conengprac.2005.06.015
10.1109/TCST.2018.2865413
10.1016/j.conengprac.2019.104195
10.1145/1273496.1273629
10.1002/cjce.25014
10.3390/pr8010123
10.1016/j.chemolab.2018.12.004
10.1002/aic.690400509
10.1016/j.neucom.2016.01.027
10.1016/S0169-7439(98)00090-2
10.1016/S0959-1524(00)00022-6
10.1002/qre.2797
10.1016/j.cie.2008.01.013
10.1007/s11831-022-09727-6
10.1109/ACCESS.2020.3001379
10.14778/3538598.3538602
10.1016/j.ins.2021.01.036
10.1021/ie102564d
10.1016/j.future.2022.04.005
10.3390/pr8091035
10.1016/j.cie.2020.106376
10.1016/j.compchemeng.2022.107900
10.1109/ACCESS.2023.3256719
10.3390/s22010227
10.1002/aic.690490414
10.1109/CSIE.2009.348
10.1007/s10044-017-0634-7
10.3182/20100802-3-ZA-2014.00020
10.1016/j.compchemeng.2023.108448
10.1016/S1474-6670(17)37032-5
10.1214/21-SS133
10.3390/pr7020061
10.1016/j.chemolab.2017.03.011
10.1002/aic.690400809
10.1002/qre.1070
10.1613/jair.1.12228
10.1016/j.ces.2021.117236
10.1016/j.inffus.2019.03.006
10.1109/5.58325
10.1002/aic.690440712
10.1016/j.net.2023.11.033
10.1016/j.jprocont.2012.01.005
10.1016/j.jprocont.2017.06.012
10.1016/j.jprocont.2018.02.005
10.1002/aic.690410612
10.1016/S1474-6670(17)33862-4
10.33899/rengj.2020.127782.1051
10.1002/aic.14523
10.1002/9781119600800
10.1016/0009-2509(94)00456-2
10.1111/rssb.12447
10.1016/j.jprocont.2011.07.003
10.1016/j.conengprac.2020.104692
10.1016/j.measurement.2023.112504
10.1016/j.jprocont.2006.03.005
10.1016/j.psep.2022.12.018
10.1016/S0959-1524(00)00046-9
10.1021/acs.iecr.0c00515
10.1021/acs.iecr.8b00936
10.1016/j.inffus.2018.10.005
10.1016/j.compchemeng.2020.106886
10.1109/COMST.2022.3205643
10.1021/acs.iecr.0c02288
10.1016/j.ifacsc.2022.100189
10.1109/ROBIO.2012.6491087
10.1016/j.jprocont.2016.07.006
10.1016/j.icte.2015.09.003
10.1109/FUZZ-IEEE.2018.8491547
10.1016/j.compchemeng.2015.03.016
10.1016/j.compeleceng.2014.12.015
10.1109/MCS.2002.1035214
10.1007/978-3-658-16756-1
10.1002/aic.10805
10.1016/j.compchemeng.2023.108442
10.1109/TIE.2017.2745452
10.1016/j.engappai.2022.105730
10.1016/j.jtice.2020.06.016
10.1016/j.neunet.2022.11.001
10.1080/00031305.1984.10483183
10.1109/ACCESS.2021.3131949
10.1007/978-3-540-74048-3
10.1007/978-0-387-78189-1
10.1109/TASE.2020.2983061
10.1016/j.jprocont.2013.02.003
10.1016/j.compchemeng.2016.04.011
10.1021/ie071022y
10.1016/j.jprocont.2023.103086
10.1049/cp:19971197
10.1002/cem.1180070606
10.3390/machines11121066
10.1109/TMM.2019.2923097
10.1016/j.arcontrol.2018.09.003
10.1016/j.jprocont.2017.03.004
10.1021/ie050850t
10.1016/j.jprocont.2019.05.002
10.1016/j.neucom.2018.02.051
10.1016/j.compchemeng.2015.03.001
10.1016/j.psep.2022.12.055
10.1016/j.compchemeng.2020.107023
10.1016/j.compchemeng.2012.06.017
10.1016/j.compchemeng.2020.106762
10.3390/e23010018
10.1016/j.inffus.2017.02.004
10.1016/j.petrol.2019.106223
10.1021/acs.iecr.0c00895
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
JG9
KB.
LK8
M7P
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.3390/pr12020251
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
Materials Science Database
Biological Sciences
Biological Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Statistics
EISSN 2227-9717
ExternalDocumentID A784104284
10_3390_pr12020251
GeographicLocations Brazil
United Kingdom
United States
Tennessee
Germany
GeographicLocations_xml – name: United Kingdom
– name: Tennessee
– name: Germany
– name: United States
– name: Brazil
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ACIWK
ACPRK
ADBBV
ADMLS
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
HCIFZ
IAO
IGS
ITC
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PROAC
RNS
PMFND
7SR
8FD
ABUWG
AZQEC
DWQXO
GNUQQ
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c334t-4e12b287fe4857a2b58bfc4188b4ce6619e6a401db28b815c9e7611f6b46c75f3
IEDL.DBID BENPR
ISSN 2227-9717
IngestDate Fri Jul 25 11:59:58 EDT 2025
Tue Jun 10 21:12:40 EDT 2025
Tue Jul 01 02:38:43 EDT 2025
Thu Apr 24 23:11:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-4e12b287fe4857a2b58bfc4188b4ce6619e6a401db28b815c9e7611f6b46c75f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2631-1811
0000-0001-7639-1480
0000-0002-7279-3981
OpenAccessLink https://www.proquest.com/docview/2931056892?pq-origsite=%requestingapplication%
PQID 2931056892
PQPubID 2032344
ParticipantIDs proquest_journals_2931056892
gale_infotracacademiconefile_A784104284
crossref_primary_10_3390_pr12020251
crossref_citationtrail_10_3390_pr12020251
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Processes
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_499
Alauddin (ref_807) 2018; 57
ref_492
Wiskott (ref_264) 2002; 14
ref_495
Wang (ref_535) 2017; 50
Xu (ref_257) 2021; 60
Spies (ref_706) 2023; 8
Abid (ref_749) 2020; 54
Nawaz (ref_122) 2020; 59
Jiang (ref_128) 2015; 32
Sivaram (ref_327) 2020; 134
Zhao (ref_350) 2019; 109
ref_481
ref_240
Xiong (ref_361) 2022; 56
ref_242
Peng (ref_386) 2022; 207
Fu (ref_507) 2019; 58
Vitale (ref_58) 2019; 187
Alobaidy (ref_750) 2020; 25
Zheng (ref_368) 2020; 135
Liu (ref_532) 2022; 164
He (ref_228) 2009; 19
Wang (ref_462) 2015; 29
Khan (ref_294) 2023; 10
Kourti (ref_632) 2005; 19
Cui (ref_508) 2022; 100
Yang (ref_778) 2023; 69
Piovoso (ref_616) 1994; 59
Cano (ref_764) 2020; 109
Deng (ref_91) 2013; 127
Guh (ref_482) 2008; 55
Li (ref_73) 2014; 61
Bhonsale (ref_501) 2020; 2
Niu (ref_734) 2016; 31
Zhao (ref_3) 2022; 116
Yang (ref_533) 2022; 127
Chen (ref_436) 2012; 90
Fontes (ref_544) 2017; 71
Alcala (ref_56) 2011; 21
Gallo (ref_719) 2022; 155
Gajjar (ref_489) 2020; 59
Ruff (ref_703) 2021; 109
Lee (ref_204) 2009; 98
He (ref_574) 2011; 57
ref_698
ref_457
Pimentel (ref_722) 2014; 99
ref_459
Abdi (ref_162) 2010; 2
ref_219
Wu (ref_349) 2018; 115
Xu (ref_279) 2021; 98
ref_690
Kong (ref_2) 2022; 54
Deng (ref_93) 2018; 27
Stief (ref_606) 2019; 79
ref_693
Ji (ref_364) 2023; 170
Buratti (ref_439) 2018; 72
ref_695
Xu (ref_253) 2016; 200
Zhang (ref_503) 2011; 50
Lu (ref_70) 2005; 51
Dong (ref_83) 1996; 20
Li (ref_650) 2020; 206
ref_687
ref_444
ref_689
Shah (ref_579) 2020; 141
Yin (ref_825) 2012; 22
ref_681
Zhang (ref_385) 2022; 117
ref_685
ref_684
Boldt (ref_452) 2017; 239
Naghoosi (ref_776) 2013; 23
Aldrich (ref_484) 2010; 43
Kano (ref_636) 2008; 32
Rudin (ref_674) 2022; 16
Ku (ref_45) 1995; 30
Fernandes (ref_831) 2022; 231
Cabrieto (ref_730) 2018; 8
Chiang (ref_772) 2003; 65
ref_233
Ge (ref_135) 2010; 56
Zhang (ref_376) 2022; 53
Nhat (ref_531) 2020; 138
Zhou (ref_463) 2016; 63
Melo (ref_569) 2023; 62
Rauber (ref_576) 2020; 357
Alizadeh (ref_596) 2018; 51
Wang (ref_839) 2015; 26
Zhang (ref_477) 2020; 98
ref_466
ref_469
ref_229
Shewhart (ref_6) 1926; 5
Bi (ref_654) 2022; 164
Hsu (ref_250) 2010; 59
Dai (ref_658) 2013; 9
ref_465
ref_464
Zheng (ref_494) 2022; 20
Evsukoff (ref_443) 2005; 19
Lee (ref_244) 2004; 14
Liu (ref_87) 2011; 21
Jeong (ref_761) 2020; 139
Li (ref_299) 2020; 140
Hotelling (ref_155) 1936; 28
Westerhuis (ref_65) 1999; 13
Zhu (ref_212) 2022; 118
PhridviRaj (ref_752) 2014; 12
Zhang (ref_830) 2017; 354
Gregersen (ref_171) 1997; 30
Liu (ref_381) 2024; 180
Sabuhi (ref_343) 2021; 9
Ganesan (ref_796) 2004; 36
Ketelaere (ref_46) 2015; 47
Chen (ref_196) 2021; 107
Andrade (ref_33) 2022; 208
Carletti (ref_694) 2023; 119
Zhong (ref_230) 2014; 138
Comon (ref_262) 1994; 36
Yin (ref_28) 2014; 61
Khatibisepehr (ref_801) 2013; 23
Lan (ref_183) 2020; 112
Wentzell (ref_138) 1999; 45
Huang (ref_520) 2022; 53
Hussain (ref_15) 2020; 36
Goldrick (ref_602) 2019; 130
Kumar (ref_644) 2020; 136
Janardan (ref_755) 2017; 122
Yang (ref_517) 2019; 332
Dong (ref_177) 2015; 48
He (ref_460) 2007; 20
Liu (ref_490) 2019; 10
He (ref_226) 2005; 51
He (ref_483) 2013; 24
Feital (ref_104) 2013; 59
Qin (ref_41) 2000; 10
Chen (ref_731) 2022; 84
Fernandes (ref_609) 2019; 58
Shahnazari (ref_354) 2020; 153
Lou (ref_239) 2022; 111
Li (ref_274) 2022; 7
Choi (ref_90) 2005; 75
Puggini (ref_486) 2015; 48
Yu (ref_504) 2016; 45
Shin (ref_302) 2019; 127
Ge (ref_800) 2013; 52
Wang (ref_808) 2018; 96
Wentzell (ref_139) 1997; 11
ref_296
Hansen (ref_833) 2023; 178
ref_298
ref_297
Alakent (ref_61) 2023; 101
Ding (ref_714) 2014; 135
Monteiro (ref_133) 2017; 71
Qin (ref_665) 2020; 50
Peres (ref_4) 2018; 115
ref_283
ref_284
Lee (ref_148) 2015; 1
Kok (ref_568) 2022; 26
Qin (ref_25) 2009; 42
Cejnek (ref_711) 2018; 309
Aradhye (ref_116) 2003; 49
Wise (ref_11) 1988; 88
Tan (ref_86) 1995; 41
Jiao (ref_815) 2020; 27
Sadik (ref_770) 2014; 15
Fleming (ref_597) 1986; 29
Peng (ref_357) 2020; 407
Das (ref_10) 2012; 29
Xiao (ref_472) 2014; 59
Qin (ref_189) 2021; 152
Qin (ref_217) 2022; 124
Tax (ref_470) 1999; 20
Tipping (ref_134) 1999; 61
Wu (ref_578) 2020; 136
Pirdashti (ref_332) 2013; 29
Venkatasubramanian (ref_313) 2003; 27
Zhang (ref_427) 2017; 107
Xing (ref_375) 2022; 22
Verron (ref_526) 2010; 20
Gao (ref_275) 2021; 105
Kramer (ref_311) 1992; 16
Miletic (ref_631) 2004; 14
Jiang (ref_536) 2016; 55
Wang (ref_145) 2005; 15
Costa (ref_557) 2014; 25
Wu (ref_44) 2022; 30
Sliskovic (ref_799) 2011; 52
Barros (ref_763) 2019; 52
Krawczyk (ref_768) 2017; 239
Guo (ref_75) 2020; 85
Jutten (ref_241) 1991; 24
Nogueira (ref_493) 2022; 165
Perera (ref_663) 2023; 121
Gholizadeh (ref_446) 2019; 22
Saini (ref_743) 2022; 29
Dong (ref_71) 2018; 67
Rodgers (ref_53) 1984; 38
Zhang (ref_185) 2021; 108
Garg (ref_697) 2022; 33
Markou (ref_721) 2003; 83
Feng (ref_468) 2020; 85
Clavijo (ref_786) 2022; 248
Chen (ref_211) 2020; 18
Talagala (ref_707) 2019; 29
Taylor (ref_622) 1998; 31
Narasimhan (ref_137) 2008; 16
Wise (ref_64) 1999; 13
Domingues (ref_715) 2020; 53
ref_713
Nazemzadeh (ref_563) 2021; 155
Dudzic (ref_626) 2000; 33
Lejeune (ref_546) 2019; 275
He (ref_809) 2018; 67
Charte (ref_338) 2020; 404
ref_718
Guo (ref_397) 2021; 113
Verde (ref_103) 2019; 189
Nasaruddin (ref_691) 2022; 33
ref_702
ref_701
Xia (ref_709) 2022; 493
Ren (ref_513) 2014; 27
Song (ref_209) 2020; 17
Qin (ref_19) 2014; 60
Bao (ref_374) 2022; 100
Koyejo (ref_699) 2022; Volume 35
Lee (ref_288) 2018; 114
Jeng (ref_80) 2010; 41
Yi (ref_419) 2023; 122
Zarghami (ref_565) 2021; 103
Lee (ref_245) 2004; 59
Zhang (ref_418) 2022; 34
Lu (ref_435) 2020; 56
Scholkopf (ref_471) 2001; 13
Bakshi (ref_113) 1998; 44
Pinto (ref_789) 1995; 50
Wang (ref_325) 2016; 3
Nomikos (ref_62) 1994; 40
Abiola (ref_378) 2023; 176
Severson (ref_165) 2016; 42
Gao (ref_399) 2023; 139
Tian (ref_652) 2022; 181
Reis (ref_118) 2006; 52
Agarwal (ref_173) 2022; 159
Conde (ref_692) 2022; 54
Jiang (ref_590) 2019; 15
Choi (ref_207) 2005; 15
Camacho (ref_588) 2015; 143
Prata (ref_30) 2009; Volume 27
Wold (ref_77) 1994; 23
Wei (ref_300) 2020; 67
Zhang (ref_454) 2019; 7
Ragab (ref_550) 2018; 95
Wang (ref_573) 2010; 49
Zhang (ref_260) 2016; 55
Deng (ref_416) 2023; 72
Schaeffer (ref_594) 2022; 167
Scholkopf (ref_88) 1998; 10
Miletic (ref_637) 2008; 86
Xu (ref_272) 2022; 248
Chen (ref_249) 2014; 53
Li (ref_223) 2020; 227
Zhu (ref_69) 2020; 85
Kramer (ref_82) 1991; 37
Qin (ref_125) 2001; 15
Zheng (ref_214) 2016; 158
Lu (ref_76) 2020; 8
Melo (ref_787) 2003; 58
Zhu (ref_405) 2023; 130
Vanlaer (ref_60) 2013; 104
Truong (ref_738) 2020; 167
Peng (ref_456) 2022; 501
Bradley (ref_659) 2022; 166
Ge (ref_142) 2018; 57
ref_539
Tang (ref_430) 2018; 51
Zhang (ref_202) 2023; 271
Camacho (ref_50) 2018; 172
Tharrault (ref_147) 2008; 18
Zhong (ref_151) 2022; 61
Huang (ref_781) 2023; 176
Gerretzen (ref_172) 2020; 139
Nomikos (ref_614) 1995; 37
Xie (ref_740) 2021; 2
Saccenti (ref_43) 2015; 149
Yang (ref_339) 2020; 92
ref_523
ref_767
Faria (ref_716) 2015; 27
Zhang (ref_400) 2023; 123
Zhong (ref_277) 2020; 104
Zhu (ref_154) 2018; 46
Wei (ref_417) 2022; 167
ref_762
Dumarey (ref_641) 2018; 14
Zhao (ref_352) 2018; 6
Lemos (ref_538) 2013; 220
Zhang (ref_478) 2022; 101
Yu (ref_438) 2014; 53
Bai (ref_422) 2023; 169
Staudacher (ref_736) 2005; 349
Ragab (ref_549) 2019; 122
Yuan (ref_476) 2020; 42
ref_554
Rehmani (ref_708) 2023; 25
Zavala (ref_295) 2023; 62
ref_315
ref_314
ref_556
ref_317
ref_559
MacGregor (ref_26) 2012; 47
ref_316
Jackson (ref_55) 1979; 21
ref_791
ref_551
ref_793
ref_792
ref_553
ref_552
ref_794
Carter (ref_679) 2023; 170
Zhang (ref_191) 2023; 123
Hu (ref_773) 2015; 97
Lee (ref_218) 2007; 46
Lemos (ref_360) 2021; 155
Qin (ref_176) 1996; 20
Hilal (ref_700) 2022; 193
Liu (ref_528) 2014; 24
ref_304
ref_303
ref_545
ref_306
ref_548
ref_307
Kathari (ref_774) 2022; 61
Wu (ref_195) 2020; 59
Ahmed (ref_812) 2020; 37
Mowbray (ref_291) 2022; 7
Khoukhi (ref_747) 2015; 43
MacGregor (ref_12) 1995; 3
Li (ref_79) 2000; 10
Ourique (ref_788) 2002; 26
Zhang (ref_388) 2021; 111
Ding (ref_798) 2011; 44
Rajulapati (ref_661) 2022; 68
Liu (ref_666) 2021; 155
ref_737
Zhang (ref_119) 2011; 66
Angelov (ref_555) 2017; 32
Yi (ref_592) 2019; 194
Lee (ref_248) 2003; 47
Sun (ref_842) 2019; 27
Pearson (ref_34) 1901; 2
Barragan (ref_543) 2016; 95
Hornik (ref_318) 1989; 2
Xu (ref_273) 2022; 110
Zhuo (ref_411) 2020; 92
Ge (ref_130) 2017; 171
Huang (ref_518) 2020; 98
ref_724
Xu (ref_572) 2015; 31
ref_723
ref_726
Yang (ref_474) 2016; 190
ref_725
Nespeca (ref_840) 2019; 102
Wang (ref_777) 2023; 233
Wang (ref_782) 2023; 129
Qian (ref_340) 2022; 231
Das (ref_328) 2020; 139
Wise (ref_13) 1996; 6
Ng (ref_437) 2008; 47
ref_511
ref_753
Yin (ref_220) 2014; 45
Liu (ref_259) 2023; 102
ref_512
AlGhazzawi (ref_638) 2008; 16
Barker (ref_161) 2003; 17
ref_759
Zhan (ref_506) 2019; 75
Liu (ref_487) 2018; 64
Jiang (ref_210) 2020; 59
Wang (ref_281) 2020; 59
Kadlec (ref_797) 2011; 35
Qin (ref_14) 2003; 17
Kumar (ref_629) 2003; 11
Kosanovich (ref_111) 1997; 30
Lu (ref_440) 2021; 562
ref_519
Zhang (ref_633) 2006; 16
Kuncheva (ref_733) 2013; 25
ref_741
Widodo (ref_480) 2007; 21
Kang (ref_358) 2020; 112
Liu (ref_813) 2020; 89
Ning (ref_514) 2015; 48
Yu (ref_527) 2013; 59
Melo (ref_5) 2022; 165
ref_509
Chen (ref_107) 2010; 34
Souza (ref_805) 2016; 152
Clavijo (ref_785) 2022; 215
Niu (ref_335) 2021; 452
Subbaraj (ref_448) 2014; 19
Yao (ref_68) 2009; 33
ref_371
Camacho (ref_66) 2009; 642
Hastie (ref_84) 1989; 84
Nigam (ref_293) 2022; 61
Bezerra (ref_560) 2016; 63
ref_132
Zhu (ref_181) 2020; 137
ref_380
Li (ref_215) 2017; 171
Kourti (ref_170) 1995; 5
Li (ref_366) 2023; 175
Zhang (ref_270) 2022; 100
Sheriff (ref_121) 2017; 54
Lennox (ref_620) 2001; 74
Goldrick (ref_603) 2015; 193
ref_362
ref_363
ref_123
Wang (ref_402) 2023; 102
Gao (ref_265) 2022; 61
Dash (ref_795) 2000; 24
Sansana (ref_660) 2021; 151
Korbicz (ref_450) 2007; 20
Pearson (ref_570) 2001; 11
Abonyi (ref_571) 2007; 35
Westerhuis (ref_59) 2000; 51
ref_159
Blei (ref_23) 2014; 1
Liu (ref_267) 2023; 173
ref_392
ref_153
Dong (ref_74) 2018; 114
Guo (ref_784) 2021; 53
ref_156
ref_398
Shabanian (ref_447) 2011; 9
Gopaluni (ref_810) 2020; 53
Paul (ref_604) 1996; 51
Li (ref_282) 2024; 361
Bouguelia (ref_710) 2018; 32
Yuan (ref_779) 2012; 45
Peng (ref_515) 2017; 64
Zhou (ref_420) 2023; 170
Wang (ref_819) 2022; 100
Zhang (ref_160) 2018; 290
Kong (ref_197) 2023; 72
Li (ref_266) 2023; 121
Lomov (ref_410) 2021; 23
ref_140
ref_382
Hoskins (ref_310) 1991; 37
Chen (ref_529) 2020; 97
Huang (ref_516) 2019; 89
Palla (ref_263) 2023; 209
Liu (ref_367) 2023; 86
ref_390
Yang (ref_432) 2021; 108
Kadlec (
References_xml – volume: 537
  start-page: 425
  year: 2020
  ident: ref_256
  article-title: On-line anomaly detection with advanced independent component analysis of multi-variate residual signals from causal relation networks
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.06.034
– ident: ref_9
– ident: ref_404
  doi: 10.1109/TNNLS.2023.3282047
– volume: 117
  start-page: 210
  year: 2021
  ident: ref_221
  article-title: Robust adaptive boosted canonical correlation analysis for quality-relevant process monitoring of wastewater treatment
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.01.039
– volume: 171
  start-page: 100
  year: 2021
  ident: ref_562
  article-title: Monitoring of the bubble columns hydrodynamics by recurrence quantification data analysis
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2021.05.002
– volume: 15
  start-page: 33
  year: 2014
  ident: ref_770
  article-title: Research issues in outlier detection for data streams
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/2594473.2594479
– volume: 20
  start-page: 147
  year: 1996
  ident: ref_176
  article-title: Nonlinear FIR modeling via a neural net PLS approach
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(95)00011-P
– ident: ref_321
– volume: 104
  start-page: 285
  year: 2013
  ident: ref_60
  article-title: Analysis of smearing-out in contribution plot based fault isolation for Statistical Process Control
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2013.08.007
– volume: 20
  start-page: 345
  year: 2007
  ident: ref_460
  article-title: Fault Detection Using the k-Nearest Neighbor Rule for Semiconductor Manufacturing Processes
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2007.907607
– volume: 7
  start-page: 1201
  year: 2021
  ident: ref_290
  article-title: Machine Learning in Chemical Engineering: Strengths, Weaknesses, Opportunities, and Threats
  publication-title: Engineering
  doi: 10.1016/j.eng.2021.03.019
– ident: ref_580
  doi: 10.3390/pr9030544
– volume: 137
  start-page: 106809
  year: 2020
  ident: ref_181
  article-title: Dynamic Latent Variable Regression for Inferential Sensor Modeling and Monitoring
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.106809
– ident: ref_567
  doi: 10.3390/pr6020017
– volume: 58
  start-page: 17871
  year: 2019
  ident: ref_609
  article-title: Mechanistic Modeling and Simulation for Process Data Generation
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b01752
– volume: 165
  start-page: 107964
  year: 2022
  ident: ref_5
  article-title: Open benchmarks for assessment of process monitoring and fault diagnosis techniques: A review and critical analysis
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.107964
– volume: 72
  start-page: 480
  year: 2018
  ident: ref_439
  article-title: Self-Organizing Maps for Anomaly Localization and Predictive Maintenance in Cyber-Physical Production Systems
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2018.03.150
– volume: 100
  start-page: S141
  year: 2022
  ident: ref_270
  article-title: Dynamic industrial process monitoring based on concurrent fast and slow-time-varying feature analytics
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.24207
– volume: 22
  start-page: 503
  year: 1998
  ident: ref_175
  article-title: Recursive PLS algorithms for adaptive data modeling
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(97)00262-7
– volume: 99
  start-page: 986
  year: 2020
  ident: ref_187
  article-title: Dynamic process monitoring using dynamic latent variable and canonical correlation analysis model
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.23923
– volume: 6
  start-page: 10160
  year: 2018
  ident: ref_216
  article-title: Process Modeling and Monitoring With Incomplete Data Based on Robust Probabilistic Partial Least Square Method
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2810079
– volume: 29
  start-page: 720
  year: 2012
  ident: ref_10
  article-title: Process monitoring and fault detection strategies: A review
  publication-title: Int. J. Qual. Reliab. Manag.
  doi: 10.1108/02656711211258508
– volume: 85
  start-page: 184
  year: 2020
  ident: ref_69
  article-title: Multiphase two-dimensional time-slice dynamic system for batch process monitoring
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2019.12.004
– volume: 27
  start-page: 365
  year: 2019
  ident: ref_842
  article-title: Comparative investigation for raw and processed Aconiti Lateralis Radix using chemical UPLC-MS profiling and multivariate classification techniques
  publication-title: J. Food Drug Anal.
  doi: 10.1016/j.jfda.2018.10.006
– volume: 53
  start-page: 255
  year: 2011
  ident: ref_745
  article-title: Applications of fault detection and diagnosis methods in nuclear power plants: A review
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2010.12.001
– ident: ref_333
– volume: 118
  start-page: 1
  year: 2022
  ident: ref_212
  article-title: Enhanced multicorrelation block process monitoring and abnormity root cause analysis for distributed industrial process: A visual data-driven approach
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2022.08.008
– ident: ref_459
  doi: 10.9734/ajrcos/2021/v12i430302
– ident: ref_836
  doi: 10.1137/1.9780898718461
– volume: 37
  start-page: 233
  year: 1991
  ident: ref_82
  article-title: Nonlinear principal component analysis using autoassociative neural networks
  publication-title: AIChE J.
  doi: 10.1002/aic.690370209
– volume: 181
  start-page: 304
  year: 2022
  ident: ref_652
  article-title: Intelligent prediction and early warning of abnormal conditions for fluid catalytic cracking process
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2022.03.031
– volume: 57
  start-page: 12646
  year: 2018
  ident: ref_142
  article-title: Process Data Analytics via Probabilistic Latent Variable Models: A Tutorial Review
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b02913
– volume: 16
  start-page: 313
  year: 1992
  ident: ref_311
  article-title: Autoassociative neural networks
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(92)80051-A
– volume: 55
  start-page: 199:1
  year: 2023
  ident: ref_342
  article-title: Generative Adversarial Networks in Time Series: A Systematic Literature Review
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3559540
– volume: 2
  start-page: 97
  year: 2010
  ident: ref_162
  article-title: Partial least squares regression and projection on latent structure regression (PLS Regression)
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
  doi: 10.1002/wics.51
– volume: 124
  start-page: 54
  year: 2023
  ident: ref_190
  article-title: Structured fault information-aided canonical variate analysis model for dynamic process monitoring
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2023.01.011
– ident: ref_607
– volume: 183
  start-page: 122
  year: 2018
  ident: ref_591
  article-title: MVBatch: A matlab toolbox for batch process modeling and monitoring
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2018.11.001
– volume: 9
  start-page: 289
  year: 2022
  ident: ref_783
  article-title: Granger Causality: A Review and Recent Advances
  publication-title: Annu. Rev. Stat. Its Appl.
  doi: 10.1146/annurev-statistics-040120-010930
– ident: ref_681
  doi: 10.1145/2939672.2939785
– volume: 115
  start-page: 603
  year: 2018
  ident: ref_4
  article-title: Variable selection methods in multivariate statistical process control: A systematic literature review
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2017.12.006
– volume: 29
  start-page: 205
  year: 2013
  ident: ref_332
  article-title: Artificial neural networks: Applications in chemical engineering
  publication-title: Rev. Chem. Eng.
  doi: 10.1515/revce-2013-0013
– volume: 104
  start-page: 223
  year: 2010
  ident: ref_136
  article-title: A unified statistical framework for monitoring multivariate systems with unknown source and error signals
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2010.08.012
– volume: 86
  start-page: 937
  year: 2008
  ident: ref_637
  article-title: Experiences in applying data-driven modelling technology to steelmaking processes
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.20090
– ident: ref_689
  doi: 10.1109/ICIP46576.2022.9897283
– volume: 12
  start-page: 297
  year: 2021
  ident: ref_696
  article-title: On the nature and types of anomalies: A review of deviations in data
  publication-title: Int. J. Data Sci. Anal.
  doi: 10.1007/s41060-021-00265-1
– ident: ref_21
  doi: 10.1002/9781118391686
– volume: 22
  start-page: 1567
  year: 2012
  ident: ref_825
  article-title: A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2012.06.009
– volume: 158
  start-page: 80
  year: 2016
  ident: ref_214
  article-title: Probabilistic learning of partial least squares regression model: Theory and industrial applications
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2016.08.014
– volume: 24
  start-page: 785
  year: 2000
  ident: ref_795
  article-title: Challenges in the industrial applications of fault diagnostic systems
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(00)00374-4
– ident: ref_457
– volume: 48
  start-page: 117
  year: 2015
  ident: ref_177
  article-title: Dynamic-Inner Partial Least Squares for Dynamic Data Modeling
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2015.08.167
– ident: ref_724
  doi: 10.1002/9780470061626
– volume: 126
  start-page: 465
  year: 2019
  ident: ref_16
  article-title: Advances and opportunities in machine learning for process data analytics
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2019.04.003
– volume: 23
  start-page: 100216
  year: 2021
  ident: ref_410
  article-title: Fault detection in Tennessee Eastman process with temporal deep learning models
  publication-title: J. Ind. Inf. Integr.
– volume: 10
  start-page: 245
  year: 2000
  ident: ref_41
  article-title: Determining the number of principal components for best reconstruction
  publication-title: J. Process Control
  doi: 10.1016/S0959-1524(99)00043-8
– volume: 83
  start-page: 2481
  year: 2003
  ident: ref_720
  article-title: Novelty detection: A review—Part 1: Statistical approaches
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2003.07.018
– volume: 23
  start-page: 289
  year: 2012
  ident: ref_547
  article-title: Rogue components: Their effect and control using logical analysis of data
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-009-0351-1
– volume: 127
  start-page: 259
  year: 2022
  ident: ref_98
  article-title: Criteria for optimizing kernel methods in fault monitoring process: A survey
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.08.040
– volume: 65
  start-page: 371
  year: 2011
  ident: ref_712
  article-title: Novelty Detection with Multivariate Extreme Value Statistics
  publication-title: J. Signal Process. Syst.
  doi: 10.1007/s11265-010-0513-6
– volume: 13
  start-page: 379
  year: 1999
  ident: ref_64
  article-title: A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process
  publication-title: J. Chemom.
  doi: 10.1002/(SICI)1099-128X(199905/08)13:3/4<379::AID-CEM556>3.0.CO;2-N
– volume: 30
  start-page: 100410
  year: 2022
  ident: ref_394
  article-title: Toward robust process monitoring of complex process industries based on denoising sparse auto-encoder
  publication-title: J. Ind. Inf. Integr.
– ident: ref_38
– volume: 61
  start-page: 8357
  year: 2022
  ident: ref_292
  article-title: Machine Learning and Data Science in Chemical Engineering
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.2c01788
– volume: 59
  start-page: 2348
  year: 2013
  ident: ref_527
  article-title: A novel dynamic bayesian network-based networked process monitoring approach for fault detection, propagation identification, and root cause diagnosis
  publication-title: AIChE J.
  doi: 10.1002/aic.14013
– volume: 33
  start-page: e3647
  year: 2022
  ident: ref_691
  article-title: Clustering-based real-time anomaly detection—A breakthrough in big data technologies
  publication-title: Trans. Emerg. Telecommun. Technol.
  doi: 10.1002/ett.3647
– ident: ref_7
– volume: 233
  start-page: 104728
  year: 2023
  ident: ref_777
  article-title: Root cause diagnosis for complex industrial process faults via spatiotemporal coalescent based time series prediction and optimized Granger causality
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2022.104728
– volume: 80
  start-page: 17
  year: 2018
  ident: ref_95
  article-title: Parallel PCA–KPCA for nonlinear process monitoring
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2018.07.012
– volume: 51
  start-page: 558
  year: 1996
  ident: ref_604
  article-title: A structured model for hyphal differentiation and penicillin production using Penicillium chrysogenum
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/(SICI)1097-0290(19960905)51:5<558::AID-BIT8>3.0.CO;2-B
– volume: 36
  start-page: 787
  year: 2004
  ident: ref_796
  article-title: Wavelet-based multiscale statistical process monitoring: A literature review
  publication-title: IIE Trans.
  doi: 10.1080/07408170490473060
– ident: ref_670
  doi: 10.1109/AdCONIP55568.2022.9894124
– volume: 53
  start-page: 3787
  year: 2020
  ident: ref_715
  article-title: A comparative evaluation of novelty detection algorithms for discrete sequences
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-019-09779-4
– volume: 171
  start-page: 16
  year: 2017
  ident: ref_130
  article-title: Review on data-driven modeling and monitoring for plant-wide industrial processes
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2017.09.021
– ident: ref_838
– volume: 104
  start-page: 104627
  year: 2020
  ident: ref_277
  article-title: Distributed dynamic process monitoring based on dynamic slow feature analysis with minimal redundancy maximal relevance
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2020.104627
– volume: 111
  start-page: 104784
  year: 2021
  ident: ref_129
  article-title: Hierarchical hybrid distributed PCA for plant-wide monitoring of chemical processes
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2021.104784
– volume: 60
  start-page: 1684
  year: 2021
  ident: ref_201
  article-title: C IPLS IKPLS for Modeling and Detecting Nonlinear Multimode Processes
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.0c04038
– volume: 106
  start-page: 20
  year: 2021
  ident: ref_372
  article-title: Meticulous process monitoring with multiscale convolutional feature extraction
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2021.08.014
– volume: 19
  start-page: 1591
  year: 2003
  ident: ref_628
  article-title: Data-Based Modeling and Analysis of Bioprocesses: Some Real Experiences
  publication-title: Biotechnol. Prog.
  doi: 10.1021/bp015514w
– ident: ref_101
  doi: 10.3390/pr8010024
– volume: 174
  start-page: 643
  year: 2016
  ident: ref_479
  article-title: Recent advances on SVM based fault diagnosis and process monitoring in complicated industrial processes
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.081
– volume: 98
  start-page: 2109
  year: 2020
  ident: ref_477
  article-title: Two step support vector data description for dynamic, non linear, and non Gaussian processes monitoring
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.23762
– ident: ref_382
  doi: 10.1007/s12530-023-09523-y
– ident: ref_108
  doi: 10.1109/TASE.2023.3253285
– volume: 136
  start-page: 106787
  year: 2020
  ident: ref_578
  article-title: Multimode process monitoring based on fault dependent variable selection and moving window-negative log likelihood probability
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.106787
– volume: 11
  start-page: 1017
  year: 2003
  ident: ref_629
  article-title: Multivariate Statistical Monitoring of a High-Pressure Polymerization Process
  publication-title: Polym. React. Eng.
  doi: 10.1081/PRE-120026883
– volume: 59
  start-page: 21124
  year: 2020
  ident: ref_188
  article-title: Online Quality Relevant Monitoring with Dynamic Weighted Partial Least Squares
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.0c03901
– volume: 31
  start-page: 399
  year: 1998
  ident: ref_619
  article-title: Multivariate Statistical Monitoring Procedures for Fermentation Supervision: An Industrial Case Study
  publication-title: IFAC Proc. Vol.
  doi: 10.1016/S1474-6670(17)40218-7
– ident: ref_27
  doi: 10.1002/9780470517253
– volume: 50
  start-page: 2891
  year: 2004
  ident: ref_117
  article-title: Principal-component analysis of multiscale data for process monitoring and fault diagnosis
  publication-title: AIChE J.
  doi: 10.1002/aic.10260
– volume: 4
  start-page: 179
  year: 1994
  ident: ref_109
  article-title: Analysis of operating data for evaluation, diagnosis and control of batch operations
  publication-title: J. Process Control
  doi: 10.1016/0959-1524(94)80040-5
– ident: ref_341
– volume: 381
  start-page: 46
  year: 2017
  ident: ref_766
  article-title: How to adjust an ensemble size in stream data mining?
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.10.028
– volume: 29
  start-page: 13
  year: 2019
  ident: ref_707
  article-title: Anomaly Detection in Streaming Nonstationary Temporal Data
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1080/10618600.2019.1617160
– volume: 31
  start-page: 453
  year: 2015
  ident: ref_572
  article-title: Data cleaning in the process industries
  publication-title: Rev. Chem. Eng.
  doi: 10.1515/revce-2015-0022
– volume: 31
  start-page: 1035
  year: 2007
  ident: ref_42
  article-title: A study on the number of principal components and sensitivity of fault detection using PCA
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2006.09.004
– ident: ref_184
  doi: 10.23919/ACC45564.2020.9147890
– volume: 89
  start-page: 103475
  year: 2020
  ident: ref_150
  article-title: Dynamic Bayesian network for robust latent variable modeling and fault classification
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103475
– volume: 59
  start-page: 44
  year: 2020
  ident: ref_496
  article-title: Overview and comparative study of dimensionality reduction techniques for high dimensional data
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.01.005
– volume: 11
  start-page: 339
  year: 1997
  ident: ref_139
  article-title: Maximum likelihood principal component analysis
  publication-title: J. Chemom.
  doi: 10.1002/(SICI)1099-128X(199707)11:4<339::AID-CEM476>3.0.CO;2-L
– ident: ref_140
  doi: 10.3390/pr9091686
– volume: 239
  start-page: 238
  year: 2017
  ident: ref_452
  article-title: Cascade Feature Selection and ELM for automatic fault diagnosis of the Tennessee Eastman process
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.025
– volume: 129
  start-page: 103062
  year: 2023
  ident: ref_782
  article-title: Data-driven root cause diagnosis of process disturbances by exploring causality change among variables
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2023.103062
– ident: ref_690
  doi: 10.1007/978-3-030-83819-5
– volume: 127
  start-page: 105308
  year: 2022
  ident: ref_268
  article-title: A quality-related distributed fault detection method for large-scale sequential processes
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2022.105308
– volume: 231
  start-page: 104711
  year: 2022
  ident: ref_340
  article-title: A review on autoencoder based representation learning for fault detection and diagnosis in industrial processes
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2022.104711
– volume: 59
  start-page: 223
  year: 2004
  ident: ref_89
  article-title: Nonlinear process monitoring using kernel principal component analysis
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2003.09.012
– volume: 111
  start-page: 104811
  year: 2022
  ident: ref_239
  article-title: Novel online discriminant analysis based schemes to deal with observations from known and new classes: Application to industrial systems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.104811
– ident: ref_595
  doi: 10.1109/CAC.2017.8243540
– ident: ref_762
  doi: 10.23919/CCC50068.2020.9189106
– volume: 45
  start-page: 1375
  year: 2014
  ident: ref_220
  article-title: Robust PLS approach for KPI-related prediction and diagnosis against outliers and missing data
  publication-title: Int. J. Syst. Sci.
  doi: 10.1080/00207721.2014.886136
– volume: 102
  start-page: 781
  year: 2023
  ident: ref_259
  article-title: Fault detection and diagnosis in a non-Gaussian process with modified kernel independent component regression
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.25085
– volume: 59
  start-page: 16695
  year: 2020
  ident: ref_210
  article-title: Neighborhood Stable Correlation Analysis for Robust Monitoring of Multiunit Chemical Processes
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.0c02552
– volume: 59
  start-page: 12504
  year: 2020
  ident: ref_281
  article-title: Robust Slow Feature Analysis for Statistical Process Monitoring
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.0c01512
– volume: 7
  start-page: 1471
  year: 2022
  ident: ref_291
  article-title: Industrial data science – a review of machine learning applications for chemical and process industries
  publication-title: React. Chem. Eng.
  doi: 10.1039/D1RE00541C
– volume: 2
  start-page: 359
  year: 1989
  ident: ref_318
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90020-8
– volume: 29
  start-page: 967
  year: 1974
  ident: ref_790
  article-title: On the dynamic behavior of continuous stirred tank reactors
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(74)80089-8
– volume: 30
  start-page: 49
  year: 1997
  ident: ref_171
  article-title: Industrial Fed-Batch Fermentation Monitoring
  publication-title: IFAC Proc. Vol.
  doi: 10.1016/S1474-6670(17)43138-7
– volume: 61
  start-page: 580
  year: 2022
  ident: ref_151
  article-title: Distributed Missing Values Imputation Schemes for Plant-Wide Industrial Process Using Variational Bayesian Principal Component Analysis
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.1c03860
– volume: 36
  start-page: 287
  year: 1994
  ident: ref_262
  article-title: Independent component analysis, A new concept?
  publication-title: Signal Process.
  doi: 10.1016/0165-1684(94)90029-9
– ident: ref_737
  doi: 10.1109/RIVF.2019.8713738
– ident: ref_648
  doi: 10.3390/pr7070436
– ident: ref_673
  doi: 10.1145/3313831.3376219
– volume: 67
  start-page: 10876
  year: 2020
  ident: ref_300
  article-title: Generalized Semisupervised Self-Optimizing Kernel Model for Quality-Related Industrial Process Monitoring
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2019.2962468
– volume: 37
  start-page: 3264
  year: 2010
  ident: ref_251
  article-title: Intelligent ICA–SVM fault detector for non-Gaussian multivariate process monitoring
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.09.053
– volume: 15
  start-page: 295
  year: 2005
  ident: ref_207
  article-title: Multiblock PLS-based localized process diagnosis
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2004.06.010
– volume: 62
  start-page: 4002
  year: 2023
  ident: ref_780
  article-title: Transfer Entropy-Based Automated Fault Traversal and Root Cause Identification in Complex Nonlinear Industrial Processes
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.2c03570
– ident: ref_559
– ident: ref_791
  doi: 10.1142/3823
– volume: 187
  start-page: 41
  year: 2019
  ident: ref_58
  article-title: Data-driven supervised fault diagnosis methods based on latent variable models: A comparative study
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2019.02.006
– ident: ref_81
– volume: 153
  start-page: 233
  year: 2020
  ident: ref_354
  article-title: Fault diagnosis of nonlinear systems using recurrent neural networks
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2019.09.026
– ident: ref_656
  doi: 10.3390/pr8091123
– ident: ref_581
  doi: 10.1016/j.ifacol.2023.10.921
– volume: 58
  start-page: 2805
  year: 2003
  ident: ref_787
  article-title: The bifurcation behavior of continuous free-radical solution loop polymerization reactors
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(03)00132-5
– volume: 21
  start-page: 322
  year: 2011
  ident: ref_56
  article-title: Analysis and generalization of fault diagnosis methods for process monitoring
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2010.10.005
– volume: 404
  start-page: 93
  year: 2020
  ident: ref_338
  article-title: An analysis on the use of autoencoders for representation learning: Fundamentals, learning task case studies, explainability and challenges
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.04.057
– ident: ref_821
  doi: 10.3390/pr11061608
– volume: 121
  start-page: 1
  year: 2023
  ident: ref_266
  article-title: Slowness or Autocorrelation? A serial correlation feature analysis method and its application in process monitoring
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2022.11.010
– volume: 65
  start-page: 466
  year: 2019
  ident: ref_285
  article-title: The promise of artificial intelligence in chemical engineering: Is it here, finally?
  publication-title: AIChE J.
  doi: 10.1002/aic.16489
– volume: 34
  start-page: 9523
  year: 2022
  ident: ref_754
  article-title: Concept Drift Detection in Data Stream Mining: A literature review
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
– volume: 83
  start-page: 2499
  year: 2003
  ident: ref_721
  article-title: Novelty detection: A review—Part 2: Neural network based approaches
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2003.07.019
– ident: ref_22
– volume: 92
  start-page: 19
  year: 2020
  ident: ref_339
  article-title: Monitoring and prediction of big process data with deep latent variable models and parallel computing
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2020.05.010
– volume: 101
  start-page: 1485
  year: 2022
  ident: ref_478
  article-title: A novel quality-related process monitoring method for multi-unit industrial processes under incomplete data conditions
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.24511
– volume: 33
  start-page: 1
  year: 2019
  ident: ref_441
  article-title: Feature evaluation and selection for condition monitoring using a self-organizing map and spatial statistics
  publication-title: Artif. Intell. Eng. Des. Anal. Manuf.
  doi: 10.1017/S0890060417000518
– volume: 17
  start-page: 5853
  year: 2021
  ident: ref_818
  article-title: A Survey on Deep Learning for Data-Driven Soft Sensors
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2021.3053128
– volume: 85
  start-page: 159
  year: 2020
  ident: ref_75
  article-title: A multi-feature extraction technique based on principal component analysis for nonlinear dynamic process monitoring
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2019.11.010
– volume: 42
  start-page: 190
  year: 2016
  ident: ref_165
  article-title: Perspectives on process monitoring of industrial systems
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2016.09.001
– volume: 50
  start-page: 648
  year: 2017
  ident: ref_535
  article-title: Efficient Monitoring of Nonlinear Chemical Processes based on Fault-Relevant Kernel Principal Component Subspace Construction and Bayesian Inference
  publication-title: J. Chem. Eng. Jpn.
  doi: 10.1252/jcej.16we280
– volume: 209
  start-page: 118260
  year: 2022
  ident: ref_732
  article-title: Real-time Change-Point Detection: A deep neural network-based adaptive approach for detecting changes in multivariate time series data
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118260
– volume: 41
  start-page: 475
  year: 2010
  ident: ref_80
  article-title: Adaptive process monitoring using efficient recursive PCA and moving window PCA algorithms
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2010.03.015
– volume: 171
  start-page: 1344
  year: 2016
  ident: ref_232
  article-title: Exponential discriminant analysis for fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.07.099
– volume: 278
  start-page: 118900
  year: 2023
  ident: ref_379
  article-title: Spatial Correlation Extraction for Chemical Process Fault Detection Using Image Enhancement Technique aided Convolutional Autoencoder
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2023.118900
– volume: 84
  start-page: 502
  year: 1989
  ident: ref_84
  article-title: Principal Curves
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1989.10478797
– volume: 109
  start-page: 6
  year: 2019
  ident: ref_350
  article-title: Neighborhood preserving neural network for fault detection
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.09.010
– volume: 54
  start-page: 167
  year: 2022
  ident: ref_2
  article-title: Latent variable models in the era of industrial big data: Extension and beyond
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2022.09.005
– volume: 30
  start-page: 179
  year: 1995
  ident: ref_45
  article-title: Disturbance detection and isolation by dynamic principal component analysis
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/0169-7439(95)00076-3
– ident: ref_164
  doi: 10.1007/978-1-4471-6410-4
– volume: 223
  start-page: 807
  year: 2018
  ident: ref_646
  article-title: Statistical monitoring of a wastewater treatment plant: A case study
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2018.06.087
– volume: 28
  start-page: 56
  year: 2015
  ident: ref_92
  article-title: On-line monitoring of batch processes using generalized additive kernel principal component analysis
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2015.02.007
– volume: 101
  start-page: 400
  year: 2023
  ident: ref_174
  article-title: Slow-varying batch process monitoring based on canonical variate analysis
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.24401
– volume: 323
  start-page: 533
  year: 1986
  ident: ref_319
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 271
  start-page: 118581
  year: 2023
  ident: ref_202
  article-title: Common canonical variate analysis (CCVA) based modeling and monitoring for multimode processes
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2023.118581
– volume: 42
  start-page: 014233121989893
  year: 2020
  ident: ref_455
  article-title: Sparse representation preserving embedding based on extreme learning machine for process monitoring
  publication-title: Trans. Inst. Meas. Control
  doi: 10.1177/0142331219898937
– volume: 52
  start-page: 14246
  year: 2022
  ident: ref_744
  article-title: Machine learning techniques applied to mechanical fault diagnosis and fault prognosis in the context of real industrial manufacturing use-cases: A systematic literature review
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-022-03344-3
– volume: 62
  start-page: 8995
  year: 2023
  ident: ref_295
  article-title: Outlook: How I Learned to Love Machine Learning (A Personal Perspective on Machine Learning in Process Systems Engineering)
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.3c01565
– ident: ref_371
  doi: 10.3390/min10110958
– volume: 23
  start-page: 149
  year: 1994
  ident: ref_77
  article-title: Exponentially weighted moving principal components analysis and projections to latent structures
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/0169-7439(93)E0075-F
– volume: 25
  start-page: 428
  year: 2014
  ident: ref_557
  article-title: Real-Time Fault Detection Using Recursive Density Estimation
  publication-title: J. Control. Autom. Electr. Syst.
  doi: 10.1007/s40313-014-0128-4
– volume: 69
  start-page: e17986
  year: 2023
  ident: ref_778
  article-title: Observational process data analytics using causal inference
  publication-title: AIChE J.
  doi: 10.1002/aic.17986
– volume: 19
  start-page: 145
  year: 2015
  ident: ref_120
  article-title: Multiscale Multiblock Batch Monitoring: Sensor and Process Drift and Degradation
  publication-title: Org. Process Res. Dev.
  doi: 10.1021/op400337x
– volume: 96
  start-page: 2073
  year: 2018
  ident: ref_808
  article-title: Survey on the theoretical research and engineering applications of multivariate statistics process monitoring algorithms: 2008–2017
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.23249
– volume: 15
  start-page: 715
  year: 2001
  ident: ref_125
  article-title: On unifying multiblock analysis with application to decentralized process monitoring
  publication-title: J. Chemom.
  doi: 10.1002/cem.667
– volume: 67
  start-page: e17282
  year: 2021
  ident: ref_458
  article-title: Convolutional neural nets in chemical engineering: Foundations, computations, and applications
  publication-title: AIChE J.
  doi: 10.1002/aic.17282
– volume: 9
  start-page: 665
  year: 2011
  ident: ref_447
  article-title: A neuro-fuzzy online fault detection and diagnosis algorithm for nonlinear and dynamic systems
  publication-title: Int. J. Control. Autom. Syst.
  doi: 10.1007/s12555-011-0407-9
– ident: ref_814
  doi: 10.3390/fi12060097
– volume: 105
  start-page: 27
  year: 2021
  ident: ref_275
  article-title: Dynamic system modelling and process monitoring based on long-term dependency slow feature analysis
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2021.07.007
– volume: 19
  start-page: 55
  year: 2005
  ident: ref_443
  article-title: Recurrent neuro-fuzzy system for fault detection and isolation in nuclear reactors
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2005.01.009
– volume: 14
  start-page: 1547
  year: 2021
  ident: ref_540
  article-title: Genetic algorithm-based fuzzy clustering applied to multivariate time series
  publication-title: Evol. Intell.
  doi: 10.1007/s12065-020-00422-8
– volume: 25
  start-page: 409
  year: 2009
  ident: ref_524
  article-title: Bayesian belief networks for system fault diagnostics
  publication-title: Qual. Reliab. Eng. Int.
  doi: 10.1002/qre.978
– volume: 122
  start-page: 13
  year: 2023
  ident: ref_419
  article-title: A local–global transformer for distributed monitoring of multi-unit nonlinear processes
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2022.12.007
– volume: 37
  start-page: 41
  year: 1995
  ident: ref_614
  article-title: Multivariate SPC Charts for Monitoring Batch Processes
  publication-title: Technometrics
  doi: 10.1080/00401706.1995.10485888
– volume: 3
  start-page: 403
  year: 1995
  ident: ref_12
  article-title: Statistical process control of multivariate processes
  publication-title: Control Eng. Pract.
  doi: 10.1016/0967-0661(95)00014-L
– volume: 165
  start-page: 716
  year: 2022
  ident: ref_493
  article-title: Faulty Scenarios in Sour Water Treatment Units: Simulation and AI-Based Diagnosis
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2022.07.043
– volume: 95
  start-page: 144
  year: 2016
  ident: ref_543
  article-title: A wavelet-based clustering of multivariate time series using a Multiscale SPCA approach
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2016.03.003
– volume: 194
  start-page: 105596
  year: 2020
  ident: ref_329
  article-title: A review of deep learning with special emphasis on architectures, applications and recent trends
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105596
– volume: 130
  start-page: 106471
  year: 2019
  ident: ref_602
  article-title: Modern day monitoring and control challenges outlined on an industrial-scale benchmark fermentation process
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2019.05.037
– ident: ref_337
  doi: 10.1109/CVPR.2016.90
– ident: ref_698
  doi: 10.1371/journal.pone.0152173
– volume: 96
  start-page: 457
  year: 2020
  ident: ref_429
  article-title: A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2019.07.001
– volume: 59
  start-page: 75
  year: 2014
  ident: ref_472
  article-title: Two methods of selecting Gaussian kernel parameters for one-class SVM and their application to fault detection
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2014.01.020
– volume: 47
  start-page: 2740
  year: 2014
  ident: ref_179
  article-title: Quality-Relevant Monitoring and Diagnosis with Dynamic Concurrent Projection to Latent Structures
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20140824-6-ZA-1003.02329
– volume: 97
  start-page: 25
  year: 2015
  ident: ref_773
  article-title: Fault propagation behavior study and root cause reasoning with dynamic Bayesian network based framework
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2015.02.003
– volume: 122
  start-page: 388
  year: 2019
  ident: ref_549
  article-title: Deep understanding in industrial processes by complementing human expertise with interpretable patterns of machine learning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.01.011
– volume: 447
  start-page: 117
  year: 2018
  ident: ref_729
  article-title: Capturing correlation changes by applying kernel change point detection on the running correlations
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.03.010
– volume: 17
  start-page: 245
  year: 1993
  ident: ref_49
  article-title: A plant-wide industrial process control problem
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(93)80018-I
– volume: 33
  start-page: 2349
  year: 2021
  ident: ref_224
  article-title: A Survey on Canonical Correlation Analysis
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2958342
– volume: 33
  start-page: 3085
  year: 2020
  ident: ref_370
  article-title: Multichannel one-dimensional convolutional neural network-based feature learning for fault diagnosis of industrial processes
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05171-4
– volume: 92
  start-page: 271
  year: 2020
  ident: ref_411
  article-title: Gaussian Discriminative Analysis aided GAN for imbalanced big data augmentation and fault classification
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2020.06.014
– volume: 21
  start-page: 12868
  year: 2020
  ident: ref_664
  article-title: A Review on Soft Sensors for Monitoring, Control and Optimization of Industrial Processes
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3033153
– ident: ref_326
– volume: 167
  start-page: 636
  year: 2015
  ident: ref_827
  article-title: SVM and PCA based fault classification approaches for complicated industrial process
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.03.082
– volume: 28
  start-page: 1875
  year: 2020
  ident: ref_412
  article-title: Identification of abnormal conditions in high-dimensional chemical process based on feature selection and deep learning
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/j.cjche.2020.05.003
– volume: 100
  start-page: 67
  year: 2022
  ident: ref_508
  article-title: Nonparametric manifold learning approach for improved process monitoring
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.24066
– volume: 173
  start-page: 163
  year: 2023
  ident: ref_421
  article-title: Large-scale chemical process causal discovery from big data with transformer-based deep learning
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2023.03.017
– volume: 51
  start-page: 555
  year: 2005
  ident: ref_226
  article-title: A new fault diagnosis method using fault directions in Fisher discriminant analysis
  publication-title: AIChE J.
  doi: 10.1002/aic.10325
– volume: 135
  start-page: 313
  year: 2014
  ident: ref_714
  article-title: An experimental evaluation of novelty detection methods
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.12.002
– volume: 15
  start-page: 869
  year: 2005
  ident: ref_145
  article-title: Robust multi-scale principal components analysis with applications to process monitoring
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2005.04.001
– volume: 55
  start-page: 4979
  year: 2016
  ident: ref_536
  article-title: PCA-ICA Integrated with Bayesian Method for Non-Gaussian Fault Diagnosis
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b04023
– volume: 5
  start-page: 51
  year: 2015
  ident: ref_497
  article-title: Data visualization by nonlinear dimensionality reduction
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1147
– volume: 155
  start-page: 114
  year: 2022
  ident: ref_719
  article-title: OCmst: One-class novelty detection using convolutional neural network and minimum spanning trees
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2021.11.013
– volume: 127
  start-page: 105304
  year: 2022
  ident: ref_533
  article-title: An interpretable unsupervised Bayesian network model for fault detection and diagnosis
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2022.105304
– ident: ref_545
– ident: ref_794
  doi: 10.1017/CBO9780511755798
– volume: 1
  start-page: 85
  year: 1997
  ident: ref_112
  article-title: PCA of wavelet transformed process data for monitoring
  publication-title: Intell. Data Anal.
  doi: 10.3233/IDA-1997-1203
– ident: ref_233
  doi: 10.1109/CONTROL.2016.7737588
– volume: 58
  start-page: 12899
  year: 2019
  ident: ref_131
  article-title: Review and Perspectives of Data-Driven Distributed Monitoring for Industrial Plant-Wide Processes
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b02391
– volume: 31
  start-page: 611
  year: 2016
  ident: ref_734
  article-title: Multiple Change-Point Detection: A Selective Overview
  publication-title: Stat. Sci.
  doi: 10.1214/16-STS587
– volume: 14
  start-page: 467
  year: 2004
  ident: ref_244
  article-title: Statistical process monitoring with independent component analysis
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2003.09.004
– volume: 501
  start-page: 596
  year: 2022
  ident: ref_456
  article-title: An extreme learning machine for unsupervised online anomaly detection in multivariate time series
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.06.042
– volume: 127
  start-page: 102999
  year: 2023
  ident: ref_401
  article-title: Stacked supervised auto-encoder with graph regularization for feature extraction and fault classification in chemical processes
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2023.102999
– volume: 138
  start-page: 130
  year: 2020
  ident: ref_531
  article-title: Data-driven Bayesian network model for early kick detection in industrial drilling process
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2020.03.017
– volume: 59
  start-page: 15656
  year: 2020
  ident: ref_489
  article-title: Least Squares Sparse Principal Component Analysis and Parallel Coordinates for Real-Time Process Monitoring
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.0c01749
– volume: 28
  start-page: 1377
  year: 2004
  ident: ref_105
  article-title: Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2003.09.031
– volume: 232
  start-page: 120854
  year: 2023
  ident: ref_301
  article-title: Integrated intelligent fault diagnosis approach of offshore wind turbine bearing based on information stream fusion and semi-supervised learning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.120854
– volume: 332
  start-page: 305
  year: 2019
  ident: ref_517
  article-title: Multimode process monitoring based on robust dictionary learning with application to aluminium electrolysis process
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.12.024
– volume: 167
  start-page: 480
  year: 2022
  ident: ref_417
  article-title: A novel deep learning model based on target transformer for fault diagnosis of chemical process
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2022.09.039
– volume: 45
  start-page: 160
  year: 2012
  ident: ref_779
  article-title: Root cause diagnosis of plant-wide oscillations using Granger causality
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20120710-4-SG-2026.00172
– volume: 21
  start-page: 2560
  year: 2007
  ident: ref_480
  article-title: Support vector machine in machine condition monitoring and fault diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2006.12.007
– volume: 109
  start-page: 175
  year: 2020
  ident: ref_764
  article-title: Kappa Updated Ensemble for drifting data stream mining
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-019-05840-z
– volume: 56
  start-page: 2838
  year: 2010
  ident: ref_135
  article-title: Mixture Bayesian regularization method of PPCA for multimode process monitoring
  publication-title: AIChE J.
  doi: 10.1002/aic.12200
– volume: 53
  start-page: 8831
  year: 2014
  ident: ref_438
  article-title: Self-Organizing Map Based Fault Diagnosis Technique for Non-Gaussian Processes
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie500815a
– volume: 35
  start-page: 471
  year: 2002
  ident: ref_451
  article-title: Fault diagnosis of an industrial gas turbine using neuro-fuzzy methods
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20020721-6-ES-1901.01632
– ident: ref_702
  doi: 10.1109/ICMLA.2015.141
– volume: 108
  start-page: 102868
  year: 2021
  ident: ref_432
  article-title: A pairwise graph regularized constraint based on deep belief network for fault diagnosis
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2020.102868
– volume: 13
  start-page: 1443
  year: 2001
  ident: ref_471
  article-title: Estimating the Support of a High-Dimensional Distribution
  publication-title: Neural Comput.
  doi: 10.1162/089976601750264965
– volume: 42
  start-page: 63
  year: 2016
  ident: ref_803
  article-title: Bridging data-driven and model-based approaches for process fault diagnosis and health monitoring: A review of researches and future challenges
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2016.09.008
– ident: ref_353
  doi: 10.3390/pr7030152
– volume: 35
  start-page: 5472
  year: 2010
  ident: ref_449
  article-title: Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers
  publication-title: Energy
  doi: 10.1016/j.energy.2010.06.001
– volume: 53
  start-page: 3974
  year: 2022
  ident: ref_520
  article-title: Adaptive Multimode Process Monitoring Based on Mode-Matching and Similarity-Preserving Dictionary Learning
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2022.3178878
– volume: 52
  start-page: 673
  year: 2019
  ident: ref_575
  article-title: Variable Selection for Fault Detection and Identification based on Mutual Information of Alarm Series
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2019.06.140
– volume: 52
  start-page: 3543
  year: 2013
  ident: ref_800
  article-title: Review of Recent Research on Data-Based Process Monitoring
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie302069q
– volume: 35
  start-page: 1
  year: 2011
  ident: ref_797
  article-title: Review of adaptation mechanisms for data-driven soft sensors
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2010.07.034
– ident: ref_351
  doi: 10.1109/IJCNN.2018.8489385
– volume: 20
  start-page: S745
  year: 1996
  ident: ref_617
  article-title: Experiences with industrial applications of projection methods for multivariate statistical process control
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(96)00132-9
– volume: 71
  start-page: 513
  year: 2017
  ident: ref_544
  article-title: A hybrid clustering approach for multivariate time series—A case study applied to failure analysis in a gas turbine
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2017.09.004
– volume: 204
  start-page: 104092
  year: 2020
  ident: ref_208
  article-title: Multiblock global orthogonal projections to latent structures for fault diagnosis
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2020.104092
– volume: 52
  start-page: 306
  year: 2011
  ident: ref_799
  article-title: Methods for Plant Data-Based Process Modeling in Soft-Sensor Development
  publication-title: Automatika
  doi: 10.1080/00051144.2011.11828430
– volume: 231
  start-page: 104684
  year: 2022
  ident: ref_831
  article-title: Modeling in the observable or latent space? A comparison of dynamic latent variable based monitoring methods for sensor fault detection
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2022.104684
– volume: 48
  start-page: 4
  year: 2016
  ident: ref_17
  article-title: Statistical Learning Methods Applied to Process Monitoring: An Overview and Perspective
  publication-title: J. Qual. Technol.
  doi: 10.1080/00224065.2016.11918148
– volume: 227
  start-page: 115928
  year: 2020
  ident: ref_223
  article-title: Effect of dataset size on modeling and monitoring of chemical processes
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2020.115928
– volume: 101
  start-page: 6944
  year: 2023
  ident: ref_415
  article-title: A novel imbalanced fault diagnosis method based on area identification conditional generative adversarial networks
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.24949
– volume: 51
  start-page: 339
  year: 2017
  ident: ref_727
  article-title: A survey of methods for time series change point detection
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-016-0987-z
– volume: 84
  start-page: 104
  year: 2016
  ident: ref_828
  article-title: Fault diagnosis of chemical processes with incomplete observations: A comparative study
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2015.08.018
– volume: 59
  start-page: 2995
  year: 2004
  ident: ref_245
  article-title: Statistical monitoring of dynamic processes based on dynamic independent component analysis
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2004.04.031
– volume: 139
  start-page: 106841
  year: 2020
  ident: ref_172
  article-title: Understanding chemical production processes by using PLS path model parameters as soft sensors
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.106841
– ident: ref_306
  doi: 10.1109/IECON.2017.8217236
– ident: ref_153
  doi: 10.3390/pr5030038
– volume: 44
  start-page: 319
  year: 1998
  ident: ref_621
  article-title: The introduction of process chemometrics into an industrial pilot plant laboratory
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(98)00119-1
– ident: ref_336
– ident: ref_392
  doi: 10.3390/pr10112408
– volume: 172
  start-page: 194
  year: 2018
  ident: ref_50
  article-title: Evaluation of diagnosis methods in PCA-based Multivariate Statistical Process Control
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2017.12.008
– ident: ref_424
  doi: 10.1109/RAIIC59453.2023.10280857
– volume: 127
  start-page: 282
  year: 2019
  ident: ref_302
  article-title: Reinforcement Learning—Overview of recent progress and implications for process control
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2019.05.029
– volume: 8
  start-page: 162
  year: 2023
  ident: ref_706
  article-title: Data-Driven Anomaly Detection in Laboratory Medicine: Past, Present, and Future
  publication-title: J. Appl. Lab. Med.
  doi: 10.1093/jalm/jfac114
– volume: 52
  start-page: 1947
  year: 2013
  ident: ref_127
  article-title: Distributed PCA Model for Plant-Wide Process Monitoring
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie301945s
– volume: 45
  start-page: 1593
  year: 2009
  ident: ref_57
  article-title: Reconstruction-based contribution for process monitoring
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.02.027
– volume: 63
  start-page: 134
  year: 2016
  ident: ref_560
  article-title: An evolving approach to unsupervised and Real-Time fault detection in industrial processes
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.06.035
– volume: 58
  start-page: 20667
  year: 2019
  ident: ref_507
  article-title: Joint Structure Preserving Embedding Model and Its Application for Process Monitoring
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b03077
– volume: 23
  start-page: 1575
  year: 2013
  ident: ref_801
  article-title: Design of inferential sensors in the process industry: A review of Bayesian methods
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2013.05.007
– volume: 155
  start-page: 107549
  year: 2021
  ident: ref_563
  article-title: Fault Diagnosis of Chemical Processes based on Joint Recurrence Quantification Analysis
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2021.107549
– ident: ref_31
  doi: 10.3390/pr5040056
– volume: 71
  start-page: 1665
  year: 2017
  ident: ref_133
  article-title: Statistical Aspects of Near-Infrared Spectroscopy for the Characterization of Errors and Model Building
  publication-title: Appl. Spectrosc.
  doi: 10.1177/0003702817704587
– ident: ref_553
  doi: 10.1109/EALS.2014.7009497
– volume: 215
  start-page: 110716
  year: 2022
  ident: ref_785
  article-title: Chaotic dynamics induced by anti-slug control in offshore oil production plants
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2022.110716
– ident: ref_585
  doi: 10.3390/pr7120958
– ident: ref_612
– volume: 32
  start-page: 1261
  year: 2017
  ident: ref_555
  article-title: Empirical Data Analytics
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.21899
– volume: 95
  start-page: 32
  year: 2020
  ident: ref_186
  article-title: Auto-regressive modeling with dynamic weighted canonical correlation analysis
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2020.09.007
– volume: 11
  start-page: 613
  year: 2003
  ident: ref_178
  article-title: Recursive partial least squares algorithms for monitoring complex industrial processes
  publication-title: Control Eng. Pract.
  doi: 10.1016/S0967-0661(02)00096-5
– volume: 30
  start-page: 1171
  year: 2022
  ident: ref_44
  article-title: Performance-Driven Component Selection in the Framework of PCA for Process Monitoring: A Dynamic Selection Approach
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2021.3094512
– volume: 99
  start-page: 107
  year: 2021
  ident: ref_384
  article-title: Unsupervised isolation of abnormal process variables using sparse autoencoders
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2021.01.005
– ident: ref_464
– volume: 61
  start-page: 8932
  year: 2022
  ident: ref_293
  article-title: Machine Learning Algorithms Used in PSE Environments: A Didactic Approach and Critical Perspective
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.2c00335
– volume: 19
  start-page: 213
  year: 2005
  ident: ref_632
  article-title: Application of latent variable methods to process control and multivariate statistical process control in industry
  publication-title: Int. J. Adapt. Control Signal Process.
  doi: 10.1002/acs.859
– volume: 31
  start-page: 347
  year: 1998
  ident: ref_624
  article-title: Multivariate Statistical Process Control and Process Performance Monitoring
  publication-title: IFAC Proc. Vol.
  doi: 10.1016/S1474-6670(17)44952-4
– volume: 27
  start-page: 2961
  year: 2015
  ident: ref_716
  article-title: Evaluation of Multiclass Novelty Detection Algorithms for Data Streams
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2015.2441713
– volume: 12
  start-page: 255
  year: 2014
  ident: ref_752
  article-title: Data Mining—Past, Present and Future—A Typical Survey on Data Streams
  publication-title: Procedia Technol.
  doi: 10.1016/j.protcy.2013.12.483
– volume: 32
  start-page: 12
  year: 2008
  ident: ref_636
  article-title: Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2007.07.005
– volume: 101
  start-page: 3998
  year: 2022
  ident: ref_393
  article-title: Feature learning based on entropy estimation density peak clustering and stacked autoencoder for industrial process monitoring
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.24750
– volume: 164
  start-page: 107884
  year: 2022
  ident: ref_654
  article-title: One step forward for smart chemical process fault detection and diagnosis
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.107884
– ident: ref_348
– ident: ref_431
  doi: 10.1109/SMC.2019.8914596
– volume: 167
  start-page: 107299
  year: 2020
  ident: ref_738
  article-title: Selective review of offline change point detection methods
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2019.107299
– volume: 167
  start-page: 108014
  year: 2022
  ident: ref_594
  article-title: Latent Variable Method Demonstrator—Software for understanding multivariate data analytics algorithms
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.108014
– volume: 248
  start-page: 117221
  year: 2022
  ident: ref_786
  article-title: Continuous diabatic free-radical solution polymerization reactors: Search engines for non-linear dynamical solutions
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2021.117221
– volume: 108
  start-page: 106
  year: 2021
  ident: ref_185
  article-title: Modified canonical variate analysis based on dynamic kernel decomposition for dynamic nonlinear process quality monitoring
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2020.08.017
– ident: ref_51
– volume: 7
  start-page: 6978
  year: 2022
  ident: ref_274
  article-title: Fault Detection of Non-Gaussian and Nonlinear Processes Based on Independent Slow Feature Analysis
  publication-title: ACS Omega
  doi: 10.1021/acsomega.1c06649
– volume: 71
  start-page: 1
  year: 2022
  ident: ref_308
  article-title: Distributed Robust Process Monitoring Based on Optimized Denoising Autoencoder With Reinforcement Learning
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 16
  start-page: 146
  year: 2008
  ident: ref_137
  article-title: Model identification and error covariance matrix estimation from noisy data using PCA
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2007.04.006
– volume: 53
  start-page: 218
  year: 2020
  ident: ref_810
  article-title: Modern Machine Learning Tools for Monitoring and Control of Industrial Processes: A Survey
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2020.12.126
– volume: 17
  start-page: 480
  year: 2003
  ident: ref_14
  article-title: Statistical process monitoring: Basics and beyond
  publication-title: J. Chemom.
  doi: 10.1002/cem.800
– volume: 110
  start-page: 104743
  year: 2022
  ident: ref_542
  article-title: A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.104743
– volume: 68
  start-page: 12
  year: 2021
  ident: ref_200
  article-title: A Just In Time Learning Aided Canonical Correlation Analysis Method for Multimode Process Monitoring and Fault Detection
  publication-title: IEEE Trans. Ind. Electron.
– volume: 5
  start-page: 277
  year: 1995
  ident: ref_170
  article-title: Analysis, monitoring and fault diagnosis of batch processes using multiblock and multiway PLS
  publication-title: J. Process Control
  doi: 10.1016/0959-1524(95)00019-M
– volume: 407
  start-page: 232
  year: 2020
  ident: ref_357
  article-title: Cost sensitive active learning using bidirectional gated recurrent neural networks for imbalanced fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.04.075
– ident: ref_347
  doi: 10.1007/978-3-540-78293-3
– ident: ref_615
  doi: 10.23919/ACC.1992.4792557
– volume: 215
  start-page: 1065
  year: 2001
  ident: ref_312
  article-title: Support vector machines for detection and characterization of rolling element bearing faults
  publication-title: Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
  doi: 10.1177/095440620121500907
– volume: 35
  start-page: 211
  year: 2023
  ident: ref_1
  article-title: Challenges and opportunities of deep learning-based process fault detection and diagnosis: A review
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-08017-3
– ident: ref_307
  doi: 10.23919/ACC53348.2022.9867763
– volume: 75
  start-page: 107
  year: 2019
  ident: ref_506
  article-title: Improved process monitoring based on global–local manifold analysis and statistical local approach for industrial process
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2018.12.016
– volume: 14
  start-page: 359
  year: 2018
  ident: ref_641
  article-title: Advances in Continuous Active Pharmaceutical Ingredient (API) Manufacturing: Real-time Monitoring Using Multivariate Tools
  publication-title: J. Pharm. Innov.
  doi: 10.1007/s12247-018-9348-7
– volume: 84
  start-page: 247
  year: 2019
  ident: ref_345
  article-title: Active features extracted by deep belief network for process monitoring
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2018.10.011
– volume: 60
  start-page: 3038
  year: 2021
  ident: ref_564
  article-title: Data-Driven Fault Diagnosis of Chemical Processes Based on Recurrence Plots
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.0c06307
– ident: ref_820
  doi: 10.3390/s22062205
– volume: 13
  start-page: 3711
  year: 2022
  ident: ref_97
  article-title: A reduced nonstationary discrete convolution kernel for multimode process monitoring
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-022-01621-8
– volume: 93
  start-page: 1063
  year: 2015
  ident: ref_645
  article-title: Detection of decomposition for high pressure ethylene/vinyl acetate copolymerization in autoclave reactor using principal component analysis on heat balance model
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.22200
– volume: 114
  start-page: 69
  year: 2018
  ident: ref_74
  article-title: Dynamic latent variable analytics for process operations and control
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.10.029
– volume: 32
  start-page: 38
  year: 2015
  ident: ref_128
  article-title: Nonlinear plant-wide process monitoring using MI-spectral clustering and Bayesian inference-based multiblock KPCA
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2015.04.014
– volume: Volume 3940
  start-page: 34
  year: 2006
  ident: ref_163
  article-title: Overview and Recent Advances in Partial Least Squares
  publication-title: Subspace, Latent Structure and Feature Selection
  doi: 10.1007/11752790_2
– volume: 61
  start-page: 959
  year: 2017
  ident: ref_236
  article-title: Fault diagnosis and classification framework using multi-scale classification based on kernel Fisher discriminant analysis for chemical process system
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.09.019
– volume: 39
  start-page: 327
  year: 2022
  ident: ref_102
  article-title: Non-linear process monitoring using kernel principal component analysis: A review of the basic and modified techniques with industrial applications
  publication-title: Braz. J. Chem. Eng.
  doi: 10.1007/s43153-021-00125-2
– volume: 2
  start-page: 494
  year: 2021
  ident: ref_740
  article-title: Sequential (Quickest) Change Detection: Classical Results and New Directions
  publication-title: IEEE J. Sel. Areas Inf. Theory
  doi: 10.1109/JSAIT.2021.3072962
– ident: ref_653
  doi: 10.1007/s11668-023-01817-2
– volume: 239
  start-page: 39
  year: 2017
  ident: ref_768
  article-title: A survey on data preprocessing for data stream mining: Current status and future directions
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.078
– volume: 10
  start-page: 195
  year: 2023
  ident: ref_294
  article-title: Machine Learning an Intelligent Approach in Process Industries: A Perspective and Overview
  publication-title: ChemBioEng Rev.
  doi: 10.1002/cben.202200030
– volume: 34
  start-page: 100758
  year: 2021
  ident: ref_158
  article-title: A decade in review: Use of data analytics within the biopharmaceutical sector
  publication-title: Curr. Opin. Chem. Eng.
  doi: 10.1016/j.coche.2021.100758
– volume: 88
  start-page: 811
  year: 1988
  ident: ref_11
  article-title: Principal components analysis for monitoring the West Valley Liquid Fed Ceramic Melter
  publication-title: Waste Manag.
– volume: 34
  start-page: 500
  year: 2010
  ident: ref_107
  article-title: On-line multivariate statistical monitoring of batch processes using Gaussian mixture model
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2009.08.007
– volume: 29
  start-page: 218
  year: 1986
  ident: ref_597
  article-title: How not to lie with statistics: The correct way to summarize benchmark results
  publication-title: Commun. ACM
  doi: 10.1145/5666.5673
– ident: ref_219
  doi: 10.1109/CCDC.2013.6561830
– volume: 15
  start-page: 2849
  year: 2019
  ident: ref_590
  article-title: Recent Advances in Key-Performance-Indicator Oriented Prognosis and Diagnosis with a MATLAB Toolbox: DB-KIT
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2018.2875067
– volume: 71
  start-page: 1
  year: 2022
  ident: ref_271
  article-title: Toward Interpretable Process Monitoring: Slow Feature Analysis-Aided Autoencoder for Spatiotemporal Process Feature Learning
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2022.3218574
– volume: 2
  start-page: 582126
  year: 2020
  ident: ref_501
  article-title: Manifold Learning and Clustering for Automated Phase Identification and Alignment in Data Driven Modeling of Batch Processes
  publication-title: Front. Chem. Eng.
  doi: 10.3389/fceng.2020.582126
– volume: 157
  start-page: 107587
  year: 2022
  ident: ref_832
  article-title: Retrospective comparison of several typical linear dynamic latent variable models for industrial process monitoring
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2021.107587
– ident: ref_297
– volume: 27
  start-page: 316
  year: 2020
  ident: ref_815
  article-title: Machine Learning and Deep Learning in Chemical Health and Safety: A Systematic Review of Techniques and Applications
  publication-title: ACS Chem. Health Saf.
  doi: 10.1021/acs.chas.0c00075
– volume: 46
  start-page: 955
  year: 2007
  ident: ref_218
  article-title: Robust Adaptive Partial Least Squares Modeling of a Full-Scale Industrial Wastewater Treatment Process
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie061094+
– volume: 109
  start-page: 756
  year: 2021
  ident: ref_703
  article-title: A Unifying Review of Deep and Shallow Anomaly Detection
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2021.3052449
– volume: 20
  start-page: 1191
  year: 1999
  ident: ref_470
  article-title: Support vector domain description
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/S0167-8655(99)00087-2
– volume: 33
  start-page: 172
  year: 2009
  ident: ref_68
  article-title: A survey on multistage/multiphase statistical modeling methods for batch processes
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2009.08.001
– ident: ref_523
  doi: 10.1109/ICIEEM.2009.5344265
– ident: ref_589
– volume: 239
  start-page: 421
  year: 2019
  ident: ref_647
  article-title: Multivariate data analysis applied in the evaluation of crude oil blends
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.11.045
– volume: 98
  start-page: 201
  year: 2009
  ident: ref_204
  article-title: Multi-scale extension of PLS algorithm for advanced on-line process monitoring
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2009.07.003
– volume: Volume 37
  start-page: 1823
  year: 2015
  ident: ref_235
  article-title: Process Monitoring and Fault Detection in Non-Linear Chemical Process Based On Multi-Scale Kernel Fisher Discriminant Analysis
  publication-title: Computer Aided Chemical Engineering
  doi: 10.1016/B978-0-444-63577-8.50149-2
– volume: 117
  start-page: 140
  year: 2022
  ident: ref_385
  article-title: Condition-driven probabilistic adversarial autoencoder with nonlinear Gaussian feature learning for nonstationary process monitoring
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2022.07.012
– ident: ref_511
– volume: 6
  start-page: 3
  year: 2010
  ident: ref_193
  article-title: Decentralized Fault Diagnosis of Large-Scale Processes Using Multiblock Kernel Partial Least Squares
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2009.2033181
– ident: ref_495
  doi: 10.1177/09544089231213778
– volume: 26
  start-page: 1281
  year: 2002
  ident: ref_115
  article-title: Multivariate process monitoring and fault diagnosis by multi-scale PCA
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(02)00093-5
– volume: 275
  start-page: 1
  year: 2019
  ident: ref_546
  article-title: Recent advances in the theory and practice of Logical Analysis of Data
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2018.06.011
– volume: 14
  start-page: 821
  year: 2004
  ident: ref_631
  article-title: An industrial perspective on implementing on-line applications of multivariate statistics
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2004.02.001
– ident: ref_314
  doi: 10.1007/978-1-4471-5185-2
– volume: 51
  start-page: 95
  year: 2000
  ident: ref_59
  article-title: Generalized contribution plots in multivariate statistical process monitoring
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(00)00062-9
– ident: ref_334
  doi: 10.18653/v1/D16-1053
– volume: 182
  start-page: 115234
  year: 2021
  ident: ref_408
  article-title: An interpretable data augmentation scheme for machine fault diagnosis based on a sparsity-constrained generative adversarial network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115234
– volume: 72
  start-page: 1
  year: 2023
  ident: ref_416
  article-title: One-dimensional residual GANomaly network-based deep feature extraction model for complex industrial system fault detection
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 20
  start-page: 65
  year: 1996
  ident: ref_83
  article-title: Nonlinear principal component analysis—Based on principal curves and neural networks
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(95)00003-K
– volume: 90
  start-page: 2262
  year: 2012
  ident: ref_436
  article-title: Using improved self-organizing map for fault diagnosis in chemical industry process
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2012.06.004
– volume: 1
  start-page: 203
  year: 2014
  ident: ref_23
  article-title: Build, Compute, Critique, Repeat: Data Analysis with Latent Variable Models
  publication-title: Annu. Rev. Stat. Its Appl.
  doi: 10.1146/annurev-statistics-022513-115657
– volume: 49
  start-page: 9184
  year: 2010
  ident: ref_485
  article-title: Unsupervised Process Fault Detection with Random Forests
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie901975c
– volume: 18
  start-page: 242
  year: 2010
  ident: ref_252
  article-title: A novel process monitoring approach with dynamic independent component analysis
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2009.11.002
– volume: 157
  start-page: 177
  year: 2016
  ident: ref_505
  article-title: Nonlocal and local structure preserving projection and its application to fault detection
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2016.07.014
– volume: 357
  start-page: 6294
  year: 2020
  ident: ref_576
  article-title: Feature Selection for Multivariate Contribution Analysis in Fault Detection and Isolation
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2020.03.005
– volume: Volume 50
  start-page: 1195
  year: 2021
  ident: ref_409
  article-title: Adversarial Autoencoder Based Nonlinear Process Monitoring
  publication-title: Computer Aided Chemical Engineering
  doi: 10.1016/B978-0-323-88506-5.50184-4
– volume: 85
  start-page: 149
  year: 2020
  ident: ref_468
  article-title: MRS kNN fault detection method for multirate sampling process based variable grouping threshold
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2019.11.007
– volume: 354
  start-page: 668
  year: 2017
  ident: ref_830
  article-title: Assessment of T2- and Q-statistics for detecting additive and multiplicative faults in multivariate statistical process monitoring
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2016.10.033
– ident: ref_362
  doi: 10.1007/s10845-023-02118-z
– volume: 57
  start-page: 63
  year: 2002
  ident: ref_169
  article-title: On-line batch process monitoring using dynamic PCA and dynamic PLS models
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(01)00366-9
– volume: 53
  start-page: 5055
  year: 2014
  ident: ref_249
  article-title: Independent Component Analysis Mixture Model Based Dissimilarity Method for Performance Monitoring of Non-Gaussian Dynamic Processes with Shifting Operating Conditions
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie401027b
– volume: 30
  start-page: 332
  year: 1980
  ident: ref_598
  article-title: A mechanistic model for penicillin production
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.503300140
– volume: 98
  start-page: 1293
  year: 2020
  ident: ref_428
  article-title: Research on TE process fault diagnosis method based on DBN and Dropout
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.23750
– volume: 68
  start-page: 18
  year: 2018
  ident: ref_475
  article-title: Time-adaptive support vector data description for nonstationary process monitoring
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.10.016
– volume: 49
  start-page: 939
  year: 2003
  ident: ref_116
  article-title: Multiscale SPC using wavelets: Theoretical analysis and properties
  publication-title: AIChE J.
  doi: 10.1002/aic.690490412
– volume: 53
  start-page: 16041
  year: 2022
  ident: ref_376
  article-title: An effective zero-shot learning approach for intelligent fault detection using 1D CNN
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-022-04342-1
– volume: 9
  start-page: 2226
  year: 2013
  ident: ref_658
  article-title: From Model, Signal to Knowledge: A Data-Driven Perspective of Fault Detection and Diagnosis
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2013.2243743
– volume: 67
  start-page: 1
  year: 2018
  ident: ref_71
  article-title: A novel dynamic PCA algorithm for dynamic data modeling and process monitoring
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2017.05.002
– ident: ref_63
– volume: 62
  start-page: 13889
  year: 2023
  ident: ref_569
  article-title: Distance matrix patterns for visual and interpretable process data analytics
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.3c01481
– volume: 13
  start-page: 1779
  year: 2020
  ident: ref_771
  article-title: Data Stream Event Prediction Based on Timing Knowledge and State Transitions
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3401960.3401973
– volume: 67
  start-page: 160
  year: 2018
  ident: ref_584
  article-title: Data mining and clustering in chemical process databases for monitoring and knowledge discovery
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2017.02.006
– volume: 148
  start-page: 321
  year: 2019
  ident: ref_180
  article-title: Computing meaningful models of continuous data
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2019.06.016
– ident: ref_192
  doi: 10.1002/cjce.25124
– volume: 18
  start-page: 1527
  year: 2006
  ident: ref_322
  article-title: A Fast Learning Algorithm for Deep Belief Nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 124
  start-page: 1
  year: 2019
  ident: ref_67
  article-title: Data-driven methods for batch data analysis—A critical overview and mapping on the complexity scale
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2019.01.014
– volume: 3
  start-page: 113
  year: 2016
  ident: ref_325
  article-title: Where does AlphaGo go: From church-turing thesis to AlphaGo thesis and beyond
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2016.7471613
– volume: 262
  start-page: 134
  year: 2017
  ident: ref_688
  article-title: Unsupervised real-time anomaly detection for streaming data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.070
– ident: ref_767
  doi: 10.1137/1.9781611974348.41
– ident: ref_29
  doi: 10.1007/978-0-387-84858-7
– ident: ref_509
  doi: 10.3390/pr10010122
– volume: 9
  start-page: 1
  year: 2018
  ident: ref_757
  article-title: Discussion and review on evolving data streams and concept drift adapting
  publication-title: Evol. Syst.
  doi: 10.1007/s12530-016-9168-2
– volume: 111
  start-page: 104811
  year: 2021
  ident: ref_388
  article-title: Sparsity and manifold regularized convolutional auto-encoders-based feature learning for fault detection of multivariate processes
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2021.104811
– volume: 7
  start-page: 106053
  year: 2019
  ident: ref_454
  article-title: Nonlinear Process Monitoring Based on Global Preserving Unsupervised Kernel Extreme Learning Machine
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2932017
– volume: 8
  start-page: 112092
  year: 2020
  ident: ref_76
  article-title: Segmentation of Multivariate Industrial Time Series Data Based on Dynamic Latent Variable Predictability
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3002257
– ident: ref_693
– volume: 122
  start-page: 804
  year: 2017
  ident: ref_755
  article-title: Concept drift in Streaming Data Classification: Algorithms, Platforms and Issues
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.11.440
– volume: 150
  start-page: 107304
  year: 2021
  ident: ref_651
  article-title: Representation Learning and Predictive Classification: Application with an Electric Arc Furnace
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2021.107304
– ident: ref_47
  doi: 10.1201/9781315155135
– volume: 9
  start-page: 8892
  year: 2022
  ident: ref_407
  article-title: Fault Detection and Classification in Industrial IoT in Case of Missing Sensor Data
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3116785
– volume: 75
  start-page: 55
  year: 2005
  ident: ref_90
  article-title: Fault detection and identification of nonlinear processes based on kernel PCA
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2004.05.001
– volume: 7
  start-page: 179
  year: 1936
  ident: ref_225
  article-title: The Use of Multiple Measurements in Taxonomic Problems
  publication-title: Ann. Eugen.
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– volume: 26
  start-page: 56
  year: 2015
  ident: ref_839
  article-title: Comparison of variable selection methods for PLS-based soft sensor modeling
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2015.01.003
– ident: ref_414
  doi: 10.1109/CCDC49329.2020.9164262
– volume: 163
  start-page: 107853
  year: 2022
  ident: ref_395
  article-title: A novel fault detection and diagnosis approach based on orthogonal autoencoders
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.107853
– volume: 6
  start-page: 12929
  year: 2018
  ident: ref_352
  article-title: Sequential Fault Diagnosis Based on LSTM Neural Network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2794765
– volume: 61
  start-page: 6418
  year: 2014
  ident: ref_28
  article-title: A Review on Basic Data-Driven Approaches for Industrial Process Monitoring
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2014.2301773
– volume: 48
  start-page: 619
  year: 2015
  ident: ref_514
  article-title: Sparse Contribution Plot for Fault Diagnosis of Multimodal Chemical Processes
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2015.09.595
– volume: 19
  start-page: 271
  year: 1997
  ident: ref_618
  article-title: Multivariate statistical methods in bioprocess fault detection and performance forecasting
  publication-title: Trans. Inst. Meas. Control
  doi: 10.1177/014233129701900507
– volume: 47
  start-page: 49
  year: 2003
  ident: ref_248
  article-title: New monitoring technique with an ICA algorithm in the wastewater treatment process
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2003.0627
– volume: 56
  start-page: 1
  year: 2022
  ident: ref_361
  article-title: Attention-based LSTM fully convolutional network for chemical process fault diagnosis
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/j.cjche.2022.06.029
– volume: 17
  start-page: 166
  year: 2003
  ident: ref_161
  article-title: Partial least squares for discrimination
  publication-title: J. Chemom.
  doi: 10.1002/cem.785
– volume: Volume 27
  start-page: 47
  year: 2009
  ident: ref_30
  article-title: Nonlinear Dynamic Data Reconciliation in Real Time in Actual Processes
  publication-title: Computer Aided Chemical Engineering
  doi: 10.1016/S1570-7946(09)70228-7
– ident: ref_676
  doi: 10.1007/978-3-030-65965-3
– ident: ref_793
  doi: 10.1093/oso/9780198782933.003.0001
– volume: 72
  start-page: 1
  year: 2023
  ident: ref_197
  article-title: A General Quality-Related Nonlinear Process Monitoring Approach Based on Input–Output Kernel PLS
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 139
  start-page: 216
  year: 2023
  ident: ref_399
  article-title: Decentralized adaptively weighted stacked autoencoder-based incipient fault detection for nonlinear industrial processes
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2023.04.035
– volume: 25
  start-page: 1175
  year: 2013
  ident: ref_733
  article-title: Change Detection in Streaming Multivariate Data Using Likelihood Detectors
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2011.226
– volume: 121
  start-page: 105988
  year: 2023
  ident: ref_663
  article-title: The role of artificial intelligence-driven soft sensors in advanced sustainable process industries: A critical review
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.105988
– volume: 115
  start-page: 185
  year: 2018
  ident: ref_349
  article-title: Deep convolutional neural network model based chemical process fault diagnosis
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2018.04.009
– volume: 28
  start-page: 1157
  year: 2004
  ident: ref_243
  article-title: Evolution of multivariate statistical process control: Application of independent component analysis and external analysis
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2003.09.011
– volume: 37
  start-page: 137
  year: 1991
  ident: ref_310
  article-title: Fault diagnosis in complex chemical plants using artificial neural networks
  publication-title: AIChE J.
  doi: 10.1002/aic.690370112
– ident: ref_554
  doi: 10.1109/SMC.2016.7844219
– volume: 33
  start-page: 2508
  year: 2022
  ident: ref_697
  article-title: An Evaluation of Anomaly Detection and Diagnosis in Multivariate Time Series
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3105827
– volume: 99
  start-page: 215
  year: 2014
  ident: ref_722
  article-title: A review of novelty detection
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2013.12.026
– volume: 26
  start-page: 1783
  year: 2002
  ident: ref_788
  article-title: The use of particle swarm optimization for dynamical analysis in chemical processes
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(02)00153-9
– volume: 21
  start-page: 593
  year: 2022
  ident: ref_198
  article-title: Operating Performance Assessment of Complex Nonlinear Industrial Process Based on Kernel Locally Linear Embedding PLS
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2022.3230687
– volume: 145
  start-page: 107197
  year: 2021
  ident: ref_816
  article-title: An analysis of process fault diagnosis methods from safety perspectives
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.107197
– volume: 183
  start-page: 79
  year: 2018
  ident: ref_500
  article-title: Nonlinear fault detection of batch processes based on functional kernel locality preserving projections
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2018.10.010
– volume: 112
  start-page: 320
  year: 2017
  ident: ref_255
  article-title: Correlated and weakly correlated fault detection based on variable division and ICA
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2017.08.035
– volume: 44
  start-page: 12886
  year: 2011
  ident: ref_72
  article-title: Dynamic latent variable modeling for statistical process monitoring
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20110828-6-IT-1002.00934
– volume: 81
  start-page: 332
  year: 2017
  ident: ref_522
  article-title: A Bayesian network-based approach for fault analysis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.03.056
– volume: 35
  start-page: 1993
  year: 1989
  ident: ref_309
  article-title: A neural network methodology for process fault diagnosis
  publication-title: AIChE J.
  doi: 10.1002/aic.690351210
– volume: 110
  start-page: 59
  year: 2022
  ident: ref_273
  article-title: A novel kernel dynamic inner slow feature analysis method for dynamic nonlinear process concurrent monitoring of operating point deviations and process dynamics anomalies
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2021.12.005
– volume: 26
  start-page: 10477
  year: 2022
  ident: ref_568
  article-title: Application of unthresholded recurrence plots and texture analysis for industrial loops with faulty valves
  publication-title: Soft Comput.
  doi: 10.1007/s00500-022-06894-3
– volume: 14
  start-page: 715
  year: 2002
  ident: ref_264
  article-title: Slow Feature Analysis: Unsupervised Learning of Invariances
  publication-title: Neural Comput.
  doi: 10.1162/089976602317318938
– volume: 180
  start-page: 108453
  year: 2024
  ident: ref_381
  article-title: Graph attention network with Granger causality map for fault detection and root cause diagnosis
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2023.108453
– volume: 100
  start-page: 2093
  year: 2022
  ident: ref_819
  article-title: Survey on recursive statistical process monitoring methods
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.24494
– ident: ref_355
  doi: 10.3390/pr8040391
– ident: ref_298
– volume: 61
  start-page: 18004
  year: 2022
  ident: ref_265
  article-title: EVOLVE·INFOMAX: An Unsupervised Learning Principle of Invariances for Nonlinear Dynamic Systems
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.2c03330
– volume: 58
  start-page: 11338
  year: 2019
  ident: ref_642
  article-title: Applications of Advanced Analytics at Saudi Aramco: A Practitioners’ Perspective
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b06205
– volume: 19
  start-page: 53
  year: 2001
  ident: ref_627
  article-title: Multivariate statistical monitoring of batch processes: An industrial case study of fermentation supervision
  publication-title: Trends Biotechnol.
  doi: 10.1016/S0167-7799(00)01528-6
– ident: ref_551
  doi: 10.1109/RAM.2017.7889650
– volume: 143
  start-page: 255
  year: 2023
  ident: ref_822
  article-title: Semi-supervised learning for industrial fault detection and diagnosis: A systemic review
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2023.09.027
– volume: 59
  start-page: 21439
  year: 2020
  ident: ref_195
  article-title: Novel Quality Relevant Process Monitoring based on Dynamic Locally Linear Embedding Concurrent Canonical Correlation Analysis
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.0c03492
– ident: ref_242
– volume: 143
  start-page: 49
  year: 2015
  ident: ref_588
  article-title: Multivariate Exploratory Data Analysis (MEDA) Toolbox for Matlab
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2015.02.016
– volume: 452
  start-page: 48
  year: 2021
  ident: ref_335
  article-title: A review on the attention mechanism of deep learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.091
– volume: 7
  start-page: 1357
  year: 1999
  ident: ref_625
  article-title: Monitoring the performance of the paper making process
  publication-title: Control Eng. Pract.
  doi: 10.1016/S0967-0661(99)00105-7
– ident: ref_344
  doi: 10.1007/978-3-642-33275-3
– ident: ref_671
  doi: 10.1145/2939672.2939778
– volume: 121
  start-page: 105
  year: 2022
  ident: ref_373
  article-title: Nonlinear process modeling via unidimensional convolutional neural networks with self-attention on global and local inter-variable structures and its application to process monitoring
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.04.014
– volume: 114
  start-page: 111
  year: 2018
  ident: ref_288
  article-title: Machine learning: Overview of the recent progresses and implications for the process systems engineering field
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.10.008
– volume: 31
  start-page: 223
  year: 1998
  ident: ref_622
  article-title: The Application of Principal Component Analysis for Predicting Blast Furnace Stability
  publication-title: IFAC Proc. Vol.
  doi: 10.1016/S1474-6670(17)35884-6
– volume: 47
  start-page: 318
  year: 2015
  ident: ref_46
  article-title: Overview of PCA-Based Statistical Process-Monitoring Methods for Time-Dependent, High-Dimensional Data
  publication-title: J. Qual. Technol.
  doi: 10.1080/00224065.2015.11918137
– volume: 135
  start-page: 106755
  year: 2020
  ident: ref_368
  article-title: A new unsupervised data mining method based on the stacked autoencoder for chemical process fault diagnosis
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.106755
– volume: 59
  start-page: 743
  year: 1994
  ident: ref_616
  article-title: Applications of multivariate statistical methods to process monitoring and controller design
  publication-title: Int. J. Control
  doi: 10.1080/00207179408923103
– ident: ref_363
  doi: 10.3390/pr10122557
– volume: 51
  start-page: 3300
  year: 2005
  ident: ref_70
  article-title: Two-dimensional dynamic PCA for batch process monitoring
  publication-title: AIChE J.
  doi: 10.1002/aic.10568
– volume: 29
  start-page: 399
  year: 2015
  ident: ref_462
  article-title: Fault diagnosis using kNN reconstruction on MRI variables: Fault diagnosis
  publication-title: J. Chemom.
  doi: 10.1002/cem.2719
– volume: 127
  start-page: 195
  year: 2013
  ident: ref_91
  article-title: Modified kernel principal component analysis based on local structure analysis and its application to nonlinear process fault diagnosis
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2013.07.001
– volume: 235
  start-page: 104758
  year: 2023
  ident: ref_391
  article-title: Nonlocal, local and global preserving stacked autoencoder based fault detection method for nonlinear process monitoring
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2023.104758
– volume: 23
  start-page: 636
  year: 2009
  ident: ref_534
  article-title: Multimode process monitoring based on Bayesian method
  publication-title: J. Chemom.
  doi: 10.1002/cem.1262
– ident: ref_723
– ident: ref_8
– volume: 56
  start-page: 8906
  year: 2017
  ident: ref_254
  article-title: Novel Multidimensional Feature Pattern Classification Method and Its Application to Fault Diagnosis
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b00027
– ident: ref_469
  doi: 10.1145/130385.130401
– volume: 50
  start-page: 29
  year: 2020
  ident: ref_665
  article-title: Bridging systems theory and data science: A unifying review of dynamic latent variable analytics and process monitoring
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2020.09.004
– volume: 33
  start-page: 795
  year: 2009
  ident: ref_760
  article-title: Data-driven Soft Sensors in the process industry
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2008.12.012
– volume: 29
  start-page: 560
  year: 2018
  ident: ref_94
  article-title: Nonlinear Process Fault Diagnosis Based on Serial Principal Component Analysis
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2635111
– volume: 66
  start-page: 64
  year: 2011
  ident: ref_119
  article-title: Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2010.10.008
– volume: 36
  start-page: 220
  year: 2012
  ident: ref_18
  article-title: Survey on data-driven industrial process monitoring and diagnosis
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2012.09.004
– volume: 17
  start-page: 222
  year: 2021
  ident: ref_261
  article-title: Independent component analysis: An introduction
  publication-title: Appl. Comput. Inform.
  doi: 10.1016/j.aci.2018.08.006
– volume: 17
  start-page: 6368
  year: 2020
  ident: ref_209
  article-title: Multi-Subspace Orthogonal Canonical Correlation Analysis for Quality Related Plant Wide Process Monitoring
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2020.3015034
– volume: 8
  start-page: 14
  year: 1991
  ident: ref_110
  article-title: Wavelets and signal processing
  publication-title: Signal Process. Mag. IEEE
  doi: 10.1109/79.91217
– volume: 7
  start-page: 12
  year: 2013
  ident: ref_739
  article-title: Change-Point Detection for High-Dimensional Time Series With Missing Data
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2012.2234082
– ident: ref_304
  doi: 10.3390/pr10112311
– volume: 24
  start-page: 25
  year: 2013
  ident: ref_483
  article-title: Online monitoring and fault identification of mean shifts in bivariate processes using decision tree learning techniques
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-011-0533-5
– volume: 62
  start-page: 15
  year: 2019
  ident: ref_287
  article-title: Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence
  publication-title: Bus. Horizons
  doi: 10.1016/j.bushor.2018.08.004
– volume: 38
  start-page: 4389
  year: 1999
  ident: ref_40
  article-title: Selection of the Number of Principal Components: The Variance of the Reconstruction Error Criterion with a Comparison to Other Methods
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie990110i
– volume: 209
  start-page: 107990
  year: 2022
  ident: ref_748
  article-title: Fault detection and diagnosis in power transformers: A comprehensive review and classification of publications and methods
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2022.107990
– volume: 20
  start-page: 902
  year: 2010
  ident: ref_526
  article-title: Fault detection and isolation of faults in a multivariate process with Bayesian network
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2010.06.001
– volume: 122
  start-page: 22
  year: 2014
  ident: ref_152
  article-title: Robust PCA via Principal Component Pursuit: A review for a comparative evaluation in video surveillance
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2013.11.009
– volume: 31
  start-page: 1935
  year: 2014
  ident: ref_96
  article-title: Improved fault detection in nonlinear chemical processes using WKPCA-SVDD
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-014-0151-y
– ident: ref_320
– volume: 54
  start-page: 3639
  year: 2020
  ident: ref_749
  article-title: A review on fault detection and diagnosis techniques: Basics and beyond
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09934-2
– volume: 34
  start-page: 8575
  year: 2022
  ident: ref_418
  article-title: Generalized transformer in fault diagnosis of Tennessee Eastman process
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06711-2
– volume: 76
  start-page: 215
  year: 2005
  ident: ref_630
  article-title: Abnormal situation detection and projection methods—Industrial applications. October 28–29, 2003. Hamilton, Ontario, Canada
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2005.01.002
– ident: ref_37
– volume: 194
  start-page: 103863
  year: 2019
  ident: ref_592
  article-title: A MATLAB toolbox for data pre-processing and multivariate statistical process control
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2019.103863
– volume: 70
  start-page: 489
  year: 2006
  ident: ref_331
  article-title: Extreme learning machine: Theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 8
  start-page: 239
  year: 2021
  ident: ref_817
  article-title: A Review on Data Driven Learning Approaches for Fault Detection and Diagnosis in Chemical Processes
  publication-title: ChemBioEng Rev.
  doi: 10.1002/cben.202000027
– volume: 62
  start-page: 1478
  year: 2016
  ident: ref_829
  article-title: A systematic comparison of PCA-based Statistical Process Monitoring methods for high-dimensional, time-dependent Processes
  publication-title: AIChE J.
  doi: 10.1002/aic.15062
– volume: 105
  start-page: 236
  year: 2021
  ident: ref_238
  article-title: Group-sparsity-enforcing fault discrimination and estimation with dynamic process data
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2021.08.003
– volume: 154
  start-page: 107467
  year: 2021
  ident: ref_668
  article-title: Explainability: Relevance based Dynamic Deep Learning Algorithm for Fault Detection and Diagnosis in Chemical Processes
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2021.107467
– volume: 139
  start-page: 106895
  year: 2020
  ident: ref_328
  article-title: Hidden representations in deep neural networks: Part 2. Regression problems
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.106895
– volume: 65
  start-page: 159
  year: 2003
  ident: ref_772
  article-title: Process monitoring using causal map and multivariate statistics: Fault detection and identification
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(02)00140-5
– volume: 60
  start-page: 13914
  year: 2021
  ident: ref_257
  article-title: Novel Process Monitoring Approach Enhanced by a Complex Independent Component Analysis Algorithm with Applications for Wastewater Treatment
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.1c01990
– ident: ref_713
  doi: 10.1007/978-3-031-21867-5
– volume: 89
  start-page: 94
  year: 2019
  ident: ref_516
  article-title: Nonlinear process monitoring using kernel dictionary learning with application to aluminum electrolysis process
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2019.05.021
– volume: 98
  start-page: 1280
  year: 2020
  ident: ref_369
  article-title: A process fault diagnosis method using multi-time scale dynamic feature extraction based on convolutional neural network
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.23740
– ident: ref_481
– volume: 493
  start-page: 497
  year: 2022
  ident: ref_709
  article-title: GAN-based anomaly detection: A review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.12.093
– volume: 349
  start-page: 582
  year: 2005
  ident: ref_736
  article-title: A new method for change-point detection developed for on-line analysis of the heart beat variability during sleep
  publication-title: Phys. A Stat. Mech. Its Appl.
  doi: 10.1016/j.physa.2004.10.026
– volume: 110
  start-page: 654
  year: 2015
  ident: ref_735
  article-title: Detection of Multiple Structural Breaks in Multivariate Time Series
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2014.920613
– volume: 18
  start-page: 429
  year: 2008
  ident: ref_147
  article-title: Fault Detection and Isolation with Robust Principal Component Analysis
  publication-title: Int. J. Appl. Math. Comput. Sci.
  doi: 10.2478/v10006-008-0038-3
– volume: 99
  start-page: 306
  year: 2021
  ident: ref_280
  article-title: Dynamic nonlinear batch process fault detection and identification based on two-directional dynamic kernel slow feature analysis
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.23832
– volume: 79
  start-page: 41
  year: 2019
  ident: ref_606
  article-title: A heterogeneous benchmark dataset for data analytics: Multiphase flow facility case study
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2019.04.009
– volume: 176
  start-page: 155
  year: 2023
  ident: ref_781
  article-title: CausalViT: Domain generalization for chemical engineering process fault detection and diagnosis
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2023.06.018
– volume: 101
  start-page: 2768
  year: 2023
  ident: ref_61
  article-title: Reducing smearing effect in contribution plots and improving fault detection via polynomial approximated isomap embeddings
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.24689
– ident: ref_759
– volume: 44
  start-page: 014233122093570
  year: 2020
  ident: ref_811
  article-title: On wavelet based statistical process monitoring
  publication-title: Trans. Inst. Meas. Control
– volume: 67
  start-page: 69
  year: 2016
  ident: ref_48
  article-title: Comparative study on monitoring schemes for non-Gaussian distributed processes
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2016.08.007
– volume: 26
  start-page: 1553
  year: 2002
  ident: ref_599
  article-title: A modular simulation package for fed-batch fermentation: Penicillin production
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(02)00127-8
– volume: 152
  start-page: 107392
  year: 2021
  ident: ref_189
  article-title: Plant-wide troubleshooting and diagnosis using dynamic embedded latent feature analysis
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2021.107392
– volume: 154
  start-page: 107456
  year: 2021
  ident: ref_276
  article-title: Complex probabilistic slow feature extraction with applications in process data analytics
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2021.107456
– volume: 36
  start-page: 513
  year: 2020
  ident: ref_15
  article-title: A review of data-driven fault detection and diagnosis methods: Applications in chemical process systems
  publication-title: Rev. Chem. Eng.
  doi: 10.1515/revce-2017-0069
– volume: 18
  start-page: 1892
  year: 2020
  ident: ref_211
  article-title: Complex System Monitoring Based on Distributed Least Squares Method
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2020.3022924
– ident: ref_685
– volume: 136
  start-page: 106756
  year: 2020
  ident: ref_644
  article-title: Data-driven process monitoring and fault analysis of reformer units in hydrogen plants: Industrial application and perspectives
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.106756
– volume: 98
  start-page: 79
  year: 2021
  ident: ref_279
  article-title: Decentralized dynamic process monitoring based on manifold regularized slow feature analysis
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2020.12.006
– volume: 16
  start-page: 294
  year: 2008
  ident: ref_638
  article-title: Monitoring a complex refining process using multivariate statistics
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2007.04.014
– volume: 24
  start-page: 1
  year: 1991
  ident: ref_241
  article-title: Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture
  publication-title: Signal Process.
  doi: 10.1016/0165-1684(91)90079-X
– ident: ref_662
  doi: 10.3390/pr11020369
– volume: 140
  start-page: 106938
  year: 2020
  ident: ref_586
  article-title: Synchronizing process variables in time for industrial process monitoring and control
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.106938
– volume: 105
  start-page: 221
  year: 2020
  ident: ref_182
  article-title: Quality monitoring method based on enhanced canonical component analysis
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2020.06.008
– volume: 254
  start-page: 117637
  year: 2022
  ident: ref_396
  article-title: Graph dynamic autoencoder for fault detection
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2022.117637
– volume: 46
  start-page: 143
  year: 2017
  ident: ref_205
  article-title: Multiscale PLS-based GLRT for fault detection of chemical processes
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2017.01.008
– volume: 63
  start-page: 2578
  year: 2016
  ident: ref_463
  article-title: Fault Isolation Based On k-Nearest Neighbor Rule For Industrial Processes
  publication-title: IEEE Trans. Ind. Electron.
– volume: 74
  start-page: 125
  year: 2001
  ident: ref_620
  article-title: Process monitoring of an industrial fed-batch fermentation
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.1102
– volume: 123
  start-page: 106424
  year: 2023
  ident: ref_400
  article-title: Process monitoring using recurrent Kalman variational auto-encoder for general complex dynamic processes
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106424
– volume: 155
  start-page: 107535
  year: 2021
  ident: ref_666
  article-title: Explainable fault diagnosis of gas-liquid separator based on fully convolutional neural network
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2021.107535
– volume: 208
  start-page: 109772
  year: 2022
  ident: ref_33
  article-title: Virtual flow metering of production flow rates of individual wells in oil and gas platforms through data reconciliation
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2021.109772
– volume: 193
  start-page: 116429
  year: 2022
  ident: ref_700
  article-title: Financial Fraud: A Review of Anomaly Detection Techniques and Recent Advances
  publication-title: Expert Syst. Appl. Int. J.
  doi: 10.1016/j.eswa.2021.116429
– volume: 178
  start-page: 108391
  year: 2023
  ident: ref_833
  article-title: Statistical process control versus deep learning for power plant condition monitoring
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2023.108391
– volume: 359
  start-page: 7115
  year: 2022
  ident: ref_541
  article-title: Fault detection and diagnosis strategy based on k-nearest neighbors and fuzzy C-means clustering algorithm for industrial processes
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2022.06.022
– volume: 33
  start-page: 112
  year: 2015
  ident: ref_826
  article-title: A comparison and evaluation of key performance indicator-based multivariate statistics process monitoring approaches
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2015.06.007
– volume: 86
  start-page: 105185
  year: 2023
  ident: ref_367
  article-title: A method for the early prediction of abnormal conditions in chemical processes combined with physical knowledge and the data-driven model
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2023.105185
– volume: 88
  start-page: 143
  year: 2007
  ident: ref_635
  article-title: Industrial implementation of on-line multivariate quality control
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2007.02.005
– volume: 102
  start-page: 104558
  year: 2020
  ident: ref_278
  article-title: Slow feature analysis-independent component analysis based integrated monitoring approach for industrial processes incorporating dynamic and static characteristics
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2020.104558
– volume: 25
  start-page: 800
  year: 2017
  ident: ref_686
  article-title: Computer programming with Python for industrial and systems engineers: Perspectives from an instructor and students
  publication-title: Comput. Appl. Eng. Educ.
  doi: 10.1002/cae.21837
– ident: ref_678
  doi: 10.3390/electronics8080832
– ident: ref_655
– volume: 171
  start-page: 40
  year: 2017
  ident: ref_215
  article-title: Concurrent probabilistic PLS regression model and its applications in process monitoring
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2017.09.015
– volume: 42
  start-page: 74
  year: 2015
  ident: ref_605
  article-title: Statistical process monitoring of a multiphase flow facility
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2015.04.012
– volume: 16
  start-page: 179
  year: 2006
  ident: ref_634
  article-title: Semiconductor manufacturing process control and monitoring: A fab-wide framework
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2005.06.002
– volume: 33
  start-page: 274
  year: 2007
  ident: ref_227
  article-title: Identification of contributing variables using kernel-based discriminant modeling and reconstruction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2006.05.010
– volume: 193
  start-page: 70
  year: 2015
  ident: ref_603
  article-title: The development of an industrial-scale fed-batch fermentation simulation
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2014.10.029
– volume: 175
  start-page: 108264
  year: 2023
  ident: ref_366
  article-title: Applying and dissecting LSTM neural networks and regularized learning for dynamic inferential modeling
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2023.108264
– volume: 155
  start-page: 107512
  year: 2021
  ident: ref_360
  article-title: Echo State network based soft sensor for Monitoring and Fault Detection of Industrial Processes
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2021.107512
– volume: 123
  start-page: 50
  year: 2023
  ident: ref_191
  article-title: Dynamic transfer soft sensor for concept drift adaptation
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2023.01.012
– volume: 19
  start-page: 923
  year: 2009
  ident: ref_228
  article-title: Variable-weighted Fisher discriminant analysis for process fault diagnosis
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2008.12.001
– volume: 37
  start-page: 3311
  year: 1997
  ident: ref_510
  article-title: Sparse coding with an overcomplete basis set: A strategy employed by V1?
  publication-title: Vis. Res.
  doi: 10.1016/S0042-6989(97)00169-7
– volume: 28
  start-page: 321
  year: 1936
  ident: ref_155
  article-title: Relations Between Two Sets of Variates
  publication-title: Biometrika
  doi: 10.1093/biomet/28.3-4.321
– volume: 207
  start-page: 117919
  year: 2022
  ident: ref_386
  article-title: Monitoring of wastewater treatment process based on multi-stage variational autoencoder
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117919
– ident: ref_330
– volume: 55
  start-page: 699
  year: 2006
  ident: ref_106
  article-title: Probability density estimation via an infinite Gaussian mixture model: Application to statistical process monitoring
  publication-title: J. R. Stat. Soc. Ser. C Appl. Stat.
  doi: 10.1111/j.1467-9876.2006.00560.x
– ident: ref_701
– volume: 27
  start-page: 252
  year: 2014
  ident: ref_513
  article-title: Fault Detection via Sparse Representation for Semiconductor Manufacturing Processes
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2014.2302011
– volume: 236
  start-page: 121434
  year: 2024
  ident: ref_222
  article-title: Robust and sparse canonical correlation analysis for fault detection and diagnosis using training data with outliers
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121434
– volume: 49
  start-page: 7858
  year: 2010
  ident: ref_573
  article-title: Multivariate Statistical Process Monitoring Based on Statistics Pattern Analysis
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie901911p
– volume: 250
  start-page: 117373
  year: 2022
  ident: ref_669
  article-title: An explainable artificial intelligence based approach for interpretation of fault classification results from deep neural networks
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2021.117373
– ident: ref_303
  doi: 10.3390/app122312377
– ident: ref_36
  doi: 10.1017/CBO9780511809682
– volume: 17
  start-page: 4036
  year: 2021
  ident: ref_667
  article-title: An Explainable Convolutional Neural Network for Fault Diagnosis in Linear Motion Guide
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2020.3012989
– volume: 361
  start-page: 234
  year: 2024
  ident: ref_282
  article-title: An industrial process fault diagnosis method based on independent slow feature analysis and stacked sparse autoencoder network
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2023.10.004
– volume: 164
  start-page: 107807
  year: 2022
  ident: ref_377
  article-title: Fault diagnosis of a semi-batch crystallization process through deep learning method
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.107807
– volume: 169
  start-page: 937
  year: 2023
  ident: ref_422
  article-title: A novel transformer-based multi-variable multi-step prediction method for chemical process fault prognosis
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2022.11.062
– volume: 49
  start-page: 988
  year: 2017
  ident: ref_728
  article-title: Detecting correlation changes in multivariate time series: A comparison of four non-parametric change point detection methods
  publication-title: Behav. Res. Methods
  doi: 10.3758/s13428-016-0754-9
– volume: 51
  start-page: 147
  year: 2018
  ident: ref_596
  article-title: A Data-Driven Causality Analysis Tool for Fault Diagnosis in Industrial Processes
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.09.548
– ident: ref_548
– volume: 8
  start-page: 769
  year: 2018
  ident: ref_730
  article-title: Testing for the Presence of Correlation Changes in a Multivariate Time Series: A Permutation Based Approach
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-19067-2
– volume: 220
  start-page: 64
  year: 2013
  ident: ref_538
  article-title: Adaptive fault detection and diagnosis using an evolving fuzzy classifier
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2011.08.030
– volume: 17
  start-page: 1432
  year: 2020
  ident: ref_413
  article-title: A Fine-Grained Adversarial Network Method for Cross-Domain Industrial Fault Diagnosis
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2019.2957232
– volume: 48
  start-page: 77
  year: 2022
  ident: ref_717
  article-title: Novelty Detection: A Perspective from Natural Language Processing
  publication-title: Comput. Linguist.
  doi: 10.1162/coli_a_00429
– volume: 164
  start-page: 107905
  year: 2022
  ident: ref_269
  article-title: Improved manifold sparse slow feature analysis for process monitoring
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.107905
– ident: ref_561
– volume: 135
  start-page: 213
  year: 2023
  ident: ref_258
  article-title: A complex-valued slow independent component analysis based incipient fault detection and diagnosis method with applications to wastewater treatment processes
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2022.09.019
– volume: 101
  start-page: 40
  year: 2019
  ident: ref_841
  article-title: FTIR fingerprints associated with a PLS-DA model for rapid detection of smuggled non-compliant diesel marketed in Morocco
  publication-title: Vib. Spectrosc.
  doi: 10.1016/j.vibspec.2019.02.001
– volume: 56
  start-page: 241
  year: 2020
  ident: ref_435
  article-title: Deep fisher autoencoder combined with self-organizing map for visual industrial process monitoring
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2020.05.005
– ident: ref_556
  doi: 10.1007/978-3-030-02384-3
– ident: ref_792
– volume: 89
  start-page: 58
  year: 2020
  ident: ref_813
  article-title: Rebooting data-driven soft-sensors in process industries: A review of kernel methods
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2020.03.012
– volume: 10
  start-page: 1299
  year: 1998
  ident: ref_88
  article-title: Nonlinear Component Analysis as a Kernel Eigenvalue Problem
  publication-title: Neural Comput.
  doi: 10.1162/089976698300017467
– volume: 159
  start-page: 1
  year: 2016
  ident: ref_775
  article-title: Data-driven root cause diagnosis of faults in process industries
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2016.09.006
– volume: 16
  start-page: 763
  year: 2006
  ident: ref_199
  article-title: Performance monitoring of processes with multiple operating modes through multiple PLS models
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2005.12.002
– volume: 13
  start-page: 397
  year: 1999
  ident: ref_65
  article-title: Comparing alternative approaches for multivariate statistical analysis of batch process data
  publication-title: J. Chemom.
  doi: 10.1002/(SICI)1099-128X(199905/08)13:3/4<397::AID-CEM559>3.0.CO;2-I
– ident: ref_725
– ident: ref_20
  doi: 10.1007/978-1-4471-0347-9
– volume: 59
  start-page: 145
  year: 2010
  ident: ref_250
  article-title: Integrating independent component analysis and support vector machine for multivariate process monitoring
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2010.03.011
– volume: 170
  start-page: 108125
  year: 2023
  ident: ref_364
  article-title: Profitability related industrial-scale batch processes monitoring via deep learning based soft sensor development
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.108125
– volume: 22
  start-page: 16314
  year: 2022
  ident: ref_375
  article-title: An Improved Convolutional Neural Network for Recognition of Incipient Faults
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3189484
– volume: 134
  start-page: 106669
  year: 2020
  ident: ref_327
  article-title: Hidden representations in deep neural networks: Part 1. Classification problems
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2019.106669
– volume: 104
  start-page: 158
  year: 2021
  ident: ref_491
  article-title: A novel AdaBoost ensemble model based on the reconstruction of local tangent space alignment and its application to multiple faults recognition
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2021.07.004
– volume: 130
  start-page: 103069
  year: 2023
  ident: ref_425
  article-title: Multi-scale Transformer-CNN domain adaptation network for complex processes fault diagnosis
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2023.103069
– volume: 64
  start-page: 4866
  year: 2017
  ident: ref_515
  article-title: Multimode Process Monitoring and Fault Detection: A Sparse Modeling and Dictionary Learning Method
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2668987
– volume: 206
  start-page: 104167
  year: 2020
  ident: ref_650
  article-title: A recursively updated Map-Reduce based PCA for monitoring the time-varying fluorochemical engineering processes with big data
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2020.104167
– volume: 53
  start-page: 1
  year: 2021
  ident: ref_784
  article-title: A Survey of Learning Causality with Data: Problems and Methods
  publication-title: ACM Comput. Surv.
– volume: 189
  start-page: 56
  year: 2019
  ident: ref_103
  article-title: Data-driven monitoring of multimode continuous processes: A review
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2019.03.012
– volume: 6
  start-page: 329
  year: 1996
  ident: ref_13
  article-title: The process chemometrics approach to process monitoring and fault detection
  publication-title: J. Process Control
  doi: 10.1016/0959-1524(96)00009-1
– volume: 43
  start-page: 6731
  year: 2004
  ident: ref_246
  article-title: Statistical Process Control Charts for Batch Operations Based on Independent Component Analysis
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie049582+
– volume: 112
  start-page: 78
  year: 2020
  ident: ref_183
  article-title: Dynamic statistical process monitoring based on generalized canonical variate analysis
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2020.07.007
– volume: 95
  start-page: 368
  year: 2018
  ident: ref_550
  article-title: Fault diagnosis in industrial chemical processes using interpretable patterns based on Logical Analysis of Data
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.11.045
– volume: 57
  start-page: 107
  year: 2011
  ident: ref_574
  article-title: Statistics pattern analysis: A new process monitoring framework and its application to semiconductor batch processes
  publication-title: AIChE J.
  doi: 10.1002/aic.12247
– volume: 200
  start-page: 70
  year: 2016
  ident: ref_253
  article-title: Fault detection of multimode non-Gaussian dynamic process using dynamic Bayesian independent component analysis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.03.015
– volume: 108
  start-page: 33
  year: 2018
  ident: ref_742
  article-title: Artificial intelligence for fault diagnosis of rotating machinery: A review
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.02.016
– ident: ref_835
  doi: 10.1007/978-1-4471-0421-6
– ident: ref_317
– volume: 31
  start-page: 1473
  year: 2000
  ident: ref_85
  article-title: Non-linear principal components analysis with application to process fault detection
  publication-title: Int. J. Syst. Sci.
  doi: 10.1080/00207720050197848
– volume: 159
  start-page: 107694
  year: 2022
  ident: ref_173
  article-title: A novel unsupervised approach for batch process monitoring using deep learning
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.107694
– volume: 48
  start-page: 3403
  year: 2018
  ident: ref_453
  article-title: Fault Diagnosis of Tennessee-Eastman Process Using Orthogonal Incremental Extreme Learning Machine Based on Driving Amount
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2830338
– volume: 59
  start-page: 1557
  year: 2013
  ident: ref_104
  article-title: Modeling and performance monitoring of multivariate multimodal processes
  publication-title: AIChE J.
  doi: 10.1002/aic.13953
– volume: 2
  start-page: 559
  year: 1901
  ident: ref_34
  article-title: LIII—On lines and planes of closest fit to systems of points in space
  publication-title: Lond. Edinb. Dublin Philos. Mag. J. Sci.
  doi: 10.1080/14786440109462720
– volume: 92
  start-page: 161
  year: 2020
  ident: ref_356
  article-title: An optimized long short-term memory network based fault diagnosis model for chemical processes
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2020.06.005
– volume: 21
  start-page: 6
  year: 2019
  ident: ref_751
  article-title: Machine learning for streaming data: State of the art, challenges, and opportunities
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/3373464.3373470
– volume: 149
  start-page: 99
  year: 2015
  ident: ref_43
  article-title: Determining the number of components in principal components analysis: A comparison of statistical, crossvalidation and approximated methods
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2015.10.006
– ident: ref_132
– volume: 2
  start-page: 409
  year: 2016
  ident: ref_286
  article-title: Heading toward Artificial Intelligence 2.0
  publication-title: Engineering
  doi: 10.1016/J.ENG.2016.04.018
– volume: 30
  start-page: 79
  year: 1997
  ident: ref_78
  article-title: Development and Benchmarking of Multivariate Statistical Process Control Tools for a Semiconductor Etch Process: Improving Robustness through Model Updating
  publication-title: IFAC Proc. Vol.
  doi: 10.1016/S1474-6670(17)43143-0
– ident: ref_167
  doi: 10.1007/978-3-642-69878-1
– volume: 151
  start-page: 107365
  year: 2021
  ident: ref_660
  article-title: Recent trends on hybrid modeling for Industry 4.0
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2021.107365
– volume: 32
  start-page: 1597
  year: 2018
  ident: ref_710
  article-title: An adaptive algorithm for anomaly and novelty detection in evolving data streams
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-018-0571-0
– volume: 37
  start-page: 3971
  year: 1998
  ident: ref_623
  article-title: Multivariate Statistical Analysis of an Emulsion Batch Process
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie980243o
– volume: 102
  start-page: 291
  year: 2023
  ident: ref_402
  article-title: Mechanistic block-based attention mechanism stacked autoencoder for describing typical unit connection industrial processes and their monitoring
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.25016
– volume: 130
  start-page: 103087
  year: 2023
  ident: ref_405
  article-title: An unsupervised fault monitoring framework for blast furnace: Information extraction enhanced GRU-GMM-autoencoder
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2023.103087
– volume: 42
  start-page: 014233122090595
  year: 2020
  ident: ref_476
  article-title: A pruned support vector data description -based outlier detection method: Applied to robust process monitoring
  publication-title: Trans. Inst. Meas. Control
  doi: 10.1177/0142331220905951
– ident: ref_601
– volume: 18
  start-page: 4
  year: 2016
  ident: ref_324
  article-title: The Evolution of Computing: AlphaGo
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2016.74
– volume: 141
  start-page: 106970
  year: 2020
  ident: ref_579
  article-title: Feature engineering in big data analytics for IoT-enabled smart manufacturing – Comparison between deep learning and statistical learning
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.106970
– volume: 5
  start-page: 593
  year: 1926
  ident: ref_6
  article-title: Quality control charts
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1926.tb00125.x
– volume: 48
  start-page: 583
  year: 2015
  ident: ref_486
  article-title: Fault Detection using Random Forest Similarity Distance
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2015.09.589
– volume: 61
  start-page: 6438
  year: 2014
  ident: ref_73
  article-title: A New Method of Dynamic Latent-Variable Modeling for Process Monitoring
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2014.2301761
– volume: 152
  start-page: 69
  year: 2016
  ident: ref_805
  article-title: Review of soft sensor methods for regression applications
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2015.12.011
– volume: 10
  start-page: 100071
  year: 2019
  ident: ref_490
  article-title: Deep ensemble forests for industrial fault classification
  publication-title: IFAC J. Syst. Control
  doi: 10.1016/j.ifacsc.2019.100071
– volume: 107
  start-page: 395
  year: 2017
  ident: ref_427
  article-title: A deep belief network based fault diagnosis model for complex chemical processes
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.02.041
– ident: ref_465
– volume: 150
  start-page: 289
  year: 2015
  ident: ref_558
  article-title: Fully unsupervised fault detection and identification based on recursive density estimation and self-evolving cloud-based classifier
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.05.086
– volume: 103
  start-page: 19
  year: 2021
  ident: ref_565
  article-title: Joint recurrence based root cause analysis of nonlinear multivariate chemical processes
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2021.05.008
– volume: 44
  start-page: 12380
  year: 2011
  ident: ref_798
  article-title: A survey of the application of basic data-driven and model-based methods in process monitoring and fault diagnosis
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20110828-6-IT-1002.02842
– volume: 73
  start-page: 257
  year: 2018
  ident: ref_126
  article-title: Relevant and independent multi-block approach for plant-wide process and quality-related monitoring based on KPCA and SVDD
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2018.01.003
– volume: 89
  start-page: 289
  year: 1997
  ident: ref_442
  article-title: Neuro-fuzzy systems for diagnosis
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(97)00011-0
– volume: 20
  start-page: 609
  year: 2007
  ident: ref_450
  article-title: Neuro-fuzzy networks and their application to fault detection of dynamical systems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2006.11.009
– ident: ref_492
  doi: 10.1109/ICAIS50930.2021.9395905
– volume: 38
  start-page: 101556
  year: 2020
  ident: ref_643
  article-title: Case studies in real-time fault isolation in a decentralized wastewater treatment facility
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2020.101556
– volume: 35
  start-page: 85
  year: 2007
  ident: ref_571
  article-title: Application of Exploratory Data Analysis to Historical Process Data of Polyethylene Production
  publication-title: Bulg. J. Ind. Chem.
– ident: ref_695
  doi: 10.1145/3394486.3406704
– volume: 21
  start-page: 341
  year: 1979
  ident: ref_55
  article-title: Control Procedures for Residuals Associated with Principal Component Analysis
  publication-title: Technometrics
  doi: 10.1080/00401706.1979.10489779
– volume: 61
  start-page: 611
  year: 1999
  ident: ref_134
  article-title: Probabilistic principal component analysis
  publication-title: J. R. Stat. Soc.
  doi: 10.1111/1467-9868.00196
– volume: 62
  start-page: 657
  year: 2015
  ident: ref_802
  article-title: Data-Based Techniques Focused on Modern Industry: An Overview
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2014.2308133
– volume: 27
  start-page: 41
  year: 1995
  ident: ref_143
  article-title: Robust principal components regression as a detection tool for outliers
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/0169-7439(95)80006-U
– ident: ref_390
  doi: 10.1109/TII.2023.3240601
– volume: 93
  start-page: 2029
  year: 2021
  ident: ref_289
  article-title: Machine Learning in Chemical Engineering: A Perspective
  publication-title: Chem. Ing. Tech.
  doi: 10.1002/cite.202100083
– volume: 116
  start-page: 255
  year: 2022
  ident: ref_3
  article-title: Perspectives on nonstationary process monitoring in the era of industrial artificial intelligence
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2022.06.011
– volume: 140
  start-page: 106843
  year: 2020
  ident: ref_299
  article-title: Semi-supervised process fault classification based on convolutional ladder network with local and global feature fusion
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.106843
– volume: 166
  start-page: 107898
  year: 2022
  ident: ref_659
  article-title: Perspectives on the integration between first-principles and data-driven modeling
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.107898
– volume: 113
  start-page: 104843
  year: 2021
  ident: ref_397
  article-title: A novel similarity metric with application to big process data analytics
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2021.104843
– volume: 128
  start-page: 103023
  year: 2023
  ident: ref_611
  article-title: The arc loss challenge: A novel industrial benchmark for process analytics and machine learning
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2023.103023
– ident: ref_726
– ident: ref_672
– volume: 171
  start-page: 108782
  year: 2021
  ident: ref_387
  article-title: Nonlinear process monitoring based on load weighted denoising autoencoder
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108782
– ident: ref_499
– ident: ref_613
– volume: 102
  start-page: 97
  year: 2019
  ident: ref_840
  article-title: Multivariate filters combined with interval partial least square method: A strategy for optimizing PLS models developed with near infrared data of multicomponent solutions
  publication-title: Vib. Spectrosc.
  doi: 10.1016/j.vibspec.2019.05.001
– volume: 139
  start-page: 106875
  year: 2020
  ident: ref_761
  article-title: Ensemble learning based latent variable model predictive control for batch trajectory tracking under concept drift
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.106875
– ident: ref_283
  doi: 10.1109/TNNLS.2022.3201621
– volume: 142
  start-page: 105750
  year: 2024
  ident: ref_521
  article-title: Variable partition based parallel dictionary learning for linearity and nonlinearity coexisting dynamic process monitoring
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2023.105750
– ident: ref_687
  doi: 10.1016/j.neucom.2017.04.070
– volume: 47
  start-page: 8879
  year: 2014
  ident: ref_640
  article-title: Real-time application of multivariate statistical methods for early event detection in an industrial slurry stripper
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20140824-6-ZA-1003.00399
– ident: ref_806
  doi: 10.3390/pr5030035
– volume: 165
  start-page: 463
  year: 2022
  ident: ref_680
  article-title: XFDDC: eXplainable Fault Detection Diagnosis and Correction framework for chemical process systems
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2022.07.019
– volume: 19
  start-page: 1627
  year: 2009
  ident: ref_473
  article-title: Fault detection and diagnosis in process data using one-class support vector machines
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2009.07.011
– ident: ref_837
  doi: 10.1007/978-1-4471-4513-4
– volume: 55
  start-page: 1642
  year: 2016
  ident: ref_260
  article-title: A Novel Strategy of the Data Characteristics Test for Selecting a Process Monitoring Method Automatically
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b03525
– volume: 98
  start-page: 104386
  year: 2020
  ident: ref_518
  article-title: Distributed dictionary learning for high-dimensional process monitoring
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2020.104386
– volume: 19
  start-page: 362
  year: 2014
  ident: ref_448
  article-title: Fault detection and diagnosis of pneumatic valve using Adaptive Neuro-Fuzzy Inference System approach
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.02.008
– volume: 204
  start-page: 104095
  year: 2020
  ident: ref_537
  article-title: Conjugate exponential family graphical models in process monitoring: A tutorial review
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2020.104095
– volume: 168
  start-page: 108055
  year: 2022
  ident: ref_124
  article-title: Analysis of multiscale process monitoring in industrial processes from a bibliometric perspective
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.108055
– volume: 100
  start-page: 54
  year: 2022
  ident: ref_374
  article-title: Chemical process fault diagnosis based on a combined deep learning method
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.24153
– volume: 68
  start-page: e17715
  year: 2022
  ident: ref_661
  article-title: Integration of machine learning and first principles models
  publication-title: AIChE J.
  doi: 10.1002/aic.17715
– volume: 125
  start-page: 28
  year: 2023
  ident: ref_406
  article-title: Fault diagnosis for dynamic system based on the independent latent space reconstruction of generative adversarial network
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2023.04.001
– volume: 13
  start-page: 122
  year: 2016
  ident: ref_234
  article-title: Fault Diagnosis Method of Joint Fisher Discriminant Analysis Based on the Local and Global Manifold Learning and Its Kernel Version
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2015.2417882
– ident: ref_156
– ident: ref_444
  doi: 10.1109/NAFIPS.2011.5751925
– volume: 164
  start-page: 15
  year: 2022
  ident: ref_532
  article-title: Fault detection and diagnosis using Bayesian network model combining mechanism correlation analysis and process data: Application to unmonitored root cause variables type faults
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2022.05.073
– volume: 42
  start-page: 1115
  year: 2009
  ident: ref_25
  article-title: Data-driven Fault Detection and Diagnosis for Complex Industrial Processes
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20090630-4-ES-2003.00184
– ident: ref_684
– volume: 27
  start-page: 327
  year: 2003
  ident: ref_313
  article-title: A review of process fault detection and diagnosis Part III: Process history based methods
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(02)00162-X
– volume: 7
  start-page: 111
  year: 2021
  ident: ref_746
  article-title: Data pre-processing methods for NPP equipment diagnostics algorithms: An overview
  publication-title: Nucl. Energy Technol.
  doi: 10.3897/nucet.7.63675
– ident: ref_166
  doi: 10.1007/978-3-030-79519-1
– volume: 54
  start-page: 1
  year: 2022
  ident: ref_692
  article-title: A Review on Outlier/Anomaly Detection in Time Series Data
  publication-title: ACM Comput. Surv.
– ident: ref_316
  doi: 10.1007/978-81-322-3972-7
– volume: 642
  start-page: 59
  year: 2009
  ident: ref_66
  article-title: The best approaches in the on-line monitoring of batch processes based on PCA: Does the modelling structure matter?
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2009.02.001
– volume: 34
  start-page: 1805
  year: 2020
  ident: ref_758
  article-title: Challenges in benchmarking stream learning algorithms with real-world data
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-020-00698-5
– volume: 51
  start-page: 9
  year: 2018
  ident: ref_430
  article-title: A Deep Belief Network-based Fault Detection Method for Nonlinear Processes
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.09.522
– volume: 14
  start-page: 383
  year: 2000
  ident: ref_203
  article-title: Wavelet-PLS regression models for both exploratory data analysis and process monitoring
  publication-title: J. Chemom.
  doi: 10.1002/1099-128X(200009/12)14:5/6<383::AID-CEM616>3.0.CO;2-5
– volume: 138
  start-page: 203
  year: 2014
  ident: ref_230
  article-title: Semi-supervised Fisher discriminant analysis model for fault classification in industrial processes
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2014.08.008
– volume: 30
  start-page: 29
  year: 1997
  ident: ref_111
  article-title: Improvements in the Development of Models for Monitoring & Detection
  publication-title: IFAC Proc. Vol.
  doi: 10.1016/S1474-6670(17)42376-7
– ident: ref_315
  doi: 10.1007/978-3-319-94463-0
– ident: ref_823
  doi: 10.1177/01423312231157118
– volume: 24
  start-page: 1
  year: 2014
  ident: ref_528
  article-title: Bayesian filtering of the smearing effect: Fault isolation in chemical process monitoring
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2013.12.018
– ident: ref_359
– ident: ref_519
  doi: 10.1007/s10489-020-02128-x
– volume: 124
  start-page: 105182
  year: 2022
  ident: ref_217
  article-title: An analytical partial least squares method for process monitoring
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2022.105182
– volume: 120
  start-page: 1
  year: 2013
  ident: ref_445
  article-title: Fault diagnosis of Tennessee Eastman process with multi-scale PCA and ANFIS
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2012.10.005
– volume: 24
  start-page: 551
  year: 2008
  ident: ref_168
  article-title: PLS: A versatile tool for industrial process improvement and optimization
  publication-title: Appl. Stoch. Model. Bus. Ind.
  doi: 10.1002/asmb.716
– ident: ref_380
  doi: 10.3390/pr11113233
– volume: 97
  start-page: 104344
  year: 2020
  ident: ref_529
  article-title: Robust Bayesian networks for low-quality data modeling and process monitoring applications
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2020.104344
– ident: ref_552
  doi: 10.1002/9781118481769
– volume: 26
  start-page: 2250
  year: 2014
  ident: ref_769
  article-title: Outlier Detection for Temporal Data: A Survey
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2013.184
– volume: 173
  start-page: 108207
  year: 2023
  ident: ref_267
  article-title: Tensor slow feature analysis and its applications for batch process monitoring
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2023.108207
– volume: 62
  start-page: 9773
  year: 2023
  ident: ref_403
  article-title: Unsupervised Fault Detection of Pharmaceutical Processes Using Long Short-Term Memory Autoencoders
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.3c00995
– volume: 61
  start-page: 18426
  year: 2022
  ident: ref_774
  article-title: A Novel Framework for Causality Analysis of Deterministic Dynamical Processes
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.2c02072
– volume: 215
  start-page: 104369
  year: 2021
  ident: ref_502
  article-title: Improving the sensitivity of statistical process monitoring of manifolds embedded in high-dimensional spaces: The truncated-Q statistic
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2021.104369
– volume: 176
  start-page: 108289
  year: 2023
  ident: ref_378
  article-title: Improving convolutional neural networks for fault diagnosis in chemical processes by incorporating global correlations
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2023.108289
– volume: 25
  start-page: 3531
  year: 2021
  ident: ref_389
  article-title: Stacked sparse autoencoders monitoring model based on fault-related variable selection
  publication-title: Soft Comput.
  doi: 10.1007/s00500-020-05384-8
– volume: 73
  start-page: 103
  year: 2019
  ident: ref_434
  article-title: Monitoring of quality-relevant and quality-irrelevant blocks with characteristic-similar variables based on self-organizing map and kernel approaches
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2018.12.009
– volume: 309
  start-page: 46
  year: 2018
  ident: ref_711
  article-title: Concept drift robust adaptive novelty detection for data streams
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.04.069
– volume: 14
  start-page: 577
  year: 2006
  ident: ref_600
  article-title: Introduction to the DAMADICS actuator FDI benchmark study
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2005.06.015
– volume: 27
  start-page: 2526
  year: 2018
  ident: ref_93
  article-title: Deep Principal Component Analysis Based on Layerwise Feature Extraction and Its Application to Nonlinear Process Monitoring
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2018.2865413
– ident: ref_39
– volume: 94
  start-page: 104195
  year: 2020
  ident: ref_530
  article-title: Fault detection and identification combining process measurements and statistical alarms
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2019.104195
– ident: ref_741
  doi: 10.1145/1273496.1273629
– volume: 101
  start-page: 6055
  year: 2023
  ident: ref_582
  article-title: Experimental methods in chemical engineering: Data processing and data usage in decision-making
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.25014
– ident: ref_433
  doi: 10.3390/pr8010123
– volume: 185
  start-page: 135
  year: 2019
  ident: ref_593
  article-title: A graphical user interface for PCA-based MSPC: A benchmark software for multivariate statistical process control in MATLAB
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2018.12.004
– volume: 40
  start-page: 826
  year: 1994
  ident: ref_206
  article-title: Process monitoring and diagnosis by multiblock PLS methods
  publication-title: AIChE J.
  doi: 10.1002/aic.690400509
– volume: 190
  start-page: 117
  year: 2016
  ident: ref_474
  article-title: Fed-batch fermentation penicillin process fault diagnosis and detection based on support vector machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.01.027
– volume: 45
  start-page: 65
  year: 1999
  ident: ref_138
  article-title: Maximum likelihood principal component analysis with correlated measurement errors: Theoretical and practical considerations
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(98)00090-2
– volume: 10
  start-page: 471
  year: 2000
  ident: ref_79
  article-title: Recursive PCA for adaptive process monitoring
  publication-title: J. Process Control
  doi: 10.1016/S0959-1524(00)00022-6
– ident: ref_296
– volume: 37
  start-page: 1307
  year: 2020
  ident: ref_812
  article-title: Reliability based fault analysis models with industrial applications: A systematic literature review
  publication-title: Qual. Reliab. Eng. Int.
  doi: 10.1002/qre.2797
– volume: 55
  start-page: 475
  year: 2008
  ident: ref_482
  article-title: An effective application of decision tree learning for on-line detection of mean shifts in multivariate control charts
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2008.01.013
– volume: 29
  start-page: 4005
  year: 2022
  ident: ref_743
  article-title: Predictive Monitoring of Incipient Faults in Rotating Machinery: A Systematic Review from Data Acquisition to Artificial Intelligence
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-022-09727-6
– ident: ref_718
– volume: 8
  start-page: 108359
  year: 2020
  ident: ref_467
  article-title: A Data-Driven Fault Detection Framework Using Mahalanobis Distance Based Dynamic Time Warping
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3001379
– volume: 15
  start-page: 1779
  year: 2022
  ident: ref_704
  article-title: Anomaly detection in time series: A comprehensive evaluation
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3538598.3538602
– volume: 562
  start-page: 13
  year: 2021
  ident: ref_440
  article-title: Deep model based on mode elimination and Fisher criterion combined with self-organizing map for visual multimodal chemical process monitoring
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.01.036
– volume: 50
  start-page: 6837
  year: 2011
  ident: ref_503
  article-title: Global–Local Structure Analysis Model and Its Application for Fault Detection and Identification
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie102564d
– volume: 134
  start-page: 170
  year: 2022
  ident: ref_705
  article-title: A systematic literature review of IoT time series anomaly detection solutions
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2022.04.005
– ident: ref_32
  doi: 10.3390/pr8091035
– volume: 142
  start-page: 106376
  year: 2020
  ident: ref_99
  article-title: A review of machine learning kernel methods in statistical process monitoring
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106376
– volume: 164
  start-page: 107900
  year: 2022
  ident: ref_610
  article-title: An open source fluid catalytic cracker-fractionator model to support the development and benchmarking of process control, machine learning and operation strategies
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.107900
– volume: 11
  start-page: 26611
  year: 2023
  ident: ref_213
  article-title: Dynamic Decentralized Monitoring for Large-Scale Industrial Processes Using Multiblock Canonical Variate Analysis Based Regression
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3256719
– ident: ref_398
  doi: 10.3390/s22010227
– volume: 49
  start-page: 969
  year: 2003
  ident: ref_247
  article-title: Monitoring independent components for fault detection
  publication-title: AIChE J.
  doi: 10.1002/aic.690490414
– ident: ref_229
  doi: 10.1109/CSIE.2009.348
– volume: 22
  start-page: 359
  year: 2019
  ident: ref_446
  article-title: Fault detection and identification using combination of EKF and neuro-fuzzy network applied to a chemical process (CSTR)
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-017-0634-7
– volume: 43
  start-page: 79
  year: 2010
  ident: ref_484
  article-title: Fault detection and diagnosis with random forest feature extraction and variable importance methods
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20100802-3-ZA-2014.00020
– volume: 180
  start-page: 108448
  year: 2024
  ident: ref_587
  article-title: Automated outlier detection and estimation of missing data
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2023.108448
– volume: 33
  start-page: 425
  year: 2000
  ident: ref_626
  article-title: On-line applications of multivariate statistics at Dofasco
  publication-title: IFAC Proc. Vol.
  doi: 10.1016/S1474-6670(17)37032-5
– volume: 16
  start-page: 1
  year: 2022
  ident: ref_674
  article-title: Interpretable machine learning: Fundamental principles and 10 grand challenges
  publication-title: Stat. Surv.
  doi: 10.1214/21-SS133
– ident: ref_123
  doi: 10.3390/pr7020061
– volume: 164
  start-page: 76
  year: 2017
  ident: ref_157
  article-title: Comparison of CCA and PLS to explore and model NIR data
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2017.03.011
– volume: 40
  start-page: 1361
  year: 1994
  ident: ref_62
  article-title: Monitoring batch processes using multiway principal component analysis
  publication-title: AIChE J.
  doi: 10.1002/aic.690400809
– volume: 26
  start-page: 495
  year: 2010
  ident: ref_639
  article-title: Multivariate process monitoring of an experimental blast furnace
  publication-title: Qual. Reliab. Eng. Int.
  doi: 10.1002/qre.1070
– volume: 70
  start-page: 245
  year: 2021
  ident: ref_675
  article-title: A Survey on the Explainability of Supervised Machine Learning
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.1.12228
– volume: 248
  start-page: 117236
  year: 2022
  ident: ref_272
  article-title: A novel auto-regressive dynamic slow feature analysis method for dynamic chemical process monitoring
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2021.117236
– volume: 52
  start-page: 213
  year: 2019
  ident: ref_763
  article-title: An overview and comprehensive comparison of ensembles for concept drift
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.03.006
– volume: 78
  start-page: 1464
  year: 1990
  ident: ref_346
  article-title: The self-organizing map
  publication-title: Proc. IEEE
  doi: 10.1109/5.58325
– ident: ref_834
– volume: 44
  start-page: 1596
  year: 1998
  ident: ref_113
  article-title: Multiscale PCA with application to multivariate statistical process monitoring
  publication-title: AIChE J.
  doi: 10.1002/aic.690440712
– ident: ref_423
  doi: 10.1016/j.net.2023.11.033
– volume: 22
  start-page: 583
  year: 2012
  ident: ref_461
  article-title: Source identification of plant-wide faults based on k nearest neighbor time delay estimation
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2012.01.005
– volume: 67
  start-page: 35
  year: 2018
  ident: ref_809
  article-title: Statistical process monitoring as a big data analytics tool for smart manufacturing
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2017.06.012
– volume: 64
  start-page: 62
  year: 2018
  ident: ref_487
  article-title: Weighted random forests for fault classification in industrial processes with hierarchical clustering model selection
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2018.02.005
– volume: 41
  start-page: 1471
  year: 1995
  ident: ref_86
  article-title: Reducing data dimensionality through optimizing neural network inputs
  publication-title: AIChE J.
  doi: 10.1002/aic.690410612
– volume: 34
  start-page: 433
  year: 2001
  ident: ref_114
  article-title: Unifying PCA and multiscale approaches to fault detection and isolation
  publication-title: IFAC Proc. Vol.
  doi: 10.1016/S1474-6670(17)33862-4
– volume: 25
  start-page: 166
  year: 2020
  ident: ref_750
  article-title: Faults Diagnosis in Robot Systems: A Review
  publication-title: Al-Rafidain Eng. J. (AREJ)
  doi: 10.33899/rengj.2020.127782.1051
– ident: ref_284
– volume: 60
  start-page: 3092
  year: 2014
  ident: ref_19
  article-title: Process data analytics in the era of big data
  publication-title: AIChE J.
  doi: 10.1002/aic.14523
– ident: ref_54
  doi: 10.1002/9781119600800
– volume: 50
  start-page: 715
  year: 1995
  ident: ref_789
  article-title: The dynamic behavior of continuous solution polymerization reactors—VII. Experimental study of a copolymerization reactor
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(94)00456-2
– volume: 84
  start-page: 234
  year: 2022
  ident: ref_731
  article-title: High-Dimensional, Multiscale Online Changepoint Detection
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/rssb.12447
– volume: 21
  start-page: 1306
  year: 2011
  ident: ref_87
  article-title: Improved nonlinear PCA for process monitoring using support vector data description
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2011.07.003
– volume: 107
  start-page: 104692
  year: 2021
  ident: ref_196
  article-title: Key performance indicator related state monitoring based on kernel canonical correlation analysis
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2020.104692
– ident: ref_426
– volume: 209
  start-page: 112504
  year: 2023
  ident: ref_263
  article-title: Independent component analysis application for fault detection in process industries: Literature review and an application case study for fault detection in multiphase flow systems
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.112504
– volume: 16
  start-page: 819
  year: 2006
  ident: ref_633
  article-title: Online monitoring of steel casting processes using multivariate statistical technologies: From continuous to transitional operations
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2006.03.005
– volume: 170
  start-page: 647
  year: 2023
  ident: ref_679
  article-title: Review of interpretable machine learning for process industries
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2022.12.018
– ident: ref_566
– volume: 11
  start-page: 179
  year: 2001
  ident: ref_570
  article-title: Exploring process data
  publication-title: J. Process Control
  doi: 10.1016/S0959-1524(00)00046-9
– volume: 59
  start-page: 7732
  year: 2020
  ident: ref_649
  article-title: Multivariate Analysis of Industrial Biorefinery Processes: Strategy for Improved Process Understanding with Case Studies in Fatty Acid Production
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.0c00515
– volume: 57
  start-page: 10719
  year: 2018
  ident: ref_807
  article-title: A Bibliometric Review and Analysis of Data-Driven Fault Detection and Diagnosis Methods for Process Systems
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b00936
– volume: 50
  start-page: 92
  year: 2019
  ident: ref_657
  article-title: Data fusion and machine learning for industrial prognosis: Trends and perspectives towards Industry 4.0
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.10.005
– volume: 139
  start-page: 106886
  year: 2020
  ident: ref_305
  article-title: A review On reinforcement learning: Introduction and applications in industrial process control
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.106886
– volume: Volume 35
  start-page: 32142
  year: 2022
  ident: ref_699
  article-title: ADBench: Anomaly Detection Benchmark
  publication-title: Advances in Neural Information Processing Systems, Proceedings of the NeurIPS 2022, New Orleans, LA, USA, 28 November–9 December 2022
– volume: 25
  start-page: 289
  year: 2023
  ident: ref_708
  article-title: Anomaly Detection in Blockchain Networks: A Comprehensive Survey
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2022.3205643
– volume: 59
  start-page: 18595
  year: 2020
  ident: ref_122
  article-title: Multiscale Framework for Real-Time Process Monitoring of Nonlinear Chemical Process Systems
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.0c02288
– volume: 20
  start-page: 100189
  year: 2022
  ident: ref_494
  article-title: Dynamic ensemble selection based improved random forests for fault classification in industrial processes
  publication-title: IFAC J. Syst. Control
  doi: 10.1016/j.ifacsc.2022.100189
– ident: ref_512
  doi: 10.1109/ROBIO.2012.6491087
– volume: 45
  start-page: 84
  year: 2016
  ident: ref_504
  article-title: Process monitoring through manifold regularization-based GMM with global/local information
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2016.07.006
– volume: 1
  start-page: 59
  year: 2015
  ident: ref_148
  article-title: Online update techniques for projection based Robust Principal Component Analysis
  publication-title: ICT Express
  doi: 10.1016/j.icte.2015.09.003
– ident: ref_539
  doi: 10.1109/FUZZ-IEEE.2018.8491547
– volume: 77
  start-page: 74
  year: 2015
  ident: ref_141
  article-title: Deconstructing principal component analysis using a data reconciliation perspective
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2015.03.016
– volume: 43
  start-page: 17
  year: 2015
  ident: ref_747
  article-title: Hybrid computing techniques for fault detection and isolation, a review
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2014.12.015
– volume: 22
  start-page: 10
  year: 2002
  ident: ref_24
  article-title: Process analysis and abnormal situation detection: From theory to practice
  publication-title: IEEE Control Syst.
  doi: 10.1109/MCS.2002.1035214
– ident: ref_159
  doi: 10.1007/978-3-658-16756-1
– volume: 52
  start-page: 2107
  year: 2006
  ident: ref_118
  article-title: Multiscale statistical process control with multiresolution data
  publication-title: AIChE J.
  doi: 10.1002/aic.10805
– volume: 179
  start-page: 108442
  year: 2023
  ident: ref_682
  article-title: Alarm-based explanations of process monitoring results from deep neural networks
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2023.108442
– volume: 65
  start-page: 2683
  year: 2018
  ident: ref_583
  article-title: Linearity Evaluation and Variable Subset Partition Based Hierarchical Process Modeling and Monitoring
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2745452
– ident: ref_52
– volume: 119
  start-page: 105730
  year: 2023
  ident: ref_694
  article-title: Interpretable Anomaly Detection with DIFFI: Depth-based feature importance of Isolation Forest
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105730
– volume: 112
  start-page: 137
  year: 2020
  ident: ref_358
  article-title: Visualization analysis for fault diagnosis in chemical processes using recurrent neural networks
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2020.06.016
– volume: 158
  start-page: 30
  year: 2023
  ident: ref_365
  article-title: LSTMED: An uneven dynamic process monitoring method based on LSTM and Autoencoder neural network
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2022.11.001
– volume: 38
  start-page: 133
  year: 1984
  ident: ref_53
  article-title: Linearly Independent, Orthogonal, and Uncorrelated Variables
  publication-title: Am. Stat.
  doi: 10.1080/00031305.1984.10483183
– volume: 9
  start-page: 161003
  year: 2021
  ident: ref_343
  article-title: Applications of Generative Adversarial Networks in Anomaly Detection: A Systematic Literature Review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3131949
– ident: ref_466
  doi: 10.1007/978-3-540-74048-3
– ident: ref_35
  doi: 10.1007/978-0-387-78189-1
– volume: 17
  start-page: 1925
  year: 2020
  ident: ref_488
  article-title: Data-Driven Approach for Fault Detection and Diagnostic in Semiconductor Manufacturing
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2020.2983061
– volume: 23
  start-page: 1296
  year: 2013
  ident: ref_776
  article-title: Information transfer methods in causality analysis of process variables with an industrial application
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2013.02.003
– volume: 91
  start-page: 104
  year: 2016
  ident: ref_804
  article-title: Abnormal situation management: Challenges and opportunities in the big data era
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2016.04.011
– volume: 47
  start-page: 7758
  year: 2008
  ident: ref_437
  article-title: Multivariate Temporal Data Analysis Using Self-Organizing Maps. 2. Monitoring and Diagnosis of Multistate Operations
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie071022y
– volume: Volume 16
  start-page: 91
  year: 2016
  ident: ref_756
  article-title: An Overview of Concept Drift Applications
  publication-title: Big Data Analysis: New Algorithms for a New Society
– volume: 131
  start-page: 103086
  year: 2023
  ident: ref_683
  article-title: Interpret what a Convolutional Neural Network learns for fault detection and diagnosis in process systems
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2023.103086
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref_498
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref_100
  doi: 10.1049/cp:19971197
– volume: 7
  start-page: 527
  year: 1993
  ident: ref_144
  article-title: Robust principal component analysis by projection pursuit
  publication-title: J. Chemom.
  doi: 10.1002/cem.1180070606
– ident: ref_323
– ident: ref_240
  doi: 10.3390/machines11121066
– ident: ref_824
– volume: 22
  start-page: 59
  year: 2020
  ident: ref_149
  article-title: Online Robust Principal Component Analysis with Change Point Detection
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2019.2923097
– volume: 46
  start-page: 107
  year: 2018
  ident: ref_154
  article-title: Review and big data perspectives on robust data mining approaches for industrial process modeling with outliers and missing data
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2018.09.003
– volume: 54
  start-page: 47
  year: 2017
  ident: ref_121
  article-title: Fault detection using multiscale PCA-based moving window GLRT
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2017.03.004
– volume: 45
  start-page: 696
  year: 2006
  ident: ref_146
  article-title: Robust Recursive Principal Component Analysis Modeling for Adaptive Monitoring
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie050850t
– volume: 79
  start-page: 1
  year: 2019
  ident: ref_383
  article-title: A deep autoencoder feature learning method for process pattern recognition
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2019.05.002
– volume: 290
  start-page: 172
  year: 2018
  ident: ref_160
  article-title: Implementing multivariate statistics-based process monitoring: A comparison of basic data modeling approaches
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.02.051
– volume: 77
  start-page: 1
  year: 2015
  ident: ref_231
  article-title: A combined canonical variate analysis and Fisher discriminant analysis (CVA–FDA) approach for fault diagnosis
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2015.03.001
– volume: 170
  start-page: 660
  year: 2023
  ident: ref_420
  article-title: Exploring global attention mechanism on fault detection and diagnosis for complex engineering processes
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2022.12.055
– volume: 141
  start-page: 107023
  year: 2020
  ident: ref_237
  article-title: Local class-specific discriminant analysis with variable weighting and its application in fault diagnosis
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.107023
– volume: 47
  start-page: 111
  year: 2012
  ident: ref_26
  article-title: Monitoring, fault diagnosis, fault-tolerant control and optimization: Data driven methods
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2012.06.017
– volume: 135
  start-page: 106762
  year: 2020
  ident: ref_577
  article-title: Extracting nonstationary features for process data analytics and application in fouling detection
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.106762
– ident: ref_753
– ident: ref_677
  doi: 10.3390/e23010018
– volume: 37
  start-page: 132
  year: 2017
  ident: ref_765
  article-title: Ensemble learning for data stream analysis: A survey
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.02.004
– volume: 181
  start-page: 106223
  year: 2019
  ident: ref_608
  article-title: A realistic and public dataset with rare undesirable real events in oil wells
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2019.106223
– volume: 59
  start-page: 8757
  year: 2020
  ident: ref_194
  article-title: Concurrent Quality-Relevant Canonical Correlation Analysis for Nonlinear Continuous Process Decomposition and Monitoring
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.0c00895
– volume: 5
  start-page: 28
  year: 2010
  ident: ref_525
  article-title: Bayesian Network Method for Fault Diagnosis in a Continuous Tubular Reactor
  publication-title: Chem. Prod. Process Model.
RelatedPersons Fisher, Ronald Aylmer
RelatedPersons_xml – fullname: Fisher, Ronald Aylmer
SSID ssj0000913856
Score 2.4147093
SecondaryResourceType review_article
Snippet This paper presents a comprehensive review of the historical development, the current state of the art, and prospects of data-driven approaches for industrial...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 251
SubjectTerms Algorithms
Artificial intelligence
Artificial neural networks
Chemical industry
Control charts
Data processing
Didacticism
Fault diagnosis
Fisher, Ronald Aylmer
Herbicides
Machine learning
Methods
Monitoring
Multivariate analysis
Neural networks
Pesticides industry
Principal components analysis
Production processes
Software
Software development
Statistical analysis
Statistics
Surveys
Variables
Title Data-Driven Process Monitoring and Fault Diagnosis: A Comprehensive Survey
URI https://www.proquest.com/docview/2931056892
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSyMxEB_UvngPclaPq_YkcAenD8Hb3SSbvZejZ1uLoIgf4NuSZLMoSFu3W8EX__ab6aZ-gNzjskN2mcl8ZvIbgB9GRs5lLuXKJAkXsS955tOUm6xQxhDy5KIOeXqmRtfi5EbehILbLLRVLm3iwlAXE0c18kN0SzQkXmfxn-kDp6lRdLoaRmisQgtNsMbkq_V3cHZ-8VJlIdRLLVWDS5pgfn84rSLM9ymyfueJPrbHCycz_AwbITpkvUacm7Dix2349AYzsA2bQRtnbD9ARh-0YZ1ixgZyeQtO-qY2vF-RHWPhIgBrdJeWYGZcsKGZ39es3_TZ3c1-sx4jy1D526ahnV3Oq0f_tA3Xw8HV0YiHkQncJYmoufBRbJERpRdapia2UtvSiUhrK5xHX5x5ZTClKpDI6kg6FIyKolJZoVwqy-QLrI0nY_8VWGqTWBufmkKWwqbKmiLOZBH_ElYp9GEdOFiyL3cBT5zGWtznmFcQq_NXVnfg-wvttEHR-JDqJ0khJ9XClZwJNwTwfwikKu_RGSnleKID3aWg8qBzs_x1h-z8__UurOP3RNN73YW1upr7bxha1HYPVvXweC_sInw6fR78A4t0z1s
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ8gPogPRE6Nh6hN1CgPDWy37XZNjLl4nsfni5DwtrbdbiQhx7m3B-Gf4m905roLmhDfeG7TNtP5bGd-A_DOqsT73Gdc2zTlUoSK5yHLuM1LbS0hTy7eIQ8O9fhY7p6okyW47mphKK2y04kLRV2ee3oj30KzRE3iTS6-TH9z6hpFv6tdC43IFnvh6hJDttnnnSHe73shRt-Ovo5521WA-zSVDZchEQ7jhCpIozIrnDKu8jIxxkkf0FzlQVuMOkqc5EyiPJ5dJ0mlndQ-U1WK6z6AhzJNc5IoM_p-86ZDGJtG6YiCiuPbW9M6EeiQCZX8Y_fu1v4LkzZ6AqutL8oGkXnWYClMevD4L4TCHqy1sj9jH1uA6s0erJCHGgGen8Lu0DaWD2vSmqwtO2BRU9ASzE5KNrLzs4YNY1bf6ewTGzDSQ3X4FdPn2Y95fRGunsHxvZDyOSxPzifhBbDMpcLYkNlSVdJl2tlS5KoU29JpjRazD5sd-QrfopdTE42zAqMYInVxS-o-vL2ZO42YHXfO-kC3UJAg40retvUIeB6CxCoG9CNLEaXsw0Z3UUUr4bPilh_X_z_8Bh6Njw72i_2dw72XsIJ7y5j1vQHLTT0Pr9CpadzrBScx-HnfrPsH0LEIVw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLjAbEComOAJUCwB6uN448ECaFCVu0DqgmYtLdgO46YNHUlTUH71_jrONfOBtLE255jXZK78335_DuAF1ok1uZWUanTlHLmapo7pajOK6m1R55c1SE_TeXeMT84ESdr8Lu7C-PbKjubuDLU1bn1NfIhuiU_JD7L2bCObRFHxeTd_Af1E6T8SWs3TiOoyKG7-IXp2-LtfoGyfsnYZPfrhz0aJwxQm6a8pdwlzGDOUDueCaWZEZmpLU-yzHDr0HXlTmrMQCpcZLJEWPwPmSS1NFxaJeoU6d6CdYVZ0agH6-93p0efLys8HnEzEzJgoqZpPhrOm4RheMZE8o8XvN4XrBzc5B7cjZEpGQdV2oQ1N-vDnb_wCvuwGS3BgryOcNU7fdjw8WqAe74PB4VuNS0ab0NJvIRAgt3wJIieVWSil2ctKUKP3-niDRkTb5Ua9z0005Mvy-anu3gAxzfCzIfQm53P3CMgyqQs007pStTcKGl0xXJRsRE3UqL_HMBOx77SRixzP1LjrMScxrO6vGL1AJ5frp0HBI9rV73yUij9tkZKVsfbCfg9HiCrHPvzWZ9f8gFsd4Iq435flFfaufX_x8_gNqpt-XF_evgYNvDVPLSAb0OvbZbuCUY4rXkaVYnAt5vW3j90iw3p
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Process+Monitoring+and+Fault+Diagnosis%3A+A+Comprehensive+Survey&rft.jtitle=Processes&rft.au=Melo%2C+Afr%C3%A2nio&rft.au=Maur%C3%ADcio+Melo+C%C3%A2mara&rft.au=Pinto%2C+Jos%C3%A9+Carlos&rft.date=2024-02-01&rft.pub=MDPI+AG&rft.eissn=2227-9717&rft.volume=12&rft.issue=2&rft.spage=251&rft_id=info:doi/10.3390%2Fpr12020251&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon