Graph embedding techniques, applications, and performance: A survey
Graphs, such as social networks, word co-occurrence networks, and communication networks, occur naturally in various real-world applications. Analyzing them yields insight into the structure of society, language, and different patterns of communication. Many approaches have been proposed to perform...
Saved in:
Published in | Knowledge-based systems Vol. 151; pp. 78 - 94 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.07.2018
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Graphs, such as social networks, word co-occurrence networks, and communication networks, occur naturally in various real-world applications. Analyzing them yields insight into the structure of society, language, and different patterns of communication. Many approaches have been proposed to perform the analysis. Recently, methods which use the representation of graph nodes in vector space have gained traction from the research community. In this survey, we provide a comprehensive and structured analysis of various graph embedding techniques proposed in the literature. We first introduce the embedding task and its challenges such as scalability, choice of dimensionality, and features to be preserved, and their possible solutions. We then present three categories of approaches based on factorization methods, random walks, and deep learning, with examples of representative algorithms in each category and analysis of their performance on various tasks. We evaluate these state-of-the-art methods on a few common datasets and compare their performance against one another. Our analysis concludes by suggesting some potential applications and future directions. We finally present the open-source Python library we developed, named GEM (Graph Embedding Methods, available at https://github.com/palash1992/GEM), which provides all presented algorithms within a unified interface to foster and facilitate research on the topic. |
---|---|
AbstractList | Graphs, such as social networks, word co-occurrence networks, and communication networks, occur naturally in various real-world applications. Analyzing them yields insight into the structure of society, language, and different patterns of communication. Many approaches have been proposed to perform the analysis. Recently, methods which use the representation of graph nodes in vector space have gained traction from the research community. In this survey, we provide a comprehensive and structured analysis of various graph embedding techniques proposed in the literature. We first introduce the embedding task and its challenges such as scalability, choice of dimensionality, and features to be preserved, and their possible solutions. We then present three categories of approaches based on factorization methods, random walks, and deep learning, with examples of representative algorithms in each category and analysis of their performance on various tasks. We evaluate these state-of-the-art methods on a few common datasets and compare their performance against one another. Our analysis concludes by suggesting some potential applications and future directions. We finally present the open-source Python library we developed, named GEM (Graph Embedding Methods, available at https://github.com/palash1992/GEM), which provides all presented algorithms within a unified interface to foster and facilitate research on the topic. |
Author | Goyal, Palash Ferrara, Emilio |
Author_xml | – sequence: 1 givenname: Palash orcidid: 0000-0003-2455-2160 surname: Goyal fullname: Goyal, Palash email: palashgo@usc.edu – sequence: 2 givenname: Emilio surname: Ferrara fullname: Ferrara, Emilio |
BookMark | eNqFkM1OwzAQhC1UJNrCG3CIxJWEdZwfpwekqoKCVIkLnC3bWVOX1gl2WqlvT0I5cYDTaqWZ2Z1vQkaucUjINYWEAi3uNsmHa8IxJClQngBLIE3PyJjyMo3LDKoRGUOVQ1xCTi_IJIQNQC-hfEwWSy_bdYQ7hXVt3XvUoV47-7nHcBvJtt1aLTvbuGFzddSiN43fSadxFs2jsPcHPF6ScyO3Aa9-5pS8PT68Lp7i1cvyeTFfxZqxrIuZUoXKS6OoodJgnWlQPGVGFoCoDYNCZ1nNGWO5ypXOgRuuS1mBkqYyRcWm5OaU2_pmeLATm2bvXX9SpMA5lCmwtFdlJ5X2TQgejWi93Ul_FBTEgEtsxAmXGHAJYKJn0dtmv2zadt_VOy_t9j_z_cmMff2DRS-CtthDqq1H3Ym6sX8HfAGYwIux |
CitedBy_id | crossref_primary_10_1186_s40537_023_00796_3 crossref_primary_10_1007_s10115_023_01963_x crossref_primary_10_1016_j_neucom_2021_03_020 crossref_primary_10_1109_ACCESS_2022_3140783 crossref_primary_10_1007_s13042_021_01312_w crossref_primary_10_12677_AAM_2023_1212484 crossref_primary_10_1016_j_knosys_2020_105984 crossref_primary_10_3390_math12121814 crossref_primary_10_1155_2021_3911137 crossref_primary_10_1109_JIOT_2021_3112186 crossref_primary_10_1016_j_dajour_2023_100362 crossref_primary_10_1007_s10462_020_09819_4 crossref_primary_10_1093_bioinformatics_btaa1099 crossref_primary_10_1016_j_neucom_2022_04_110 crossref_primary_10_1109_TCYB_2022_3181810 crossref_primary_10_1371_journal_pone_0224684 crossref_primary_10_1109_TNSE_2021_3073956 crossref_primary_10_1016_j_neunet_2024_107071 crossref_primary_10_1017_nws_2020_39 crossref_primary_10_1080_09540091_2024_2447373 crossref_primary_10_1109_TNSM_2023_3240396 crossref_primary_10_1109_TG_2022_3221849 crossref_primary_10_1016_j_dss_2020_113303 crossref_primary_10_1371_journal_pone_0273830 crossref_primary_10_1093_bioinformatics_btaa881 crossref_primary_10_1142_S0217979218503162 crossref_primary_10_1016_j_drudis_2021_10_014 crossref_primary_10_1016_j_knosys_2020_105969 crossref_primary_10_1109_TKDE_2021_3094908 crossref_primary_10_1109_TKDE_2023_3325461 crossref_primary_10_1016_j_neucom_2022_04_128 crossref_primary_10_1016_j_eswa_2025_126984 crossref_primary_10_1145_3582698 crossref_primary_10_32604_iasc_2023_040818 crossref_primary_10_7717_peerj_cs_1808 crossref_primary_10_1109_TKDE_2019_2955502 crossref_primary_10_1145_3442390 crossref_primary_10_1109_TGRS_2024_3363886 crossref_primary_10_2196_23101 crossref_primary_10_1002_sam_11676 crossref_primary_10_1007_s11390_019_1956_2 crossref_primary_10_1109_TCBB_2023_3297388 crossref_primary_10_1155_2020_5702519 crossref_primary_10_12677_AG_2021_112011 crossref_primary_10_1016_j_jjimei_2022_100078 crossref_primary_10_1016_j_neunet_2023_12_025 crossref_primary_10_3233_JIFS_202961 crossref_primary_10_1007_s40747_023_01211_3 crossref_primary_10_1016_j_knosys_2020_105512 crossref_primary_10_3390_info15070377 crossref_primary_10_1109_ACCESS_2019_2938039 crossref_primary_10_3233_JIFS_191796 crossref_primary_10_1109_TKDE_2019_2951398 crossref_primary_10_1145_3653978 crossref_primary_10_1145_3630635 crossref_primary_10_7717_peerj_cs_262 crossref_primary_10_1016_j_geits_2023_100129 crossref_primary_10_1089_big_2021_0473 crossref_primary_10_1007_s42979_020_00413_7 crossref_primary_10_1007_s10115_023_01941_3 crossref_primary_10_1145_3617828 crossref_primary_10_1145_3418226 crossref_primary_10_1016_j_eswa_2021_114895 crossref_primary_10_1109_TNNLS_2019_2945869 crossref_primary_10_1016_j_ins_2022_07_060 crossref_primary_10_1111_tgis_12803 crossref_primary_10_1177_1748006X211009329 crossref_primary_10_1007_s11192_019_03206_9 crossref_primary_10_1016_j_physd_2025_134632 crossref_primary_10_1016_j_joi_2020_101056 crossref_primary_10_1016_j_csbj_2019_02_002 crossref_primary_10_1109_TPAMI_2022_3202158 crossref_primary_10_1016_j_knosys_2019_105080 crossref_primary_10_1109_ACCESS_2019_2909757 crossref_primary_10_1016_j_cose_2021_102282 crossref_primary_10_1109_ACCESS_2023_3268030 crossref_primary_10_1016_j_eswa_2021_114888 crossref_primary_10_1007_s11280_020_00799_7 crossref_primary_10_1109_TKDE_2023_3265271 crossref_primary_10_1109_TNSE_2022_3217185 crossref_primary_10_1109_ACCESS_2021_3122100 crossref_primary_10_1162_coli_a_00536 crossref_primary_10_1016_j_datak_2021_101909 crossref_primary_10_1038_s41467_020_14974_x crossref_primary_10_1038_s41467_021_23795_5 crossref_primary_10_1016_j_knosys_2022_108594 crossref_primary_10_1016_j_sigpro_2021_108289 crossref_primary_10_1145_3707650 crossref_primary_10_3390_math12040546 crossref_primary_10_1109_TCSVT_2022_3232604 crossref_primary_10_1007_s13042_024_02430_x crossref_primary_10_1088_1742_6596_1693_1_012018 crossref_primary_10_1093_bioinformatics_btaa1036 crossref_primary_10_1016_j_visinf_2024_08_001 crossref_primary_10_1109_ACCESS_2019_2908208 crossref_primary_10_1109_ACCESS_2020_2975584 crossref_primary_10_1109_ACCESS_2024_3477321 crossref_primary_10_1016_j_ijepes_2022_108389 crossref_primary_10_1016_j_knosys_2023_110701 crossref_primary_10_1145_3524105 crossref_primary_10_3390_biology11091256 crossref_primary_10_1109_TVCG_2020_3030398 crossref_primary_10_1016_j_neucom_2022_05_109 crossref_primary_10_3390_math12233644 crossref_primary_10_1109_TMM_2023_3279988 crossref_primary_10_1186_s40537_020_00305_w crossref_primary_10_3390_app12115403 crossref_primary_10_1109_TDSC_2023_3264110 crossref_primary_10_1007_s41060_021_00303_y crossref_primary_10_1109_ACCESS_2021_3111477 crossref_primary_10_3233_AIC_230028 crossref_primary_10_3390_make1020040 crossref_primary_10_1016_j_procs_2022_01_317 crossref_primary_10_1109_LSP_2023_3298282 crossref_primary_10_3390_fi14020032 crossref_primary_10_1016_j_neucom_2023_126517 crossref_primary_10_1109_ACCESS_2024_3396209 crossref_primary_10_1016_j_patcog_2022_109264 crossref_primary_10_2200_S00980ED1V01Y202001AIM045 crossref_primary_10_1155_2021_6673444 crossref_primary_10_1007_s13735_019_00189_4 crossref_primary_10_3390_e25020257 crossref_primary_10_1016_j_artmed_2024_102864 crossref_primary_10_1142_S0219720021500323 crossref_primary_10_1016_j_knosys_2020_105578 crossref_primary_10_1109_TNNLS_2022_3220548 crossref_primary_10_1016_j_knosys_2019_105458 crossref_primary_10_1016_j_neunet_2020_04_017 crossref_primary_10_1111_ocr_12520 crossref_primary_10_3390_info12070271 crossref_primary_10_1007_s10489_024_05287_3 crossref_primary_10_3390_electronics11203312 crossref_primary_10_1109_TKDE_2020_3036212 crossref_primary_10_1016_j_engappai_2020_104061 crossref_primary_10_1103_PhysRevE_109_024313 crossref_primary_10_1007_s00521_021_06200_6 crossref_primary_10_1016_j_knosys_2023_110512 crossref_primary_10_1016_j_dam_2020_08_022 crossref_primary_10_3390_en16010003 crossref_primary_10_1080_07421222_2024_2376384 crossref_primary_10_1016_j_patcog_2019_03_024 crossref_primary_10_1016_j_neunet_2021_11_026 crossref_primary_10_1177_14738716221114372 crossref_primary_10_1016_j_cose_2023_103519 crossref_primary_10_1109_TKDE_2021_3111997 crossref_primary_10_1016_j_eng_2021_08_018 crossref_primary_10_1016_j_knosys_2020_106448 crossref_primary_10_1007_s10489_024_05363_8 crossref_primary_10_1016_j_knosys_2021_106744 crossref_primary_10_1002_net_22206 crossref_primary_10_1016_j_dajour_2024_100472 crossref_primary_10_1109_ACCESS_2018_2877422 crossref_primary_10_3390_info12050186 crossref_primary_10_1016_j_osnem_2023_100273 crossref_primary_10_1016_j_knosys_2020_106438 crossref_primary_10_1016_j_cosrev_2020_100296 crossref_primary_10_1016_j_asoc_2021_108199 crossref_primary_10_1016_j_patrec_2022_02_001 crossref_primary_10_1016_j_future_2024_107529 crossref_primary_10_1016_j_ibmed_2025_100213 crossref_primary_10_1016_j_ins_2023_118999 crossref_primary_10_1016_j_eswa_2021_115108 crossref_primary_10_1016_j_future_2021_06_027 crossref_primary_10_1155_2020_6939328 crossref_primary_10_3390_inventions5010010 crossref_primary_10_7717_peerj_cs_2562 crossref_primary_10_1109_ACCESS_2019_2928438 crossref_primary_10_1016_j_procs_2020_06_044 crossref_primary_10_32604_csse_2023_023728 crossref_primary_10_1016_j_asoc_2020_106765 crossref_primary_10_1016_j_knosys_2024_112804 crossref_primary_10_1109_TNNLS_2023_3243666 crossref_primary_10_1016_j_knosys_2021_106917 crossref_primary_10_1109_LGRS_2022_3221536 crossref_primary_10_1109_TPAMI_2022_3214832 crossref_primary_10_1007_s00778_021_00701_5 crossref_primary_10_1017_nws_2022_17 crossref_primary_10_1038_s41598_021_91486_8 crossref_primary_10_1109_TNSE_2020_3047580 crossref_primary_10_1109_TCSS_2021_3070914 crossref_primary_10_1109_TITS_2020_2995856 crossref_primary_10_1049_gtd2_12040 crossref_primary_10_1080_17538947_2023_2261769 crossref_primary_10_1007_s10472_022_09811_4 crossref_primary_10_1007_s13721_022_00406_x crossref_primary_10_1093_bib_bby117 crossref_primary_10_1007_s10791_018_9345_y crossref_primary_10_1088_2058_9565_ab8504 crossref_primary_10_1016_j_knosys_2019_105468 crossref_primary_10_3233_SW_210446 crossref_primary_10_3233_SW_200404 crossref_primary_10_1109_TII_2019_2929108 crossref_primary_10_1109_TPAMI_2023_3237667 crossref_primary_10_1109_TWC_2023_3281896 crossref_primary_10_1155_2020_7041564 crossref_primary_10_1109_TKDE_2020_2982878 crossref_primary_10_1109_TPDS_2021_3129617 crossref_primary_10_1007_s10664_021_09965_5 crossref_primary_10_1016_j_jocs_2022_101837 crossref_primary_10_1109_TAI_2023_3323637 crossref_primary_10_1007_s10489_021_03138_z crossref_primary_10_1186_s12859_019_3063_3 crossref_primary_10_1109_TKDE_2022_3221929 crossref_primary_10_7717_peerj_cs_2536 crossref_primary_10_1007_s00521_021_06135_y crossref_primary_10_1103_PhysRevE_104_044315 crossref_primary_10_1016_j_neucom_2018_08_072 crossref_primary_10_3390_app11219832 crossref_primary_10_3389_fdata_2019_00014 crossref_primary_10_1007_s11042_022_13633_1 crossref_primary_10_1109_TKDE_2020_3038654 crossref_primary_10_1007_s41109_022_00509_4 crossref_primary_10_1016_j_patcog_2023_109386 crossref_primary_10_3390_math13050746 crossref_primary_10_3390_math12030369 crossref_primary_10_1016_j_physa_2019_123633 crossref_primary_10_1016_j_inffus_2023_102190 crossref_primary_10_1038_s41467_023_43337_5 crossref_primary_10_1038_s41467_024_54280_4 crossref_primary_10_3390_info16010046 crossref_primary_10_2200_S01094ED1V01Y202104VIS012 crossref_primary_10_3390_make2040036 crossref_primary_10_1109_TSMC_2019_2932913 crossref_primary_10_1109_ACCESS_2024_3412175 crossref_primary_10_1016_j_ipm_2022_103137 crossref_primary_10_7717_peerj_cs_1030 crossref_primary_10_1016_j_asoc_2021_107831 crossref_primary_10_1016_j_jvcir_2023_103892 crossref_primary_10_1109_ACCESS_2020_3044367 crossref_primary_10_1145_3483595 crossref_primary_10_1016_j_jmb_2024_168841 crossref_primary_10_1038_s41467_022_33685_z crossref_primary_10_1016_j_knosys_2023_110255 crossref_primary_10_3390_biology12010041 crossref_primary_10_1007_s10994_024_06528_9 crossref_primary_10_3389_frai_2023_1256352 crossref_primary_10_1109_TMM_2020_3034530 crossref_primary_10_1016_j_knosys_2021_107300 crossref_primary_10_3390_sym15061178 crossref_primary_10_1038_s41467_023_39301_y crossref_primary_10_1109_ACCESS_2019_2961606 crossref_primary_10_1109_JAS_2023_123318 crossref_primary_10_1186_s12911_020_01237_4 crossref_primary_10_1109_TCAD_2021_3079142 crossref_primary_10_1109_ACCESS_2020_2971639 crossref_primary_10_1016_j_knosys_2023_111315 crossref_primary_10_1007_s11042_020_09746_0 crossref_primary_10_3390_electronics10202534 crossref_primary_10_1371_journal_pone_0284077 crossref_primary_10_3389_fenrg_2023_1168944 crossref_primary_10_1007_s13042_022_01643_2 crossref_primary_10_1016_j_is_2023_102272 crossref_primary_10_1049_sfw2_12064 crossref_primary_10_1016_j_is_2023_102273 crossref_primary_10_3390_app14083150 crossref_primary_10_1103_PhysRevA_107_042615 crossref_primary_10_1007_s10458_022_09565_7 crossref_primary_10_1088_2632_072X_ad0e23 crossref_primary_10_1016_j_media_2020_101768 crossref_primary_10_1016_j_inffus_2019_01_005 crossref_primary_10_1016_j_ins_2021_08_028 crossref_primary_10_1155_2020_8372928 crossref_primary_10_4018_IJSWIS_2019100105 crossref_primary_10_1142_S0129183124500797 crossref_primary_10_1098_rspa_2020_0447 crossref_primary_10_1016_j_knosys_2021_106872 crossref_primary_10_1109_ACCESS_2020_2984762 crossref_primary_10_3390_brainsci12081094 crossref_primary_10_1007_s11063_021_10478_x crossref_primary_10_1016_j_eswa_2021_115063 crossref_primary_10_1186_s12859_018_2584_5 crossref_primary_10_1109_TKDE_2021_3090075 crossref_primary_10_1016_j_artint_2024_104209 crossref_primary_10_1007_s11063_021_10454_5 crossref_primary_10_3390_math11102294 crossref_primary_10_1109_TBDATA_2021_3131610 crossref_primary_10_1016_j_aiopen_2021_05_002 crossref_primary_10_1109_ACCESS_2020_2995406 crossref_primary_10_1093_bioinformatics_btab098 crossref_primary_10_1016_j_dcan_2022_10_002 crossref_primary_10_1016_j_patter_2021_100227 crossref_primary_10_1109_TKDE_2022_3150080 crossref_primary_10_1109_TMC_2023_3336955 crossref_primary_10_1007_s42001_021_00128_6 crossref_primary_10_1007_s10618_020_00733_5 crossref_primary_10_1371_journal_pone_0232891 crossref_primary_10_1109_ACCESS_2021_3090834 crossref_primary_10_1007_s41109_020_00283_1 crossref_primary_10_1016_j_entcom_2024_100767 crossref_primary_10_1142_S0219691321500168 crossref_primary_10_1007_s11042_024_19682_y crossref_primary_10_1007_s00521_024_10638_9 crossref_primary_10_1021_acs_jcim_4c02140 crossref_primary_10_1016_j_knosys_2021_106895 crossref_primary_10_1016_j_datak_2022_101981 crossref_primary_10_1007_s10489_023_04685_3 crossref_primary_10_1016_j_neunet_2023_02_026 crossref_primary_10_1109_LRA_2020_2994483 crossref_primary_10_3390_a15020027 crossref_primary_10_1002_smr_2330 crossref_primary_10_1103_PhysRevA_101_032314 crossref_primary_10_1109_TCYB_2019_2932096 crossref_primary_10_1109_ACCESS_2020_3035886 crossref_primary_10_1109_TIFS_2024_3364066 crossref_primary_10_1007_s13198_024_02302_1 crossref_primary_10_2200_S01057ED1V01Y202009HLT047 crossref_primary_10_1016_j_knosys_2021_107996 crossref_primary_10_1038_s41598_024_56144_9 crossref_primary_10_3390_app13084743 crossref_primary_10_1016_j_engappai_2022_105727 crossref_primary_10_1007_s10994_022_06130_x crossref_primary_10_3389_fchem_2019_00782 crossref_primary_10_1007_s11227_024_06613_9 crossref_primary_10_1002_adma_202209503 crossref_primary_10_1016_j_apenergy_2024_124978 crossref_primary_10_1109_TPAMI_2022_3197276 crossref_primary_10_1089_nsm_2020_0003 crossref_primary_10_1007_s11042_021_11857_1 crossref_primary_10_1007_s10994_021_05998_5 crossref_primary_10_1016_j_neunet_2020_08_021 crossref_primary_10_1007_s40324_021_00282_x crossref_primary_10_1109_TCBB_2024_3492708 crossref_primary_10_1007_s00521_021_06646_8 crossref_primary_10_1016_j_ins_2021_07_026 crossref_primary_10_26599_TST_2021_9010067 crossref_primary_10_1145_3588930 crossref_primary_10_1016_j_chaos_2024_115630 crossref_primary_10_1145_3627704 crossref_primary_10_1073_pnas_1800683115 crossref_primary_10_1016_j_dss_2023_114085 crossref_primary_10_1007_s10115_022_01782_6 crossref_primary_10_1109_TNSE_2024_3417850 crossref_primary_10_1007_s41109_019_0197_1 crossref_primary_10_1016_j_neucom_2020_12_075 crossref_primary_10_1142_S0129183120500710 crossref_primary_10_1109_TAI_2021_3076021 crossref_primary_10_1109_TNNLS_2023_3244397 crossref_primary_10_1155_2022_7471408 crossref_primary_10_1108_LHT_11_2022_0538 crossref_primary_10_1145_3480243 crossref_primary_10_1007_s00371_022_02752_3 crossref_primary_10_1109_ACCESS_2023_3322367 crossref_primary_10_1049_cit2_12367 crossref_primary_10_1109_TEM_2019_2961376 crossref_primary_10_1016_j_eswa_2020_113427 crossref_primary_10_1016_j_ins_2021_08_048 crossref_primary_10_1016_j_engappai_2022_104848 crossref_primary_10_1109_TIP_2021_3062692 crossref_primary_10_1007_s00500_021_06580_w crossref_primary_10_1109_TCAD_2022_3198513 crossref_primary_10_1109_TIM_2020_3041087 crossref_primary_10_1109_TKDE_2021_3115775 crossref_primary_10_1038_s41467_022_35181_w crossref_primary_10_1016_j_array_2023_100276 crossref_primary_10_1007_s13278_021_00795_3 crossref_primary_10_1109_ACCESS_2020_2964028 crossref_primary_10_1371_journal_pone_0228728 crossref_primary_10_23919_JSEE_2022_000036 crossref_primary_10_1007_s42979_020_00127_w crossref_primary_10_1016_j_engappai_2024_109647 crossref_primary_10_1016_j_neucom_2019_12_046 crossref_primary_10_1016_j_oceaneng_2024_116684 crossref_primary_10_1108_IJWIS_10_2019_0048 crossref_primary_10_3389_fnins_2019_01387 crossref_primary_10_1016_j_ins_2019_12_082 crossref_primary_10_1109_ACCESS_2021_3111790 crossref_primary_10_1007_s00180_023_01334_8 crossref_primary_10_1371_journal_pone_0288822 crossref_primary_10_1093_bioadv_vbae164 crossref_primary_10_1109_TSG_2021_3093515 crossref_primary_10_1016_j_knosys_2021_107564 crossref_primary_10_1111_mice_12551 crossref_primary_10_1016_j_artint_2020_103235 crossref_primary_10_1016_j_knosys_2021_107327 crossref_primary_10_1080_01621459_2023_2225239 crossref_primary_10_1109_ACCESS_2020_2971604 crossref_primary_10_1016_j_neucom_2021_06_034 crossref_primary_10_3233_IDA_194676 crossref_primary_10_1186_s12920_019_0605_5 crossref_primary_10_1109_ACCESS_2023_3239266 crossref_primary_10_1007_s11432_018_9943_9 crossref_primary_10_1109_ACCESS_2020_3004964 crossref_primary_10_1186_s12859_023_05612_6 crossref_primary_10_1109_TETC_2020_3027309 crossref_primary_10_1016_j_eswa_2022_117138 crossref_primary_10_1016_j_eswa_2023_119834 crossref_primary_10_1002_widm_1573 crossref_primary_10_1145_3633518 crossref_primary_10_1007_s10489_022_03534_z crossref_primary_10_1016_j_future_2022_04_013 crossref_primary_10_1016_j_ins_2023_119287 crossref_primary_10_1109_TKDE_2024_3437781 crossref_primary_10_1109_TCSS_2018_2877083 crossref_primary_10_1016_j_patcog_2023_109730 crossref_primary_10_1016_j_neucom_2020_10_008 crossref_primary_10_1186_s12911_022_01938_y crossref_primary_10_1145_3610228 crossref_primary_10_1038_s42005_023_01143_x crossref_primary_10_1145_3470659 crossref_primary_10_1109_ACCESS_2022_3174197 crossref_primary_10_1016_j_ipm_2019_102172 crossref_primary_10_1088_2515_7639_ad3d89 crossref_primary_10_1109_ACCESS_2020_2981649 crossref_primary_10_1002_joom_1270 crossref_primary_10_1016_j_mlwa_2022_100326 crossref_primary_10_1109_TNSE_2022_3201529 crossref_primary_10_1016_j_ins_2023_01_146 crossref_primary_10_1145_3442199 crossref_primary_10_1109_TVCG_2018_2887230 crossref_primary_10_1186_s40649_019_0069_y crossref_primary_10_1002_cpe_5664 crossref_primary_10_1155_2021_2857611 crossref_primary_10_1016_j_ins_2022_07_126 crossref_primary_10_1109_TMM_2020_2976627 crossref_primary_10_1109_ACCESS_2021_3070395 crossref_primary_10_1007_s40747_021_00332_x crossref_primary_10_1007_s41651_025_00217_4 crossref_primary_10_1007_s10994_024_06513_2 crossref_primary_10_32604_cmes_2023_024781 crossref_primary_10_1016_j_jmsy_2021_08_002 crossref_primary_10_1109_ACCESS_2025_3526650 crossref_primary_10_1186_s12859_021_04303_4 crossref_primary_10_1007_s11227_023_05282_4 crossref_primary_10_1016_j_knosys_2022_108699 crossref_primary_10_1016_j_knosys_2022_109547 crossref_primary_10_1016_j_health_2022_100084 crossref_primary_10_1016_j_procs_2024_03_203 crossref_primary_10_31590_ejosat_937722 crossref_primary_10_3390_app10051755 crossref_primary_10_1007_s00521_021_06617_z crossref_primary_10_1016_j_eswa_2023_119994 crossref_primary_10_1016_j_tranpol_2022_04_018 crossref_primary_10_1016_j_cities_2020_103012 crossref_primary_10_1016_j_jss_2021_111066 crossref_primary_10_1016_j_knosys_2020_105861 crossref_primary_10_1016_j_neucom_2020_10_054 crossref_primary_10_1016_j_knosys_2020_106707 crossref_primary_10_1186_s12859_021_03971_6 crossref_primary_10_1016_j_neucom_2021_02_100 crossref_primary_10_1007_s41109_019_0203_7 crossref_primary_10_1093_bib_bbaa037 crossref_primary_10_3390_rs17061075 crossref_primary_10_1093_bioinformatics_btaa768 crossref_primary_10_1109_TKDE_2020_2987784 crossref_primary_10_1080_17445760_2024_2425298 crossref_primary_10_3390_app122110898 crossref_primary_10_1109_ACCESS_2019_2927496 crossref_primary_10_1049_blc2_12031 crossref_primary_10_3233_SW_222986 crossref_primary_10_1007_s10115_023_01986_4 crossref_primary_10_1088_1742_6596_1976_1_012037 crossref_primary_10_1109_TNNLS_2022_3221103 crossref_primary_10_1016_j_eswa_2022_119454 crossref_primary_10_1109_ACCESS_2024_3500374 crossref_primary_10_3390_s20071978 crossref_primary_10_1093_comjnl_bxab064 crossref_primary_10_1093_database_baad045 crossref_primary_10_1177_01655515221101841 crossref_primary_10_1038_s41598_022_08787_9 crossref_primary_10_1371_journal_pntd_0008924 crossref_primary_10_1089_big_2021_0107 crossref_primary_10_1109_TVCG_2019_2922597 crossref_primary_10_1093_bib_bbad324 crossref_primary_10_1186_s12859_018_2163_9 crossref_primary_10_1016_j_chaos_2021_111260 crossref_primary_10_1109_TBDATA_2022_3194643 crossref_primary_10_1155_2020_8810817 crossref_primary_10_1007_s41109_021_00415_1 crossref_primary_10_1109_TCYB_2022_3227805 crossref_primary_10_1109_ACCESS_2019_2920671 crossref_primary_10_1016_j_dam_2022_01_017 crossref_primary_10_1109_ACCESS_2019_2942221 crossref_primary_10_1145_3548685 crossref_primary_10_1016_j_ajhg_2021_12_008 crossref_primary_10_1109_TII_2019_2947066 crossref_primary_10_1007_s13278_021_00720_8 crossref_primary_10_1155_2019_4906903 crossref_primary_10_1007_s10489_023_05162_7 crossref_primary_10_1016_j_chaos_2023_114071 crossref_primary_10_1016_j_isci_2022_104446 crossref_primary_10_1109_TKDE_2020_3045924 crossref_primary_10_1049_ccs2_12108 crossref_primary_10_1088_1757_899X_1012_1_012065 crossref_primary_10_1109_ACCESS_2020_2978517 crossref_primary_10_1007_s40821_024_00270_x crossref_primary_10_3390_e23111542 crossref_primary_10_1007_s11192_023_04840_0 crossref_primary_10_1371_journal_pone_0297903 crossref_primary_10_3390_e26020149 crossref_primary_10_3390_app10072421 crossref_primary_10_1051_itmconf_20224701003 crossref_primary_10_3390_e24081084 crossref_primary_10_1093_database_baab033 crossref_primary_10_1109_TDSC_2023_3242009 crossref_primary_10_1186_s40537_021_00539_2 crossref_primary_10_1007_s11227_022_04958_7 crossref_primary_10_1109_ACCESS_2020_3037118 crossref_primary_10_1007_s11036_023_02091_0 crossref_primary_10_1002_spe_2886 crossref_primary_10_1109_TKDE_2021_3078755 crossref_primary_10_1016_j_neucom_2019_07_076 crossref_primary_10_3389_fphy_2021_763904 crossref_primary_10_1088_1742_5468_abb45a crossref_primary_10_1109_TKDE_2022_3150792 crossref_primary_10_1016_j_patcog_2022_109126 crossref_primary_10_1038_s41598_021_87987_1 crossref_primary_10_1007_s00521_024_10797_9 crossref_primary_10_1007_s10994_020_05898_0 crossref_primary_10_1109_TETC_2018_2830698 crossref_primary_10_1007_s13278_020_00714_y crossref_primary_10_1111_2041_210X_14228 crossref_primary_10_1145_3380988 crossref_primary_10_1016_j_jii_2024_100759 crossref_primary_10_1002_tpg2_20522 crossref_primary_10_1109_ACCESS_2019_2916186 crossref_primary_10_1007_s13278_020_00649_4 crossref_primary_10_1016_j_knosys_2023_110821 crossref_primary_10_1109_TKDE_2022_3200723 crossref_primary_10_1016_j_websem_2022_100759 crossref_primary_10_1016_j_aiopen_2021_01_001 crossref_primary_10_1109_TNSE_2023_3239661 crossref_primary_10_1093_bib_bbab340 crossref_primary_10_3390_math11071705 crossref_primary_10_3390_electronics11203410 crossref_primary_10_3233_DS_210034 crossref_primary_10_3233_SW_222925 crossref_primary_10_1016_j_knosys_2020_105822 crossref_primary_10_1109_ACCESS_2022_3176436 crossref_primary_10_3390_a10040109 crossref_primary_10_1088_1742_6596_1955_1_012057 crossref_primary_10_1103_PhysRevE_103_012305 crossref_primary_10_1016_j_knosys_2019_06_024 crossref_primary_10_1145_3387726_3387729 crossref_primary_10_1109_ACCESS_2023_3306783 crossref_primary_10_1109_TBDATA_2018_2850013 crossref_primary_10_1016_j_eswa_2019_113079 crossref_primary_10_1109_ACCESS_2024_3425892 crossref_primary_10_1093_bioinformatics_btab202 crossref_primary_10_1016_j_eswa_2020_114294 crossref_primary_10_1016_j_neunet_2019_01_013 crossref_primary_10_1007_s13278_019_0561_2 crossref_primary_10_1371_journal_pcsy_0000012 crossref_primary_10_32604_cmc_2022_021186 crossref_primary_10_1016_j_eswa_2023_120347 crossref_primary_10_1145_3397191 crossref_primary_10_1007_s40747_022_00929_w crossref_primary_10_1109_TCSS_2022_3182550 crossref_primary_10_1007_s10559_019_00213_9 crossref_primary_10_1016_j_neunet_2021_06_028 crossref_primary_10_1002_int_22840 crossref_primary_10_3390_a18020083 crossref_primary_10_12677_CSA_2022_124114 crossref_primary_10_1016_j_eswa_2021_115896 crossref_primary_10_1016_j_fmre_2023_10_001 crossref_primary_10_7717_peerj_cs_521 crossref_primary_10_1016_j_jtbi_2024_111850 crossref_primary_10_1007_s12652_020_02289_0 crossref_primary_10_33847_2686_8296_2_2_2 crossref_primary_10_1145_3429446 crossref_primary_10_1109_TKDE_2024_3421933 crossref_primary_10_1007_s40558_021_00195_5 crossref_primary_10_1007_s11192_022_04425_3 crossref_primary_10_1109_ACCESS_2021_3054894 crossref_primary_10_3389_fdata_2020_608043 crossref_primary_10_1016_j_eswa_2024_126156 crossref_primary_10_1140_epjds_s13688_022_00344_8 crossref_primary_10_1080_23311916_2023_2221962 crossref_primary_10_1007_s11280_021_00934_y crossref_primary_10_1016_j_is_2020_101624 crossref_primary_10_1109_TKDE_2021_3101840 crossref_primary_10_3390_s24072106 crossref_primary_10_1016_j_aei_2023_101888 crossref_primary_10_1016_j_knosys_2019_105301 crossref_primary_10_1093_nargab_lqae004 crossref_primary_10_1007_s10489_021_02633_7 crossref_primary_10_1002_hbm_25966 crossref_primary_10_1093_comnet_cnac030 crossref_primary_10_1016_j_ipm_2019_01_002 crossref_primary_10_3390_atmos13091449 crossref_primary_10_1016_j_knosys_2022_109597 crossref_primary_10_1007_s10618_018_0581_y crossref_primary_10_1093_bioinformatics_btaa150 crossref_primary_10_1016_j_knosys_2022_110172 crossref_primary_10_1007_s41060_019_00190_4 crossref_primary_10_34706_DE_2024_03_06 crossref_primary_10_3233_SW_212968 crossref_primary_10_1016_j_knosys_2023_110456 crossref_primary_10_1016_j_jclepro_2024_142549 crossref_primary_10_1016_j_compbiomed_2024_109158 crossref_primary_10_1016_j_patcog_2020_107684 crossref_primary_10_1016_j_eswa_2021_115466 crossref_primary_10_1038_s41392_022_00994_0 crossref_primary_10_1109_TASLP_2021_3059114 crossref_primary_10_1016_j_eswa_2019_04_061 crossref_primary_10_1109_TLT_2021_3059362 crossref_primary_10_1016_j_eswa_2023_121236 crossref_primary_10_1109_ACCESS_2020_2972132 crossref_primary_10_1109_ACCESS_2020_2984352 crossref_primary_10_1109_ACCESS_2020_2984593 crossref_primary_10_1016_j_measurement_2023_114039 crossref_primary_10_3390_machines10090776 crossref_primary_10_1007_s00521_020_04924_5 crossref_primary_10_1109_TNNLS_2020_2978386 crossref_primary_10_3390_info11050250 crossref_primary_10_1016_j_neucom_2024_127820 crossref_primary_10_1109_ACCESS_2020_2975895 crossref_primary_10_1016_j_neucom_2023_126430 crossref_primary_10_1038_s41598_022_24567_x crossref_primary_10_2139_ssrn_4051095 crossref_primary_10_1016_j_neucom_2023_126434 crossref_primary_10_1145_3398071 crossref_primary_10_1088_1402_4896_ad9fae crossref_primary_10_1109_ACCESS_2020_2984342 crossref_primary_10_1109_JIOT_2020_3036583 crossref_primary_10_3233_JIFS_220233 crossref_primary_10_1016_j_ifacol_2023_12_082 crossref_primary_10_1007_s11042_023_15096_4 crossref_primary_10_1109_ACCESS_2019_2913086 crossref_primary_10_1145_3580516 crossref_primary_10_1186_s12911_020_01134_w crossref_primary_10_1109_ACCESS_2021_3082932 crossref_primary_10_1109_TNSE_2021_3140099 crossref_primary_10_3390_genes14071441 crossref_primary_10_1007_s00607_021_00982_2 crossref_primary_10_1145_3369782 crossref_primary_10_3233_JIFS_233540 crossref_primary_10_1016_j_knosys_2021_106802 crossref_primary_10_1016_j_compenvurbsys_2024_102228 crossref_primary_10_1109_TIM_2024_3440387 crossref_primary_10_1109_TKDE_2020_3030807 crossref_primary_10_1016_j_physrep_2019_12_004 crossref_primary_10_1017_ATSIP_2020_13 crossref_primary_10_1109_ACCESS_2020_3017382 crossref_primary_10_1007_s00521_021_06706_z crossref_primary_10_1016_j_is_2021_101766 crossref_primary_10_1016_j_ipm_2022_103253 crossref_primary_10_1155_2021_2260488 crossref_primary_10_1007_s11280_021_00999_9 crossref_primary_10_1145_3543508 crossref_primary_10_1039_C9RE00213H crossref_primary_10_1109_ACCESS_2019_2958326 crossref_primary_10_1007_s10994_022_06160_5 crossref_primary_10_1016_j_cosrev_2020_100246 crossref_primary_10_1111_cgf_14859 crossref_primary_10_1089_big_2019_0169 crossref_primary_10_1109_TCYB_2020_2995595 crossref_primary_10_1109_TBDATA_2020_3034976 crossref_primary_10_1016_j_csite_2025_105888 crossref_primary_10_1007_s10489_021_03113_8 crossref_primary_10_1109_ACCESS_2020_2983987 crossref_primary_10_1007_s00371_022_02548_5 crossref_primary_10_1007_s11042_023_14538_3 crossref_primary_10_3233_SW_190363 crossref_primary_10_1007_s11280_022_01115_1 crossref_primary_10_2196_32730 crossref_primary_10_1016_j_knosys_2020_106266 crossref_primary_10_1016_j_jpi_2023_100335 crossref_primary_10_1016_j_eswa_2022_116757 crossref_primary_10_3233_SW_190359 crossref_primary_10_1109_TCSS_2019_2962819 crossref_primary_10_1007_s10462_024_10998_7 crossref_primary_10_2196_29570 crossref_primary_10_1142_S012918312450133X crossref_primary_10_3389_fdata_2024_1427104 crossref_primary_10_1140_epja_s10050_024_01385_5 crossref_primary_10_1109_TCE_2023_3255231 crossref_primary_10_1007_s42979_020_00388_5 crossref_primary_10_1109_TKDE_2022_3153060 crossref_primary_10_1109_TCSS_2024_3479188 crossref_primary_10_1109_TNSE_2020_3035352 crossref_primary_10_1109_TBDATA_2022_3164575 crossref_primary_10_1007_s11257_024_09417_x crossref_primary_10_1109_TSMC_2022_3196506 crossref_primary_10_1016_j_patcog_2020_107347 crossref_primary_10_1007_s12065_019_00257_y crossref_primary_10_1016_j_jnca_2021_103151 crossref_primary_10_1007_s00521_018_03967_z crossref_primary_10_3390_app9204473 crossref_primary_10_1007_s10115_022_01808_z crossref_primary_10_1016_j_cviu_2023_103744 crossref_primary_10_1016_j_jhydrol_2022_128792 crossref_primary_10_1109_MNET_011_2000444 crossref_primary_10_3390_en17143516 crossref_primary_10_1109_TKDE_2020_3046511 crossref_primary_10_1016_j_eswa_2021_116031 crossref_primary_10_1016_j_imavis_2021_104371 crossref_primary_10_1007_s11280_020_00849_0 crossref_primary_10_1109_TNSE_2023_3332499 crossref_primary_10_1007_s41109_020_00329_4 crossref_primary_10_1145_3680463 crossref_primary_10_1016_j_knosys_2024_112635 crossref_primary_10_1137_22M1518281 crossref_primary_10_3233_JIFS_231548 crossref_primary_10_21105_joss_00876 crossref_primary_10_1109_ACCESS_2020_3022664 crossref_primary_10_1007_s11280_023_01154_2 crossref_primary_10_1016_j_knosys_2023_111278 crossref_primary_10_1109_ACCESS_2020_2992269 crossref_primary_10_7717_peerj_cs_2286 crossref_primary_10_1103_PhysRevE_103_022316 crossref_primary_10_1007_JHEP11_2024_038 crossref_primary_10_1109_TIP_2019_2928630 crossref_primary_10_1016_j_knosys_2019_105418 crossref_primary_10_1109_TNNLS_2019_2956095 crossref_primary_10_1007_s10489_022_03285_x crossref_primary_10_1093_comnet_cnaa007 crossref_primary_10_1109_TLT_2022_3196355 crossref_primary_10_1007_s12559_022_10098_0 crossref_primary_10_1109_ACCESS_2020_3045532 crossref_primary_10_1142_S0219622022500730 crossref_primary_10_1063_5_0224710 crossref_primary_10_1016_j_eswa_2021_116463 crossref_primary_10_1016_j_jnca_2021_103113 crossref_primary_10_1109_TITS_2022_3163756 crossref_primary_10_1155_2022_9154712 crossref_primary_10_1007_s11227_020_03198_x crossref_primary_10_1109_ACCESS_2022_3225413 crossref_primary_10_1007_s13042_019_01003_7 crossref_primary_10_1016_j_isci_2023_106460 crossref_primary_10_1109_ACCESS_2021_3085114 crossref_primary_10_1109_TKDE_2024_3493391 crossref_primary_10_1111_coin_12502 crossref_primary_10_1126_sciadv_abb9004 crossref_primary_10_1007_s10844_020_00625_6 crossref_primary_10_1007_s41019_023_00206_x crossref_primary_10_1016_j_ejor_2020_03_019 crossref_primary_10_3390_app13021093 crossref_primary_10_3390_ijgi14020046 crossref_primary_10_1073_pnas_2019994118 crossref_primary_10_1109_ACCESS_2024_3360480 crossref_primary_10_1007_s41109_019_0147_y crossref_primary_10_1016_j_knosys_2020_106244 crossref_primary_10_1016_j_neunet_2024_106207 crossref_primary_10_1016_j_neuroimage_2021_118469 crossref_primary_10_1016_j_ins_2020_07_036 crossref_primary_10_3390_math10183345 crossref_primary_10_3390_electronics12132763 crossref_primary_10_1089_brain_2024_0056 crossref_primary_10_1007_s10618_020_00684_x crossref_primary_10_1016_j_measurement_2022_111353 crossref_primary_10_1007_s11042_021_11582_9 crossref_primary_10_1088_1402_4896_ad3eea crossref_primary_10_1038_s41467_021_26674_1 crossref_primary_10_1109_TKDE_2024_3523857 crossref_primary_10_1186_s12859_022_04650_w crossref_primary_10_1109_TVCG_2024_3388562 crossref_primary_10_1016_j_ins_2020_05_012 crossref_primary_10_1109_TKDE_2023_3304478 crossref_primary_10_1093_bib_bbad261 crossref_primary_10_1080_1206212X_2024_2404087 crossref_primary_10_1145_3638059 crossref_primary_10_1103_PhysRevResearch_2_023040 crossref_primary_10_1016_j_neunet_2025_107173 crossref_primary_10_1007_s00371_023_02913_y crossref_primary_10_1287_ijds_2022_00018 crossref_primary_10_1109_TKDE_2020_3006475 crossref_primary_10_1109_TPAMI_2021_3104733 crossref_primary_10_3389_fphy_2021_768006 crossref_primary_10_1140_epjds_s13688_021_00277_8 crossref_primary_10_1186_s12859_022_04598_x crossref_primary_10_1109_TKDE_2022_3206175 crossref_primary_10_1103_PhysRevResearch_6_013337 crossref_primary_10_14778_3352063_3352126 crossref_primary_10_1016_j_knosys_2021_107021 crossref_primary_10_1063_5_0232539 crossref_primary_10_3390_s23084168 crossref_primary_10_1016_j_eswa_2019_112883 crossref_primary_10_1371_journal_pcbi_1007434 crossref_primary_10_1016_j_inffus_2021_04_012 crossref_primary_10_1177_01655515221111002 crossref_primary_10_1109_TR_2022_3176922 crossref_primary_10_1016_j_websem_2020_100590 crossref_primary_10_1007_s13385_024_00384_6 crossref_primary_10_1109_TPAMI_2021_3061162 crossref_primary_10_1007_s00521_020_04908_5 crossref_primary_10_3233_IDA_194749 crossref_primary_10_3390_publications12040049 crossref_primary_10_3390_s21062175 crossref_primary_10_1007_s11280_021_01001_2 crossref_primary_10_1016_j_eswa_2021_114934 crossref_primary_10_1093_gigascience_giaa032 crossref_primary_10_1162_qss_a_00260 crossref_primary_10_1016_j_knosys_2019_104953 crossref_primary_10_1016_j_neucom_2021_12_026 crossref_primary_10_1002_widm_1454 crossref_primary_10_1016_j_heliyon_2024_e31813 crossref_primary_10_1109_TSE_2019_2892959 crossref_primary_10_1155_2021_2934362 crossref_primary_10_3390_e24050730 crossref_primary_10_1007_s10115_023_01934_2 crossref_primary_10_1109_TKDE_2022_3148284 crossref_primary_10_1016_j_engappai_2023_107028 crossref_primary_10_1109_TITS_2020_2984175 crossref_primary_10_1038_s41567_022_01716_7 crossref_primary_10_1109_TKDE_2019_2931542 crossref_primary_10_1016_j_neucom_2022_08_033 crossref_primary_10_1016_j_patcog_2022_108661 crossref_primary_10_1016_j_physrep_2020_03_002 crossref_primary_10_54097_hset_v16i_2624 crossref_primary_10_1080_13658816_2025_2472195 crossref_primary_10_1016_j_mlwa_2022_100441 crossref_primary_10_3390_math11183990 crossref_primary_10_1016_j_eswa_2021_114913 crossref_primary_10_1186_s13321_020_00447_2 crossref_primary_10_1007_s42484_024_00178_9 crossref_primary_10_1016_j_ins_2020_05_032 crossref_primary_10_1109_TCSS_2024_3367231 crossref_primary_10_1109_TCSS_2023_3323512 crossref_primary_10_1007_s00500_023_08665_0 crossref_primary_10_1016_j_engappai_2023_107240 crossref_primary_10_1109_ACCESS_2019_2932396 crossref_primary_10_2139_ssrn_3981100 crossref_primary_10_1007_s00607_022_01115_z crossref_primary_10_3390_a15040114 crossref_primary_10_7717_peerj_cs_172 crossref_primary_10_1007_s11042_024_18439_x crossref_primary_10_1016_j_mlwa_2021_100130 crossref_primary_10_1016_j_ipm_2021_102546 crossref_primary_10_1016_j_xinn_2021_100176 crossref_primary_10_1109_TBDATA_2022_3177455 crossref_primary_10_55056_cte_298 crossref_primary_10_1021_acs_est_3c00653 crossref_primary_10_1007_s10489_023_05108_z crossref_primary_10_1145_3481639 |
Cites_doi | 10.1086/jar.33.4.3629752 10.1109/JPROC.2010.2044470 10.1016/j.socnet.2004.11.009 10.1038/nprot.2009.177 10.1109/34.908974 10.1007/BF01098364 10.1109/34.868688 10.1109/2945.841119 10.1016/S0378-8733(03)00009-1 10.1038/nature06830 10.1109/TPAMI.2007.250598 10.7551/mitpress/7432.003.0009 10.1109/TKDE.2016.2591009 10.1007/BF02289026 10.1016/j.patcog.2010.11.015 10.1098/rspb.2001.1800 10.1103/PhysRevE.69.026113 10.1126/science.290.5500.2323 10.1109/TPAMI.2013.50 10.1016/0893-6080(90)90005-6 10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N 10.1126/science.290.5500.2319 10.1137/0713009 10.1016/0005-1098(78)90005-5 10.1086/226141 10.1016/0378-8733(83)90021-7 10.1080/14786440109462720 10.1609/aaai.v32i1.11849 10.14778/1687627.1687709 10.1109/TKDE.2007.46 10.1016/0925-7721(94)00014-X 10.1145/1217299.1217301 10.1016/j.physa.2010.11.027 10.1080/01621459.1987.10478385 10.1002/asi.20591 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright Elsevier Science Ltd. Jul 1, 2018 |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Jul 1, 2018 |
DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
DOI | 10.1016/j.knosys.2018.03.022 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-7409 |
EndPage | 94 |
ExternalDocumentID | 10_1016_j_knosys_2018_03_022 S0950705118301540 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW SSH UHS WUQ 7SC 8FD E3H EFKBS F2A JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c334t-3bb6b57fb1f1afed4c0b823fa60eecf306c44d83335b5bc508f8c7a90baf9f693 |
IEDL.DBID | .~1 |
ISSN | 0950-7051 |
IngestDate | Fri Jul 25 05:10:17 EDT 2025 Tue Jul 01 04:37:54 EDT 2025 Thu Apr 24 23:09:19 EDT 2025 Fri Feb 23 02:29:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Python graph embedding methods GEM library Graph embedding applications Graph embedding techniques |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-3bb6b57fb1f1afed4c0b823fa60eecf306c44d83335b5bc508f8c7a90baf9f693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2455-2160 |
PQID | 2088072032 |
PQPubID | 2035257 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2088072032 crossref_primary_10_1016_j_knosys_2018_03_022 crossref_citationtrail_10_1016_j_knosys_2018_03_022 elsevier_sciencedirect_doi_10_1016_j_knosys_2018_03_022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-01 2018-07-00 20180701 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Knowledge-based systems |
PublicationYear | 2018 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Zachary (bib0091) 1977; 33 W.L. Hamilton, R. Ying, J. Leskovec, Inductive representation learning on large graphs, arXiv Rissanen (bib0073) 1978; 14 J. Leskovec, A. Krevl, SNAP datasets: Stanford large network dataset collection, 2014 Tang, Liu (bib0093) 2009 Wang, Wong (bib0090) 1987; 82 T.N. Kipf, M. Welling, Variational graph auto-encoders, arXiv Friedman, Getoor, Koller, Pfeffer (bib0017) 1999 Lin, Liu, Chen (bib0043) 2005 White, Boorman, Breiger (bib0016) 1976; 81 Zhang, Yin, Zhu, Zhang (bib0047) 2016 Jaccard (bib0013) 1901 Neville, Jensen (bib0087) 2000 Fouss, Pirotte, Renders, Saerens (bib0050) 2007; 19 Van Loan (bib0034) 1976; 13 McCallum, Nigam (bib0089) 1998; 752 Tenenbaum, De Silva, Langford (bib0038) 2000; 290 Freeman (bib0002) 2000; 1 Azran (bib0009) 2007 Huang, Li, Hu (bib0048) 2017 (2013). Martínez, Kak (bib0037) 2001; 23 Gehrke, Ginsparg, Kleinberg (bib0094) 2003; 5 . Lu, Getoor (bib0012) 2003; 3 (2017). Kruskal, Wish (bib0039) 1978; 11 Pan, Wu, Zhu, Zhang, Wang (bib0055) 2016; 11 Bhagat, Cormode, Muthukrishnan (bib0006) 2011 Duvenaud, Maclaurin, Iparraguirre, Bombarell, Hirzel, Aspuru-Guzik, Adams (bib0061) 2015 Wang, Cui, Zhu (bib0023) 2016 H. Dai, Y. Wang, R. Trivedi, L. Song, Deep coevolutionary network: embedding user and item features for recommendation (2017). Ou, Cui, Pei, Zhang, Zhu (bib0024) 2016 Di Battista, Eades, Tamassia, Tollis (bib0076) 1994; 4 Leskovec, Kleinberg, Faloutsos (bib0004) 2007; 1 Belkin, Niyogi (bib0025) 2001; 14 Hornik, Stinchcombe, White (bib0067) 1990; 3 W.L. Hamilton, R. Ying, J. Leskovec, Representation learning on graphs: methods and applications, arXiv preprint arXiv Li, Zhu, Zhang (bib0054) 2016 i Cancho, Solé (bib0003) 2001; 268 Martínez, Kak (bib0042) 2008; 23 Wright, Ma, Mairal, Sapiro, Huang, Yan (bib0102) 2010; 98 Clauset, Moore, Newman (bib0015) 2008; 453 Niepert, Ahmed, Kutzkov (bib0057) 2016 Herman, Melançon, Marshall (bib0078) 2000; 6 (2016). Feder, Motwani (bib0068) 1991 Bengio, Courville, Vincent (bib0058) 2013; 35 Tang, Qu, Wang, Zhang, Yan, Mei (bib0022) 2015 Chang, Han, Tang, Qi, Aggarwal, Huang (bib0045) 2015 He, Niyogi (bib0040) 2004 Bunke, Riesen (bib0103) 2011; 44 Tian, Hankins, Patel (bib0070) 2008 Yang, Tang, Cohen (bib0053) 2016 Katz (bib0085) 1953; 18 Hosmer Jr, Lemeshow, Sturdivant (bib0088) 2013; 398 Eades, Xuemin (bib0077) 1989 J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks and locally connected networks on graphs, arXiv Riesen, Neuhaus, Bunke (bib0101) 2007 Maaten, Hinton (bib0008) 2008; 9 T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, arXiv B. Perozzi, V. Kulkarni, S. Skiena, Walklets: multiscale graph embeddings for interpretable network classification, arXiv Shaw, Jebara (bib0033) 2009 Z. Yang, W.W. Cohen, R. Salakhutdinov, Revisiting semi-supervised learning with graph embeddings, arXiv H. Chen, B. Perozzi, Y. Hu, S. Skiena, Harp: hierarchical representation learning for networks, arXiv Defferrard, Bresson, Vandergheynst (bib0063) 2016 M. Henaff, J. Bruna, Y. LeCun, Deep convolutional networks on graph-structured data, arXiv Navlakha, Rastogi, Shrivastava (bib0072) 2008 (2015). Shi, Malik (bib0020) 2000; 22 Liben-Nowell, Kleinberg (bib0005) 2007; 58 Cao, Lu, Xu (bib0030) 2016 Yu, Chu, Yu, Tresp, Xu (bib0086) 2006 Brand (bib0041) 2003 Jungnickel, Schade (bib0074) 2005 P. Goyal, N. Kamra, X. He, Y. Liu, Dyngem: deep embedding method for dynamic graphs. Zhu, Guo, Yin, Ver Steeg, Galstyan (bib0099) 2016; 28 Baluja, Seth, Sivakumar, Jing, Yagnik, Kumar, Ravichandran, Aly (bib0010) 2008 Al Hasan, Zaki (bib0084) 2011 Yan, Xu, Zhang, Zhang, Yang, Lin (bib0035) 2007; 29 Roweis, Saul (bib0026) 2000; 290 Yang, Liu, Zhao, Sun, Chang (bib0044) 2015 Lü, Zhou (bib0083) 2011; 390 Tang, Liu (bib0092) 2009 Newman (bib0049) 2005; 27 Perozzi, Al-Rfou, Skiena (bib0028) 2014 Ding, He, Zha, Gu, Simon (bib0007) 2001 Heckerman, Meek, Koller (bib0018) 2007 Toivonen, Zhou, Hartikainen, Hinkka (bib0071) 2011 Pearson (bib0079) 1901; 2 H. Cai, V.W. Zheng, K.C.-C. Chang, A comprehensive survey of graph embedding: problems, techniques and applications, arXiv preprint arXiv Tu, Zhang, Liu, Sun (bib0046) 2016 Theocharidis, Van Dongen, Enright, Freeman (bib0001) 2009; 4 Breitkreutz, Stark, Reguly, Boucher, Breitkreutz, Livstone, Oughtred, Lackner, Bähler, Wood (bib0096) 2008; 36 Zhou, Cheng, Yu (bib0019) 2009; 2 Jolliffe (bib0036) 1986 Adamic, Adar (bib0014) 2003; 25 Luo, Nie, Huang, Ding (bib0032) 2011 Grover, Leskovec (bib0029) 2016 Newman, Girvan (bib0080) 2004; 69 White, Smyth (bib0082) 2005 Y. Li, D. Tarlow, M. Brockschmidt, R. Zemel, Gated graph sequence neural networks, arXiv Xu, Yuruk, Feng, Schweiger (bib0081) 2007 Pardalos, Xue (bib0069) 1994; 4 Holland, Laskey, Leinhardt (bib0100) 1983; 5 Ahmed, Shervashidze, Narayanamurthy, Josifovski, Smola (bib0021) 2013 D.P. Kingma, M. Welling, Auto-encoding variational bayes, arXiv Gansner, North (bib0075) 2000; 30 Cao, Lu, Xu (bib0027) 2015 Bhagat, Rozenbaum, Cormode (bib0011) 2007 Zhou (10.1016/j.knosys.2018.03.022_bib0019) 2009; 2 10.1016/j.knosys.2018.03.022_bib0059 Lu (10.1016/j.knosys.2018.03.022_bib0012) 2003; 3 Defferrard (10.1016/j.knosys.2018.03.022_bib0063) 2016 Cao (10.1016/j.knosys.2018.03.022_bib0027) 2015 Niepert (10.1016/j.knosys.2018.03.022_bib0057) 2016 Chang (10.1016/j.knosys.2018.03.022_bib0045) 2015 Wang (10.1016/j.knosys.2018.03.022_bib0090) 1987; 82 10.1016/j.knosys.2018.03.022_bib0060 10.1016/j.knosys.2018.03.022_bib0062 10.1016/j.knosys.2018.03.022_bib0064 Bunke (10.1016/j.knosys.2018.03.022_bib0103) 2011; 44 Yan (10.1016/j.knosys.2018.03.022_bib0035) 2007; 29 10.1016/j.knosys.2018.03.022_bib0066 10.1016/j.knosys.2018.03.022_bib0065 Leskovec (10.1016/j.knosys.2018.03.022_bib0004) 2007; 1 Liben-Nowell (10.1016/j.knosys.2018.03.022_bib0005) 2007; 58 Grover (10.1016/j.knosys.2018.03.022_bib0029) 2016 Pan (10.1016/j.knosys.2018.03.022_bib0055) 2016; 11 Gansner (10.1016/j.knosys.2018.03.022_bib0075) 2000; 30 Ahmed (10.1016/j.knosys.2018.03.022_bib0021) 2013 Ding (10.1016/j.knosys.2018.03.022_bib0007) 2001 10.1016/j.knosys.2018.03.022_bib0051 10.1016/j.knosys.2018.03.022_bib0052 10.1016/j.knosys.2018.03.022_bib0056 Newman (10.1016/j.knosys.2018.03.022_bib0049) 2005; 27 Lü (10.1016/j.knosys.2018.03.022_bib0083) 2011; 390 Brand (10.1016/j.knosys.2018.03.022_bib0041) 2003 Newman (10.1016/j.knosys.2018.03.022_bib0080) 2004; 69 Zhu (10.1016/j.knosys.2018.03.022_bib0099) 2016; 28 Bengio (10.1016/j.knosys.2018.03.022_bib0058) 2013; 35 10.1016/j.knosys.2018.03.022_bib0105 Pearson (10.1016/j.knosys.2018.03.022_bib0079) 1901; 2 10.1016/j.knosys.2018.03.022_bib0104 Eades (10.1016/j.knosys.2018.03.022_bib0077) 1989 Katz (10.1016/j.knosys.2018.03.022_bib0085) 1953; 18 Theocharidis (10.1016/j.knosys.2018.03.022_bib0001) 2009; 4 Yang (10.1016/j.knosys.2018.03.022_bib0053) 2016 Bhagat (10.1016/j.knosys.2018.03.022_bib0011) 2007 Bhagat (10.1016/j.knosys.2018.03.022_bib0006) 2011 Fouss (10.1016/j.knosys.2018.03.022_bib0050) 2007; 19 Tenenbaum (10.1016/j.knosys.2018.03.022_bib0038) 2000; 290 Martínez (10.1016/j.knosys.2018.03.022_bib0037) 2001; 23 Al Hasan (10.1016/j.knosys.2018.03.022_bib0084) 2011 Gehrke (10.1016/j.knosys.2018.03.022_bib0094) 2003; 5 Friedman (10.1016/j.knosys.2018.03.022_bib0017) 1999 Roweis (10.1016/j.knosys.2018.03.022_bib0026) 2000; 290 Holland (10.1016/j.knosys.2018.03.022_bib0100) 1983; 5 Cao (10.1016/j.knosys.2018.03.022_bib0030) 2016 Xu (10.1016/j.knosys.2018.03.022_bib0081) 2007 Navlakha (10.1016/j.knosys.2018.03.022_bib0072) 2008 Zhang (10.1016/j.knosys.2018.03.022_bib0047) 2016 Jolliffe (10.1016/j.knosys.2018.03.022_bib0036) 1986 Baluja (10.1016/j.knosys.2018.03.022_bib0010) 2008 Adamic (10.1016/j.knosys.2018.03.022_bib0014) 2003; 25 Toivonen (10.1016/j.knosys.2018.03.022_bib0071) 2011 Hornik (10.1016/j.knosys.2018.03.022_bib0067) 1990; 3 Shi (10.1016/j.knosys.2018.03.022_bib0020) 2000; 22 Huang (10.1016/j.knosys.2018.03.022_bib0048) 2017 Tang (10.1016/j.knosys.2018.03.022_bib0093) 2009 i Cancho (10.1016/j.knosys.2018.03.022_bib0003) 2001; 268 Jungnickel (10.1016/j.knosys.2018.03.022_bib0074) 2005 Ou (10.1016/j.knosys.2018.03.022_bib0024) 2016 Tian (10.1016/j.knosys.2018.03.022_bib0070) 2008 Yu (10.1016/j.knosys.2018.03.022_bib0086) 2006 White (10.1016/j.knosys.2018.03.022_bib0082) 2005 He (10.1016/j.knosys.2018.03.022_bib0040) 2004 Neville (10.1016/j.knosys.2018.03.022_bib0087) 2000 Breitkreutz (10.1016/j.knosys.2018.03.022_bib0096) 2008; 36 Belkin (10.1016/j.knosys.2018.03.022_bib0025) 2001; 14 Martínez (10.1016/j.knosys.2018.03.022_bib0042) 2008; 23 10.1016/j.knosys.2018.03.022_bib0095 10.1016/j.knosys.2018.03.022_bib0097 10.1016/j.knosys.2018.03.022_bib0098 Azran (10.1016/j.knosys.2018.03.022_bib0009) 2007 Luo (10.1016/j.knosys.2018.03.022_bib0032) 2011 Clauset (10.1016/j.knosys.2018.03.022_bib0015) 2008; 453 Lin (10.1016/j.knosys.2018.03.022_bib0043) 2005 White (10.1016/j.knosys.2018.03.022_bib0016) 1976; 81 Feder (10.1016/j.knosys.2018.03.022_bib0068) 1991 Yang (10.1016/j.knosys.2018.03.022_bib0044) 2015 Jaccard (10.1016/j.knosys.2018.03.022_bib0013) 1901 Maaten (10.1016/j.knosys.2018.03.022_bib0008) 2008; 9 Perozzi (10.1016/j.knosys.2018.03.022_bib0028) 2014 Shaw (10.1016/j.knosys.2018.03.022_bib0033) 2009 Zachary (10.1016/j.knosys.2018.03.022_bib0091) 1977; 33 Tang (10.1016/j.knosys.2018.03.022_bib0022) 2015 Kruskal (10.1016/j.knosys.2018.03.022_bib0039) 1978; 11 Duvenaud (10.1016/j.knosys.2018.03.022_bib0061) 2015 Hosmer Jr (10.1016/j.knosys.2018.03.022_bib0088) 2013; 398 Rissanen (10.1016/j.knosys.2018.03.022_bib0073) 1978; 14 Wright (10.1016/j.knosys.2018.03.022_bib0102) 2010; 98 Van Loan (10.1016/j.knosys.2018.03.022_bib0034) 1976; 13 Li (10.1016/j.knosys.2018.03.022_bib0054) 2016 Riesen (10.1016/j.knosys.2018.03.022_bib0101) 2007 Pardalos (10.1016/j.knosys.2018.03.022_bib0069) 1994; 4 Heckerman (10.1016/j.knosys.2018.03.022_bib0018) 2007 Herman (10.1016/j.knosys.2018.03.022_bib0078) 2000; 6 Di Battista (10.1016/j.knosys.2018.03.022_bib0076) 1994; 4 Tu (10.1016/j.knosys.2018.03.022_bib0046) 2016 Freeman (10.1016/j.knosys.2018.03.022_bib0002) 2000; 1 Wang (10.1016/j.knosys.2018.03.022_bib0023) 2016 10.1016/j.knosys.2018.03.022_bib0031 McCallum (10.1016/j.knosys.2018.03.022_bib0089) 1998; 752 Tang (10.1016/j.knosys.2018.03.022_bib0092) 2009 |
References_xml | – reference: H. Cai, V.W. Zheng, K.C.-C. Chang, A comprehensive survey of graph embedding: problems, techniques and applications, arXiv preprint arXiv: – start-page: 201 year: 2007 end-page: 238 ident: bib0018 article-title: Probabilistic entity-relationship models, prms, and plate models publication-title: Intro. Stat. Relational Learn. – start-page: 1225 year: 2016 end-page: 1234 ident: bib0023 article-title: Structural deep network embedding publication-title: Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining – reference: ). – start-page: 547 year: 2003 end-page: 554 ident: bib0041 article-title: Continuous nonlinear dimensionality reduction by kernel eigenmaps publication-title: IJCAI – start-page: 383 year: 2007 end-page: 393 ident: bib0101 article-title: Graph embedding in vector spaces by means of prototype selection publication-title: International Workshop on Graph-Based Representations in Pattern Recognition – start-page: 1300 year: 1999 end-page: 1309 ident: bib0017 article-title: Learning probabilistic relational models publication-title: IJCAI – volume: 25 start-page: 211 year: 2003 end-page: 230 ident: bib0014 article-title: Friends and neighbors on the web publication-title: Soc. Netw. – start-page: 2224 year: 2015 end-page: 2232 ident: bib0061 article-title: Convolutional networks on graphs for learning molecular fingerprints publication-title: Advances in neural information processing systems – start-page: 817 year: 2009 end-page: 826 ident: bib0092 article-title: Relational learning via latent social dimensions publication-title: Proceedings of the 15th international conference on Knowledge discovery and data mining – start-page: 1553 year: 2006 end-page: 1560 ident: bib0086 article-title: Stochastic relational models for discriminative link prediction publication-title: NIPS – start-page: 37 year: 2013 end-page: 48 ident: bib0021 article-title: Distributed large-scale natural graph factorization publication-title: Proceedings of the 22nd international conference on World Wide Web – start-page: 965 year: 2011 end-page: 973 ident: bib0071 article-title: Compression of weighted graphs publication-title: Proc. 17th international conference on Knowledge discovery and data mining – volume: 58 start-page: 1019 year: 2007 end-page: 1031 ident: bib0005 article-title: The link-prediction problem for social networks publication-title: J. Assoc. Inf. Sci. Technol. – reference: T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, arXiv: – volume: 398 year: 2013 ident: bib0088 article-title: Applied logistic regression – volume: 2 start-page: 559 year: 1901 end-page: 572 ident: bib0079 article-title: Liii. on lines and planes of closest fit to systems of points in space publication-title: Lond., Edinburgh, Dublin Philos. Mag. J. Sci. – start-page: 249 year: 2005 end-page: 258 ident: bib0043 article-title: Semantic manifold learning for image retrieval publication-title: Proceedings of the 13th annual ACM international conference on Multimedia – start-page: 895 year: 2008 end-page: 904 ident: bib0010 article-title: Video suggestion and discovery for youtube: taking random walks through the view graph publication-title: Proc. 17th int. conference on World Wide Web – year: 2016 ident: bib0057 article-title: Learning convolutional neural networks for graphs publication-title: Proceedings of the 33rd annual international conference on machine learning. ACM – volume: 5 start-page: 109 year: 1983 end-page: 137 ident: bib0100 article-title: Stochastic blockmodels: first steps publication-title: Soc. Netw. – volume: 3 start-page: 496 year: 2003 end-page: 503 ident: bib0012 article-title: Link-based classification publication-title: ICML – reference: (2017). – volume: 2 start-page: 718 year: 2009 end-page: 729 ident: bib0019 article-title: Graph clustering based on structural/attribute similarities publication-title: Proc. VLDB Endow. – start-page: 274 year: 2005 end-page: 285 ident: bib0082 article-title: A spectral clustering approach to finding communities in graphs publication-title: Proceedings of the 2005 SIAM international conference on data mining – volume: 290 start-page: 2323 year: 2000 end-page: 2326 ident: bib0026 article-title: Nonlinear dimensionality reduction by locally linear embedding publication-title: Science – reference: Y. Li, D. Tarlow, M. Brockschmidt, R. Zemel, Gated graph sequence neural networks, arXiv: – year: 1901 ident: bib0013 article-title: Etude comparative de la distribution florale dans une portion des Alpes et du Jura – reference: H. Dai, Y. Wang, R. Trivedi, L. Song, Deep coevolutionary network: embedding user and item features for recommendation (2017). – reference: (2017). – start-page: 855 year: 2016 end-page: 864 ident: bib0029 article-title: node2vec: scalable feature learning for networks publication-title: Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining – volume: 290 start-page: 2319 year: 2000 end-page: 2323 ident: bib0038 article-title: A global geometric framework for nonlinear dimensionality reduction publication-title: Science – volume: 453 start-page: 98 year: 2008 end-page: 101 ident: bib0015 article-title: Hierarchical structure and the prediction of missing links in networks publication-title: Nature – start-page: 243 year: 2011 end-page: 275 ident: bib0084 article-title: A survey of link prediction in social networks publication-title: Social network data analytics – volume: 11 start-page: 12 year: 2016 ident: bib0055 article-title: Tri-party deep network representation publication-title: Network – start-page: 115 year: 2011 end-page: 148 ident: bib0006 article-title: Node classification in social networks publication-title: Social network data analytics – volume: 11 year: 1978 ident: bib0039 article-title: Multidimensional scaling – reference: W.L. Hamilton, R. Ying, J. Leskovec, Representation learning on graphs: methods and applications, arXiv preprint arXiv: – volume: 5 year: 2003 ident: bib0094 article-title: Overview of the 2003 kdd cup publication-title: ACM SIGKDD Expl. – reference: T.N. Kipf, M. Welling, Variational graph auto-encoders, arXiv: – volume: 30 start-page: 1203 year: 2000 end-page: 1233 ident: bib0075 article-title: An open graph visualization system and its applications to software engineering publication-title: Softw. Pract. Exp. – start-page: 13 year: 2000 end-page: 20 ident: bib0087 article-title: Iterative classification in relational data publication-title: Proc. Workshop on Learning Statistical Models from Relational Data – volume: 28 start-page: 2765 year: 2016 end-page: 2777 ident: bib0099 article-title: Scalable temporal latent space inference for link prediction in dynamic social networks publication-title: IEEE Trans. Knowl. Data Eng. – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: bib0008 article-title: Visualizing data using t-sne publication-title: J. Mach. Learn. Res. – start-page: 2111 year: 2015 end-page: 2117 ident: bib0044 article-title: Network representation learning with rich text information. publication-title: IJCAI – start-page: 119 year: 2015 end-page: 128 ident: bib0045 article-title: Heterogeneous network embedding via deep architectures publication-title: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 6 start-page: 24 year: 2000 end-page: 43 ident: bib0078 article-title: Graph visualization and navigation in information visualization: a survey publication-title: IEEE Trans. Visual. Comput. Graph. – start-page: 107 year: 2001 end-page: 114 ident: bib0007 article-title: A min-max cut algorithm for graph partitioning and data clustering publication-title: International Conference on Data Mining – start-page: 1067 year: 2015 end-page: 1077 ident: bib0022 article-title: Line: large-scale information network embedding publication-title: Proceedings 24th International Conference on World Wide Web – start-page: 13 year: 1989 end-page: 17 ident: bib0077 article-title: How to draw a directed graph publication-title: Visual Languages, 1989., IEEE Workshop on – start-page: 2287 year: 2016 end-page: 2293 ident: bib0053 article-title: Multi-modal bayesian embeddings for learning social knowledge graphs. publication-title: IJCAI – volume: 3 start-page: 551 year: 1990 end-page: 560 ident: bib0067 article-title: Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks publication-title: Neural Netw. – volume: 19 year: 2007 ident: bib0050 article-title: Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 567 year: 2008 end-page: 580 ident: bib0070 article-title: Efficient aggregation for graph summarization publication-title: Proceedings of the SIGMOD international conference on Management of data – start-page: 3889 year: 2016 end-page: 3895 ident: bib0046 article-title: Max-margin deepwalk: discriminative learning of network representation. publication-title: IJCAI – start-page: 824 year: 2007 end-page: 833 ident: bib0081 article-title: Scan: a structural clustering algorithm for networks publication-title: Proceedings 13th international conference on Knowledge discovery and data mining – volume: 4 start-page: 301 year: 1994 end-page: 328 ident: bib0069 article-title: The maximum clique problem publication-title: J. Global Optim. – volume: 4 start-page: 235 year: 1994 end-page: 282 ident: bib0076 article-title: Algorithms for drawing graphs: an annotated bibliography publication-title: Comput. Geom. – start-page: 937 year: 2009 end-page: 944 ident: bib0033 article-title: Structure preserving embedding publication-title: Proceedings of the 26th Annual International Conference on Machine Learning – start-page: 123 year: 1991 end-page: 133 ident: bib0068 article-title: Clique partitions, graph compression and speeding-up algorithms publication-title: Proceedings of the twenty-third annual ACM symposium on Theory of computing – volume: 390 start-page: 1150 year: 2011 end-page: 1170 ident: bib0083 article-title: Link prediction in complex networks: a survey publication-title: Physica A – volume: 29 start-page: 40 year: 2007 end-page: 51 ident: bib0035 article-title: Graph embedding and extensions: a general framework for dimensionality reduction publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: (2016). – volume: 81 start-page: 730 year: 1976 end-page: 780 ident: bib0016 article-title: Social structure from multiple networks. I. Blockmodels of roles and positions publication-title: Am. J. Sociol. – volume: 23 start-page: 228 year: 2001 end-page: 233 ident: bib0037 article-title: Pca versus lda publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 44 start-page: 1057 year: 2011 end-page: 1067 ident: bib0103 article-title: Recent advances in graph-based pattern recognition with applications in document analysis publication-title: Pattern Recognition. – start-page: 49 year: 2007 end-page: 56 ident: bib0009 article-title: The rendezvous algorithm: Multiclass semi-supervised learning with markov random walks publication-title: Proceedings of the 24th international conference on Machine learning – volume: 23 start-page: 1 year: 2008 end-page: 8 ident: bib0042 article-title: Non-negative graph embedding publication-title: IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR) – reference: W.L. Hamilton, R. Ying, J. Leskovec, Inductive representation learning on large graphs, arXiv: – volume: 33 start-page: 452 year: 1977 end-page: 473 ident: bib0091 article-title: An information flow model for conflict and fission in small groups publication-title: J. Anthropol. Res. – volume: 1 start-page: 2 year: 2007 ident: bib0004 article-title: Graph evolution: densification and shrinking diameters publication-title: ACM Trans. Knowl. Disc. Data (TKDD) – start-page: 609 year: 2016 end-page: 618 ident: bib0047 article-title: Homophily, structure, and content augmented network representation learning publication-title: Data Mining (ICDM), 2016 IEEE 16th International Conference on – volume: 69 start-page: 026113 year: 2004 ident: bib0080 article-title: Finding and evaluating community structure in networks publication-title: Phys. Rev. E – volume: 14 start-page: 585 year: 2001 end-page: 591 ident: bib0025 article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering publication-title: NIPS – start-page: 419 year: 2008 end-page: 432 ident: bib0072 article-title: Graph summarization with bounded error publication-title: Proceedings of the international conference on Management of data – start-page: 1107 year: 2009 end-page: 1116 ident: bib0093 article-title: Scalable learning of collective behavior based on sparse social dimensions publication-title: Proceedings of the 18th ACM conference on Information and knowledge management – start-page: 701 year: 2014 end-page: 710 ident: bib0028 article-title: Deepwalk: online learning of social representations publication-title: Proceedings 20th international conference on Knowledge discovery and data mining – volume: 13 start-page: 76 year: 1976 end-page: 83 ident: bib0034 article-title: Generalizing the singular value decomposition publication-title: SIAM J. Numer. Anal. – volume: 27 start-page: 39 year: 2005 end-page: 54 ident: bib0049 article-title: A measure of betweenness centrality based on random walks publication-title: Soc. Netw. – start-page: 92 year: 2007 end-page: 101 ident: bib0011 article-title: Applying link-based classification to label blogs publication-title: Proceedings of WebKDD: workshop on Web mining and social network analysis – volume: 14 start-page: 465 year: 1978 end-page: 471 ident: bib0073 article-title: Modeling by shortest data description publication-title: Automatica – volume: 1 start-page: 4 year: 2000 ident: bib0002 article-title: Visualizing social networks publication-title: J. Social Struct. – reference: B. Perozzi, V. Kulkarni, S. Skiena, Walklets: multiscale graph embeddings for interpretable network classification, arXiv: – year: 2005 ident: bib0074 article-title: Graphs, networks and algorithms – volume: 268 start-page: 2261 year: 2001 end-page: 2265 ident: bib0003 article-title: The small world of human language publication-title: Proc. R. Soc. Lond. B – year: 2016 ident: bib0054 article-title: Discriminative deep random walk for network classification. publication-title: ACL (1) – volume: 4 start-page: 1535 year: 2009 end-page: 1550 ident: bib0001 article-title: Network visualization and analysis of gene expression data using biolayout express3d publication-title: Nat. Protoc. – start-page: 115 year: 1986 end-page: 128 ident: bib0036 article-title: Principal component analysis and factor analysis publication-title: Principal component analysis – reference: H. Chen, B. Perozzi, Y. Hu, S. Skiena, Harp: hierarchical representation learning for networks, arXiv: – start-page: 3844 year: 2016 end-page: 3852 ident: bib0063 article-title: Convolutional neural networks on graphs with fast localized spectral filtering publication-title: Advances in Neural Information Processing Systems – volume: 35 start-page: 1798 year: 2013 end-page: 1828 ident: bib0058 article-title: Representation learning: a review and new perspectives publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 18 start-page: 39 year: 1953 end-page: 43 ident: bib0085 article-title: A new status index derived from sociometric analysis publication-title: Psychometrika – reference: (2015). – start-page: 731 year: 2017 end-page: 739 ident: bib0048 article-title: Label informed attributed network embedding publication-title: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining – reference: M. Henaff, J. Bruna, Y. LeCun, Deep convolutional networks on graph-structured data, arXiv: – volume: 22 start-page: 888 year: 2000 end-page: 905 ident: bib0020 article-title: Normalized cuts and image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: P. Goyal, N. Kamra, X. He, Y. Liu, Dyngem: deep embedding method for dynamic graphs. – volume: 82 start-page: 8 year: 1987 end-page: 19 ident: bib0090 article-title: Stochastic blockmodels for directed graphs publication-title: J. Am. Stat. Assoc. – start-page: 553 year: 2011 end-page: 560 ident: bib0032 article-title: Cauchy graph embedding publication-title: Proceedings of the 28th International Conference on Machine Learning (ICML-11) – reference: Z. Yang, W.W. Cohen, R. Salakhutdinov, Revisiting semi-supervised learning with graph embeddings, arXiv: – reference: D.P. Kingma, M. Welling, Auto-encoding variational bayes, arXiv: – start-page: 153 year: 2004 end-page: 160 ident: bib0040 article-title: Locality preserving projections publication-title: Advances in neural information processing systems – reference: J. Leskovec, A. Krevl, SNAP datasets: Stanford large network dataset collection, 2014, ( – volume: 36 start-page: D637 year: 2008 end-page: D640 ident: bib0096 article-title: The biogrid interaction database: 2008 update publication-title: Nucleic Acids Res. – reference: J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks and locally connected networks on graphs, arXiv: – reference: (2013). – start-page: 1105 year: 2016 end-page: 1114 ident: bib0024 article-title: Asymmetric transitivity preserving graph embedding publication-title: Proc. of ACM SIGKDD – volume: 752 start-page: 41 year: 1998 end-page: 48 ident: bib0089 article-title: A comparison of event models for naive bayes text classification publication-title: AAAI-98 workshop on learning for text categorization – start-page: 891 year: 2015 end-page: 900 ident: bib0027 article-title: Grarep: learning graph representations with global structural information publication-title: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management – start-page: 1145 year: 2016 end-page: 1152 ident: bib0030 article-title: Deep neural networks for learning graph representations publication-title: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence – volume: 98 start-page: 1031 year: 2010 end-page: 1044 ident: bib0102 article-title: Sparse representation for computer vision and pattern recognition publication-title: Proceedings of the IEEE – ident: 10.1016/j.knosys.2018.03.022_bib0052 – start-page: 1553 year: 2006 ident: 10.1016/j.knosys.2018.03.022_bib0086 article-title: Stochastic relational models for discriminative link prediction – start-page: 2287 year: 2016 ident: 10.1016/j.knosys.2018.03.022_bib0053 article-title: Multi-modal bayesian embeddings for learning social knowledge graphs. – volume: 33 start-page: 452 issue: 4 year: 1977 ident: 10.1016/j.knosys.2018.03.022_bib0091 article-title: An information flow model for conflict and fission in small groups publication-title: J. Anthropol. Res. doi: 10.1086/jar.33.4.3629752 – volume: 98 start-page: 1031 issue: 6 year: 2010 ident: 10.1016/j.knosys.2018.03.022_bib0102 article-title: Sparse representation for computer vision and pattern recognition publication-title: Proceedings of the IEEE doi: 10.1109/JPROC.2010.2044470 – start-page: 3889 year: 2016 ident: 10.1016/j.knosys.2018.03.022_bib0046 article-title: Max-margin deepwalk: discriminative learning of network representation. – volume: 27 start-page: 39 issue: 1 year: 2005 ident: 10.1016/j.knosys.2018.03.022_bib0049 article-title: A measure of betweenness centrality based on random walks publication-title: Soc. Netw. doi: 10.1016/j.socnet.2004.11.009 – start-page: 249 year: 2005 ident: 10.1016/j.knosys.2018.03.022_bib0043 article-title: Semantic manifold learning for image retrieval – start-page: 1225 year: 2016 ident: 10.1016/j.knosys.2018.03.022_bib0023 article-title: Structural deep network embedding – start-page: 153 year: 2004 ident: 10.1016/j.knosys.2018.03.022_bib0040 article-title: Locality preserving projections – volume: 1 start-page: 4 issue: 1 year: 2000 ident: 10.1016/j.knosys.2018.03.022_bib0002 article-title: Visualizing social networks publication-title: J. Social Struct. – volume: 4 start-page: 1535 year: 2009 ident: 10.1016/j.knosys.2018.03.022_bib0001 article-title: Network visualization and analysis of gene expression data using biolayout express3d publication-title: Nat. Protoc. doi: 10.1038/nprot.2009.177 – volume: 23 start-page: 228 issue: 2 year: 2001 ident: 10.1016/j.knosys.2018.03.022_bib0037 article-title: Pca versus lda publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.908974 – volume: 4 start-page: 301 issue: 3 year: 1994 ident: 10.1016/j.knosys.2018.03.022_bib0069 article-title: The maximum clique problem publication-title: J. Global Optim. doi: 10.1007/BF01098364 – volume: 14 start-page: 585 year: 2001 ident: 10.1016/j.knosys.2018.03.022_bib0025 article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering – start-page: 37 year: 2013 ident: 10.1016/j.knosys.2018.03.022_bib0021 article-title: Distributed large-scale natural graph factorization – volume: 22 start-page: 888 issue: 8 year: 2000 ident: 10.1016/j.knosys.2018.03.022_bib0020 article-title: Normalized cuts and image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.868688 – start-page: 13 year: 1989 ident: 10.1016/j.knosys.2018.03.022_bib0077 article-title: How to draw a directed graph – ident: 10.1016/j.knosys.2018.03.022_bib0098 – volume: 6 start-page: 24 issue: 1 year: 2000 ident: 10.1016/j.knosys.2018.03.022_bib0078 article-title: Graph visualization and navigation in information visualization: a survey publication-title: IEEE Trans. Visual. Comput. Graph. doi: 10.1109/2945.841119 – volume: 25 start-page: 211 issue: 3 year: 2003 ident: 10.1016/j.knosys.2018.03.022_bib0014 article-title: Friends and neighbors on the web publication-title: Soc. Netw. doi: 10.1016/S0378-8733(03)00009-1 – start-page: 123 year: 1991 ident: 10.1016/j.knosys.2018.03.022_bib0068 article-title: Clique partitions, graph compression and speeding-up algorithms – volume: 453 start-page: 98 issue: 7191 year: 2008 ident: 10.1016/j.knosys.2018.03.022_bib0015 article-title: Hierarchical structure and the prediction of missing links in networks publication-title: Nature doi: 10.1038/nature06830 – volume: 29 start-page: 40 issue: 1 year: 2007 ident: 10.1016/j.knosys.2018.03.022_bib0035 article-title: Graph embedding and extensions: a general framework for dimensionality reduction publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.250598 – ident: 10.1016/j.knosys.2018.03.022_bib0066 – start-page: 895 year: 2008 ident: 10.1016/j.knosys.2018.03.022_bib0010 article-title: Video suggestion and discovery for youtube: taking random walks through the view graph – start-page: 201 year: 2007 ident: 10.1016/j.knosys.2018.03.022_bib0018 article-title: Probabilistic entity-relationship models, prms, and plate models publication-title: Intro. Stat. Relational Learn. doi: 10.7551/mitpress/7432.003.0009 – start-page: 891 year: 2015 ident: 10.1016/j.knosys.2018.03.022_bib0027 article-title: Grarep: learning graph representations with global structural information – volume: 28 start-page: 2765 issue: 10 year: 2016 ident: 10.1016/j.knosys.2018.03.022_bib0099 article-title: Scalable temporal latent space inference for link prediction in dynamic social networks publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2016.2591009 – volume: 18 start-page: 39 issue: 1 year: 1953 ident: 10.1016/j.knosys.2018.03.022_bib0085 article-title: A new status index derived from sociometric analysis publication-title: Psychometrika doi: 10.1007/BF02289026 – volume: 3 start-page: 496 year: 2003 ident: 10.1016/j.knosys.2018.03.022_bib0012 article-title: Link-based classification – volume: 44 start-page: 1057 issue: 5 year: 2011 ident: 10.1016/j.knosys.2018.03.022_bib0103 article-title: Recent advances in graph-based pattern recognition with applications in document analysis publication-title: Pattern Recognition. doi: 10.1016/j.patcog.2010.11.015 – start-page: 3844 year: 2016 ident: 10.1016/j.knosys.2018.03.022_bib0063 article-title: Convolutional neural networks on graphs with fast localized spectral filtering – year: 2005 ident: 10.1016/j.knosys.2018.03.022_bib0074 – start-page: 1105 year: 2016 ident: 10.1016/j.knosys.2018.03.022_bib0024 article-title: Asymmetric transitivity preserving graph embedding – volume: 268 start-page: 2261 issue: 1482 year: 2001 ident: 10.1016/j.knosys.2018.03.022_bib0003 article-title: The small world of human language publication-title: Proc. R. Soc. Lond. B doi: 10.1098/rspb.2001.1800 – ident: 10.1016/j.knosys.2018.03.022_bib0060 – ident: 10.1016/j.knosys.2018.03.022_bib0105 – start-page: 115 year: 2011 ident: 10.1016/j.knosys.2018.03.022_bib0006 article-title: Node classification in social networks – volume: 69 start-page: 026113 issue: 2 year: 2004 ident: 10.1016/j.knosys.2018.03.022_bib0080 article-title: Finding and evaluating community structure in networks publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.69.026113 – volume: 290 start-page: 2323 issue: 5500 year: 2000 ident: 10.1016/j.knosys.2018.03.022_bib0026 article-title: Nonlinear dimensionality reduction by locally linear embedding publication-title: Science doi: 10.1126/science.290.5500.2323 – start-page: 567 year: 2008 ident: 10.1016/j.knosys.2018.03.022_bib0070 article-title: Efficient aggregation for graph summarization – volume: 9 start-page: 2579 year: 2008 ident: 10.1016/j.knosys.2018.03.022_bib0008 article-title: Visualizing data using t-sne publication-title: J. Mach. Learn. Res. – start-page: 731 year: 2017 ident: 10.1016/j.knosys.2018.03.022_bib0048 article-title: Label informed attributed network embedding – volume: 752 start-page: 41 year: 1998 ident: 10.1016/j.knosys.2018.03.022_bib0089 article-title: A comparison of event models for naive bayes text classification – start-page: 553 year: 2011 ident: 10.1016/j.knosys.2018.03.022_bib0032 article-title: Cauchy graph embedding – volume: 35 start-page: 1798 issue: 8 year: 2013 ident: 10.1016/j.knosys.2018.03.022_bib0058 article-title: Representation learning: a review and new perspectives publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.50 – volume: 5 issue: 2 year: 2003 ident: 10.1016/j.knosys.2018.03.022_bib0094 article-title: Overview of the 2003 kdd cup publication-title: ACM SIGKDD Expl. – start-page: 2224 year: 2015 ident: 10.1016/j.knosys.2018.03.022_bib0061 article-title: Convolutional networks on graphs for learning molecular fingerprints – volume: 3 start-page: 551 year: 1990 ident: 10.1016/j.knosys.2018.03.022_bib0067 article-title: Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks publication-title: Neural Netw. doi: 10.1016/0893-6080(90)90005-6 – volume: 30 start-page: 1203 issue: 11 year: 2000 ident: 10.1016/j.knosys.2018.03.022_bib0075 article-title: An open graph visualization system and its applications to software engineering publication-title: Softw. Pract. Exp. doi: 10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N – start-page: 13 year: 2000 ident: 10.1016/j.knosys.2018.03.022_bib0087 article-title: Iterative classification in relational data – start-page: 274 year: 2005 ident: 10.1016/j.knosys.2018.03.022_bib0082 article-title: A spectral clustering approach to finding communities in graphs – volume: 290 start-page: 2319 issue: 5500 year: 2000 ident: 10.1016/j.knosys.2018.03.022_bib0038 article-title: A global geometric framework for nonlinear dimensionality reduction publication-title: Science doi: 10.1126/science.290.5500.2319 – start-page: 1300 year: 1999 ident: 10.1016/j.knosys.2018.03.022_bib0017 article-title: Learning probabilistic relational models – volume: 13 start-page: 76 issue: 1 year: 1976 ident: 10.1016/j.knosys.2018.03.022_bib0034 article-title: Generalizing the singular value decomposition publication-title: SIAM J. Numer. Anal. doi: 10.1137/0713009 – start-page: 855 year: 2016 ident: 10.1016/j.knosys.2018.03.022_bib0029 article-title: node2vec: scalable feature learning for networks – volume: 14 start-page: 465 issue: 5 year: 1978 ident: 10.1016/j.knosys.2018.03.022_bib0073 article-title: Modeling by shortest data description publication-title: Automatica doi: 10.1016/0005-1098(78)90005-5 – volume: 81 start-page: 730 issue: 4 year: 1976 ident: 10.1016/j.knosys.2018.03.022_bib0016 article-title: Social structure from multiple networks. I. Blockmodels of roles and positions publication-title: Am. J. Sociol. doi: 10.1086/226141 – volume: 5 start-page: 109 issue: 2 year: 1983 ident: 10.1016/j.knosys.2018.03.022_bib0100 article-title: Stochastic blockmodels: first steps publication-title: Soc. Netw. doi: 10.1016/0378-8733(83)90021-7 – start-page: 1107 year: 2009 ident: 10.1016/j.knosys.2018.03.022_bib0093 article-title: Scalable learning of collective behavior based on sparse social dimensions – start-page: 1067 year: 2015 ident: 10.1016/j.knosys.2018.03.022_bib0022 article-title: Line: large-scale information network embedding – start-page: 965 year: 2011 ident: 10.1016/j.knosys.2018.03.022_bib0071 article-title: Compression of weighted graphs – volume: 2 start-page: 559 issue: 11 year: 1901 ident: 10.1016/j.knosys.2018.03.022_bib0079 article-title: Liii. on lines and planes of closest fit to systems of points in space publication-title: Lond., Edinburgh, Dublin Philos. Mag. J. Sci. doi: 10.1080/14786440109462720 – ident: 10.1016/j.knosys.2018.03.022_bib0062 – ident: 10.1016/j.knosys.2018.03.022_bib0065 – start-page: 824 year: 2007 ident: 10.1016/j.knosys.2018.03.022_bib0081 article-title: Scan: a structural clustering algorithm for networks – ident: 10.1016/j.knosys.2018.03.022_bib0051 doi: 10.1609/aaai.v32i1.11849 – volume: 2 start-page: 718 issue: 1 year: 2009 ident: 10.1016/j.knosys.2018.03.022_bib0019 article-title: Graph clustering based on structural/attribute similarities publication-title: Proc. VLDB Endow. doi: 10.14778/1687627.1687709 – ident: 10.1016/j.knosys.2018.03.022_bib0056 – start-page: 107 year: 2001 ident: 10.1016/j.knosys.2018.03.022_bib0007 article-title: A min-max cut algorithm for graph partitioning and data clustering – volume: 19 issue: 3 year: 2007 ident: 10.1016/j.knosys.2018.03.022_bib0050 article-title: Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2007.46 – start-page: 383 year: 2007 ident: 10.1016/j.knosys.2018.03.022_bib0101 article-title: Graph embedding in vector spaces by means of prototype selection – start-page: 817 year: 2009 ident: 10.1016/j.knosys.2018.03.022_bib0092 article-title: Relational learning via latent social dimensions – year: 1901 ident: 10.1016/j.knosys.2018.03.022_bib0013 – start-page: 119 year: 2015 ident: 10.1016/j.knosys.2018.03.022_bib0045 article-title: Heterogeneous network embedding via deep architectures – volume: 4 start-page: 235 issue: 5 year: 1994 ident: 10.1016/j.knosys.2018.03.022_bib0076 article-title: Algorithms for drawing graphs: an annotated bibliography publication-title: Comput. Geom. doi: 10.1016/0925-7721(94)00014-X – ident: 10.1016/j.knosys.2018.03.022_bib0059 – year: 2016 ident: 10.1016/j.knosys.2018.03.022_bib0054 article-title: Discriminative deep random walk for network classification. – ident: 10.1016/j.knosys.2018.03.022_bib0097 – start-page: 49 year: 2007 ident: 10.1016/j.knosys.2018.03.022_bib0009 article-title: The rendezvous algorithm: Multiclass semi-supervised learning with markov random walks – start-page: 609 year: 2016 ident: 10.1016/j.knosys.2018.03.022_bib0047 article-title: Homophily, structure, and content augmented network representation learning – volume: 23 start-page: 1 issue: 2 year: 2008 ident: 10.1016/j.knosys.2018.03.022_bib0042 article-title: Non-negative graph embedding publication-title: IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR) – ident: 10.1016/j.knosys.2018.03.022_bib0031 – start-page: 92 year: 2007 ident: 10.1016/j.knosys.2018.03.022_bib0011 article-title: Applying link-based classification to label blogs – year: 2016 ident: 10.1016/j.knosys.2018.03.022_bib0057 article-title: Learning convolutional neural networks for graphs – start-page: 701 year: 2014 ident: 10.1016/j.knosys.2018.03.022_bib0028 article-title: Deepwalk: online learning of social representations – start-page: 937 year: 2009 ident: 10.1016/j.knosys.2018.03.022_bib0033 article-title: Structure preserving embedding – volume: 1 start-page: 2 issue: 1 year: 2007 ident: 10.1016/j.knosys.2018.03.022_bib0004 article-title: Graph evolution: densification and shrinking diameters publication-title: ACM Trans. Knowl. Disc. Data (TKDD) doi: 10.1145/1217299.1217301 – start-page: 547 year: 2003 ident: 10.1016/j.knosys.2018.03.022_bib0041 article-title: Continuous nonlinear dimensionality reduction by kernel eigenmaps – start-page: 2111 year: 2015 ident: 10.1016/j.knosys.2018.03.022_bib0044 article-title: Network representation learning with rich text information. – start-page: 115 year: 1986 ident: 10.1016/j.knosys.2018.03.022_bib0036 article-title: Principal component analysis and factor analysis – volume: 398 year: 2013 ident: 10.1016/j.knosys.2018.03.022_bib0088 – volume: 390 start-page: 1150 issue: 6 year: 2011 ident: 10.1016/j.knosys.2018.03.022_bib0083 article-title: Link prediction in complex networks: a survey publication-title: Physica A doi: 10.1016/j.physa.2010.11.027 – volume: 11 start-page: 12 issue: 9 year: 2016 ident: 10.1016/j.knosys.2018.03.022_bib0055 article-title: Tri-party deep network representation publication-title: Network – volume: 11 year: 1978 ident: 10.1016/j.knosys.2018.03.022_bib0039 – start-page: 243 year: 2011 ident: 10.1016/j.knosys.2018.03.022_bib0084 article-title: A survey of link prediction in social networks – ident: 10.1016/j.knosys.2018.03.022_bib0104 – ident: 10.1016/j.knosys.2018.03.022_bib0064 – start-page: 1145 year: 2016 ident: 10.1016/j.knosys.2018.03.022_bib0030 article-title: Deep neural networks for learning graph representations – volume: 82 start-page: 8 issue: 397 year: 1987 ident: 10.1016/j.knosys.2018.03.022_bib0090 article-title: Stochastic blockmodels for directed graphs publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1987.10478385 – volume: 58 start-page: 1019 issue: 7 year: 2007 ident: 10.1016/j.knosys.2018.03.022_bib0005 article-title: The link-prediction problem for social networks publication-title: J. Assoc. Inf. Sci. Technol. doi: 10.1002/asi.20591 – start-page: 419 year: 2008 ident: 10.1016/j.knosys.2018.03.022_bib0072 article-title: Graph summarization with bounded error – ident: 10.1016/j.knosys.2018.03.022_bib0095 – volume: 36 start-page: D637 issue: suppl 1 year: 2008 ident: 10.1016/j.knosys.2018.03.022_bib0096 article-title: The biogrid interaction database: 2008 update publication-title: Nucleic Acids Res. |
SSID | ssj0002218 |
Score | 2.6853008 |
Snippet | Graphs, such as social networks, word co-occurrence networks, and communication networks, occur naturally in various real-world applications. Analyzing them... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 78 |
SubjectTerms | Algorithms Communication networks Datasets Embedded systems Embedding Graph embedding applications Graph embedding techniques Graph theory Graphical representations Human communication Machine learning Python graph embedding methods GEM library Random walk Vector space |
Title | Graph embedding techniques, applications, and performance: A survey |
URI | https://dx.doi.org/10.1016/j.knosys.2018.03.022 https://www.proquest.com/docview/2088072032 |
Volume | 151 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mceHCGzEYUw4cCeua9MVtmhgDxC4wabeoThNpPLppD6Rd-O3EfWyAhCZxTOtUlevYXxr7MyEXUaBiGwkSFtrwxgQPPQY80kyFAkRLKWGy5PHHvt8biPuhN6yQTlkLg2mVhe_PfXrmrYsrzUKbzclo1Hyy4MDaKyJkjkAA9-1CBGjlV5_rNA_Xzf7xoTBD6bJ8Lsvxek3HsyWSdrfCjOrUdf8KT78cdRZ9untkp4CNtJ2_2T6p6PSA7JYtGWixQg9J5xYJqKl-B51gVKIrjtbZJf1-WG1HaUIn67KBa9qms8X0Qy-PyKB789zpsaJPAlOciznjAD54gYGWacVGJ0I5ELrcxL6jtTJ2U6CESELOuQceKAvJTKiCOHIgNpHxI35Mquk41SeEGgeQLED5GpQIBFj8BQkPLGoQno5jv0Z4qR6pChJx7GXxJstssReZK1WiUqXDpVVqjbDVrElOorFBPig1L38Yg7R-fsPMevmhZLEY8b51Unjc7J7--8FnZBtHeaJunVTn04U-t3BkDo3M3hpkq3330Ot_ATdj4Ko |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1V7QEu7IhCAR84YjWNnY1bVQEtXS60Um9W7NhSWdKqC1L_HjtxyiKhShwTe6JoMn7zHI-fAW6iQMQ6EyQ41OkNUxJ6mJNIYhFSThtCUJUVj_cHfntEn8beuAStYi-MKau02J9jeobW9k7derM-m0zqz5oc6Hg1DJkYIqDn7RWjTuWVodLsdNuDDSC7bvabz_THxqDYQZeVeb2m08Xa6HY3wkzt1HX_ylC_sDpLQA8HsGeZI2rmL3cIJZkewX5xKgOyg_QYWo9GgxrJdy4Tk5jQRqZ1cYu-r1frqzRBs6-dA3eoiRar-Ydcn8Do4X7YamN7VAIWhNAlJpz73AsUb6hGrGRChcNDl6jYd6QUSs8LBKVJSAjxuMeFZmUqFEEcOTxWkfIjcgrldJrKM0DK4UYvQPiSCxpQrikYT0igiQP1ZBz7VSCFe5iwOuLmOIs3VhSMvbDcqcw4lTmEaadWAW-sZrmOxpb-QeF59iMemIb6LZa14kMxOx5Nu8Yps-Lsnv_7wdew0x72e6zXGXQvYNe05HW7NSgv5yt5qdnJkl_Z6PsE7tDjWw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+embedding+techniques%2C+applications%2C+and+performance%3A+A+survey&rft.jtitle=Knowledge-based+systems&rft.au=Goyal%2C+Palash&rft.au=Ferrara%2C+Emilio&rft.date=2018-07-01&rft.issn=0950-7051&rft.volume=151&rft.spage=78&rft.epage=94&rft_id=info:doi/10.1016%2Fj.knosys.2018.03.022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2018_03_022 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |