Micro-sized porous silicon@PEDOT with high rate capacity and stability for Li-ion battery anode
[Display omitted] •Micro-sized porous Si@PEDOT composite anode was synthesized.•NaOH etching of AlSi powder is prefer to HCl to maintain the micro morphology.•Si@PEDOT exhibited a high rate capacity of 1168 mAh g−1 at 2000 mA g−1. To address the serious volume expansion and poor conductivity of sili...
Saved in:
Published in | Materials letters Vol. 293; p. 129712 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.06.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Micro-sized porous Si@PEDOT composite anode was synthesized.•NaOH etching of AlSi powder is prefer to HCl to maintain the micro morphology.•Si@PEDOT exhibited a high rate capacity of 1168 mAh g−1 at 2000 mA g−1.
To address the serious volume expansion and poor conductivity of silicon anode in lithium ion batteries (LIBs), a strategy through coating conductive polymer on the surface of micro-Si via a facile wet chemical process is proposed. In this way, a porous micro-Si anode coated with poly (3, 4-ethylenedioxythiophene) (PEDOT) was synthesized. This material shows a capacity as high as 1168 mAh g−1 at high current rate of 2000 mA g−1 for anode of LIBs. The synergistic effect of porous structure and PEDOT protective layer could not only relieve the volume expansion, but also enhance the conductivity of Si. This study provides an attractive strategy to deal with volume expansion and low conductivity of Si, which could be very meaningful for the development of high energy density LIBs. |
---|---|
AbstractList | To address the serious volume expansion and poor conductivity of silicon anode in lithium ion batteries (LIBs), a strategy through coating conductive polymer on the surface of micro-Si via a facile wet chemical process is proposed. In this way, a porous micro-Si anode coated with poly (3, 4-ethylenedioxythiophene) (PEDOT) was synthesized. This material shows a capacity as high as 1168 mAh g−1 at high current rate of 2000 mA g−1 for anode of LIBs. The synergistic effect of porous structure and PEDOT protective layer could not only relieve the volume expansion, but also enhance the conductivity of Si. This study provides an attractive strategy to deal with volume expansion and low conductivity of Si, which could be very meaningful for the development of high energy density LIBs. [Display omitted] •Micro-sized porous Si@PEDOT composite anode was synthesized.•NaOH etching of AlSi powder is prefer to HCl to maintain the micro morphology.•Si@PEDOT exhibited a high rate capacity of 1168 mAh g−1 at 2000 mA g−1. To address the serious volume expansion and poor conductivity of silicon anode in lithium ion batteries (LIBs), a strategy through coating conductive polymer on the surface of micro-Si via a facile wet chemical process is proposed. In this way, a porous micro-Si anode coated with poly (3, 4-ethylenedioxythiophene) (PEDOT) was synthesized. This material shows a capacity as high as 1168 mAh g−1 at high current rate of 2000 mA g−1 for anode of LIBs. The synergistic effect of porous structure and PEDOT protective layer could not only relieve the volume expansion, but also enhance the conductivity of Si. This study provides an attractive strategy to deal with volume expansion and low conductivity of Si, which could be very meaningful for the development of high energy density LIBs. |
ArticleNumber | 129712 |
Author | Huang, Jinhua Li, Shuangfu Wang, Jue Han, Kai |
Author_xml | – sequence: 1 givenname: Shuangfu surname: Li fullname: Li, Shuangfu – sequence: 2 givenname: Jinhua surname: Huang fullname: Huang, Jinhua – sequence: 3 givenname: Jue orcidid: 0000-0001-8297-8827 surname: Wang fullname: Wang, Jue email: jwang79@crimson.ua.edu – sequence: 4 givenname: Kai orcidid: 0000-0001-7713-2966 surname: Han fullname: Han, Kai email: kaihan@csu.edu.cn |
BookMark | eNp9kE1LAzEQhoNUsK3-Aw8Bz1vz2XQvotT6AZV6qOAtZLOzNqXd1CRV6q83ZT17Ggae9x3mGaBe61tA6JKSESV0fL0ebU3aQBoxwuiIslJRdoL6dKJ4IUpV9lA_Y6qQSr2foUGMa0KIKInoI_3ibPBFdD9Q450Pfh9xdBtnfXv7OrtfLPG3Syu8ch8rHEwCbM3OWJcO2LQ1jslUGc5b4wOeu8L5FlcmJQhHwNdwjk4bs4lw8TeH6O1htpw-FfPF4_P0bl5YzkUqhJAlpxMpSVPTxjJZCc6NIpNSkBoqWtF6DJYxoyZWUWoFmFJyO5aqMRUD4EN01fXugv_cQ0x67fehzSc1kzx3UyF5pkRH5Z9jDNDoXXBbEw6aEn1Uqde6U6mPKnWnMsduuhjkD74cBB2tg9ZC7QLYpGvv_i_4BQQHgFY |
CitedBy_id | crossref_primary_10_1016_j_ensm_2024_103243 crossref_primary_10_1002_cssc_202101837 crossref_primary_10_1021_acs_energyfuels_4c00633 crossref_primary_10_1002_smll_202303779 crossref_primary_10_1016_j_est_2023_110001 crossref_primary_10_1021_acsmaterialslett_3c00253 crossref_primary_10_1016_j_est_2024_112286 crossref_primary_10_1002_er_7934 crossref_primary_10_1021_acsaem_3c00366 crossref_primary_10_1007_s11581_021_04362_w crossref_primary_10_26599_NRE_2022_9120037 crossref_primary_10_1021_acsapm_3c00531 crossref_primary_10_1021_acsami_3c17597 crossref_primary_10_1039_D3CP00633F |
Cites_doi | 10.1016/j.apsusc.2019.144506 10.1021/acsnano.9b06301 10.1016/j.matlet.2018.08.035 10.1016/j.jpowsour.2015.08.037 10.1039/D0CC04403B 10.1016/j.matlet.2017.04.057 10.1002/anie.201913351 10.1016/j.ensm.2017.05.003 10.1016/j.cej.2018.09.027 10.1016/j.matlet.2018.08.044 10.1016/j.electacta.2017.09.036 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Jun 15, 2021 |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Jun 15, 2021 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.matlet.2021.129712 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-4979 |
ExternalDocumentID | 10_1016_j_matlet_2021_129712 S0167577X21004080 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSZ T5K XPP ZMT ~02 ~G- 29M AAXKI AAYXX ABXDB ACNNM AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW SMS WUQ 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c334t-4459318550fd1fc25b433a708940deb1b1d6ec22a78c711c4ea953c657fab2ee3 |
IEDL.DBID | AIKHN |
ISSN | 0167-577X |
IngestDate | Thu Oct 10 18:25:39 EDT 2024 Thu Sep 26 17:06:00 EDT 2024 Fri Feb 23 02:45:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Conductive polymer Composite materials Si anode Porous material Energy storage and conversion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-4459318550fd1fc25b433a708940deb1b1d6ec22a78c711c4ea953c657fab2ee3 |
ORCID | 0000-0001-8297-8827 0000-0001-7713-2966 |
PQID | 2539311453 |
PQPubID | 2045434 |
ParticipantIDs | proquest_journals_2539311453 crossref_primary_10_1016_j_matlet_2021_129712 elsevier_sciencedirect_doi_10_1016_j_matlet_2021_129712 |
PublicationCentury | 2000 |
PublicationDate | 2021-06-15 |
PublicationDateYYYYMMDD | 2021-06-15 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Materials letters |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Lv, Shang, Chen, Nezhad, Niu (b0040) 2019; 13 Cao, Chen, Liu, Han, Chen, Ye, Sang (b0060) 2019; 320 Zhu, Han, Geng, Ye, Meng (b0020) 2017; 251 Shao, Tang, Yang, Li, Zhang (b0045) 2015; 297 Lin, Liu, Xiong, Wei, Liu, Lin (b0015) 2020; 56 He, Liang, Tian, Zhang, Meng, Han (b0050) 2017; 8 Liu, Gao, He, Yan, Gao, Gao, Lu, Yang (b0055) 2018; 231 Liu, Zhang, Li, Qiao, Fu (b0025) 2018; 231 Yang, Wang, Zhou, Guo, Li (b0030) 2017; 199 Wang, Pei, He, Huang, Zhu, Guo, Shao, Wang (b0035) 2019; 356 Zou, Li, Fan, Wang, Liu, Xiong (b0010) 2020; 504 Wang, Chen, Chen, Kang, Yang, Wang, Liu, Xiong (b0005) 2020; 59 Liu (10.1016/j.matlet.2021.129712_b0025) 2018; 231 Zou (10.1016/j.matlet.2021.129712_b0010) 2020; 504 He (10.1016/j.matlet.2021.129712_b0050) 2017; 8 Wang (10.1016/j.matlet.2021.129712_b0005) 2020; 59 Lv (10.1016/j.matlet.2021.129712_b0040) 2019; 13 Cao (10.1016/j.matlet.2021.129712_b0060) 2019; 320 Zhu (10.1016/j.matlet.2021.129712_b0020) 2017; 251 Wang (10.1016/j.matlet.2021.129712_b0035) 2019; 356 Shao (10.1016/j.matlet.2021.129712_b0045) 2015; 297 Yang (10.1016/j.matlet.2021.129712_b0030) 2017; 199 Lin (10.1016/j.matlet.2021.129712_b0015) 2020; 56 Liu (10.1016/j.matlet.2021.129712_b0055) 2018; 231 |
References_xml | – volume: 8 start-page: 119 year: 2017 end-page: 126 ident: b0050 publication-title: Energy Storage Mater. contributor: fullname: Han – volume: 199 start-page: 84 year: 2017 end-page: 87 ident: b0030 publication-title: Mater. Lett. contributor: fullname: Li – volume: 59 start-page: 2055 year: 2020 end-page: 2060 ident: b0005 publication-title: Angew. Chem. contributor: fullname: Xiong – volume: 504 year: 2020 ident: b0010 publication-title: Appl. Surf. Sci. contributor: fullname: Xiong – volume: 356 start-page: 272 year: 2019 end-page: 281 ident: b0035 publication-title: Chem. Eng. J. contributor: fullname: Wang – volume: 231 start-page: 122 year: 2018 end-page: 125 ident: b0025 publication-title: Mater. Lett. contributor: fullname: Fu – volume: 251 start-page: 710 year: 2017 end-page: 728 ident: b0020 publication-title: Electrochim. Acta contributor: fullname: Meng – volume: 13 start-page: 12032 year: 2019 end-page: 12041 ident: b0040 publication-title: ACS Nano contributor: fullname: Niu – volume: 56 start-page: 10187 year: 2020 end-page: 10190 ident: b0015 publication-title: Chem. Commun. contributor: fullname: Lin – volume: 320 year: 2019 ident: b0060 publication-title: Electrochim. Acta contributor: fullname: Sang – volume: 297 start-page: 344 year: 2015 end-page: 350 ident: b0045 publication-title: J. Power Sources contributor: fullname: Zhang – volume: 231 start-page: 205 year: 2018 end-page: 208 ident: b0055 publication-title: Mater. Lett. contributor: fullname: Yang – volume: 504 year: 2020 ident: 10.1016/j.matlet.2021.129712_b0010 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.144506 contributor: fullname: Zou – volume: 13 start-page: 12032 year: 2019 ident: 10.1016/j.matlet.2021.129712_b0040 publication-title: ACS Nano doi: 10.1021/acsnano.9b06301 contributor: fullname: Lv – volume: 320 year: 2019 ident: 10.1016/j.matlet.2021.129712_b0060 publication-title: Electrochim. Acta contributor: fullname: Cao – volume: 231 start-page: 122 year: 2018 ident: 10.1016/j.matlet.2021.129712_b0025 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.08.035 contributor: fullname: Liu – volume: 297 start-page: 344 year: 2015 ident: 10.1016/j.matlet.2021.129712_b0045 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.08.037 contributor: fullname: Shao – volume: 56 start-page: 10187 year: 2020 ident: 10.1016/j.matlet.2021.129712_b0015 publication-title: Chem. Commun. doi: 10.1039/D0CC04403B contributor: fullname: Lin – volume: 199 start-page: 84 year: 2017 ident: 10.1016/j.matlet.2021.129712_b0030 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2017.04.057 contributor: fullname: Yang – volume: 59 start-page: 2055 year: 2020 ident: 10.1016/j.matlet.2021.129712_b0005 publication-title: Angew. Chem. doi: 10.1002/anie.201913351 contributor: fullname: Wang – volume: 8 start-page: 119 year: 2017 ident: 10.1016/j.matlet.2021.129712_b0050 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.05.003 contributor: fullname: He – volume: 356 start-page: 272 year: 2019 ident: 10.1016/j.matlet.2021.129712_b0035 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.09.027 contributor: fullname: Wang – volume: 231 start-page: 205 year: 2018 ident: 10.1016/j.matlet.2021.129712_b0055 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.08.044 contributor: fullname: Liu – volume: 251 start-page: 710 year: 2017 ident: 10.1016/j.matlet.2021.129712_b0020 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.09.036 contributor: fullname: Zhu |
SSID | ssj0004904 |
Score | 2.4654074 |
Snippet | [Display omitted]
•Micro-sized porous Si@PEDOT composite anode was synthesized.•NaOH etching of AlSi powder is prefer to HCl to maintain the micro... To address the serious volume expansion and poor conductivity of silicon anode in lithium ion batteries (LIBs), a strategy through coating conductive polymer... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 129712 |
SubjectTerms | Anode effect Anodic coatings Anodic protection Composite materials Conducting polymers Conductive polymer Energy storage and conversion Flux density Lithium Lithium-ion batteries Low conductivity Materials science Porous material Porous silicon Protective structures Rechargeable batteries Si anode Synergistic effect |
Title | Micro-sized porous silicon@PEDOT with high rate capacity and stability for Li-ion battery anode |
URI | https://dx.doi.org/10.1016/j.matlet.2021.129712 https://www.proquest.com/docview/2539311453 |
Volume | 293 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS91AFD74QLCLUl9oa2UW3Y4388pkdhWr3NYnqHB3Q-YRiEiU3uvCLvztnslDq1CELhMyIflOcs43k-98AfjGRG4cMnlamMxRKXVOS8cEdXkRsrzSeWZSN_LJaT6-kr8majIH-0MvTJJV9rm_y-lttu73jHo0R3d1PbpIAnql9YQn0zMkPvOwiOUofatd3Pt5ND59aY802bPFdxowdNC1Mi_khQgQThQ528Xapxn_V4V6k6vbAnT4CT72zJHsdRe3AnOxWYUPf_kJrsJSq-f00zWwJ0loR6f1nxgIUmyc35NpfYNhb76fH_w4uyRpAZYks2KSzCKIx6LpkZGTsgkEGWOrmX0gSGnJcU0xeMS1TpzpgNsQ1-Hq8OByf0z7fylQL4ScYRSUSY3SKqsCqzxXTgpR6qwwMguYrx0LefScl7rwmjEvY2mU8LnSVel4jGIDFprbJm4CYRVyoMCLUDglcUbpjO5sbUyQXga3BXTAz951lhl20JJd2w5vm_C2Hd5boAeQ7avQW8zq74zcHmJi-1dvarkSeKdMKvH5v0_8BZbTVpKEMbUNC7Pf9_Erko-Z24H53Ue20z9iTxka11M |
link.rule.ids | 314,780,784,4502,24116,27924,27925,45585,45679 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIkQ5VKUUtfSBD1zdjV9xfKPqQwvsFqRupb1Z8SNSUJVW3eUAB3474zworVRV4po4UfKNM_PZ-uYLwAcmcuOQydPCZI5KqXNaOiaoy4uQ5ZXOM5O6kafn-fhSfp6r-QocD70wSVbZ5_4up7fZuj8y6tEc3dT16CIJ6JXWc55Mz5D4PIPnUiH7xUl9-PtO5yFN9tfgOw0f-udakReyQoQHl4mcHWLl04w_Vp8eZOq2_JxtwHrPG8lR92ivYSU2m_DqHzfBTXjRqjn94g3YaZLZ0UX9KwaCBBtX92RRX2HQm4_fTk--zkjafiXJqpgkqwjisWR65OOkbAJBvtgqZn8SJLRkUlMMHXGtD2cacB3iFlyenc6Ox7T_kwL1QsglxkCZ1CatsiqwynPlpBClzgojs4DZ2rGQR895qQuvGfMylkYJnytdlY7HKN7CanPdxG0grEIGFHgRCqckried0Z2pjQnSy-B2gA742ZvOMMMOSrLvtsPbJrxth_cO6AFkey_wFnP6E1fuDTGx_Ye3sFwJfFMmlXj33zd-Dy_Hs-nETj6df9mFtXQmicOY2oPV5e2PuI80ZOkO2mn2Bwfb2Cw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Micro-sized+porous+silicon%40PEDOT+with+high+rate+capacity+and+stability+for+Li-ion+battery+anode&rft.jtitle=Materials+letters&rft.au=Li%2C+Shuangfu&rft.au=Huang%2C+Jinhua&rft.au=Wang%2C+Jue&rft.au=Han%2C+Kai&rft.date=2021-06-15&rft.pub=Elsevier+B.V&rft.issn=0167-577X&rft.eissn=1873-4979&rft.volume=293&rft_id=info:doi/10.1016%2Fj.matlet.2021.129712&rft.externalDocID=S0167577X21004080 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-577X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-577X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-577X&client=summon |