Multi-Agent Path Finding with heterogeneous edges and roundtrips

Multi-Agent Path Finding (MAPF) aims to find a set of conflict-free paths for multiple agents on a given graph from parking locations to specified goal locations while optimizing related costs. Currently, existing MAPF studies often consider the simplified problem setup where each agent does not ret...

Full description

Saved in:
Bibliographic Details
Published inKnowledge-based systems Vol. 234; p. 107554
Main Authors Ai, Bing, Jiang, Jiuchuan, Yu, Shoushui, Jiang, Yichuan
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 25.12.2021
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multi-Agent Path Finding (MAPF) aims to find a set of conflict-free paths for multiple agents on a given graph from parking locations to specified goal locations while optimizing related costs. Currently, existing MAPF studies often consider the simplified problem setup where each agent does not return to its parking location after completing its task on the underlying graph with uniform edge costs. Nevertheless, within some real-word scenarios such as the Unmanned Aircraft System (UAS), agents are situated in the underlying graph with non-uniform edge costs. These agents are required to travel from their respective parking locations to complete tasks, and then return without conflicts. Therefore, this paper explores a new version of MAPF, formally called Multi-Agent Path Finding with Heterogeneous edges and Roundtrips (MAPF-HR). In this version, all agents are engaged in completing tasks by navigating their respective conflict-free paths with roundtrips on the graph with heterogeneous edges. This paper investigates a novel algorithm for this problem, called Improved Conflict-Based Search (CBS) with Helpful Bypass (ICBS-HB), which improves the CBS framework by utilizing the scheme of bypassing conflicts during path finding execution. With extensive experiments on MAPF benchmark maps, it shows that ICBS-HB outperforms the state-of-the-art algorithms for dealing with MAPF-HR.
AbstractList Multi-Agent Path Finding (MAPF) aims to find a set of conflict-free paths for multiple agents on a given graph from parking locations to specified goal locations while optimizing related costs. Currently, existing MAPF studies often consider the simplified problem setup where each agent does not return to its parking location after completing its task on the underlying graph with uniform edge costs. Nevertheless, within some real-word scenarios such as the Unmanned Aircraft System (UAS), agents are situated in the underlying graph with non-uniform edge costs. These agents are required to travel from their respective parking locations to complete tasks, and then return without conflicts. Therefore, this paper explores a new version of MAPF, formally called Multi-Agent Path Finding with Heterogeneous edges and Roundtrips (MAPF-HR). In this version, all agents are engaged in completing tasks by navigating their respective conflict-free paths with roundtrips on the graph with heterogeneous edges. This paper investigates a novel algorithm for this problem, called Improved Conflict-Based Search (CBS) with Helpful Bypass (ICBS-HB), which improves the CBS framework by utilizing the scheme of bypassing conflicts during path finding execution. With extensive experiments on MAPF benchmark maps, it shows that ICBS-HB outperforms the state-of-the-art algorithms for dealing with MAPF-HR.
Multi-Agent Path Finding (MAPF) aims to find a set of conflict-free paths for multiple agents on a given graph from parking locations to specified goal locations while optimizing related costs. Currently, existing MAPF studies often consider the simplified problem setup where each agent does not return to its parking location after completing its task on the underlying graph with uniform edge costs. Nevertheless, within some real-word scenarios such as the Unmanned Aircraft System (UAS), agents are situated in the underlying graph with non-uniform edge costs. These agents are required to travel from their respective parking locations to complete tasks, and then return without conflicts. Therefore, this paper explores a new version of MAPF, formally called Multi-Agent Path Finding with Heterogeneous edges and Roundtrips (MAPF-HR). In this version, all agents are engaged in completing tasks by navigating their respective conflict-free paths with roundtrips on the graph with heterogeneous edges. This paper investigates a novel algorithm for this problem, called Improved Conflict-Based Search (CBS) with Helpful Bypass (ICBS-HB), which improves the CBS framework by utilizing the scheme of bypassing conflicts during path finding execution. With extensive experiments on MAPF benchmark maps, it shows that ICBS-HB outperforms the state-of-the-art algorithms for dealing with MAPF-HR.
ArticleNumber 107554
Author Jiang, Yichuan
Yu, Shoushui
Jiang, Jiuchuan
Ai, Bing
Author_xml – sequence: 1
  givenname: Bing
  surname: Ai
  fullname: Ai, Bing
  organization: School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
– sequence: 2
  givenname: Jiuchuan
  surname: Jiang
  fullname: Jiang, Jiuchuan
  email: jcjiang@nufe.edu.cn
  organization: Jiangsu Provincial Key Laboratory of E-Business, College of Information Engineering, Nanjing University of Finance and Economics, Nanjing 210003, China
– sequence: 3
  givenname: Shoushui
  surname: Yu
  fullname: Yu, Shoushui
  organization: Qingdao Port International Company, Ltd., Qingdao 266011, China
– sequence: 4
  givenname: Yichuan
  surname: Jiang
  fullname: Jiang, Yichuan
  email: yjiang@seu.edu.cn
  organization: School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
BookMark eNp9kM1OwzAQhC1UJNrCG3CIxDnFP3GcXBBVRQGpCA5wtlx70zoUu9gOVd-eVOHMabW7M7Pab4JGzjtA6JrgGcGkvG1nn87HY5xRTEk_EpwXZ2hMKkFzUeB6hMa45jgXmJMLNImxxRhTSqoxun_pdsnm8w24lL2ptM2W1hnrNtnB9s0WEgTfL8F3MQOzgZgpZ7LgO2dSsPt4ic4btYtw9Ven6GP58L54ylevj8-L-SrXjBUpZ4oyxWhFzZpWjcJK6FrVhFMKJWhWlmB4pY02QleNBuAc86JerzHRptANZVN0M-Tug__uICbZ-i64_qSkJSk5K-tC9KpiUOngYwzQyH2wXyocJcHyxEq2cmAlT6zkwKq33Q026D_4sRBk1BacBmMD6CSNt_8H_AIGG3aQ
CitedBy_id crossref_primary_10_3390_drones7030180
crossref_primary_10_1016_j_knosys_2022_110181
crossref_primary_10_3934_mbe_2023165
crossref_primary_10_1016_j_knosys_2022_109916
crossref_primary_10_1016_j_knosys_2023_111121
Cites_doi 10.1609/icaps.v27i1.13814
10.1145/3137574.3137579
10.1109/LRA.2020.2967326
10.1109/TCIAIG.2016.2620060
10.1609/socs.v8i1.18423
10.24963/ijcai.2018/74
10.1609/socs.v4i1.18292
10.1109/TRO.2016.2593448
10.1609/aiide.v13i1.12919
10.1609/icaps.v25i1.13725
10.1016/j.artint.2012.11.006
10.24963/ijcai.2020/565
10.1109/MIS.2015.96
10.1109/TSSC.1968.300136
10.1609/icaps.v28i1.13883
10.1109/TCIAIG.2012.2197681
10.1109/MIS.2017.4531217
10.1609/socs.v10i1.18510
10.1109/LRA.2019.2894217
10.1609/aaai.v31i1.11035
10.1109/TASE.2018.2798630
10.1609/aaai.v26i1.8440
10.1609/aaai.v30i1.10409
10.1609/aaai.v29i1.9430
10.24963/ijcai.2019/6
10.1109/TASE.2015.2445780
10.1609/aaai.v33i01.33017732
10.1016/j.eswa.2018.08.008
10.1609/aaai.v29i1.9355
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier Science Ltd. Dec 25, 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Dec 25, 2021
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2021.107554
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2021_107554
S0950705121008169
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
AAQXK
AAXKI
AAYXX
ABXDB
ACNNM
ADJOM
ADMUD
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
G8K
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
UHS
WUQ
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-3a23a3282db28fa0a7c9a91522e6ec366ed58cdcd7c8fcee550549bb01cd4cf23
IEDL.DBID .~1
ISSN 0950-7051
IngestDate Fri Sep 13 07:06:50 EDT 2024
Thu Sep 12 17:05:02 EDT 2024
Fri Feb 23 02:45:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Roundtrip
Conflicts
Heterogeneous edges
Path Finding
Multi-Agent
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-3a23a3282db28fa0a7c9a91522e6ec366ed58cdcd7c8fcee550549bb01cd4cf23
PQID 2616536947
PQPubID 2035257
ParticipantIDs proquest_journals_2616536947
crossref_primary_10_1016_j_knosys_2021_107554
elsevier_sciencedirect_doi_10_1016_j_knosys_2021_107554
PublicationCentury 2000
PublicationDate 2021-12-25
PublicationDateYYYYMMDD 2021-12-25
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-25
  day: 25
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References R. Stern, N. Sturtevant, A. Felner, et al. Multi-agent pathfinding: definitions, variants, and benchmarks, in: Symposium on Combinatorial Search (SoCS)2019, pp. 151–158.
X. Sun, S. Koenig, W. Yeoh, Generalized adaptive A*, in: Proceedings of the 7th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2008, pp. 469–476.
Sturtevant (b36) 2012; 4
R. Morris, C.S. Pasareanu, K. Luckow, . Planning, scheduling and monitoring for airport surface operation, in: AAAI-16 Workshop on Planning for Hybrid Systems, 2016, pp. 608–614.
F. Pommerening, G. Röger, M. Helmert, et al. Heuristics for cost-optimal classical planning based on linear programming, in: Proceedings of the 24th International Joint Conference on Artificial Intelligence, 2015, pp. 4303–4309.
M. Veloso, J. Biswas, B. Coltin, S. Rosenthal, CoBots: Robust symbiotic autonomous mobile service robots, in: International Joint Conference on Artificial Intelligence, 2015, pp. 4423–4429.
Thomas, Deodhare, Murty (b27) 2015; 30
E. Boyarski, A. Felner, R. Stern, ICBS: Improved conflict-based search algorithm for multi-agent pathfinding, in: Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015, pp. 740–746.
E. Boyarski, A. Felner, D. Harabor, et al. Iterative-deepening conflict-based search, in: Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI), 2020, pp. 4084–4090.
Banerjee, Davis (b34) 2017; 9
A. Felner, J. Li, E. Boyarski, Adding heuristics to conflict-based search for multi-agent path finding, in: Twenty-Eighth International Conference on Automated Planning and Scheduling, 2018, pp. 83–87.
Nazarahari, Khanmirza, Doostie (b5) 2019; 115
Ma, Koenig (b10) 2017; 3
Yu, LaValle (b4) 2016; 32
T. Walker, D. Chan, N. Sturtevant, Using hierarchical constraints to avoid conflicts in multi-agent pathfinding, in: 27th International Conference on Automated Planning and Scheduling, 2017, pp. 316–324.
Daugherty, Reveliotis, Mohler (b13) 2019; 16
H. Ma, J. Yang, L. Cohen, Feasibility Study: Moving non-homogeneous teams in congested video game environments, in: AIIDE, 2017, pp. 270–272.
T. Walker, N. Sturtevant, A. Felner, Extended increasing cost tree search for non-unit cost domains, in: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, 2018, pp. 534–540.
M. Liu, H. Ma, J. Li, S. Koenig, Task and path planning for multi-agent pickup and delivery, in: Proceedings of the 18th International Conference on Autonomous Agents and Multi-Agent Systems, 2019, pp. 1152–1160.
Guni, Roni, Meir (b14) 2013; 195
Ma, Honig, Cohen (b19) 2018; 32
Sharon, Stern, Felner (b1) 2015
A. Felner, R. Stern, S.E. Shimony, Search-based optimal solvers for the multi-agent pathfinding problem: Summary and challenges, in: Tenth Annual Symposium on Combinatorial Search, 2017, pp. 29–37.
Han, Yu (b6) 2020; 5
H. Ma, S. Koenig, N. Ayanian, et al. Overview: Generalizations of multi-agent pathfinding to real-world scenarios, in: IJCAI-16 Workshop on Multi-Agent Path Finding, 2016.
J. Švancara, M. Vlk, R. Stern, Online multi-agent pathfinding, in: The Thirty-Third AAAI Conference on Artificial Intelligence, 2019, pp. 7732–7739.
A. Andreychuk, K. Yakovlev, D. Atzmon, Multi-agent pathfinding with continuous time, in: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI), 2019, pp. 39–45.
Hart, Nilsson, Raphael (b28) 1968; 4
C. Hernández, R. Asín, J.A. Baier, Reusing previously found A* paths for fast goal-directed navigation in dynamic terrain, in: The Twenty-Ninth AAAI Conference on Artificial Intelligence. 2015, pp. 1158–1164.
A. Botea, P. Surynek, Multi-agent path finding on strongly biconnected digraphs, in: Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015, pp. 2024–2030.
E. Boyrasky, A. Felner, G. Sharon, et al. Don’t split, try to work it out: bypassing conflicts in multi-agent pathfinding, in: Twenty- Fifth International Conference on Automated Planning and Scheduling, 2015, pp. 47–51.
Z. Bnaya, R. Stern, A. Felner, R. Zivan, S. Okamoto, Multi-agent path finding for self interested agents, in: Sixth Annual Symposium on Combinatorial Search, 2013, pp. 38–46.
Čáp, Novák, Kleiner, Selecký (b31) 2015; 12
H. Ma, C. Tovey, G. Sharon, et al. Multi-agent path finding with payload transfers and the package-exchange robot-routing problem, in: Proceedings of the 30th AAAI Conference on Artificial Intelligence, 2016, pp. 3166–3173.
N.R. Sturtevant, A. Felner, M. Likhachev, W. Ruml, Heuristic search comes of age, in: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012, pp. 2186–2191.
Hönig, Kiesel, Tinka (b9) 2019; 4
H. Ma, T.S. Kumar, S. Koenig, Multi-agent path finding with delay probabilities, in: Thirty-First AAAI Conference on Artificial Intelligence, 2017, pp. 3605–3612.
10.1016/j.knosys.2021.107554_b11
10.1016/j.knosys.2021.107554_b33
10.1016/j.knosys.2021.107554_b32
10.1016/j.knosys.2021.107554_b30
10.1016/j.knosys.2021.107554_b15
10.1016/j.knosys.2021.107554_b37
Thomas (10.1016/j.knosys.2021.107554_b27) 2015; 30
10.1016/j.knosys.2021.107554_b35
Han (10.1016/j.knosys.2021.107554_b6) 2020; 5
10.1016/j.knosys.2021.107554_b12
10.1016/j.knosys.2021.107554_b18
Sharon (10.1016/j.knosys.2021.107554_b1) 2015
10.1016/j.knosys.2021.107554_b17
10.1016/j.knosys.2021.107554_b16
Banerjee (10.1016/j.knosys.2021.107554_b34) 2017; 9
Nazarahari (10.1016/j.knosys.2021.107554_b5) 2019; 115
Hart (10.1016/j.knosys.2021.107554_b28) 1968; 4
Sturtevant (10.1016/j.knosys.2021.107554_b36) 2012; 4
Guni (10.1016/j.knosys.2021.107554_b14) 2013; 195
10.1016/j.knosys.2021.107554_b22
10.1016/j.knosys.2021.107554_b21
Yu (10.1016/j.knosys.2021.107554_b4) 2016; 32
10.1016/j.knosys.2021.107554_b20
10.1016/j.knosys.2021.107554_b2
10.1016/j.knosys.2021.107554_b26
10.1016/j.knosys.2021.107554_b25
10.1016/j.knosys.2021.107554_b24
Hönig (10.1016/j.knosys.2021.107554_b9) 2019; 4
10.1016/j.knosys.2021.107554_b23
10.1016/j.knosys.2021.107554_b29
Ma (10.1016/j.knosys.2021.107554_b10) 2017; 3
Daugherty (10.1016/j.knosys.2021.107554_b13) 2019; 16
Čáp (10.1016/j.knosys.2021.107554_b31) 2015; 12
Ma (10.1016/j.knosys.2021.107554_b19) 2018; 32
10.1016/j.knosys.2021.107554_b7
10.1016/j.knosys.2021.107554_b8
10.1016/j.knosys.2021.107554_b3
References_xml – volume: 115
  start-page: 106
  year: 2019
  end-page: 120
  ident: b5
  article-title: Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm
  publication-title: Expert Syst. Appl.
  contributor:
    fullname: Doostie
– volume: 32
  start-page: 6
  year: 2018
  end-page: 12
  ident: b19
  article-title: Overview: A hierarchical framework for plan generation and execution in multi-robot systems
  publication-title: IEEE Intell. Syst.
  contributor:
    fullname: Cohen
– volume: 9
  start-page: 402
  year: 2017
  end-page: 409
  ident: b34
  article-title: Multiagent path finding with persistence conflicts
  publication-title: IEEE Trans. Comput. Intell. AI Games
  contributor:
    fullname: Davis
– volume: 5
  start-page: 1350
  year: 2020
  end-page: 1357
  ident: b6
  article-title: DDM: Fast near-optimal multi-robot path planning using diversified-path and optimal sub-problem solution database heuristics
  publication-title: IEEE Robot. Autom. Lett.
  contributor:
    fullname: Yu
– volume: 4
  start-page: 1125
  year: 2019
  end-page: 1131
  ident: b9
  article-title: Persistent and robust execution of MAPF schedules in warehouses
  publication-title: IEEE Robot. Autom. Lett.
  contributor:
    fullname: Tinka
– volume: 30
  start-page: 60
  year: 2015
  end-page: 70
  ident: b27
  article-title: Extended conflict-based search for the convoy movement problem
  publication-title: IEEE Intell. Syst.
  contributor:
    fullname: Murty
– volume: 3
  start-page: 15
  year: 2017
  end-page: 19
  ident: b10
  article-title: AI buzzwords explained: Multi-agent path finding (MAPF)
  publication-title: AI Matters
  contributor:
    fullname: Koenig
– volume: 32
  start-page: 1163
  year: 2016
  end-page: 1177
  ident: b4
  article-title: Optimal multirobot path planning on graphs: Complete algorithms and effective heuristics
  publication-title: IEEE Trans. Robot.
  contributor:
    fullname: LaValle
– start-page: 40
  year: 2015
  end-page: 66
  ident: b1
  article-title: Conflict-based search for optimal multi-agent pathfinding
  publication-title: Artificial Intelligence
  contributor:
    fullname: Felner
– volume: 16
  start-page: 363
  year: 2019
  end-page: 381
  ident: b13
  article-title: Optimized multiagent routing for a class of guide path-based transport systems
  publication-title: IEEE Trans. Autom. Sci. Eng.
  contributor:
    fullname: Mohler
– volume: 12
  start-page: 835
  year: 2015
  end-page: 849
  ident: b31
  article-title: Prioritized planning algorithms for trajectory coordination of multiple mobile robots
  publication-title: IEEE Trans. Autom. Sci. Eng.
  contributor:
    fullname: Selecký
– volume: 4
  start-page: 144
  year: 2012
  end-page: 148
  ident: b36
  article-title: Benchmarks for grid-based pathfinding
  publication-title: IEEE Trans. Comput. Intell. AI Games
  contributor:
    fullname: Sturtevant
– volume: 195
  start-page: 470
  year: 2013
  end-page: 495
  ident: b14
  article-title: The increasing cost tree search for optimal multi-agent pathfinding
  publication-title: Artificial Intelligence
  contributor:
    fullname: Meir
– volume: 4
  start-page: 100
  year: 1968
  end-page: 107
  ident: b28
  article-title: A formal basis for the heuristic determination of minimum cost paths
  publication-title: IEEE Trans. Syst. Sci. Cybern.
  contributor:
    fullname: Raphael
– ident: 10.1016/j.knosys.2021.107554_b3
– ident: 10.1016/j.knosys.2021.107554_b16
  doi: 10.1609/icaps.v27i1.13814
– volume: 3
  start-page: 15
  issue: 3
  year: 2017
  ident: 10.1016/j.knosys.2021.107554_b10
  article-title: AI buzzwords explained: Multi-agent path finding (MAPF)
  publication-title: AI Matters
  doi: 10.1145/3137574.3137579
  contributor:
    fullname: Ma
– ident: 10.1016/j.knosys.2021.107554_b7
– volume: 5
  start-page: 1350
  issue: 2
  year: 2020
  ident: 10.1016/j.knosys.2021.107554_b6
  article-title: DDM: Fast near-optimal multi-robot path planning using diversified-path and optimal sub-problem solution database heuristics
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2020.2967326
  contributor:
    fullname: Han
– volume: 9
  start-page: 402
  issue: 4
  year: 2017
  ident: 10.1016/j.knosys.2021.107554_b34
  article-title: Multiagent path finding with persistence conflicts
  publication-title: IEEE Trans. Comput. Intell. AI Games
  doi: 10.1109/TCIAIG.2016.2620060
  contributor:
    fullname: Banerjee
– ident: 10.1016/j.knosys.2021.107554_b2
  doi: 10.1609/socs.v8i1.18423
– ident: 10.1016/j.knosys.2021.107554_b17
  doi: 10.24963/ijcai.2018/74
– ident: 10.1016/j.knosys.2021.107554_b20
– ident: 10.1016/j.knosys.2021.107554_b22
  doi: 10.1609/socs.v4i1.18292
– volume: 32
  start-page: 1163
  issue: 5
  year: 2016
  ident: 10.1016/j.knosys.2021.107554_b4
  article-title: Optimal multirobot path planning on graphs: Complete algorithms and effective heuristics
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2016.2593448
  contributor:
    fullname: Yu
– ident: 10.1016/j.knosys.2021.107554_b11
  doi: 10.1609/aiide.v13i1.12919
– ident: 10.1016/j.knosys.2021.107554_b18
  doi: 10.1609/icaps.v25i1.13725
– volume: 195
  start-page: 470
  year: 2013
  ident: 10.1016/j.knosys.2021.107554_b14
  article-title: The increasing cost tree search for optimal multi-agent pathfinding
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2012.11.006
  contributor:
    fullname: Guni
– ident: 10.1016/j.knosys.2021.107554_b32
– ident: 10.1016/j.knosys.2021.107554_b37
  doi: 10.24963/ijcai.2020/565
– volume: 30
  start-page: 60
  year: 2015
  ident: 10.1016/j.knosys.2021.107554_b27
  article-title: Extended conflict-based search for the convoy movement problem
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/MIS.2015.96
  contributor:
    fullname: Thomas
– volume: 4
  start-page: 100
  issue: 2
  year: 1968
  ident: 10.1016/j.knosys.2021.107554_b28
  article-title: A formal basis for the heuristic determination of minimum cost paths
  publication-title: IEEE Trans. Syst. Sci. Cybern.
  doi: 10.1109/TSSC.1968.300136
  contributor:
    fullname: Hart
– ident: 10.1016/j.knosys.2021.107554_b15
  doi: 10.1609/icaps.v28i1.13883
– volume: 4
  start-page: 144
  issue: 2
  year: 2012
  ident: 10.1016/j.knosys.2021.107554_b36
  article-title: Benchmarks for grid-based pathfinding
  publication-title: IEEE Trans. Comput. Intell. AI Games
  doi: 10.1109/TCIAIG.2012.2197681
  contributor:
    fullname: Sturtevant
– volume: 32
  start-page: 6
  issue: 6
  year: 2018
  ident: 10.1016/j.knosys.2021.107554_b19
  article-title: Overview: A hierarchical framework for plan generation and execution in multi-robot systems
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/MIS.2017.4531217
  contributor:
    fullname: Ma
– ident: 10.1016/j.knosys.2021.107554_b26
  doi: 10.1609/socs.v10i1.18510
– ident: 10.1016/j.knosys.2021.107554_b29
– volume: 4
  start-page: 1125
  issue: 2
  year: 2019
  ident: 10.1016/j.knosys.2021.107554_b9
  article-title: Persistent and robust execution of MAPF schedules in warehouses
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2019.2894217
  contributor:
    fullname: Hönig
– ident: 10.1016/j.knosys.2021.107554_b24
  doi: 10.1609/aaai.v31i1.11035
– volume: 16
  start-page: 363
  issue: 1
  year: 2019
  ident: 10.1016/j.knosys.2021.107554_b13
  article-title: Optimized multiagent routing for a class of guide path-based transport systems
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2018.2798630
  contributor:
    fullname: Daugherty
– ident: 10.1016/j.knosys.2021.107554_b30
  doi: 10.1609/aaai.v26i1.8440
– ident: 10.1016/j.knosys.2021.107554_b21
  doi: 10.1609/aaai.v30i1.10409
– start-page: 40
  year: 2015
  ident: 10.1016/j.knosys.2021.107554_b1
  article-title: Conflict-based search for optimal multi-agent pathfinding
  contributor:
    fullname: Sharon
– ident: 10.1016/j.knosys.2021.107554_b23
  doi: 10.1609/aaai.v29i1.9430
– ident: 10.1016/j.knosys.2021.107554_b35
– ident: 10.1016/j.knosys.2021.107554_b25
  doi: 10.24963/ijcai.2019/6
– volume: 12
  start-page: 835
  issue: 3
  year: 2015
  ident: 10.1016/j.knosys.2021.107554_b31
  article-title: Prioritized planning algorithms for trajectory coordination of multiple mobile robots
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2015.2445780
  contributor:
    fullname: Čáp
– ident: 10.1016/j.knosys.2021.107554_b8
  doi: 10.1609/aaai.v33i01.33017732
– volume: 115
  start-page: 106
  year: 2019
  ident: 10.1016/j.knosys.2021.107554_b5
  article-title: Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.08.008
  contributor:
    fullname: Nazarahari
– ident: 10.1016/j.knosys.2021.107554_b33
  doi: 10.1609/aaai.v29i1.9355
– ident: 10.1016/j.knosys.2021.107554_b12
SSID ssj0002218
Score 2.3881783
Snippet Multi-Agent Path Finding (MAPF) aims to find a set of conflict-free paths for multiple agents on a given graph from parking locations to specified goal...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 107554
SubjectTerms Algorithms
Conflicts
Graph theory
Heterogeneous edges
Multi-Agent
Multiagent systems
Parking
Path Finding
Roundtrip
Unmanned aircraft
Title Multi-Agent Path Finding with heterogeneous edges and roundtrips
URI https://dx.doi.org/10.1016/j.knosys.2021.107554
https://www.proquest.com/docview/2616536947/abstract/
Volume 234
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLVZr2YPXtdlHdpObpViqYhG00FvYTDZYhbS09eDF3-5OHoiCCB6zuwnhy-zM7GS-GUIugtwEOQ8y_PUfM6Vzx6xwmskQZAoQWSjLMdxP9HiqbmfhrEWGDRcG0ypr3V_p9FJb1yP9Gs3-cj7vP3rnwMtriBWwsHsEkviUN0Zepi8_vtI8hChjfLiY4eqGPlfmeL0Wi_U7Fu0W3A-ZMFS_macfirq0PqM9slO7jXRQvdk-abnigOw2LRlovUMPyVVJqGUDJEzRB-_d0dG85K1QDLjSZ0x-WfhJ5w_8FENpa2qLjK6wudLG64_1EZmOrp-GY1Y3SWAgpdowaYW00h-cslREuQ2sgdjG3ip7xB1IrV0WRpBBZiDKvUXEE4mK0zTgkCnIhTwm7WJRuBNChTIZxBocj1NlJFhIjXLc8hwizbnsENZgkyyrWhhJkyT2klRYJohlUmHZIaYBMPn2TROvrv-4s9vgndR7ys9rrkOpY2VO__3gM7KNV5iPIsIuaW9Wb-7cexWbtFeKTY9sDW7uxpNPRYfNOQ
link.rule.ids 315,786,790,4521,24144,27957,27958,45620,45714
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6rHvTiW3ybg9e4zaNJe1PEZdVVBF3YW0inKa5CV9z14MXfbqYPREEEr5m0lK_JPJJvZgg5jgoTFTzK8eo_ZUoXnjnhNZMxyAwgcVCVY7i51f2huhrFow45b3NhkFbZ6P5ap1fauhnpNmh2X8bj7n1wDsJ6jbECFnaPSOfIArrz2L_h5OOL5yFEdciHsxlOb_PnKpLXczmZvmPVbsHDkIlj9Zt9-qGpK_PTWyXLjd9Iz-pPWyMdX66TlbYnA2226AY5rTJq2RlmTNG74N7R3rhKXKF44kofkf0yCUIfIn6KZ2lT6sqcvmJ3pVlQINNNMuxdPJz3WdMlgYGUasakE9LJEDnlmUgKFzkDqUuDWQ6Qe5Ba-zxOIIfcQFIEk4ghiUqzLOKQKyiE3CLz5aT024QKZXJINXieZspIcJAZ5bnjBSSac7lDWIuNfamLYdiWJfZkaywtYmlrLHeIaQG0336qDfr6jyf3W7xts6mCXHMdS50qs_vvFx-Rxf7DzcAOLm-v98gSSpCcIuJ9Mj97ffMHwcWYZYfVEvoEL9TOyw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Agent+Path+Finding+with+heterogeneous+edges+and+roundtrips&rft.jtitle=Knowledge-based+systems&rft.au=Ai%2C+Bing&rft.au=Jiang%2C+Jiuchuan&rft.au=Yu%2C+Shoushui&rft.au=Jiang%2C+Yichuan&rft.date=2021-12-25&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=234&rft_id=info:doi/10.1016%2Fj.knosys.2021.107554&rft.externalDocID=S0950705121008169
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon