Graph embedding techniques, applications, and performance: A survey

Graphs, such as social networks, word co-occurrence networks, and communication networks, occur naturally in various real-world applications. Analyzing them yields insight into the structure of society, language, and different patterns of communication. Many approaches have been proposed to perform...

Full description

Saved in:
Bibliographic Details
Published inKnowledge-based systems Vol. 151; pp. 78 - 94
Main Authors Goyal, Palash, Ferrara, Emilio
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.07.2018
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Graphs, such as social networks, word co-occurrence networks, and communication networks, occur naturally in various real-world applications. Analyzing them yields insight into the structure of society, language, and different patterns of communication. Many approaches have been proposed to perform the analysis. Recently, methods which use the representation of graph nodes in vector space have gained traction from the research community. In this survey, we provide a comprehensive and structured analysis of various graph embedding techniques proposed in the literature. We first introduce the embedding task and its challenges such as scalability, choice of dimensionality, and features to be preserved, and their possible solutions. We then present three categories of approaches based on factorization methods, random walks, and deep learning, with examples of representative algorithms in each category and analysis of their performance on various tasks. We evaluate these state-of-the-art methods on a few common datasets and compare their performance against one another. Our analysis concludes by suggesting some potential applications and future directions. We finally present the open-source Python library we developed, named GEM (Graph Embedding Methods, available at https://github.com/palash1992/GEM), which provides all presented algorithms within a unified interface to foster and facilitate research on the topic.
AbstractList Graphs, such as social networks, word co-occurrence networks, and communication networks, occur naturally in various real-world applications. Analyzing them yields insight into the structure of society, language, and different patterns of communication. Many approaches have been proposed to perform the analysis. Recently, methods which use the representation of graph nodes in vector space have gained traction from the research community. In this survey, we provide a comprehensive and structured analysis of various graph embedding techniques proposed in the literature. We first introduce the embedding task and its challenges such as scalability, choice of dimensionality, and features to be preserved, and their possible solutions. We then present three categories of approaches based on factorization methods, random walks, and deep learning, with examples of representative algorithms in each category and analysis of their performance on various tasks. We evaluate these state-of-the-art methods on a few common datasets and compare their performance against one another. Our analysis concludes by suggesting some potential applications and future directions. We finally present the open-source Python library we developed, named GEM (Graph Embedding Methods, available at https://github.com/palash1992/GEM), which provides all presented algorithms within a unified interface to foster and facilitate research on the topic.
Author Goyal, Palash
Ferrara, Emilio
Author_xml – sequence: 1
  givenname: Palash
  orcidid: 0000-0003-2455-2160
  surname: Goyal
  fullname: Goyal, Palash
  email: palashgo@usc.edu
– sequence: 2
  givenname: Emilio
  surname: Ferrara
  fullname: Ferrara, Emilio
BookMark eNqFkM1OwzAQhC1UJNrCG3CIxJWEdZwfpwekqoKCVIkLnC3bWVOX1gl2WqlvT0I5cYDTaqWZ2Z1vQkaucUjINYWEAi3uNsmHa8IxJClQngBLIE3PyJjyMo3LDKoRGUOVQ1xCTi_IJIQNQC-hfEwWSy_bdYQ7hXVt3XvUoV47-7nHcBvJtt1aLTvbuGFzddSiN43fSadxFs2jsPcHPF6ScyO3Aa9-5pS8PT68Lp7i1cvyeTFfxZqxrIuZUoXKS6OoodJgnWlQPGVGFoCoDYNCZ1nNGWO5ypXOgRuuS1mBkqYyRcWm5OaU2_pmeLATm2bvXX9SpMA5lCmwtFdlJ5X2TQgejWi93Ul_FBTEgEtsxAmXGHAJYKJn0dtmv2zadt_VOy_t9j_z_cmMff2DRS-CtthDqq1H3Ym6sX8HfAGYwIux
CitedBy_id crossref_primary_10_1186_s40537_023_00796_3
crossref_primary_10_1007_s10115_023_01963_x
crossref_primary_10_1016_j_neucom_2021_03_020
crossref_primary_10_1109_ACCESS_2022_3140783
crossref_primary_10_1007_s13042_021_01312_w
crossref_primary_10_12677_AAM_2023_1212484
crossref_primary_10_1016_j_knosys_2020_105984
crossref_primary_10_3390_math12121814
crossref_primary_10_1155_2021_3911137
crossref_primary_10_1109_JIOT_2021_3112186
crossref_primary_10_1016_j_dajour_2023_100362
crossref_primary_10_1007_s10462_020_09819_4
crossref_primary_10_1093_bioinformatics_btaa1099
crossref_primary_10_1016_j_neucom_2022_04_110
crossref_primary_10_1109_TCYB_2022_3181810
crossref_primary_10_1371_journal_pone_0224684
crossref_primary_10_1109_TNSE_2021_3073956
crossref_primary_10_1016_j_neunet_2024_107071
crossref_primary_10_1017_nws_2020_39
crossref_primary_10_1080_09540091_2024_2447373
crossref_primary_10_1109_TNSM_2023_3240396
crossref_primary_10_1109_TG_2022_3221849
crossref_primary_10_1016_j_dss_2020_113303
crossref_primary_10_1371_journal_pone_0273830
crossref_primary_10_1093_bioinformatics_btaa881
crossref_primary_10_1142_S0217979218503162
crossref_primary_10_1016_j_drudis_2021_10_014
crossref_primary_10_1016_j_knosys_2020_105969
crossref_primary_10_1109_TKDE_2021_3094908
crossref_primary_10_1109_TKDE_2023_3325461
crossref_primary_10_1016_j_neucom_2022_04_128
crossref_primary_10_1016_j_eswa_2025_126984
crossref_primary_10_1145_3582698
crossref_primary_10_32604_iasc_2023_040818
crossref_primary_10_7717_peerj_cs_1808
crossref_primary_10_1109_TKDE_2019_2955502
crossref_primary_10_1145_3442390
crossref_primary_10_1109_TGRS_2024_3363886
crossref_primary_10_2196_23101
crossref_primary_10_1002_sam_11676
crossref_primary_10_1007_s11390_019_1956_2
crossref_primary_10_1109_TCBB_2023_3297388
crossref_primary_10_1155_2020_5702519
crossref_primary_10_12677_AG_2021_112011
crossref_primary_10_1016_j_jjimei_2022_100078
crossref_primary_10_1016_j_neunet_2023_12_025
crossref_primary_10_3233_JIFS_202961
crossref_primary_10_1007_s40747_023_01211_3
crossref_primary_10_1016_j_knosys_2020_105512
crossref_primary_10_3390_info15070377
crossref_primary_10_1109_ACCESS_2019_2938039
crossref_primary_10_3233_JIFS_191796
crossref_primary_10_1109_TKDE_2019_2951398
crossref_primary_10_1145_3653978
crossref_primary_10_1145_3630635
crossref_primary_10_7717_peerj_cs_262
crossref_primary_10_1016_j_geits_2023_100129
crossref_primary_10_1089_big_2021_0473
crossref_primary_10_1007_s42979_020_00413_7
crossref_primary_10_1007_s10115_023_01941_3
crossref_primary_10_1145_3617828
crossref_primary_10_1145_3418226
crossref_primary_10_1016_j_eswa_2021_114895
crossref_primary_10_1109_TNNLS_2019_2945869
crossref_primary_10_1016_j_ins_2022_07_060
crossref_primary_10_1111_tgis_12803
crossref_primary_10_1177_1748006X211009329
crossref_primary_10_1007_s11192_019_03206_9
crossref_primary_10_1016_j_physd_2025_134632
crossref_primary_10_1016_j_joi_2020_101056
crossref_primary_10_1016_j_csbj_2019_02_002
crossref_primary_10_1109_TPAMI_2022_3202158
crossref_primary_10_1016_j_knosys_2019_105080
crossref_primary_10_1109_ACCESS_2019_2909757
crossref_primary_10_1016_j_cose_2021_102282
crossref_primary_10_1109_ACCESS_2023_3268030
crossref_primary_10_1016_j_eswa_2021_114888
crossref_primary_10_1007_s11280_020_00799_7
crossref_primary_10_1109_TKDE_2023_3265271
crossref_primary_10_1109_TNSE_2022_3217185
crossref_primary_10_1109_ACCESS_2021_3122100
crossref_primary_10_1162_coli_a_00536
crossref_primary_10_1016_j_datak_2021_101909
crossref_primary_10_1038_s41467_020_14974_x
crossref_primary_10_1038_s41467_021_23795_5
crossref_primary_10_1016_j_knosys_2022_108594
crossref_primary_10_1016_j_sigpro_2021_108289
crossref_primary_10_1145_3707650
crossref_primary_10_3390_math12040546
crossref_primary_10_1109_TCSVT_2022_3232604
crossref_primary_10_1007_s13042_024_02430_x
crossref_primary_10_1088_1742_6596_1693_1_012018
crossref_primary_10_1093_bioinformatics_btaa1036
crossref_primary_10_1016_j_visinf_2024_08_001
crossref_primary_10_1109_ACCESS_2019_2908208
crossref_primary_10_1109_ACCESS_2020_2975584
crossref_primary_10_1109_ACCESS_2024_3477321
crossref_primary_10_1016_j_ijepes_2022_108389
crossref_primary_10_1016_j_knosys_2023_110701
crossref_primary_10_1145_3524105
crossref_primary_10_3390_biology11091256
crossref_primary_10_1109_TVCG_2020_3030398
crossref_primary_10_1016_j_neucom_2022_05_109
crossref_primary_10_3390_math12233644
crossref_primary_10_1109_TMM_2023_3279988
crossref_primary_10_1186_s40537_020_00305_w
crossref_primary_10_3390_app12115403
crossref_primary_10_1109_TDSC_2023_3264110
crossref_primary_10_1007_s41060_021_00303_y
crossref_primary_10_1109_ACCESS_2021_3111477
crossref_primary_10_3233_AIC_230028
crossref_primary_10_3390_make1020040
crossref_primary_10_1016_j_procs_2022_01_317
crossref_primary_10_1109_LSP_2023_3298282
crossref_primary_10_3390_fi14020032
crossref_primary_10_1016_j_neucom_2023_126517
crossref_primary_10_1109_ACCESS_2024_3396209
crossref_primary_10_1016_j_patcog_2022_109264
crossref_primary_10_2200_S00980ED1V01Y202001AIM045
crossref_primary_10_1155_2021_6673444
crossref_primary_10_1007_s13735_019_00189_4
crossref_primary_10_3390_e25020257
crossref_primary_10_1016_j_artmed_2024_102864
crossref_primary_10_1142_S0219720021500323
crossref_primary_10_1016_j_knosys_2020_105578
crossref_primary_10_1109_TNNLS_2022_3220548
crossref_primary_10_1016_j_knosys_2019_105458
crossref_primary_10_1016_j_neunet_2020_04_017
crossref_primary_10_1111_ocr_12520
crossref_primary_10_3390_info12070271
crossref_primary_10_1007_s10489_024_05287_3
crossref_primary_10_3390_electronics11203312
crossref_primary_10_1109_TKDE_2020_3036212
crossref_primary_10_1016_j_engappai_2020_104061
crossref_primary_10_1103_PhysRevE_109_024313
crossref_primary_10_1007_s00521_021_06200_6
crossref_primary_10_1016_j_knosys_2023_110512
crossref_primary_10_1016_j_dam_2020_08_022
crossref_primary_10_3390_en16010003
crossref_primary_10_1080_07421222_2024_2376384
crossref_primary_10_1016_j_patcog_2019_03_024
crossref_primary_10_1016_j_neunet_2021_11_026
crossref_primary_10_1177_14738716221114372
crossref_primary_10_1016_j_cose_2023_103519
crossref_primary_10_1109_TKDE_2021_3111997
crossref_primary_10_1016_j_eng_2021_08_018
crossref_primary_10_1016_j_knosys_2020_106448
crossref_primary_10_1007_s10489_024_05363_8
crossref_primary_10_1016_j_knosys_2021_106744
crossref_primary_10_1002_net_22206
crossref_primary_10_1016_j_dajour_2024_100472
crossref_primary_10_1109_ACCESS_2018_2877422
crossref_primary_10_3390_info12050186
crossref_primary_10_1016_j_osnem_2023_100273
crossref_primary_10_1016_j_knosys_2020_106438
crossref_primary_10_1016_j_cosrev_2020_100296
crossref_primary_10_1016_j_asoc_2021_108199
crossref_primary_10_1016_j_patrec_2022_02_001
crossref_primary_10_1016_j_future_2024_107529
crossref_primary_10_1016_j_ibmed_2025_100213
crossref_primary_10_1016_j_ins_2023_118999
crossref_primary_10_1016_j_eswa_2021_115108
crossref_primary_10_1016_j_future_2021_06_027
crossref_primary_10_1155_2020_6939328
crossref_primary_10_3390_inventions5010010
crossref_primary_10_7717_peerj_cs_2562
crossref_primary_10_1109_ACCESS_2019_2928438
crossref_primary_10_1016_j_procs_2020_06_044
crossref_primary_10_32604_csse_2023_023728
crossref_primary_10_1016_j_asoc_2020_106765
crossref_primary_10_1016_j_knosys_2024_112804
crossref_primary_10_1109_TNNLS_2023_3243666
crossref_primary_10_1016_j_knosys_2021_106917
crossref_primary_10_1109_LGRS_2022_3221536
crossref_primary_10_1109_TPAMI_2022_3214832
crossref_primary_10_1007_s00778_021_00701_5
crossref_primary_10_1017_nws_2022_17
crossref_primary_10_1038_s41598_021_91486_8
crossref_primary_10_1109_TNSE_2020_3047580
crossref_primary_10_1109_TCSS_2021_3070914
crossref_primary_10_1109_TITS_2020_2995856
crossref_primary_10_1049_gtd2_12040
crossref_primary_10_1080_17538947_2023_2261769
crossref_primary_10_1007_s10472_022_09811_4
crossref_primary_10_1007_s13721_022_00406_x
crossref_primary_10_1093_bib_bby117
crossref_primary_10_1007_s10791_018_9345_y
crossref_primary_10_1088_2058_9565_ab8504
crossref_primary_10_1016_j_knosys_2019_105468
crossref_primary_10_3233_SW_210446
crossref_primary_10_3233_SW_200404
crossref_primary_10_1109_TII_2019_2929108
crossref_primary_10_1109_TPAMI_2023_3237667
crossref_primary_10_1109_TWC_2023_3281896
crossref_primary_10_1155_2020_7041564
crossref_primary_10_1109_TKDE_2020_2982878
crossref_primary_10_1109_TPDS_2021_3129617
crossref_primary_10_1007_s10664_021_09965_5
crossref_primary_10_1016_j_jocs_2022_101837
crossref_primary_10_1109_TAI_2023_3323637
crossref_primary_10_1007_s10489_021_03138_z
crossref_primary_10_1186_s12859_019_3063_3
crossref_primary_10_1109_TKDE_2022_3221929
crossref_primary_10_7717_peerj_cs_2536
crossref_primary_10_1007_s00521_021_06135_y
crossref_primary_10_1103_PhysRevE_104_044315
crossref_primary_10_1016_j_neucom_2018_08_072
crossref_primary_10_3390_app11219832
crossref_primary_10_3389_fdata_2019_00014
crossref_primary_10_1007_s11042_022_13633_1
crossref_primary_10_1109_TKDE_2020_3038654
crossref_primary_10_1007_s41109_022_00509_4
crossref_primary_10_1016_j_patcog_2023_109386
crossref_primary_10_3390_math13050746
crossref_primary_10_3390_math12030369
crossref_primary_10_1016_j_physa_2019_123633
crossref_primary_10_1016_j_inffus_2023_102190
crossref_primary_10_1038_s41467_023_43337_5
crossref_primary_10_1038_s41467_024_54280_4
crossref_primary_10_3390_info16010046
crossref_primary_10_2200_S01094ED1V01Y202104VIS012
crossref_primary_10_3390_make2040036
crossref_primary_10_1109_TSMC_2019_2932913
crossref_primary_10_1109_ACCESS_2024_3412175
crossref_primary_10_1016_j_ipm_2022_103137
crossref_primary_10_7717_peerj_cs_1030
crossref_primary_10_1016_j_asoc_2021_107831
crossref_primary_10_1016_j_jvcir_2023_103892
crossref_primary_10_1109_ACCESS_2020_3044367
crossref_primary_10_1145_3483595
crossref_primary_10_1016_j_jmb_2024_168841
crossref_primary_10_1038_s41467_022_33685_z
crossref_primary_10_1016_j_knosys_2023_110255
crossref_primary_10_3390_biology12010041
crossref_primary_10_1007_s10994_024_06528_9
crossref_primary_10_3389_frai_2023_1256352
crossref_primary_10_1109_TMM_2020_3034530
crossref_primary_10_1016_j_knosys_2021_107300
crossref_primary_10_3390_sym15061178
crossref_primary_10_1038_s41467_023_39301_y
crossref_primary_10_1109_ACCESS_2019_2961606
crossref_primary_10_1109_JAS_2023_123318
crossref_primary_10_1186_s12911_020_01237_4
crossref_primary_10_1109_TCAD_2021_3079142
crossref_primary_10_1109_ACCESS_2020_2971639
crossref_primary_10_1016_j_knosys_2023_111315
crossref_primary_10_1007_s11042_020_09746_0
crossref_primary_10_3390_electronics10202534
crossref_primary_10_1371_journal_pone_0284077
crossref_primary_10_3389_fenrg_2023_1168944
crossref_primary_10_1007_s13042_022_01643_2
crossref_primary_10_1016_j_is_2023_102272
crossref_primary_10_1049_sfw2_12064
crossref_primary_10_1016_j_is_2023_102273
crossref_primary_10_3390_app14083150
crossref_primary_10_1103_PhysRevA_107_042615
crossref_primary_10_1007_s10458_022_09565_7
crossref_primary_10_1088_2632_072X_ad0e23
crossref_primary_10_1016_j_media_2020_101768
crossref_primary_10_1016_j_inffus_2019_01_005
crossref_primary_10_1016_j_ins_2021_08_028
crossref_primary_10_1155_2020_8372928
crossref_primary_10_4018_IJSWIS_2019100105
crossref_primary_10_1142_S0129183124500797
crossref_primary_10_1098_rspa_2020_0447
crossref_primary_10_1016_j_knosys_2021_106872
crossref_primary_10_1109_ACCESS_2020_2984762
crossref_primary_10_3390_brainsci12081094
crossref_primary_10_1007_s11063_021_10478_x
crossref_primary_10_1016_j_eswa_2021_115063
crossref_primary_10_1186_s12859_018_2584_5
crossref_primary_10_1109_TKDE_2021_3090075
crossref_primary_10_1016_j_artint_2024_104209
crossref_primary_10_1007_s11063_021_10454_5
crossref_primary_10_3390_math11102294
crossref_primary_10_1109_TBDATA_2021_3131610
crossref_primary_10_1016_j_aiopen_2021_05_002
crossref_primary_10_1109_ACCESS_2020_2995406
crossref_primary_10_1093_bioinformatics_btab098
crossref_primary_10_1016_j_dcan_2022_10_002
crossref_primary_10_1016_j_patter_2021_100227
crossref_primary_10_1109_TKDE_2022_3150080
crossref_primary_10_1109_TMC_2023_3336955
crossref_primary_10_1007_s42001_021_00128_6
crossref_primary_10_1007_s10618_020_00733_5
crossref_primary_10_1371_journal_pone_0232891
crossref_primary_10_1109_ACCESS_2021_3090834
crossref_primary_10_1007_s41109_020_00283_1
crossref_primary_10_1016_j_entcom_2024_100767
crossref_primary_10_1142_S0219691321500168
crossref_primary_10_1007_s11042_024_19682_y
crossref_primary_10_1007_s00521_024_10638_9
crossref_primary_10_1021_acs_jcim_4c02140
crossref_primary_10_1016_j_knosys_2021_106895
crossref_primary_10_1016_j_datak_2022_101981
crossref_primary_10_1007_s10489_023_04685_3
crossref_primary_10_1016_j_neunet_2023_02_026
crossref_primary_10_1109_LRA_2020_2994483
crossref_primary_10_3390_a15020027
crossref_primary_10_1002_smr_2330
crossref_primary_10_1103_PhysRevA_101_032314
crossref_primary_10_1109_TCYB_2019_2932096
crossref_primary_10_1109_ACCESS_2020_3035886
crossref_primary_10_1109_TIFS_2024_3364066
crossref_primary_10_1007_s13198_024_02302_1
crossref_primary_10_2200_S01057ED1V01Y202009HLT047
crossref_primary_10_1016_j_knosys_2021_107996
crossref_primary_10_1038_s41598_024_56144_9
crossref_primary_10_3390_app13084743
crossref_primary_10_1016_j_engappai_2022_105727
crossref_primary_10_1007_s10994_022_06130_x
crossref_primary_10_3389_fchem_2019_00782
crossref_primary_10_1007_s11227_024_06613_9
crossref_primary_10_1002_adma_202209503
crossref_primary_10_1016_j_apenergy_2024_124978
crossref_primary_10_1109_TPAMI_2022_3197276
crossref_primary_10_1089_nsm_2020_0003
crossref_primary_10_1007_s11042_021_11857_1
crossref_primary_10_1007_s10994_021_05998_5
crossref_primary_10_1016_j_neunet_2020_08_021
crossref_primary_10_1007_s40324_021_00282_x
crossref_primary_10_1109_TCBB_2024_3492708
crossref_primary_10_1007_s00521_021_06646_8
crossref_primary_10_1016_j_ins_2021_07_026
crossref_primary_10_26599_TST_2021_9010067
crossref_primary_10_1145_3588930
crossref_primary_10_1016_j_chaos_2024_115630
crossref_primary_10_1145_3627704
crossref_primary_10_1073_pnas_1800683115
crossref_primary_10_1016_j_dss_2023_114085
crossref_primary_10_1007_s10115_022_01782_6
crossref_primary_10_1109_TNSE_2024_3417850
crossref_primary_10_1007_s41109_019_0197_1
crossref_primary_10_1016_j_neucom_2020_12_075
crossref_primary_10_1142_S0129183120500710
crossref_primary_10_1109_TAI_2021_3076021
crossref_primary_10_1109_TNNLS_2023_3244397
crossref_primary_10_1155_2022_7471408
crossref_primary_10_1108_LHT_11_2022_0538
crossref_primary_10_1145_3480243
crossref_primary_10_1007_s00371_022_02752_3
crossref_primary_10_1109_ACCESS_2023_3322367
crossref_primary_10_1049_cit2_12367
crossref_primary_10_1109_TEM_2019_2961376
crossref_primary_10_1016_j_eswa_2020_113427
crossref_primary_10_1016_j_ins_2021_08_048
crossref_primary_10_1016_j_engappai_2022_104848
crossref_primary_10_1109_TIP_2021_3062692
crossref_primary_10_1007_s00500_021_06580_w
crossref_primary_10_1109_TCAD_2022_3198513
crossref_primary_10_1109_TIM_2020_3041087
crossref_primary_10_1109_TKDE_2021_3115775
crossref_primary_10_1038_s41467_022_35181_w
crossref_primary_10_1016_j_array_2023_100276
crossref_primary_10_1007_s13278_021_00795_3
crossref_primary_10_1109_ACCESS_2020_2964028
crossref_primary_10_1371_journal_pone_0228728
crossref_primary_10_23919_JSEE_2022_000036
crossref_primary_10_1007_s42979_020_00127_w
crossref_primary_10_1016_j_engappai_2024_109647
crossref_primary_10_1016_j_neucom_2019_12_046
crossref_primary_10_1016_j_oceaneng_2024_116684
crossref_primary_10_1108_IJWIS_10_2019_0048
crossref_primary_10_3389_fnins_2019_01387
crossref_primary_10_1016_j_ins_2019_12_082
crossref_primary_10_1109_ACCESS_2021_3111790
crossref_primary_10_1007_s00180_023_01334_8
crossref_primary_10_1371_journal_pone_0288822
crossref_primary_10_1093_bioadv_vbae164
crossref_primary_10_1109_TSG_2021_3093515
crossref_primary_10_1016_j_knosys_2021_107564
crossref_primary_10_1111_mice_12551
crossref_primary_10_1016_j_artint_2020_103235
crossref_primary_10_1016_j_knosys_2021_107327
crossref_primary_10_1080_01621459_2023_2225239
crossref_primary_10_1109_ACCESS_2020_2971604
crossref_primary_10_1016_j_neucom_2021_06_034
crossref_primary_10_3233_IDA_194676
crossref_primary_10_1186_s12920_019_0605_5
crossref_primary_10_1109_ACCESS_2023_3239266
crossref_primary_10_1007_s11432_018_9943_9
crossref_primary_10_1109_ACCESS_2020_3004964
crossref_primary_10_1186_s12859_023_05612_6
crossref_primary_10_1109_TETC_2020_3027309
crossref_primary_10_1016_j_eswa_2022_117138
crossref_primary_10_1016_j_eswa_2023_119834
crossref_primary_10_1002_widm_1573
crossref_primary_10_1145_3633518
crossref_primary_10_1007_s10489_022_03534_z
crossref_primary_10_1016_j_future_2022_04_013
crossref_primary_10_1016_j_ins_2023_119287
crossref_primary_10_1109_TKDE_2024_3437781
crossref_primary_10_1109_TCSS_2018_2877083
crossref_primary_10_1016_j_patcog_2023_109730
crossref_primary_10_1016_j_neucom_2020_10_008
crossref_primary_10_1186_s12911_022_01938_y
crossref_primary_10_1145_3610228
crossref_primary_10_1038_s42005_023_01143_x
crossref_primary_10_1145_3470659
crossref_primary_10_1109_ACCESS_2022_3174197
crossref_primary_10_1016_j_ipm_2019_102172
crossref_primary_10_1088_2515_7639_ad3d89
crossref_primary_10_1109_ACCESS_2020_2981649
crossref_primary_10_1002_joom_1270
crossref_primary_10_1016_j_mlwa_2022_100326
crossref_primary_10_1109_TNSE_2022_3201529
crossref_primary_10_1016_j_ins_2023_01_146
crossref_primary_10_1145_3442199
crossref_primary_10_1109_TVCG_2018_2887230
crossref_primary_10_1186_s40649_019_0069_y
crossref_primary_10_1002_cpe_5664
crossref_primary_10_1155_2021_2857611
crossref_primary_10_1016_j_ins_2022_07_126
crossref_primary_10_1109_TMM_2020_2976627
crossref_primary_10_1109_ACCESS_2021_3070395
crossref_primary_10_1007_s40747_021_00332_x
crossref_primary_10_1007_s41651_025_00217_4
crossref_primary_10_1007_s10994_024_06513_2
crossref_primary_10_32604_cmes_2023_024781
crossref_primary_10_1016_j_jmsy_2021_08_002
crossref_primary_10_1109_ACCESS_2025_3526650
crossref_primary_10_1186_s12859_021_04303_4
crossref_primary_10_1007_s11227_023_05282_4
crossref_primary_10_1016_j_knosys_2022_108699
crossref_primary_10_1016_j_knosys_2022_109547
crossref_primary_10_1016_j_health_2022_100084
crossref_primary_10_1016_j_procs_2024_03_203
crossref_primary_10_31590_ejosat_937722
crossref_primary_10_3390_app10051755
crossref_primary_10_1007_s00521_021_06617_z
crossref_primary_10_1016_j_eswa_2023_119994
crossref_primary_10_1016_j_tranpol_2022_04_018
crossref_primary_10_1016_j_cities_2020_103012
crossref_primary_10_1016_j_jss_2021_111066
crossref_primary_10_1016_j_knosys_2020_105861
crossref_primary_10_1016_j_neucom_2020_10_054
crossref_primary_10_1016_j_knosys_2020_106707
crossref_primary_10_1186_s12859_021_03971_6
crossref_primary_10_1016_j_neucom_2021_02_100
crossref_primary_10_1007_s41109_019_0203_7
crossref_primary_10_1093_bib_bbaa037
crossref_primary_10_3390_rs17061075
crossref_primary_10_1093_bioinformatics_btaa768
crossref_primary_10_1109_TKDE_2020_2987784
crossref_primary_10_1080_17445760_2024_2425298
crossref_primary_10_3390_app122110898
crossref_primary_10_1109_ACCESS_2019_2927496
crossref_primary_10_1049_blc2_12031
crossref_primary_10_3233_SW_222986
crossref_primary_10_1007_s10115_023_01986_4
crossref_primary_10_1088_1742_6596_1976_1_012037
crossref_primary_10_1109_TNNLS_2022_3221103
crossref_primary_10_1016_j_eswa_2022_119454
crossref_primary_10_1109_ACCESS_2024_3500374
crossref_primary_10_3390_s20071978
crossref_primary_10_1093_comjnl_bxab064
crossref_primary_10_1093_database_baad045
crossref_primary_10_1177_01655515221101841
crossref_primary_10_1038_s41598_022_08787_9
crossref_primary_10_1371_journal_pntd_0008924
crossref_primary_10_1089_big_2021_0107
crossref_primary_10_1109_TVCG_2019_2922597
crossref_primary_10_1093_bib_bbad324
crossref_primary_10_1186_s12859_018_2163_9
crossref_primary_10_1016_j_chaos_2021_111260
crossref_primary_10_1109_TBDATA_2022_3194643
crossref_primary_10_1155_2020_8810817
crossref_primary_10_1007_s41109_021_00415_1
crossref_primary_10_1109_TCYB_2022_3227805
crossref_primary_10_1109_ACCESS_2019_2920671
crossref_primary_10_1016_j_dam_2022_01_017
crossref_primary_10_1109_ACCESS_2019_2942221
crossref_primary_10_1145_3548685
crossref_primary_10_1016_j_ajhg_2021_12_008
crossref_primary_10_1109_TII_2019_2947066
crossref_primary_10_1007_s13278_021_00720_8
crossref_primary_10_1155_2019_4906903
crossref_primary_10_1007_s10489_023_05162_7
crossref_primary_10_1016_j_chaos_2023_114071
crossref_primary_10_1016_j_isci_2022_104446
crossref_primary_10_1109_TKDE_2020_3045924
crossref_primary_10_1049_ccs2_12108
crossref_primary_10_1088_1757_899X_1012_1_012065
crossref_primary_10_1109_ACCESS_2020_2978517
crossref_primary_10_1007_s40821_024_00270_x
crossref_primary_10_3390_e23111542
crossref_primary_10_1007_s11192_023_04840_0
crossref_primary_10_1371_journal_pone_0297903
crossref_primary_10_3390_e26020149
crossref_primary_10_3390_app10072421
crossref_primary_10_1051_itmconf_20224701003
crossref_primary_10_3390_e24081084
crossref_primary_10_1093_database_baab033
crossref_primary_10_1109_TDSC_2023_3242009
crossref_primary_10_1186_s40537_021_00539_2
crossref_primary_10_1007_s11227_022_04958_7
crossref_primary_10_1109_ACCESS_2020_3037118
crossref_primary_10_1007_s11036_023_02091_0
crossref_primary_10_1002_spe_2886
crossref_primary_10_1109_TKDE_2021_3078755
crossref_primary_10_1016_j_neucom_2019_07_076
crossref_primary_10_3389_fphy_2021_763904
crossref_primary_10_1088_1742_5468_abb45a
crossref_primary_10_1109_TKDE_2022_3150792
crossref_primary_10_1016_j_patcog_2022_109126
crossref_primary_10_1038_s41598_021_87987_1
crossref_primary_10_1007_s00521_024_10797_9
crossref_primary_10_1007_s10994_020_05898_0
crossref_primary_10_1109_TETC_2018_2830698
crossref_primary_10_1007_s13278_020_00714_y
crossref_primary_10_1111_2041_210X_14228
crossref_primary_10_1145_3380988
crossref_primary_10_1016_j_jii_2024_100759
crossref_primary_10_1002_tpg2_20522
crossref_primary_10_1109_ACCESS_2019_2916186
crossref_primary_10_1007_s13278_020_00649_4
crossref_primary_10_1016_j_knosys_2023_110821
crossref_primary_10_1109_TKDE_2022_3200723
crossref_primary_10_1016_j_websem_2022_100759
crossref_primary_10_1016_j_aiopen_2021_01_001
crossref_primary_10_1109_TNSE_2023_3239661
crossref_primary_10_1093_bib_bbab340
crossref_primary_10_3390_math11071705
crossref_primary_10_3390_electronics11203410
crossref_primary_10_3233_DS_210034
crossref_primary_10_3233_SW_222925
crossref_primary_10_1016_j_knosys_2020_105822
crossref_primary_10_1109_ACCESS_2022_3176436
crossref_primary_10_3390_a10040109
crossref_primary_10_1088_1742_6596_1955_1_012057
crossref_primary_10_1103_PhysRevE_103_012305
crossref_primary_10_1016_j_knosys_2019_06_024
crossref_primary_10_1145_3387726_3387729
crossref_primary_10_1109_ACCESS_2023_3306783
crossref_primary_10_1109_TBDATA_2018_2850013
crossref_primary_10_1016_j_eswa_2019_113079
crossref_primary_10_1109_ACCESS_2024_3425892
crossref_primary_10_1093_bioinformatics_btab202
crossref_primary_10_1016_j_eswa_2020_114294
crossref_primary_10_1016_j_neunet_2019_01_013
crossref_primary_10_1007_s13278_019_0561_2
crossref_primary_10_1371_journal_pcsy_0000012
crossref_primary_10_32604_cmc_2022_021186
crossref_primary_10_1016_j_eswa_2023_120347
crossref_primary_10_1145_3397191
crossref_primary_10_1007_s40747_022_00929_w
crossref_primary_10_1109_TCSS_2022_3182550
crossref_primary_10_1007_s10559_019_00213_9
crossref_primary_10_1016_j_neunet_2021_06_028
crossref_primary_10_1002_int_22840
crossref_primary_10_3390_a18020083
crossref_primary_10_12677_CSA_2022_124114
crossref_primary_10_1016_j_eswa_2021_115896
crossref_primary_10_1016_j_fmre_2023_10_001
crossref_primary_10_7717_peerj_cs_521
crossref_primary_10_1016_j_jtbi_2024_111850
crossref_primary_10_1007_s12652_020_02289_0
crossref_primary_10_33847_2686_8296_2_2_2
crossref_primary_10_1145_3429446
crossref_primary_10_1109_TKDE_2024_3421933
crossref_primary_10_1007_s40558_021_00195_5
crossref_primary_10_1007_s11192_022_04425_3
crossref_primary_10_1109_ACCESS_2021_3054894
crossref_primary_10_3389_fdata_2020_608043
crossref_primary_10_1016_j_eswa_2024_126156
crossref_primary_10_1140_epjds_s13688_022_00344_8
crossref_primary_10_1080_23311916_2023_2221962
crossref_primary_10_1007_s11280_021_00934_y
crossref_primary_10_1016_j_is_2020_101624
crossref_primary_10_1109_TKDE_2021_3101840
crossref_primary_10_3390_s24072106
crossref_primary_10_1016_j_aei_2023_101888
crossref_primary_10_1016_j_knosys_2019_105301
crossref_primary_10_1093_nargab_lqae004
crossref_primary_10_1007_s10489_021_02633_7
crossref_primary_10_1002_hbm_25966
crossref_primary_10_1093_comnet_cnac030
crossref_primary_10_1016_j_ipm_2019_01_002
crossref_primary_10_3390_atmos13091449
crossref_primary_10_1016_j_knosys_2022_109597
crossref_primary_10_1007_s10618_018_0581_y
crossref_primary_10_1093_bioinformatics_btaa150
crossref_primary_10_1016_j_knosys_2022_110172
crossref_primary_10_1007_s41060_019_00190_4
crossref_primary_10_34706_DE_2024_03_06
crossref_primary_10_3233_SW_212968
crossref_primary_10_1016_j_knosys_2023_110456
crossref_primary_10_1016_j_jclepro_2024_142549
crossref_primary_10_1016_j_compbiomed_2024_109158
crossref_primary_10_1016_j_patcog_2020_107684
crossref_primary_10_1016_j_eswa_2021_115466
crossref_primary_10_1038_s41392_022_00994_0
crossref_primary_10_1109_TASLP_2021_3059114
crossref_primary_10_1016_j_eswa_2019_04_061
crossref_primary_10_1109_TLT_2021_3059362
crossref_primary_10_1016_j_eswa_2023_121236
crossref_primary_10_1109_ACCESS_2020_2972132
crossref_primary_10_1109_ACCESS_2020_2984352
crossref_primary_10_1109_ACCESS_2020_2984593
crossref_primary_10_1016_j_measurement_2023_114039
crossref_primary_10_3390_machines10090776
crossref_primary_10_1007_s00521_020_04924_5
crossref_primary_10_1109_TNNLS_2020_2978386
crossref_primary_10_3390_info11050250
crossref_primary_10_1016_j_neucom_2024_127820
crossref_primary_10_1109_ACCESS_2020_2975895
crossref_primary_10_1016_j_neucom_2023_126430
crossref_primary_10_1038_s41598_022_24567_x
crossref_primary_10_2139_ssrn_4051095
crossref_primary_10_1016_j_neucom_2023_126434
crossref_primary_10_1145_3398071
crossref_primary_10_1088_1402_4896_ad9fae
crossref_primary_10_1109_ACCESS_2020_2984342
crossref_primary_10_1109_JIOT_2020_3036583
crossref_primary_10_3233_JIFS_220233
crossref_primary_10_1016_j_ifacol_2023_12_082
crossref_primary_10_1007_s11042_023_15096_4
crossref_primary_10_1109_ACCESS_2019_2913086
crossref_primary_10_1145_3580516
crossref_primary_10_1186_s12911_020_01134_w
crossref_primary_10_1109_ACCESS_2021_3082932
crossref_primary_10_1109_TNSE_2021_3140099
crossref_primary_10_3390_genes14071441
crossref_primary_10_1007_s00607_021_00982_2
crossref_primary_10_1145_3369782
crossref_primary_10_3233_JIFS_233540
crossref_primary_10_1016_j_knosys_2021_106802
crossref_primary_10_1016_j_compenvurbsys_2024_102228
crossref_primary_10_1109_TIM_2024_3440387
crossref_primary_10_1109_TKDE_2020_3030807
crossref_primary_10_1016_j_physrep_2019_12_004
crossref_primary_10_1017_ATSIP_2020_13
crossref_primary_10_1109_ACCESS_2020_3017382
crossref_primary_10_1007_s00521_021_06706_z
crossref_primary_10_1016_j_is_2021_101766
crossref_primary_10_1016_j_ipm_2022_103253
crossref_primary_10_1155_2021_2260488
crossref_primary_10_1007_s11280_021_00999_9
crossref_primary_10_1145_3543508
crossref_primary_10_1039_C9RE00213H
crossref_primary_10_1109_ACCESS_2019_2958326
crossref_primary_10_1007_s10994_022_06160_5
crossref_primary_10_1016_j_cosrev_2020_100246
crossref_primary_10_1111_cgf_14859
crossref_primary_10_1089_big_2019_0169
crossref_primary_10_1109_TCYB_2020_2995595
crossref_primary_10_1109_TBDATA_2020_3034976
crossref_primary_10_1016_j_csite_2025_105888
crossref_primary_10_1007_s10489_021_03113_8
crossref_primary_10_1109_ACCESS_2020_2983987
crossref_primary_10_1007_s00371_022_02548_5
crossref_primary_10_1007_s11042_023_14538_3
crossref_primary_10_3233_SW_190363
crossref_primary_10_1007_s11280_022_01115_1
crossref_primary_10_2196_32730
crossref_primary_10_1016_j_knosys_2020_106266
crossref_primary_10_1016_j_jpi_2023_100335
crossref_primary_10_1016_j_eswa_2022_116757
crossref_primary_10_3233_SW_190359
crossref_primary_10_1109_TCSS_2019_2962819
crossref_primary_10_1007_s10462_024_10998_7
crossref_primary_10_2196_29570
crossref_primary_10_1142_S012918312450133X
crossref_primary_10_3389_fdata_2024_1427104
crossref_primary_10_1140_epja_s10050_024_01385_5
crossref_primary_10_1109_TCE_2023_3255231
crossref_primary_10_1007_s42979_020_00388_5
crossref_primary_10_1109_TKDE_2022_3153060
crossref_primary_10_1109_TCSS_2024_3479188
crossref_primary_10_1109_TNSE_2020_3035352
crossref_primary_10_1109_TBDATA_2022_3164575
crossref_primary_10_1007_s11257_024_09417_x
crossref_primary_10_1109_TSMC_2022_3196506
crossref_primary_10_1016_j_patcog_2020_107347
crossref_primary_10_1007_s12065_019_00257_y
crossref_primary_10_1016_j_jnca_2021_103151
crossref_primary_10_1007_s00521_018_03967_z
crossref_primary_10_3390_app9204473
crossref_primary_10_1007_s10115_022_01808_z
crossref_primary_10_1016_j_cviu_2023_103744
crossref_primary_10_1016_j_jhydrol_2022_128792
crossref_primary_10_1109_MNET_011_2000444
crossref_primary_10_3390_en17143516
crossref_primary_10_1109_TKDE_2020_3046511
crossref_primary_10_1016_j_eswa_2021_116031
crossref_primary_10_1016_j_imavis_2021_104371
crossref_primary_10_1007_s11280_020_00849_0
crossref_primary_10_1109_TNSE_2023_3332499
crossref_primary_10_1007_s41109_020_00329_4
crossref_primary_10_1145_3680463
crossref_primary_10_1016_j_knosys_2024_112635
crossref_primary_10_1137_22M1518281
crossref_primary_10_3233_JIFS_231548
crossref_primary_10_21105_joss_00876
crossref_primary_10_1109_ACCESS_2020_3022664
crossref_primary_10_1007_s11280_023_01154_2
crossref_primary_10_1016_j_knosys_2023_111278
crossref_primary_10_1109_ACCESS_2020_2992269
crossref_primary_10_7717_peerj_cs_2286
crossref_primary_10_1103_PhysRevE_103_022316
crossref_primary_10_1007_JHEP11_2024_038
crossref_primary_10_1109_TIP_2019_2928630
crossref_primary_10_1016_j_knosys_2019_105418
crossref_primary_10_1109_TNNLS_2019_2956095
crossref_primary_10_1007_s10489_022_03285_x
crossref_primary_10_1093_comnet_cnaa007
crossref_primary_10_1109_TLT_2022_3196355
crossref_primary_10_1007_s12559_022_10098_0
crossref_primary_10_1109_ACCESS_2020_3045532
crossref_primary_10_1142_S0219622022500730
crossref_primary_10_1063_5_0224710
crossref_primary_10_1016_j_eswa_2021_116463
crossref_primary_10_1016_j_jnca_2021_103113
crossref_primary_10_1109_TITS_2022_3163756
crossref_primary_10_1155_2022_9154712
crossref_primary_10_1007_s11227_020_03198_x
crossref_primary_10_1109_ACCESS_2022_3225413
crossref_primary_10_1007_s13042_019_01003_7
crossref_primary_10_1016_j_isci_2023_106460
crossref_primary_10_1109_ACCESS_2021_3085114
crossref_primary_10_1109_TKDE_2024_3493391
crossref_primary_10_1111_coin_12502
crossref_primary_10_1126_sciadv_abb9004
crossref_primary_10_1007_s10844_020_00625_6
crossref_primary_10_1007_s41019_023_00206_x
crossref_primary_10_1016_j_ejor_2020_03_019
crossref_primary_10_3390_app13021093
crossref_primary_10_3390_ijgi14020046
crossref_primary_10_1073_pnas_2019994118
crossref_primary_10_1109_ACCESS_2024_3360480
crossref_primary_10_1007_s41109_019_0147_y
crossref_primary_10_1016_j_knosys_2020_106244
crossref_primary_10_1016_j_neunet_2024_106207
crossref_primary_10_1016_j_neuroimage_2021_118469
crossref_primary_10_1016_j_ins_2020_07_036
crossref_primary_10_3390_math10183345
crossref_primary_10_3390_electronics12132763
crossref_primary_10_1089_brain_2024_0056
crossref_primary_10_1007_s10618_020_00684_x
crossref_primary_10_1016_j_measurement_2022_111353
crossref_primary_10_1007_s11042_021_11582_9
crossref_primary_10_1088_1402_4896_ad3eea
crossref_primary_10_1038_s41467_021_26674_1
crossref_primary_10_1109_TKDE_2024_3523857
crossref_primary_10_1186_s12859_022_04650_w
crossref_primary_10_1109_TVCG_2024_3388562
crossref_primary_10_1016_j_ins_2020_05_012
crossref_primary_10_1109_TKDE_2023_3304478
crossref_primary_10_1093_bib_bbad261
crossref_primary_10_1080_1206212X_2024_2404087
crossref_primary_10_1145_3638059
crossref_primary_10_1103_PhysRevResearch_2_023040
crossref_primary_10_1016_j_neunet_2025_107173
crossref_primary_10_1007_s00371_023_02913_y
crossref_primary_10_1287_ijds_2022_00018
crossref_primary_10_1109_TKDE_2020_3006475
crossref_primary_10_1109_TPAMI_2021_3104733
crossref_primary_10_3389_fphy_2021_768006
crossref_primary_10_1140_epjds_s13688_021_00277_8
crossref_primary_10_1186_s12859_022_04598_x
crossref_primary_10_1109_TKDE_2022_3206175
crossref_primary_10_1103_PhysRevResearch_6_013337
crossref_primary_10_14778_3352063_3352126
crossref_primary_10_1016_j_knosys_2021_107021
crossref_primary_10_1063_5_0232539
crossref_primary_10_3390_s23084168
crossref_primary_10_1016_j_eswa_2019_112883
crossref_primary_10_1371_journal_pcbi_1007434
crossref_primary_10_1016_j_inffus_2021_04_012
crossref_primary_10_1177_01655515221111002
crossref_primary_10_1109_TR_2022_3176922
crossref_primary_10_1016_j_websem_2020_100590
crossref_primary_10_1007_s13385_024_00384_6
crossref_primary_10_1109_TPAMI_2021_3061162
crossref_primary_10_1007_s00521_020_04908_5
crossref_primary_10_3233_IDA_194749
crossref_primary_10_3390_publications12040049
crossref_primary_10_3390_s21062175
crossref_primary_10_1007_s11280_021_01001_2
crossref_primary_10_1016_j_eswa_2021_114934
crossref_primary_10_1093_gigascience_giaa032
crossref_primary_10_1162_qss_a_00260
crossref_primary_10_1016_j_knosys_2019_104953
crossref_primary_10_1016_j_neucom_2021_12_026
crossref_primary_10_1002_widm_1454
crossref_primary_10_1016_j_heliyon_2024_e31813
crossref_primary_10_1109_TSE_2019_2892959
crossref_primary_10_1155_2021_2934362
crossref_primary_10_3390_e24050730
crossref_primary_10_1007_s10115_023_01934_2
crossref_primary_10_1109_TKDE_2022_3148284
crossref_primary_10_1016_j_engappai_2023_107028
crossref_primary_10_1109_TITS_2020_2984175
crossref_primary_10_1038_s41567_022_01716_7
crossref_primary_10_1109_TKDE_2019_2931542
crossref_primary_10_1016_j_neucom_2022_08_033
crossref_primary_10_1016_j_patcog_2022_108661
crossref_primary_10_1016_j_physrep_2020_03_002
crossref_primary_10_54097_hset_v16i_2624
crossref_primary_10_1080_13658816_2025_2472195
crossref_primary_10_1016_j_mlwa_2022_100441
crossref_primary_10_3390_math11183990
crossref_primary_10_1016_j_eswa_2021_114913
crossref_primary_10_1186_s13321_020_00447_2
crossref_primary_10_1007_s42484_024_00178_9
crossref_primary_10_1016_j_ins_2020_05_032
crossref_primary_10_1109_TCSS_2024_3367231
crossref_primary_10_1109_TCSS_2023_3323512
crossref_primary_10_1007_s00500_023_08665_0
crossref_primary_10_1016_j_engappai_2023_107240
crossref_primary_10_1109_ACCESS_2019_2932396
crossref_primary_10_2139_ssrn_3981100
crossref_primary_10_1007_s00607_022_01115_z
crossref_primary_10_3390_a15040114
crossref_primary_10_7717_peerj_cs_172
crossref_primary_10_1007_s11042_024_18439_x
crossref_primary_10_1016_j_mlwa_2021_100130
crossref_primary_10_1016_j_ipm_2021_102546
crossref_primary_10_1016_j_xinn_2021_100176
crossref_primary_10_1109_TBDATA_2022_3177455
crossref_primary_10_55056_cte_298
crossref_primary_10_1021_acs_est_3c00653
crossref_primary_10_1007_s10489_023_05108_z
crossref_primary_10_1145_3481639
Cites_doi 10.1086/jar.33.4.3629752
10.1109/JPROC.2010.2044470
10.1016/j.socnet.2004.11.009
10.1038/nprot.2009.177
10.1109/34.908974
10.1007/BF01098364
10.1109/34.868688
10.1109/2945.841119
10.1016/S0378-8733(03)00009-1
10.1038/nature06830
10.1109/TPAMI.2007.250598
10.7551/mitpress/7432.003.0009
10.1109/TKDE.2016.2591009
10.1007/BF02289026
10.1016/j.patcog.2010.11.015
10.1098/rspb.2001.1800
10.1103/PhysRevE.69.026113
10.1126/science.290.5500.2323
10.1109/TPAMI.2013.50
10.1016/0893-6080(90)90005-6
10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N
10.1126/science.290.5500.2319
10.1137/0713009
10.1016/0005-1098(78)90005-5
10.1086/226141
10.1016/0378-8733(83)90021-7
10.1080/14786440109462720
10.1609/aaai.v32i1.11849
10.14778/1687627.1687709
10.1109/TKDE.2007.46
10.1016/0925-7721(94)00014-X
10.1145/1217299.1217301
10.1016/j.physa.2010.11.027
10.1080/01621459.1987.10478385
10.1002/asi.20591
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier Science Ltd. Jul 1, 2018
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Jul 1, 2018
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2018.03.022
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
EndPage 94
ExternalDocumentID 10_1016_j_knosys_2018_03_022
S0950705118301540
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
SSH
UHS
WUQ
7SC
8FD
E3H
EFKBS
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-3bb6b57fb1f1afed4c0b823fa60eecf306c44d83335b5bc508f8c7a90baf9f693
IEDL.DBID .~1
ISSN 0950-7051
IngestDate Fri Jul 25 05:10:17 EDT 2025
Tue Jul 01 04:37:54 EDT 2025
Thu Apr 24 23:09:19 EDT 2025
Fri Feb 23 02:29:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Python graph embedding methods GEM library
Graph embedding applications
Graph embedding techniques
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-3bb6b57fb1f1afed4c0b823fa60eecf306c44d83335b5bc508f8c7a90baf9f693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2455-2160
PQID 2088072032
PQPubID 2035257
PageCount 17
ParticipantIDs proquest_journals_2088072032
crossref_primary_10_1016_j_knosys_2018_03_022
crossref_citationtrail_10_1016_j_knosys_2018_03_022
elsevier_sciencedirect_doi_10_1016_j_knosys_2018_03_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-01
2018-07-00
20180701
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2018
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Zachary (bib0091) 1977; 33
W.L. Hamilton, R. Ying, J. Leskovec, Inductive representation learning on large graphs, arXiv
Rissanen (bib0073) 1978; 14
J. Leskovec, A. Krevl, SNAP datasets: Stanford large network dataset collection, 2014
Tang, Liu (bib0093) 2009
Wang, Wong (bib0090) 1987; 82
T.N. Kipf, M. Welling, Variational graph auto-encoders, arXiv
Friedman, Getoor, Koller, Pfeffer (bib0017) 1999
Lin, Liu, Chen (bib0043) 2005
White, Boorman, Breiger (bib0016) 1976; 81
Zhang, Yin, Zhu, Zhang (bib0047) 2016
Jaccard (bib0013) 1901
Neville, Jensen (bib0087) 2000
Fouss, Pirotte, Renders, Saerens (bib0050) 2007; 19
Van Loan (bib0034) 1976; 13
McCallum, Nigam (bib0089) 1998; 752
Tenenbaum, De Silva, Langford (bib0038) 2000; 290
Freeman (bib0002) 2000; 1
Azran (bib0009) 2007
Huang, Li, Hu (bib0048) 2017
(2013).
Martínez, Kak (bib0037) 2001; 23
Gehrke, Ginsparg, Kleinberg (bib0094) 2003; 5
.
Lu, Getoor (bib0012) 2003; 3
(2017).
Kruskal, Wish (bib0039) 1978; 11
Pan, Wu, Zhu, Zhang, Wang (bib0055) 2016; 11
Bhagat, Cormode, Muthukrishnan (bib0006) 2011
Duvenaud, Maclaurin, Iparraguirre, Bombarell, Hirzel, Aspuru-Guzik, Adams (bib0061) 2015
Wang, Cui, Zhu (bib0023) 2016
H. Dai, Y. Wang, R. Trivedi, L. Song, Deep coevolutionary network: embedding user and item features for recommendation (2017).
Ou, Cui, Pei, Zhang, Zhu (bib0024) 2016
Di Battista, Eades, Tamassia, Tollis (bib0076) 1994; 4
Leskovec, Kleinberg, Faloutsos (bib0004) 2007; 1
Belkin, Niyogi (bib0025) 2001; 14
Hornik, Stinchcombe, White (bib0067) 1990; 3
W.L. Hamilton, R. Ying, J. Leskovec, Representation learning on graphs: methods and applications, arXiv preprint arXiv
Li, Zhu, Zhang (bib0054) 2016
i Cancho, Solé (bib0003) 2001; 268
Martínez, Kak (bib0042) 2008; 23
Wright, Ma, Mairal, Sapiro, Huang, Yan (bib0102) 2010; 98
Clauset, Moore, Newman (bib0015) 2008; 453
Niepert, Ahmed, Kutzkov (bib0057) 2016
Herman, Melançon, Marshall (bib0078) 2000; 6
(2016).
Feder, Motwani (bib0068) 1991
Bengio, Courville, Vincent (bib0058) 2013; 35
Tang, Qu, Wang, Zhang, Yan, Mei (bib0022) 2015
Chang, Han, Tang, Qi, Aggarwal, Huang (bib0045) 2015
He, Niyogi (bib0040) 2004
Bunke, Riesen (bib0103) 2011; 44
Tian, Hankins, Patel (bib0070) 2008
Yang, Tang, Cohen (bib0053) 2016
Katz (bib0085) 1953; 18
Hosmer Jr, Lemeshow, Sturdivant (bib0088) 2013; 398
Eades, Xuemin (bib0077) 1989
J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks and locally connected networks on graphs, arXiv
Riesen, Neuhaus, Bunke (bib0101) 2007
Maaten, Hinton (bib0008) 2008; 9
T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, arXiv
B. Perozzi, V. Kulkarni, S. Skiena, Walklets: multiscale graph embeddings for interpretable network classification, arXiv
Shaw, Jebara (bib0033) 2009
Z. Yang, W.W. Cohen, R. Salakhutdinov, Revisiting semi-supervised learning with graph embeddings, arXiv
H. Chen, B. Perozzi, Y. Hu, S. Skiena, Harp: hierarchical representation learning for networks, arXiv
Defferrard, Bresson, Vandergheynst (bib0063) 2016
M. Henaff, J. Bruna, Y. LeCun, Deep convolutional networks on graph-structured data, arXiv
Navlakha, Rastogi, Shrivastava (bib0072) 2008
(2015).
Shi, Malik (bib0020) 2000; 22
Liben-Nowell, Kleinberg (bib0005) 2007; 58
Cao, Lu, Xu (bib0030) 2016
Yu, Chu, Yu, Tresp, Xu (bib0086) 2006
Brand (bib0041) 2003
Jungnickel, Schade (bib0074) 2005
P. Goyal, N. Kamra, X. He, Y. Liu, Dyngem: deep embedding method for dynamic graphs.
Zhu, Guo, Yin, Ver Steeg, Galstyan (bib0099) 2016; 28
Baluja, Seth, Sivakumar, Jing, Yagnik, Kumar, Ravichandran, Aly (bib0010) 2008
Al Hasan, Zaki (bib0084) 2011
Yan, Xu, Zhang, Zhang, Yang, Lin (bib0035) 2007; 29
Roweis, Saul (bib0026) 2000; 290
Yang, Liu, Zhao, Sun, Chang (bib0044) 2015
Lü, Zhou (bib0083) 2011; 390
Tang, Liu (bib0092) 2009
Newman (bib0049) 2005; 27
Perozzi, Al-Rfou, Skiena (bib0028) 2014
Ding, He, Zha, Gu, Simon (bib0007) 2001
Heckerman, Meek, Koller (bib0018) 2007
Toivonen, Zhou, Hartikainen, Hinkka (bib0071) 2011
Pearson (bib0079) 1901; 2
H. Cai, V.W. Zheng, K.C.-C. Chang, A comprehensive survey of graph embedding: problems, techniques and applications, arXiv preprint arXiv
Tu, Zhang, Liu, Sun (bib0046) 2016
Theocharidis, Van Dongen, Enright, Freeman (bib0001) 2009; 4
Breitkreutz, Stark, Reguly, Boucher, Breitkreutz, Livstone, Oughtred, Lackner, Bähler, Wood (bib0096) 2008; 36
Zhou, Cheng, Yu (bib0019) 2009; 2
Jolliffe (bib0036) 1986
Adamic, Adar (bib0014) 2003; 25
Luo, Nie, Huang, Ding (bib0032) 2011
Grover, Leskovec (bib0029) 2016
Newman, Girvan (bib0080) 2004; 69
White, Smyth (bib0082) 2005
Y. Li, D. Tarlow, M. Brockschmidt, R. Zemel, Gated graph sequence neural networks, arXiv
Xu, Yuruk, Feng, Schweiger (bib0081) 2007
Pardalos, Xue (bib0069) 1994; 4
Holland, Laskey, Leinhardt (bib0100) 1983; 5
Ahmed, Shervashidze, Narayanamurthy, Josifovski, Smola (bib0021) 2013
D.P. Kingma, M. Welling, Auto-encoding variational bayes, arXiv
Gansner, North (bib0075) 2000; 30
Cao, Lu, Xu (bib0027) 2015
Bhagat, Rozenbaum, Cormode (bib0011) 2007
Zhou (10.1016/j.knosys.2018.03.022_bib0019) 2009; 2
10.1016/j.knosys.2018.03.022_bib0059
Lu (10.1016/j.knosys.2018.03.022_bib0012) 2003; 3
Defferrard (10.1016/j.knosys.2018.03.022_bib0063) 2016
Cao (10.1016/j.knosys.2018.03.022_bib0027) 2015
Niepert (10.1016/j.knosys.2018.03.022_bib0057) 2016
Chang (10.1016/j.knosys.2018.03.022_bib0045) 2015
Wang (10.1016/j.knosys.2018.03.022_bib0090) 1987; 82
10.1016/j.knosys.2018.03.022_bib0060
10.1016/j.knosys.2018.03.022_bib0062
10.1016/j.knosys.2018.03.022_bib0064
Bunke (10.1016/j.knosys.2018.03.022_bib0103) 2011; 44
Yan (10.1016/j.knosys.2018.03.022_bib0035) 2007; 29
10.1016/j.knosys.2018.03.022_bib0066
10.1016/j.knosys.2018.03.022_bib0065
Leskovec (10.1016/j.knosys.2018.03.022_bib0004) 2007; 1
Liben-Nowell (10.1016/j.knosys.2018.03.022_bib0005) 2007; 58
Grover (10.1016/j.knosys.2018.03.022_bib0029) 2016
Pan (10.1016/j.knosys.2018.03.022_bib0055) 2016; 11
Gansner (10.1016/j.knosys.2018.03.022_bib0075) 2000; 30
Ahmed (10.1016/j.knosys.2018.03.022_bib0021) 2013
Ding (10.1016/j.knosys.2018.03.022_bib0007) 2001
10.1016/j.knosys.2018.03.022_bib0051
10.1016/j.knosys.2018.03.022_bib0052
10.1016/j.knosys.2018.03.022_bib0056
Newman (10.1016/j.knosys.2018.03.022_bib0049) 2005; 27
Lü (10.1016/j.knosys.2018.03.022_bib0083) 2011; 390
Brand (10.1016/j.knosys.2018.03.022_bib0041) 2003
Newman (10.1016/j.knosys.2018.03.022_bib0080) 2004; 69
Zhu (10.1016/j.knosys.2018.03.022_bib0099) 2016; 28
Bengio (10.1016/j.knosys.2018.03.022_bib0058) 2013; 35
10.1016/j.knosys.2018.03.022_bib0105
Pearson (10.1016/j.knosys.2018.03.022_bib0079) 1901; 2
10.1016/j.knosys.2018.03.022_bib0104
Eades (10.1016/j.knosys.2018.03.022_bib0077) 1989
Katz (10.1016/j.knosys.2018.03.022_bib0085) 1953; 18
Theocharidis (10.1016/j.knosys.2018.03.022_bib0001) 2009; 4
Yang (10.1016/j.knosys.2018.03.022_bib0053) 2016
Bhagat (10.1016/j.knosys.2018.03.022_bib0011) 2007
Bhagat (10.1016/j.knosys.2018.03.022_bib0006) 2011
Fouss (10.1016/j.knosys.2018.03.022_bib0050) 2007; 19
Tenenbaum (10.1016/j.knosys.2018.03.022_bib0038) 2000; 290
Martínez (10.1016/j.knosys.2018.03.022_bib0037) 2001; 23
Al Hasan (10.1016/j.knosys.2018.03.022_bib0084) 2011
Gehrke (10.1016/j.knosys.2018.03.022_bib0094) 2003; 5
Friedman (10.1016/j.knosys.2018.03.022_bib0017) 1999
Roweis (10.1016/j.knosys.2018.03.022_bib0026) 2000; 290
Holland (10.1016/j.knosys.2018.03.022_bib0100) 1983; 5
Cao (10.1016/j.knosys.2018.03.022_bib0030) 2016
Xu (10.1016/j.knosys.2018.03.022_bib0081) 2007
Navlakha (10.1016/j.knosys.2018.03.022_bib0072) 2008
Zhang (10.1016/j.knosys.2018.03.022_bib0047) 2016
Jolliffe (10.1016/j.knosys.2018.03.022_bib0036) 1986
Baluja (10.1016/j.knosys.2018.03.022_bib0010) 2008
Adamic (10.1016/j.knosys.2018.03.022_bib0014) 2003; 25
Toivonen (10.1016/j.knosys.2018.03.022_bib0071) 2011
Hornik (10.1016/j.knosys.2018.03.022_bib0067) 1990; 3
Shi (10.1016/j.knosys.2018.03.022_bib0020) 2000; 22
Huang (10.1016/j.knosys.2018.03.022_bib0048) 2017
Tang (10.1016/j.knosys.2018.03.022_bib0093) 2009
i Cancho (10.1016/j.knosys.2018.03.022_bib0003) 2001; 268
Jungnickel (10.1016/j.knosys.2018.03.022_bib0074) 2005
Ou (10.1016/j.knosys.2018.03.022_bib0024) 2016
Tian (10.1016/j.knosys.2018.03.022_bib0070) 2008
Yu (10.1016/j.knosys.2018.03.022_bib0086) 2006
White (10.1016/j.knosys.2018.03.022_bib0082) 2005
He (10.1016/j.knosys.2018.03.022_bib0040) 2004
Neville (10.1016/j.knosys.2018.03.022_bib0087) 2000
Breitkreutz (10.1016/j.knosys.2018.03.022_bib0096) 2008; 36
Belkin (10.1016/j.knosys.2018.03.022_bib0025) 2001; 14
Martínez (10.1016/j.knosys.2018.03.022_bib0042) 2008; 23
10.1016/j.knosys.2018.03.022_bib0095
10.1016/j.knosys.2018.03.022_bib0097
10.1016/j.knosys.2018.03.022_bib0098
Azran (10.1016/j.knosys.2018.03.022_bib0009) 2007
Luo (10.1016/j.knosys.2018.03.022_bib0032) 2011
Clauset (10.1016/j.knosys.2018.03.022_bib0015) 2008; 453
Lin (10.1016/j.knosys.2018.03.022_bib0043) 2005
White (10.1016/j.knosys.2018.03.022_bib0016) 1976; 81
Feder (10.1016/j.knosys.2018.03.022_bib0068) 1991
Yang (10.1016/j.knosys.2018.03.022_bib0044) 2015
Jaccard (10.1016/j.knosys.2018.03.022_bib0013) 1901
Maaten (10.1016/j.knosys.2018.03.022_bib0008) 2008; 9
Perozzi (10.1016/j.knosys.2018.03.022_bib0028) 2014
Shaw (10.1016/j.knosys.2018.03.022_bib0033) 2009
Zachary (10.1016/j.knosys.2018.03.022_bib0091) 1977; 33
Tang (10.1016/j.knosys.2018.03.022_bib0022) 2015
Kruskal (10.1016/j.knosys.2018.03.022_bib0039) 1978; 11
Duvenaud (10.1016/j.knosys.2018.03.022_bib0061) 2015
Hosmer Jr (10.1016/j.knosys.2018.03.022_bib0088) 2013; 398
Rissanen (10.1016/j.knosys.2018.03.022_bib0073) 1978; 14
Wright (10.1016/j.knosys.2018.03.022_bib0102) 2010; 98
Van Loan (10.1016/j.knosys.2018.03.022_bib0034) 1976; 13
Li (10.1016/j.knosys.2018.03.022_bib0054) 2016
Riesen (10.1016/j.knosys.2018.03.022_bib0101) 2007
Pardalos (10.1016/j.knosys.2018.03.022_bib0069) 1994; 4
Heckerman (10.1016/j.knosys.2018.03.022_bib0018) 2007
Herman (10.1016/j.knosys.2018.03.022_bib0078) 2000; 6
Di Battista (10.1016/j.knosys.2018.03.022_bib0076) 1994; 4
Tu (10.1016/j.knosys.2018.03.022_bib0046) 2016
Freeman (10.1016/j.knosys.2018.03.022_bib0002) 2000; 1
Wang (10.1016/j.knosys.2018.03.022_bib0023) 2016
10.1016/j.knosys.2018.03.022_bib0031
McCallum (10.1016/j.knosys.2018.03.022_bib0089) 1998; 752
Tang (10.1016/j.knosys.2018.03.022_bib0092) 2009
References_xml – reference: H. Cai, V.W. Zheng, K.C.-C. Chang, A comprehensive survey of graph embedding: problems, techniques and applications, arXiv preprint arXiv:
– start-page: 201
  year: 2007
  end-page: 238
  ident: bib0018
  article-title: Probabilistic entity-relationship models, prms, and plate models
  publication-title: Intro. Stat. Relational Learn.
– start-page: 1225
  year: 2016
  end-page: 1234
  ident: bib0023
  article-title: Structural deep network embedding
  publication-title: Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining
– reference: ).
– start-page: 547
  year: 2003
  end-page: 554
  ident: bib0041
  article-title: Continuous nonlinear dimensionality reduction by kernel eigenmaps
  publication-title: IJCAI
– start-page: 383
  year: 2007
  end-page: 393
  ident: bib0101
  article-title: Graph embedding in vector spaces by means of prototype selection
  publication-title: International Workshop on Graph-Based Representations in Pattern Recognition
– start-page: 1300
  year: 1999
  end-page: 1309
  ident: bib0017
  article-title: Learning probabilistic relational models
  publication-title: IJCAI
– volume: 25
  start-page: 211
  year: 2003
  end-page: 230
  ident: bib0014
  article-title: Friends and neighbors on the web
  publication-title: Soc. Netw.
– start-page: 2224
  year: 2015
  end-page: 2232
  ident: bib0061
  article-title: Convolutional networks on graphs for learning molecular fingerprints
  publication-title: Advances in neural information processing systems
– start-page: 817
  year: 2009
  end-page: 826
  ident: bib0092
  article-title: Relational learning via latent social dimensions
  publication-title: Proceedings of the 15th international conference on Knowledge discovery and data mining
– start-page: 1553
  year: 2006
  end-page: 1560
  ident: bib0086
  article-title: Stochastic relational models for discriminative link prediction
  publication-title: NIPS
– start-page: 37
  year: 2013
  end-page: 48
  ident: bib0021
  article-title: Distributed large-scale natural graph factorization
  publication-title: Proceedings of the 22nd international conference on World Wide Web
– start-page: 965
  year: 2011
  end-page: 973
  ident: bib0071
  article-title: Compression of weighted graphs
  publication-title: Proc. 17th international conference on Knowledge discovery and data mining
– volume: 58
  start-page: 1019
  year: 2007
  end-page: 1031
  ident: bib0005
  article-title: The link-prediction problem for social networks
  publication-title: J. Assoc. Inf. Sci. Technol.
– reference: T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, arXiv:
– volume: 398
  year: 2013
  ident: bib0088
  article-title: Applied logistic regression
– volume: 2
  start-page: 559
  year: 1901
  end-page: 572
  ident: bib0079
  article-title: Liii. on lines and planes of closest fit to systems of points in space
  publication-title: Lond., Edinburgh, Dublin Philos. Mag. J. Sci.
– start-page: 249
  year: 2005
  end-page: 258
  ident: bib0043
  article-title: Semantic manifold learning for image retrieval
  publication-title: Proceedings of the 13th annual ACM international conference on Multimedia
– start-page: 895
  year: 2008
  end-page: 904
  ident: bib0010
  article-title: Video suggestion and discovery for youtube: taking random walks through the view graph
  publication-title: Proc. 17th int. conference on World Wide Web
– year: 2016
  ident: bib0057
  article-title: Learning convolutional neural networks for graphs
  publication-title: Proceedings of the 33rd annual international conference on machine learning. ACM
– volume: 5
  start-page: 109
  year: 1983
  end-page: 137
  ident: bib0100
  article-title: Stochastic blockmodels: first steps
  publication-title: Soc. Netw.
– volume: 3
  start-page: 496
  year: 2003
  end-page: 503
  ident: bib0012
  article-title: Link-based classification
  publication-title: ICML
– reference: (2017).
– volume: 2
  start-page: 718
  year: 2009
  end-page: 729
  ident: bib0019
  article-title: Graph clustering based on structural/attribute similarities
  publication-title: Proc. VLDB Endow.
– start-page: 274
  year: 2005
  end-page: 285
  ident: bib0082
  article-title: A spectral clustering approach to finding communities in graphs
  publication-title: Proceedings of the 2005 SIAM international conference on data mining
– volume: 290
  start-page: 2323
  year: 2000
  end-page: 2326
  ident: bib0026
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
– reference: Y. Li, D. Tarlow, M. Brockschmidt, R. Zemel, Gated graph sequence neural networks, arXiv:
– year: 1901
  ident: bib0013
  article-title: Etude comparative de la distribution florale dans une portion des Alpes et du Jura
– reference: H. Dai, Y. Wang, R. Trivedi, L. Song, Deep coevolutionary network: embedding user and item features for recommendation (2017).
– reference: (2017).
– start-page: 855
  year: 2016
  end-page: 864
  ident: bib0029
  article-title: node2vec: scalable feature learning for networks
  publication-title: Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining
– volume: 290
  start-page: 2319
  year: 2000
  end-page: 2323
  ident: bib0038
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
– volume: 453
  start-page: 98
  year: 2008
  end-page: 101
  ident: bib0015
  article-title: Hierarchical structure and the prediction of missing links in networks
  publication-title: Nature
– start-page: 243
  year: 2011
  end-page: 275
  ident: bib0084
  article-title: A survey of link prediction in social networks
  publication-title: Social network data analytics
– volume: 11
  start-page: 12
  year: 2016
  ident: bib0055
  article-title: Tri-party deep network representation
  publication-title: Network
– start-page: 115
  year: 2011
  end-page: 148
  ident: bib0006
  article-title: Node classification in social networks
  publication-title: Social network data analytics
– volume: 11
  year: 1978
  ident: bib0039
  article-title: Multidimensional scaling
– reference: W.L. Hamilton, R. Ying, J. Leskovec, Representation learning on graphs: methods and applications, arXiv preprint arXiv:
– volume: 5
  year: 2003
  ident: bib0094
  article-title: Overview of the 2003 kdd cup
  publication-title: ACM SIGKDD Expl.
– reference: T.N. Kipf, M. Welling, Variational graph auto-encoders, arXiv:
– volume: 30
  start-page: 1203
  year: 2000
  end-page: 1233
  ident: bib0075
  article-title: An open graph visualization system and its applications to software engineering
  publication-title: Softw. Pract. Exp.
– start-page: 13
  year: 2000
  end-page: 20
  ident: bib0087
  article-title: Iterative classification in relational data
  publication-title: Proc. Workshop on Learning Statistical Models from Relational Data
– volume: 28
  start-page: 2765
  year: 2016
  end-page: 2777
  ident: bib0099
  article-title: Scalable temporal latent space inference for link prediction in dynamic social networks
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: bib0008
  article-title: Visualizing data using t-sne
  publication-title: J. Mach. Learn. Res.
– start-page: 2111
  year: 2015
  end-page: 2117
  ident: bib0044
  article-title: Network representation learning with rich text information.
  publication-title: IJCAI
– start-page: 119
  year: 2015
  end-page: 128
  ident: bib0045
  article-title: Heterogeneous network embedding via deep architectures
  publication-title: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 6
  start-page: 24
  year: 2000
  end-page: 43
  ident: bib0078
  article-title: Graph visualization and navigation in information visualization: a survey
  publication-title: IEEE Trans. Visual. Comput. Graph.
– start-page: 107
  year: 2001
  end-page: 114
  ident: bib0007
  article-title: A min-max cut algorithm for graph partitioning and data clustering
  publication-title: International Conference on Data Mining
– start-page: 1067
  year: 2015
  end-page: 1077
  ident: bib0022
  article-title: Line: large-scale information network embedding
  publication-title: Proceedings 24th International Conference on World Wide Web
– start-page: 13
  year: 1989
  end-page: 17
  ident: bib0077
  article-title: How to draw a directed graph
  publication-title: Visual Languages, 1989., IEEE Workshop on
– start-page: 2287
  year: 2016
  end-page: 2293
  ident: bib0053
  article-title: Multi-modal bayesian embeddings for learning social knowledge graphs.
  publication-title: IJCAI
– volume: 3
  start-page: 551
  year: 1990
  end-page: 560
  ident: bib0067
  article-title: Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks
  publication-title: Neural Netw.
– volume: 19
  year: 2007
  ident: bib0050
  article-title: Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 567
  year: 2008
  end-page: 580
  ident: bib0070
  article-title: Efficient aggregation for graph summarization
  publication-title: Proceedings of the SIGMOD international conference on Management of data
– start-page: 3889
  year: 2016
  end-page: 3895
  ident: bib0046
  article-title: Max-margin deepwalk: discriminative learning of network representation.
  publication-title: IJCAI
– start-page: 824
  year: 2007
  end-page: 833
  ident: bib0081
  article-title: Scan: a structural clustering algorithm for networks
  publication-title: Proceedings 13th international conference on Knowledge discovery and data mining
– volume: 4
  start-page: 301
  year: 1994
  end-page: 328
  ident: bib0069
  article-title: The maximum clique problem
  publication-title: J. Global Optim.
– volume: 4
  start-page: 235
  year: 1994
  end-page: 282
  ident: bib0076
  article-title: Algorithms for drawing graphs: an annotated bibliography
  publication-title: Comput. Geom.
– start-page: 937
  year: 2009
  end-page: 944
  ident: bib0033
  article-title: Structure preserving embedding
  publication-title: Proceedings of the 26th Annual International Conference on Machine Learning
– start-page: 123
  year: 1991
  end-page: 133
  ident: bib0068
  article-title: Clique partitions, graph compression and speeding-up algorithms
  publication-title: Proceedings of the twenty-third annual ACM symposium on Theory of computing
– volume: 390
  start-page: 1150
  year: 2011
  end-page: 1170
  ident: bib0083
  article-title: Link prediction in complex networks: a survey
  publication-title: Physica A
– volume: 29
  start-page: 40
  year: 2007
  end-page: 51
  ident: bib0035
  article-title: Graph embedding and extensions: a general framework for dimensionality reduction
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: (2016).
– volume: 81
  start-page: 730
  year: 1976
  end-page: 780
  ident: bib0016
  article-title: Social structure from multiple networks. I. Blockmodels of roles and positions
  publication-title: Am. J. Sociol.
– volume: 23
  start-page: 228
  year: 2001
  end-page: 233
  ident: bib0037
  article-title: Pca versus lda
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 44
  start-page: 1057
  year: 2011
  end-page: 1067
  ident: bib0103
  article-title: Recent advances in graph-based pattern recognition with applications in document analysis
  publication-title: Pattern Recognition.
– start-page: 49
  year: 2007
  end-page: 56
  ident: bib0009
  article-title: The rendezvous algorithm: Multiclass semi-supervised learning with markov random walks
  publication-title: Proceedings of the 24th international conference on Machine learning
– volume: 23
  start-page: 1
  year: 2008
  end-page: 8
  ident: bib0042
  article-title: Non-negative graph embedding
  publication-title: IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)
– reference: W.L. Hamilton, R. Ying, J. Leskovec, Inductive representation learning on large graphs, arXiv:
– volume: 33
  start-page: 452
  year: 1977
  end-page: 473
  ident: bib0091
  article-title: An information flow model for conflict and fission in small groups
  publication-title: J. Anthropol. Res.
– volume: 1
  start-page: 2
  year: 2007
  ident: bib0004
  article-title: Graph evolution: densification and shrinking diameters
  publication-title: ACM Trans. Knowl. Disc. Data (TKDD)
– start-page: 609
  year: 2016
  end-page: 618
  ident: bib0047
  article-title: Homophily, structure, and content augmented network representation learning
  publication-title: Data Mining (ICDM), 2016 IEEE 16th International Conference on
– volume: 69
  start-page: 026113
  year: 2004
  ident: bib0080
  article-title: Finding and evaluating community structure in networks
  publication-title: Phys. Rev. E
– volume: 14
  start-page: 585
  year: 2001
  end-page: 591
  ident: bib0025
  article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering
  publication-title: NIPS
– start-page: 419
  year: 2008
  end-page: 432
  ident: bib0072
  article-title: Graph summarization with bounded error
  publication-title: Proceedings of the international conference on Management of data
– start-page: 1107
  year: 2009
  end-page: 1116
  ident: bib0093
  article-title: Scalable learning of collective behavior based on sparse social dimensions
  publication-title: Proceedings of the 18th ACM conference on Information and knowledge management
– start-page: 701
  year: 2014
  end-page: 710
  ident: bib0028
  article-title: Deepwalk: online learning of social representations
  publication-title: Proceedings 20th international conference on Knowledge discovery and data mining
– volume: 13
  start-page: 76
  year: 1976
  end-page: 83
  ident: bib0034
  article-title: Generalizing the singular value decomposition
  publication-title: SIAM J. Numer. Anal.
– volume: 27
  start-page: 39
  year: 2005
  end-page: 54
  ident: bib0049
  article-title: A measure of betweenness centrality based on random walks
  publication-title: Soc. Netw.
– start-page: 92
  year: 2007
  end-page: 101
  ident: bib0011
  article-title: Applying link-based classification to label blogs
  publication-title: Proceedings of WebKDD: workshop on Web mining and social network analysis
– volume: 14
  start-page: 465
  year: 1978
  end-page: 471
  ident: bib0073
  article-title: Modeling by shortest data description
  publication-title: Automatica
– volume: 1
  start-page: 4
  year: 2000
  ident: bib0002
  article-title: Visualizing social networks
  publication-title: J. Social Struct.
– reference: B. Perozzi, V. Kulkarni, S. Skiena, Walklets: multiscale graph embeddings for interpretable network classification, arXiv:
– year: 2005
  ident: bib0074
  article-title: Graphs, networks and algorithms
– volume: 268
  start-page: 2261
  year: 2001
  end-page: 2265
  ident: bib0003
  article-title: The small world of human language
  publication-title: Proc. R. Soc. Lond. B
– year: 2016
  ident: bib0054
  article-title: Discriminative deep random walk for network classification.
  publication-title: ACL (1)
– volume: 4
  start-page: 1535
  year: 2009
  end-page: 1550
  ident: bib0001
  article-title: Network visualization and analysis of gene expression data using biolayout express3d
  publication-title: Nat. Protoc.
– start-page: 115
  year: 1986
  end-page: 128
  ident: bib0036
  article-title: Principal component analysis and factor analysis
  publication-title: Principal component analysis
– reference: H. Chen, B. Perozzi, Y. Hu, S. Skiena, Harp: hierarchical representation learning for networks, arXiv:
– start-page: 3844
  year: 2016
  end-page: 3852
  ident: bib0063
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Advances in Neural Information Processing Systems
– volume: 35
  start-page: 1798
  year: 2013
  end-page: 1828
  ident: bib0058
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 18
  start-page: 39
  year: 1953
  end-page: 43
  ident: bib0085
  article-title: A new status index derived from sociometric analysis
  publication-title: Psychometrika
– reference: (2015).
– start-page: 731
  year: 2017
  end-page: 739
  ident: bib0048
  article-title: Label informed attributed network embedding
  publication-title: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining
– reference: M. Henaff, J. Bruna, Y. LeCun, Deep convolutional networks on graph-structured data, arXiv:
– volume: 22
  start-page: 888
  year: 2000
  end-page: 905
  ident: bib0020
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: P. Goyal, N. Kamra, X. He, Y. Liu, Dyngem: deep embedding method for dynamic graphs.
– volume: 82
  start-page: 8
  year: 1987
  end-page: 19
  ident: bib0090
  article-title: Stochastic blockmodels for directed graphs
  publication-title: J. Am. Stat. Assoc.
– start-page: 553
  year: 2011
  end-page: 560
  ident: bib0032
  article-title: Cauchy graph embedding
  publication-title: Proceedings of the 28th International Conference on Machine Learning (ICML-11)
– reference: Z. Yang, W.W. Cohen, R. Salakhutdinov, Revisiting semi-supervised learning with graph embeddings, arXiv:
– reference: D.P. Kingma, M. Welling, Auto-encoding variational bayes, arXiv:
– start-page: 153
  year: 2004
  end-page: 160
  ident: bib0040
  article-title: Locality preserving projections
  publication-title: Advances in neural information processing systems
– reference: J. Leskovec, A. Krevl, SNAP datasets: Stanford large network dataset collection, 2014, (
– volume: 36
  start-page: D637
  year: 2008
  end-page: D640
  ident: bib0096
  article-title: The biogrid interaction database: 2008 update
  publication-title: Nucleic Acids Res.
– reference: J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks and locally connected networks on graphs, arXiv:
– reference: (2013).
– start-page: 1105
  year: 2016
  end-page: 1114
  ident: bib0024
  article-title: Asymmetric transitivity preserving graph embedding
  publication-title: Proc. of ACM SIGKDD
– volume: 752
  start-page: 41
  year: 1998
  end-page: 48
  ident: bib0089
  article-title: A comparison of event models for naive bayes text classification
  publication-title: AAAI-98 workshop on learning for text categorization
– start-page: 891
  year: 2015
  end-page: 900
  ident: bib0027
  article-title: Grarep: learning graph representations with global structural information
  publication-title: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management
– start-page: 1145
  year: 2016
  end-page: 1152
  ident: bib0030
  article-title: Deep neural networks for learning graph representations
  publication-title: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence
– volume: 98
  start-page: 1031
  year: 2010
  end-page: 1044
  ident: bib0102
  article-title: Sparse representation for computer vision and pattern recognition
  publication-title: Proceedings of the IEEE
– ident: 10.1016/j.knosys.2018.03.022_bib0052
– start-page: 1553
  year: 2006
  ident: 10.1016/j.knosys.2018.03.022_bib0086
  article-title: Stochastic relational models for discriminative link prediction
– start-page: 2287
  year: 2016
  ident: 10.1016/j.knosys.2018.03.022_bib0053
  article-title: Multi-modal bayesian embeddings for learning social knowledge graphs.
– volume: 33
  start-page: 452
  issue: 4
  year: 1977
  ident: 10.1016/j.knosys.2018.03.022_bib0091
  article-title: An information flow model for conflict and fission in small groups
  publication-title: J. Anthropol. Res.
  doi: 10.1086/jar.33.4.3629752
– volume: 98
  start-page: 1031
  issue: 6
  year: 2010
  ident: 10.1016/j.knosys.2018.03.022_bib0102
  article-title: Sparse representation for computer vision and pattern recognition
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2010.2044470
– start-page: 3889
  year: 2016
  ident: 10.1016/j.knosys.2018.03.022_bib0046
  article-title: Max-margin deepwalk: discriminative learning of network representation.
– volume: 27
  start-page: 39
  issue: 1
  year: 2005
  ident: 10.1016/j.knosys.2018.03.022_bib0049
  article-title: A measure of betweenness centrality based on random walks
  publication-title: Soc. Netw.
  doi: 10.1016/j.socnet.2004.11.009
– start-page: 249
  year: 2005
  ident: 10.1016/j.knosys.2018.03.022_bib0043
  article-title: Semantic manifold learning for image retrieval
– start-page: 1225
  year: 2016
  ident: 10.1016/j.knosys.2018.03.022_bib0023
  article-title: Structural deep network embedding
– start-page: 153
  year: 2004
  ident: 10.1016/j.knosys.2018.03.022_bib0040
  article-title: Locality preserving projections
– volume: 1
  start-page: 4
  issue: 1
  year: 2000
  ident: 10.1016/j.knosys.2018.03.022_bib0002
  article-title: Visualizing social networks
  publication-title: J. Social Struct.
– volume: 4
  start-page: 1535
  year: 2009
  ident: 10.1016/j.knosys.2018.03.022_bib0001
  article-title: Network visualization and analysis of gene expression data using biolayout express3d
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2009.177
– volume: 23
  start-page: 228
  issue: 2
  year: 2001
  ident: 10.1016/j.knosys.2018.03.022_bib0037
  article-title: Pca versus lda
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.908974
– volume: 4
  start-page: 301
  issue: 3
  year: 1994
  ident: 10.1016/j.knosys.2018.03.022_bib0069
  article-title: The maximum clique problem
  publication-title: J. Global Optim.
  doi: 10.1007/BF01098364
– volume: 14
  start-page: 585
  year: 2001
  ident: 10.1016/j.knosys.2018.03.022_bib0025
  article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering
– start-page: 37
  year: 2013
  ident: 10.1016/j.knosys.2018.03.022_bib0021
  article-title: Distributed large-scale natural graph factorization
– volume: 22
  start-page: 888
  issue: 8
  year: 2000
  ident: 10.1016/j.knosys.2018.03.022_bib0020
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.868688
– start-page: 13
  year: 1989
  ident: 10.1016/j.knosys.2018.03.022_bib0077
  article-title: How to draw a directed graph
– ident: 10.1016/j.knosys.2018.03.022_bib0098
– volume: 6
  start-page: 24
  issue: 1
  year: 2000
  ident: 10.1016/j.knosys.2018.03.022_bib0078
  article-title: Graph visualization and navigation in information visualization: a survey
  publication-title: IEEE Trans. Visual. Comput. Graph.
  doi: 10.1109/2945.841119
– volume: 25
  start-page: 211
  issue: 3
  year: 2003
  ident: 10.1016/j.knosys.2018.03.022_bib0014
  article-title: Friends and neighbors on the web
  publication-title: Soc. Netw.
  doi: 10.1016/S0378-8733(03)00009-1
– start-page: 123
  year: 1991
  ident: 10.1016/j.knosys.2018.03.022_bib0068
  article-title: Clique partitions, graph compression and speeding-up algorithms
– volume: 453
  start-page: 98
  issue: 7191
  year: 2008
  ident: 10.1016/j.knosys.2018.03.022_bib0015
  article-title: Hierarchical structure and the prediction of missing links in networks
  publication-title: Nature
  doi: 10.1038/nature06830
– volume: 29
  start-page: 40
  issue: 1
  year: 2007
  ident: 10.1016/j.knosys.2018.03.022_bib0035
  article-title: Graph embedding and extensions: a general framework for dimensionality reduction
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.250598
– ident: 10.1016/j.knosys.2018.03.022_bib0066
– start-page: 895
  year: 2008
  ident: 10.1016/j.knosys.2018.03.022_bib0010
  article-title: Video suggestion and discovery for youtube: taking random walks through the view graph
– start-page: 201
  year: 2007
  ident: 10.1016/j.knosys.2018.03.022_bib0018
  article-title: Probabilistic entity-relationship models, prms, and plate models
  publication-title: Intro. Stat. Relational Learn.
  doi: 10.7551/mitpress/7432.003.0009
– start-page: 891
  year: 2015
  ident: 10.1016/j.knosys.2018.03.022_bib0027
  article-title: Grarep: learning graph representations with global structural information
– volume: 28
  start-page: 2765
  issue: 10
  year: 2016
  ident: 10.1016/j.knosys.2018.03.022_bib0099
  article-title: Scalable temporal latent space inference for link prediction in dynamic social networks
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2016.2591009
– volume: 18
  start-page: 39
  issue: 1
  year: 1953
  ident: 10.1016/j.knosys.2018.03.022_bib0085
  article-title: A new status index derived from sociometric analysis
  publication-title: Psychometrika
  doi: 10.1007/BF02289026
– volume: 3
  start-page: 496
  year: 2003
  ident: 10.1016/j.knosys.2018.03.022_bib0012
  article-title: Link-based classification
– volume: 44
  start-page: 1057
  issue: 5
  year: 2011
  ident: 10.1016/j.knosys.2018.03.022_bib0103
  article-title: Recent advances in graph-based pattern recognition with applications in document analysis
  publication-title: Pattern Recognition.
  doi: 10.1016/j.patcog.2010.11.015
– start-page: 3844
  year: 2016
  ident: 10.1016/j.knosys.2018.03.022_bib0063
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
– year: 2005
  ident: 10.1016/j.knosys.2018.03.022_bib0074
– start-page: 1105
  year: 2016
  ident: 10.1016/j.knosys.2018.03.022_bib0024
  article-title: Asymmetric transitivity preserving graph embedding
– volume: 268
  start-page: 2261
  issue: 1482
  year: 2001
  ident: 10.1016/j.knosys.2018.03.022_bib0003
  article-title: The small world of human language
  publication-title: Proc. R. Soc. Lond. B
  doi: 10.1098/rspb.2001.1800
– ident: 10.1016/j.knosys.2018.03.022_bib0060
– ident: 10.1016/j.knosys.2018.03.022_bib0105
– start-page: 115
  year: 2011
  ident: 10.1016/j.knosys.2018.03.022_bib0006
  article-title: Node classification in social networks
– volume: 69
  start-page: 026113
  issue: 2
  year: 2004
  ident: 10.1016/j.knosys.2018.03.022_bib0080
  article-title: Finding and evaluating community structure in networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.69.026113
– volume: 290
  start-page: 2323
  issue: 5500
  year: 2000
  ident: 10.1016/j.knosys.2018.03.022_bib0026
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– start-page: 567
  year: 2008
  ident: 10.1016/j.knosys.2018.03.022_bib0070
  article-title: Efficient aggregation for graph summarization
– volume: 9
  start-page: 2579
  year: 2008
  ident: 10.1016/j.knosys.2018.03.022_bib0008
  article-title: Visualizing data using t-sne
  publication-title: J. Mach. Learn. Res.
– start-page: 731
  year: 2017
  ident: 10.1016/j.knosys.2018.03.022_bib0048
  article-title: Label informed attributed network embedding
– volume: 752
  start-page: 41
  year: 1998
  ident: 10.1016/j.knosys.2018.03.022_bib0089
  article-title: A comparison of event models for naive bayes text classification
– start-page: 553
  year: 2011
  ident: 10.1016/j.knosys.2018.03.022_bib0032
  article-title: Cauchy graph embedding
– volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  ident: 10.1016/j.knosys.2018.03.022_bib0058
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– volume: 5
  issue: 2
  year: 2003
  ident: 10.1016/j.knosys.2018.03.022_bib0094
  article-title: Overview of the 2003 kdd cup
  publication-title: ACM SIGKDD Expl.
– start-page: 2224
  year: 2015
  ident: 10.1016/j.knosys.2018.03.022_bib0061
  article-title: Convolutional networks on graphs for learning molecular fingerprints
– volume: 3
  start-page: 551
  year: 1990
  ident: 10.1016/j.knosys.2018.03.022_bib0067
  article-title: Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(90)90005-6
– volume: 30
  start-page: 1203
  issue: 11
  year: 2000
  ident: 10.1016/j.knosys.2018.03.022_bib0075
  article-title: An open graph visualization system and its applications to software engineering
  publication-title: Softw. Pract. Exp.
  doi: 10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N
– start-page: 13
  year: 2000
  ident: 10.1016/j.knosys.2018.03.022_bib0087
  article-title: Iterative classification in relational data
– start-page: 274
  year: 2005
  ident: 10.1016/j.knosys.2018.03.022_bib0082
  article-title: A spectral clustering approach to finding communities in graphs
– volume: 290
  start-page: 2319
  issue: 5500
  year: 2000
  ident: 10.1016/j.knosys.2018.03.022_bib0038
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– start-page: 1300
  year: 1999
  ident: 10.1016/j.knosys.2018.03.022_bib0017
  article-title: Learning probabilistic relational models
– volume: 13
  start-page: 76
  issue: 1
  year: 1976
  ident: 10.1016/j.knosys.2018.03.022_bib0034
  article-title: Generalizing the singular value decomposition
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0713009
– start-page: 855
  year: 2016
  ident: 10.1016/j.knosys.2018.03.022_bib0029
  article-title: node2vec: scalable feature learning for networks
– volume: 14
  start-page: 465
  issue: 5
  year: 1978
  ident: 10.1016/j.knosys.2018.03.022_bib0073
  article-title: Modeling by shortest data description
  publication-title: Automatica
  doi: 10.1016/0005-1098(78)90005-5
– volume: 81
  start-page: 730
  issue: 4
  year: 1976
  ident: 10.1016/j.knosys.2018.03.022_bib0016
  article-title: Social structure from multiple networks. I. Blockmodels of roles and positions
  publication-title: Am. J. Sociol.
  doi: 10.1086/226141
– volume: 5
  start-page: 109
  issue: 2
  year: 1983
  ident: 10.1016/j.knosys.2018.03.022_bib0100
  article-title: Stochastic blockmodels: first steps
  publication-title: Soc. Netw.
  doi: 10.1016/0378-8733(83)90021-7
– start-page: 1107
  year: 2009
  ident: 10.1016/j.knosys.2018.03.022_bib0093
  article-title: Scalable learning of collective behavior based on sparse social dimensions
– start-page: 1067
  year: 2015
  ident: 10.1016/j.knosys.2018.03.022_bib0022
  article-title: Line: large-scale information network embedding
– start-page: 965
  year: 2011
  ident: 10.1016/j.knosys.2018.03.022_bib0071
  article-title: Compression of weighted graphs
– volume: 2
  start-page: 559
  issue: 11
  year: 1901
  ident: 10.1016/j.knosys.2018.03.022_bib0079
  article-title: Liii. on lines and planes of closest fit to systems of points in space
  publication-title: Lond., Edinburgh, Dublin Philos. Mag. J. Sci.
  doi: 10.1080/14786440109462720
– ident: 10.1016/j.knosys.2018.03.022_bib0062
– ident: 10.1016/j.knosys.2018.03.022_bib0065
– start-page: 824
  year: 2007
  ident: 10.1016/j.knosys.2018.03.022_bib0081
  article-title: Scan: a structural clustering algorithm for networks
– ident: 10.1016/j.knosys.2018.03.022_bib0051
  doi: 10.1609/aaai.v32i1.11849
– volume: 2
  start-page: 718
  issue: 1
  year: 2009
  ident: 10.1016/j.knosys.2018.03.022_bib0019
  article-title: Graph clustering based on structural/attribute similarities
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/1687627.1687709
– ident: 10.1016/j.knosys.2018.03.022_bib0056
– start-page: 107
  year: 2001
  ident: 10.1016/j.knosys.2018.03.022_bib0007
  article-title: A min-max cut algorithm for graph partitioning and data clustering
– volume: 19
  issue: 3
  year: 2007
  ident: 10.1016/j.knosys.2018.03.022_bib0050
  article-title: Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2007.46
– start-page: 383
  year: 2007
  ident: 10.1016/j.knosys.2018.03.022_bib0101
  article-title: Graph embedding in vector spaces by means of prototype selection
– start-page: 817
  year: 2009
  ident: 10.1016/j.knosys.2018.03.022_bib0092
  article-title: Relational learning via latent social dimensions
– year: 1901
  ident: 10.1016/j.knosys.2018.03.022_bib0013
– start-page: 119
  year: 2015
  ident: 10.1016/j.knosys.2018.03.022_bib0045
  article-title: Heterogeneous network embedding via deep architectures
– volume: 4
  start-page: 235
  issue: 5
  year: 1994
  ident: 10.1016/j.knosys.2018.03.022_bib0076
  article-title: Algorithms for drawing graphs: an annotated bibliography
  publication-title: Comput. Geom.
  doi: 10.1016/0925-7721(94)00014-X
– ident: 10.1016/j.knosys.2018.03.022_bib0059
– year: 2016
  ident: 10.1016/j.knosys.2018.03.022_bib0054
  article-title: Discriminative deep random walk for network classification.
– ident: 10.1016/j.knosys.2018.03.022_bib0097
– start-page: 49
  year: 2007
  ident: 10.1016/j.knosys.2018.03.022_bib0009
  article-title: The rendezvous algorithm: Multiclass semi-supervised learning with markov random walks
– start-page: 609
  year: 2016
  ident: 10.1016/j.knosys.2018.03.022_bib0047
  article-title: Homophily, structure, and content augmented network representation learning
– volume: 23
  start-page: 1
  issue: 2
  year: 2008
  ident: 10.1016/j.knosys.2018.03.022_bib0042
  article-title: Non-negative graph embedding
  publication-title: IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)
– ident: 10.1016/j.knosys.2018.03.022_bib0031
– start-page: 92
  year: 2007
  ident: 10.1016/j.knosys.2018.03.022_bib0011
  article-title: Applying link-based classification to label blogs
– year: 2016
  ident: 10.1016/j.knosys.2018.03.022_bib0057
  article-title: Learning convolutional neural networks for graphs
– start-page: 701
  year: 2014
  ident: 10.1016/j.knosys.2018.03.022_bib0028
  article-title: Deepwalk: online learning of social representations
– start-page: 937
  year: 2009
  ident: 10.1016/j.knosys.2018.03.022_bib0033
  article-title: Structure preserving embedding
– volume: 1
  start-page: 2
  issue: 1
  year: 2007
  ident: 10.1016/j.knosys.2018.03.022_bib0004
  article-title: Graph evolution: densification and shrinking diameters
  publication-title: ACM Trans. Knowl. Disc. Data (TKDD)
  doi: 10.1145/1217299.1217301
– start-page: 547
  year: 2003
  ident: 10.1016/j.knosys.2018.03.022_bib0041
  article-title: Continuous nonlinear dimensionality reduction by kernel eigenmaps
– start-page: 2111
  year: 2015
  ident: 10.1016/j.knosys.2018.03.022_bib0044
  article-title: Network representation learning with rich text information.
– start-page: 115
  year: 1986
  ident: 10.1016/j.knosys.2018.03.022_bib0036
  article-title: Principal component analysis and factor analysis
– volume: 398
  year: 2013
  ident: 10.1016/j.knosys.2018.03.022_bib0088
– volume: 390
  start-page: 1150
  issue: 6
  year: 2011
  ident: 10.1016/j.knosys.2018.03.022_bib0083
  article-title: Link prediction in complex networks: a survey
  publication-title: Physica A
  doi: 10.1016/j.physa.2010.11.027
– volume: 11
  start-page: 12
  issue: 9
  year: 2016
  ident: 10.1016/j.knosys.2018.03.022_bib0055
  article-title: Tri-party deep network representation
  publication-title: Network
– volume: 11
  year: 1978
  ident: 10.1016/j.knosys.2018.03.022_bib0039
– start-page: 243
  year: 2011
  ident: 10.1016/j.knosys.2018.03.022_bib0084
  article-title: A survey of link prediction in social networks
– ident: 10.1016/j.knosys.2018.03.022_bib0104
– ident: 10.1016/j.knosys.2018.03.022_bib0064
– start-page: 1145
  year: 2016
  ident: 10.1016/j.knosys.2018.03.022_bib0030
  article-title: Deep neural networks for learning graph representations
– volume: 82
  start-page: 8
  issue: 397
  year: 1987
  ident: 10.1016/j.knosys.2018.03.022_bib0090
  article-title: Stochastic blockmodels for directed graphs
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1987.10478385
– volume: 58
  start-page: 1019
  issue: 7
  year: 2007
  ident: 10.1016/j.knosys.2018.03.022_bib0005
  article-title: The link-prediction problem for social networks
  publication-title: J. Assoc. Inf. Sci. Technol.
  doi: 10.1002/asi.20591
– start-page: 419
  year: 2008
  ident: 10.1016/j.knosys.2018.03.022_bib0072
  article-title: Graph summarization with bounded error
– ident: 10.1016/j.knosys.2018.03.022_bib0095
– volume: 36
  start-page: D637
  issue: suppl 1
  year: 2008
  ident: 10.1016/j.knosys.2018.03.022_bib0096
  article-title: The biogrid interaction database: 2008 update
  publication-title: Nucleic Acids Res.
SSID ssj0002218
Score 2.6853008
Snippet Graphs, such as social networks, word co-occurrence networks, and communication networks, occur naturally in various real-world applications. Analyzing them...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 78
SubjectTerms Algorithms
Communication networks
Datasets
Embedded systems
Embedding
Graph embedding applications
Graph embedding techniques
Graph theory
Graphical representations
Human communication
Machine learning
Python graph embedding methods GEM library
Random walk
Vector space
Title Graph embedding techniques, applications, and performance: A survey
URI https://dx.doi.org/10.1016/j.knosys.2018.03.022
https://www.proquest.com/docview/2088072032
Volume 151
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mceHCGzEYUw4cCeua9MVtmhgDxC4wabeoThNpPLppD6Rd-O3EfWyAhCZxTOtUlevYXxr7MyEXUaBiGwkSFtrwxgQPPQY80kyFAkRLKWGy5PHHvt8biPuhN6yQTlkLg2mVhe_PfXrmrYsrzUKbzclo1Hyy4MDaKyJkjkAA9-1CBGjlV5_rNA_Xzf7xoTBD6bJ8Lsvxek3HsyWSdrfCjOrUdf8KT78cdRZ9untkp4CNtJ2_2T6p6PSA7JYtGWixQg9J5xYJqKl-B51gVKIrjtbZJf1-WG1HaUIn67KBa9qms8X0Qy-PyKB789zpsaJPAlOciznjAD54gYGWacVGJ0I5ELrcxL6jtTJ2U6CESELOuQceKAvJTKiCOHIgNpHxI35Mquk41SeEGgeQLED5GpQIBFj8BQkPLGoQno5jv0Z4qR6pChJx7GXxJstssReZK1WiUqXDpVVqjbDVrElOorFBPig1L38Yg7R-fsPMevmhZLEY8b51Unjc7J7--8FnZBtHeaJunVTn04U-t3BkDo3M3hpkq3330Ot_ATdj4Ko
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1V7QEu7IhCAR84YjWNnY1bVQEtXS60Um9W7NhSWdKqC1L_HjtxyiKhShwTe6JoMn7zHI-fAW6iQMQ6EyQ41OkNUxJ6mJNIYhFSThtCUJUVj_cHfntEn8beuAStYi-MKau02J9jeobW9k7derM-m0zqz5oc6Hg1DJkYIqDn7RWjTuWVodLsdNuDDSC7bvabz_THxqDYQZeVeb2m08Xa6HY3wkzt1HX_ylC_sDpLQA8HsGeZI2rmL3cIJZkewX5xKgOyg_QYWo9GgxrJdy4Tk5jQRqZ1cYu-r1frqzRBs6-dA3eoiRar-Ydcn8Do4X7YamN7VAIWhNAlJpz73AsUb6hGrGRChcNDl6jYd6QUSs8LBKVJSAjxuMeFZmUqFEEcOTxWkfIjcgrldJrKM0DK4UYvQPiSCxpQrikYT0igiQP1ZBz7VSCFe5iwOuLmOIs3VhSMvbDcqcw4lTmEaadWAW-sZrmOxpb-QeF59iMemIb6LZa14kMxOx5Nu8Yps-Lsnv_7wdew0x72e6zXGXQvYNe05HW7NSgv5yt5qdnJkl_Z6PsE7tDjWw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+embedding+techniques%2C+applications%2C+and+performance%3A+A+survey&rft.jtitle=Knowledge-based+systems&rft.au=Goyal%2C+Palash&rft.au=Ferrara%2C+Emilio&rft.date=2018-07-01&rft.issn=0950-7051&rft.volume=151&rft.spage=78&rft.epage=94&rft_id=info:doi/10.1016%2Fj.knosys.2018.03.022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2018_03_022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon