g-C3N4 nano-fragments as highly efficient hydrogen evolution photocatalysts: Boosting effect of nitrogen vacancy

N vacancy modified g-C3N4 nano-fragments exhibit the improvement of photocatalytic performance for H2 evolution due to synergistic effect of N vacancy and quantum confinement effect. [Display omitted] •N vacancy modified g-C3N4 nano-fragments were successfully prepared.•Quantum confinement effect wa...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. A, General Vol. 599; p. 117618
Main Authors Liang, Lei, Shi, Lei, Wang, Fangxiao, Wang, Haihua, Yan, Pengqiang, Cong, Yufeng, Yao, Lizhu, Yang, Zhanxu, Qi, Wei
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 05.06.2020
Elsevier Science SA
Subjects
Online AccessGet full text

Cover

Loading…
Abstract N vacancy modified g-C3N4 nano-fragments exhibit the improvement of photocatalytic performance for H2 evolution due to synergistic effect of N vacancy and quantum confinement effect. [Display omitted] •N vacancy modified g-C3N4 nano-fragments were successfully prepared.•Quantum confinement effect was introduced in g-C3N4 nano-fragments.•g-C3N4 nano-fragments presented excellent photocatalytic activity.•The conduction band position of g-C3N4 nano-fragments was easily adjusted. N vacancy modified g-C3N4 nano-fragments were facilely prepared through thermal treatment method. The declined size and thickness of resultant g-C3N4 nano-fragments make it possess quantum confinement effect. The synergistic effect of N vacancy and quantum confinement effect endows resulting g-C3N4 nano-fragments with bigger surface area, stronger light response ability and improved migration effect of photoinduced charge. Not only that, the existence of quantum confinement effect remedies the shortcoming that reduced intrinsic conduction band potential was caused by N vacancy, and the conduction band position was easily adjusted. When N vacancy modified g-C3N4 nano-fragments were used to produce H2, the H2 evolution rate of the best sample (nano-CN5) was 5.9 folds more than bulk g-C3N4 and kept admirable stability of performance, structure and feature. Clearly, the present work develops a useful strategy for adjusting conduction band position of g-C3N4 and a meaningful thought for changing band gap of other photocatalysts.
AbstractList N vacancy modified g-C3N4 nano-fragments were facilely prepared through thermal treatment method. The declined size and thickness of resultant g-C3N4 nano-fragments make it possess quantum confinement effect. The synergistic effect of N vacancy and quantum confinement effect endows resulting g-C3N4 nano-fragments with bigger surface area, stronger light response ability and improved migration effect of photoinduced charge. Not only that, the existence of quantum confinement effect remedies the shortcoming that reduced intrinsic conduction band potential was caused by N vacancy, and the conduction band position was easily adjusted. When N vacancy modified g-C3N4 nano-fragments were used to produce H2, the H2 evolution rate of the best sample (nano-CN5) was 5.9 folds more than bulk g-C3N4 and kept admirable stability of performance, structure and feature. Clearly, the present work develops a useful strategy for adjusting conduction band position of g-C3N4 and a meaningful thought for changing band gap of other photocatalysts.
N vacancy modified g-C3N4 nano-fragments exhibit the improvement of photocatalytic performance for H2 evolution due to synergistic effect of N vacancy and quantum confinement effect. [Display omitted] •N vacancy modified g-C3N4 nano-fragments were successfully prepared.•Quantum confinement effect was introduced in g-C3N4 nano-fragments.•g-C3N4 nano-fragments presented excellent photocatalytic activity.•The conduction band position of g-C3N4 nano-fragments was easily adjusted. N vacancy modified g-C3N4 nano-fragments were facilely prepared through thermal treatment method. The declined size and thickness of resultant g-C3N4 nano-fragments make it possess quantum confinement effect. The synergistic effect of N vacancy and quantum confinement effect endows resulting g-C3N4 nano-fragments with bigger surface area, stronger light response ability and improved migration effect of photoinduced charge. Not only that, the existence of quantum confinement effect remedies the shortcoming that reduced intrinsic conduction band potential was caused by N vacancy, and the conduction band position was easily adjusted. When N vacancy modified g-C3N4 nano-fragments were used to produce H2, the H2 evolution rate of the best sample (nano-CN5) was 5.9 folds more than bulk g-C3N4 and kept admirable stability of performance, structure and feature. Clearly, the present work develops a useful strategy for adjusting conduction band position of g-C3N4 and a meaningful thought for changing band gap of other photocatalysts.
ArticleNumber 117618
Author Liang, Lei
Wang, Haihua
Yang, Zhanxu
Cong, Yufeng
Wang, Fangxiao
Yao, Lizhu
Shi, Lei
Yan, Pengqiang
Qi, Wei
Author_xml – sequence: 1
  givenname: Lei
  surname: Liang
  fullname: Liang, Lei
  organization: College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China
– sequence: 2
  givenname: Lei
  orcidid: 0000-0002-7591-3248
  surname: Shi
  fullname: Shi, Lei
  email: shilei_hit@qq.com
  organization: College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China
– sequence: 3
  givenname: Fangxiao
  surname: Wang
  fullname: Wang, Fangxiao
  organization: College of Chemistry, Chemical Engineering and Material Science, Shandong Normal University, Jinan 250014, China
– sequence: 4
  givenname: Haihua
  surname: Wang
  fullname: Wang, Haihua
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
– sequence: 5
  givenname: Pengqiang
  surname: Yan
  fullname: Yan, Pengqiang
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
– sequence: 6
  givenname: Yufeng
  surname: Cong
  fullname: Cong, Yufeng
  organization: College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China
– sequence: 7
  givenname: Lizhu
  surname: Yao
  fullname: Yao, Lizhu
  organization: College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China
– sequence: 8
  givenname: Zhanxu
  surname: Yang
  fullname: Yang, Zhanxu
  organization: College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China
– sequence: 9
  givenname: Wei
  orcidid: 0000-0003-1553-7508
  surname: Qi
  fullname: Qi, Wei
  email: wqi@imr.ac.cn
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
BookMark eNqFkMtKxDAUhoOM4Dj6Bi4Crjvm0ks6C0EHbzDoRsFdSNOkk6GT1CQz0Le3pa5c6OrA4Xzn5__Owcw6qwC4wmiJEc5vdkvRSRHFkiAyrHCRY3YC5pgVNKGsyGZgjkqSJyxHn2fgPIQdQoikZTYHXZOs6WsKrbAu0V40e2VjgCLArWm2bQ-V1kaaYQm3fe1doyxUR9ceonEWdlsX3Zjc9iGGFbx3LkRjm5FSMkKnoTVxoo5CCiv7C3CqRRvU5c9cgI_Hh_f1c7J5e3pZ320SSWkaE1oqluusJgJpTXJZsqIsJMFEFFWVUplJVpIqw1izTKYVLQVJEcNZXdcE5QLRBbie_nbefR1UiHznDt4OkZyklBGCcMGGq9V0Jb0LwSvNpYli7Ba9MC3HiI-G-Y5PhvlomE-GBzj9BXfe7IXv_8NuJ0wN9Y9GeR5GwVLVxg_SeO3M3w--AUBFmlQ
CitedBy_id crossref_primary_10_1002_slct_202403234
crossref_primary_10_1016_j_cej_2024_149506
crossref_primary_10_1016_j_jece_2025_115447
crossref_primary_10_1007_s10854_021_05481_w
crossref_primary_10_1016_j_mssp_2024_108713
crossref_primary_10_1002_cctc_202400413
crossref_primary_10_1016_j_jallcom_2023_168921
crossref_primary_10_1039_D3DT01712E
crossref_primary_10_1016_j_jcis_2023_08_012
crossref_primary_10_1016_j_microc_2024_110539
crossref_primary_10_1016_j_diamond_2020_108149
crossref_primary_10_1016_j_seppur_2023_125393
crossref_primary_10_1016_j_apcata_2021_118397
crossref_primary_10_1016_j_jece_2022_109201
crossref_primary_10_1016_j_matchemphys_2023_128252
crossref_primary_10_1016_j_snb_2022_131363
crossref_primary_10_1038_s41598_024_52688_y
crossref_primary_10_1016_j_mssp_2022_106804
crossref_primary_10_1016_j_cclet_2025_111088
crossref_primary_10_1016_j_materresbull_2020_111156
crossref_primary_10_1016_j_seppur_2022_120532
crossref_primary_10_1007_s42247_022_00421_8
crossref_primary_10_1088_1674_4926_44_8_081701
crossref_primary_10_1016_j_mssp_2023_107459
crossref_primary_10_1016_j_apcata_2020_117912
crossref_primary_10_1016_j_jtice_2021_104179
crossref_primary_10_1016_j_jece_2024_112962
crossref_primary_10_1016_j_jallcom_2024_174923
crossref_primary_10_1016_j_jhazmat_2023_131046
crossref_primary_10_1002_er_6535
crossref_primary_10_1080_24701556_2022_2068586
crossref_primary_10_1016_j_seppur_2023_124636
crossref_primary_10_1002_masy_202100306
crossref_primary_10_1016_j_colsurfa_2022_130165
crossref_primary_10_1039_D0SE01012J
crossref_primary_10_1016_j_envres_2025_121302
crossref_primary_10_1039_D1NJ05838J
crossref_primary_10_1016_j_ceramint_2023_04_152
crossref_primary_10_1007_s13399_022_03177_7
crossref_primary_10_1016_j_chemosphere_2021_132379
crossref_primary_10_1016_j_cej_2021_128663
crossref_primary_10_1016_j_jphotochem_2024_116211
crossref_primary_10_1007_s12598_023_02403_z
crossref_primary_10_1016_j_jece_2024_112860
crossref_primary_10_1016_j_cej_2021_130877
crossref_primary_10_1016_j_mssp_2024_108544
crossref_primary_10_1016_j_optmat_2022_113202
crossref_primary_10_1021_acs_iecr_3c03794
crossref_primary_10_1021_acs_analchem_0c05027
crossref_primary_10_1016_j_seppur_2021_119662
crossref_primary_10_1016_j_colsurfa_2022_128814
crossref_primary_10_1002_slct_202302369
crossref_primary_10_1002_slct_202302880
crossref_primary_10_1021_acs_energyfuels_4c00160
crossref_primary_10_1016_j_ijhydene_2021_02_177
crossref_primary_10_1016_j_optmat_2021_111407
crossref_primary_10_1080_1536383X_2023_2259519
crossref_primary_10_1039_D4CY00825A
crossref_primary_10_1016_j_jtice_2021_10_011
crossref_primary_10_1016_j_optmat_2022_112002
crossref_primary_10_1016_j_synthmet_2022_117100
crossref_primary_10_1016_j_colsurfa_2021_126367
crossref_primary_10_1016_j_colsurfa_2021_127732
crossref_primary_10_1016_j_jallcom_2022_165332
crossref_primary_10_1002_asia_202401487
crossref_primary_10_1016_j_ijhydene_2023_09_098
crossref_primary_10_1016_j_apsusc_2021_150369
crossref_primary_10_1016_j_jphotochem_2024_116073
crossref_primary_10_1007_s10854_020_04849_8
crossref_primary_10_1016_j_envres_2021_111002
crossref_primary_10_1016_j_scitotenv_2022_159247
crossref_primary_10_1007_s11581_024_05540_2
crossref_primary_10_1039_D3NA00597F
crossref_primary_10_3390_polym17030334
crossref_primary_10_3390_nano12172945
crossref_primary_10_2166_wst_2024_166
crossref_primary_10_1016_j_jallcom_2025_179351
crossref_primary_10_1016_j_jenvman_2022_116431
crossref_primary_10_1016_j_chemosphere_2021_132735
crossref_primary_10_1016_j_mssp_2020_105411
crossref_primary_10_1016_j_apcata_2020_117833
crossref_primary_10_1016_j_materresbull_2024_113019
crossref_primary_10_1016_j_cjsc_2023_100145
crossref_primary_10_1016_j_cej_2022_134505
crossref_primary_10_1016_j_jssc_2021_122066
crossref_primary_10_1016_j_actbio_2022_03_052
crossref_primary_10_1016_j_optmat_2021_111452
crossref_primary_10_1021_acs_energyfuels_2c01256
crossref_primary_10_3390_catal13010154
crossref_primary_10_1016_j_materresbull_2023_112510
crossref_primary_10_1016_j_apcata_2021_118457
crossref_primary_10_1007_s10854_022_07767_z
crossref_primary_10_1039_D2CY00831A
crossref_primary_10_3390_pr10040787
crossref_primary_10_1016_j_cej_2020_127370
crossref_primary_10_1016_j_jallcom_2024_174993
crossref_primary_10_1016_j_seppur_2022_120526
crossref_primary_10_1039_D1RA06101A
crossref_primary_10_1016_j_fuel_2024_133285
crossref_primary_10_1016_j_seppur_2024_131291
crossref_primary_10_1016_j_mssp_2024_108467
crossref_primary_10_1016_j_colsurfa_2022_128577
crossref_primary_10_1002_eom2_12204
crossref_primary_10_1016_j_optmat_2023_114112
crossref_primary_10_1016_j_colsurfa_2023_132292
crossref_primary_10_1016_j_ijhydene_2022_12_126
crossref_primary_10_1002_pat_5908
crossref_primary_10_1016_j_colsurfa_2020_126123
Cites_doi 10.1016/j.apcatb.2016.05.069
10.1016/j.seppur.2018.07.059
10.1002/adfm.201200922
10.1016/j.apcatb.2017.12.044
10.1038/ncomms2152
10.1039/c3cy00871a
10.1016/j.apcatb.2019.118326
10.1016/j.apsusc.2018.12.287
10.1021/acsnano.6b08251
10.1016/j.cej.2013.08.112
10.1039/c3ta12332d
10.1038/nmat2317
10.1016/j.apsusc.2018.08.080
10.1021/ja903923s
10.1016/j.apcatb.2015.12.051
10.1016/j.apcatb.2017.01.058
10.1016/j.carbon.2010.10.010
10.1002/adma.201605148
10.1039/c3en00098b
10.1016/j.nanoen.2017.11.059
10.1021/acsami.9b01421
10.1016/j.cej.2019.122161
10.1016/j.apsusc.2015.08.035
10.1039/C7EE03640J
10.1016/j.apcatb.2019.118281
10.1002/adfm.201900093
10.1021/cr0500535
10.1002/cssc.201901011
10.1016/j.apcatb.2016.08.002
10.1016/j.cej.2019.122282
10.1021/acssuschemeng.7b01477
10.1016/j.cej.2017.10.016
10.1039/C5SC04572J
10.1016/j.apsusc.2019.02.176
10.1039/C5EE02650D
10.1016/j.apsusc.2019.143738
10.1016/j.cclet.2019.03.016
10.1016/j.apcatb.2019.118308
10.1021/jacs.7b08416
10.1016/j.apcatb.2017.05.038
10.1039/C4CY00411F
10.1016/j.apcatb.2014.03.034
10.1016/j.cplett.2005.05.027
10.1021/jp301026y
10.1016/j.apcatb.2019.118251
10.1080/10643389.2018.1487227
10.1016/j.apcatb.2016.01.026
10.1002/adma.201404057
10.1021/acsenergylett.7b01328
10.1016/j.jcis.2018.02.056
10.1039/c3ta14339b
10.1016/j.carbon.2015.12.008
10.1016/j.carbon.2017.02.063
10.3389/fchem.2019.00639
10.1021/la020828u
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier Science SA Jun 5, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier Science SA Jun 5, 2020
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.apcata.2020.117618
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-3875
ExternalDocumentID 10_1016_j_apcata_2020_117618
S0926860X20302118
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPD
SSG
SSZ
T5K
XPP
ZMT
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AI.
AIIUN
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
7SR
7U5
8BQ
8FD
EFKBS
JG9
L7M
ID FETCH-LOGICAL-c334t-39e86f5d2a0ff26c98797c212a7bb43c5c892b511f85c4b39a240815ddd206a03
IEDL.DBID .~1
ISSN 0926-860X
IngestDate Wed Aug 13 09:41:21 EDT 2025
Tue Jul 01 00:39:21 EDT 2025
Thu Apr 24 22:56:20 EDT 2025
Fri Feb 23 02:47:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords N vacancy
Quantum confinement effect
H2 evolution
g-C3N4 nano-fragments
Photocatalysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-39e86f5d2a0ff26c98797c212a7bb43c5c892b511f85c4b39a240815ddd206a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1553-7508
0000-0002-7591-3248
PQID 2438220178
PQPubID 2047481
ParticipantIDs proquest_journals_2438220178
crossref_citationtrail_10_1016_j_apcata_2020_117618
crossref_primary_10_1016_j_apcata_2020_117618
elsevier_sciencedirect_doi_10_1016_j_apcata_2020_117618
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-05
PublicationDateYYYYMMDD 2020-06-05
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-05
  day: 05
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied catalysis. A, General
PublicationYear 2020
Publisher Elsevier B.V
Elsevier Science SA
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science SA
References Shi, Liang, Ma, Wang, Sun (bib0175) 2014; 4
Lin, Yang, Yang, Zhao (bib0110) 2016; 198
Mo, She, Chen, Xu, Song, Zhu, Qian, Li, Lei, Xu (bib0210) 2020; 12
Ren, Cheng, Ou, Huang, Titirici, Wang (bib0225) 2019; 12
Wang, Zhao, Cao, Yan, Zhu, Tao, Chen, Zhang, Li, Phillips (bib0150) 2019; 11
Wang, Sun, Luo, Yang, Yin (bib0050) 2014; 156-157
Cheng, Xiang, Liao, Zhang (bib0035) 2018; 11
Long, Lin, Wang (bib0215) 2014; 2
Chen, Ding, Khaing, Yang, Jiang (bib0245) 2019; 479
Ramakrishna, Ghosh (bib0020) 2003; 19
Andryushina, Shvalagin, Korzhak, Grodzyuk, Kuchmiy, Skoryk (bib0230) 2019; 475
Tu, Xu, Wang, Zhang, Zhou, Yin, Wu, Li, Huang, Zhou, Zou, Robertson, Kraft, Xu (bib0250) 2017; 58
Zhang, Lan, Lin, Lin, Wang (bib0100) 2016; 7
Shi, Ma, Yao, Cui, Qi (bib0275) 2018; 519
Ma, Zhan, Jia, Shi, Zhou (bib0095) 2016; 186
Zhang, Guo, Zhao (bib0255) 2018; 226
Tong, Yang, Li, Nan, Ding, Shen, Jiang (bib0115) 2017; 11
Hu, Chen, Li, Li, Fan, Wang, Wang, Zheng, Wu (bib0270) 2017; 201
Wang, Wang, Li, Yang, Zhao, Hao, Liu (bib0055) 2013; 234
Zhou, Liu, Guan, Tian, Wang, Zhou, Zhou, Lei, Zhang, Liu (bib0145) 2020; 263
Zhou, Zhang, Huang, Kong, Fan, Wang, Shi (bib0045) 2016; 99
Niu, Zhang, Liu, Cheng (bib0200) 2012; 22
Shi, Liang, Wang, Ma, Sun (bib0220) 2014; 4
Lin, Cheng, Hsu, Lin, Hsieh (bib0025) 2005; 409
Sun, Zhang, Zhang, Antonietti, Fu, Wang (bib0120) 2012; 3
Chen, Mao (bib0005) 2007; 107
Zhu, Kim, Mao, Fujitsuka, Zhang, Wang, Majima (bib0170) 2017; 139
Yu, Shi, Zhao, Bian, Zhao, Zhou, Waterhouse, Wu, Tung, Zhang (bib0260) 2017; 29
Cui, Chen, Sheng, Li, Wang, Dong, Zhou, Sun, Dong (bib0130) 2020; 262
Geng, Chen, Lv, Jiang, Wang (bib0160) 2018; 462
Ran, Chen, Li, Cui, Li, He, Sheng, Sun, Dong (bib0090) 2019; 30
Sun, Li, Yu, Qian, Chen (bib0085) 2017; 117
Shi, Zou, Cheng, Ma, Sun, Mao, Sun, He, Wang (bib0135) 2019; 378
Liu, Yan, Shi, Yao (bib0280) 2019; 7
Leary, Westwood (bib0010) 2011; 49
Chen, Zhang, Fu, Antonietti, Wang (bib0080) 2009; 131
Li, Gu, Shi, Cui, Zhang, Dong, Cheng, Fan, Lv (bib0125) 2020; 262
Li, Zhao, Geng, Li, Li, Wang (bib0060) 2019; 496
Liao, Cui, Li, Sheng, Wang, Dong, Chen, Jiang, Wang, Dong (bib0065) 2020; 379
Liang, Xia, Zhu, Zheng, He, Bi, Liu, Wu (bib0105) 2015; 358
Hu, Qu, Li, Wang, Li, Song, Zhao, Kang (bib0265) 2018; 334
Xia, Antonietti, Zhu, Heil, Yu, Cao (bib0235) 2019; 29
Niu, Liu, Cheng (bib0180) 2012; 116
Cui, Zhang, Zhang, Cheng, Cheng (bib0240) 2019; 210
da Silva, Carvalho, Lopes, Ribeiro (bib0155) 2017; 216
Wang, Rao, Wang, Shi, Zhang (bib0140) 2020; 262
Niu, Yin, Yang, Liu, Cheng (bib0190) 2014; 26
Wang, Maeda, Thomas, Takanabe, Xin, Carlsson, Domenet, Antonietti (bib0040) 2009; 8
Xing, Tu, Han, Hu, Meng, Chen (bib0205) 2018; 3
Hong, Shen, Chen, Lin, Gao (bib0185) 2013; 1
Niu, Qiao, Li, Huang, Zhai (bib0195) 2018; 44
Ran, Ma, Gao, Du, Qiao (bib0070) 2015; 8
Shekofteh-Gohari, Habibi-Yangjeh, Abitorabi, Rouhi (bib0015) 2018; 48
Ye, Su, Jin, Xie, Zhang (bib0030) 2014; 1
Hao, Wang, Tang, Sun, Xu, Han (bib0165) 2016; 187
Qiu, Xu, Chen, Jiang, Wang, Lu, Zhang (bib0075) 2017; 206
Andryushina (10.1016/j.apcata.2020.117618_bib0230) 2019; 475
Li (10.1016/j.apcata.2020.117618_bib0125) 2020; 262
Wang (10.1016/j.apcata.2020.117618_bib0040) 2009; 8
Wang (10.1016/j.apcata.2020.117618_bib0150) 2019; 11
Chen (10.1016/j.apcata.2020.117618_bib0005) 2007; 107
Zhang (10.1016/j.apcata.2020.117618_bib0100) 2016; 7
Sun (10.1016/j.apcata.2020.117618_bib0120) 2012; 3
Hao (10.1016/j.apcata.2020.117618_bib0165) 2016; 187
Xing (10.1016/j.apcata.2020.117618_bib0205) 2018; 3
Leary (10.1016/j.apcata.2020.117618_bib0010) 2011; 49
Xia (10.1016/j.apcata.2020.117618_bib0235) 2019; 29
Sun (10.1016/j.apcata.2020.117618_bib0085) 2017; 117
Liu (10.1016/j.apcata.2020.117618_bib0280) 2019; 7
Wang (10.1016/j.apcata.2020.117618_bib0140) 2020; 262
Tong (10.1016/j.apcata.2020.117618_bib0115) 2017; 11
da Silva (10.1016/j.apcata.2020.117618_bib0155) 2017; 216
Zhu (10.1016/j.apcata.2020.117618_bib0170) 2017; 139
Niu (10.1016/j.apcata.2020.117618_bib0200) 2012; 22
Liang (10.1016/j.apcata.2020.117618_bib0105) 2015; 358
Tu (10.1016/j.apcata.2020.117618_bib0250) 2017; 58
Shi (10.1016/j.apcata.2020.117618_bib0275) 2018; 519
Ran (10.1016/j.apcata.2020.117618_bib0070) 2015; 8
Shi (10.1016/j.apcata.2020.117618_bib0175) 2014; 4
Lin (10.1016/j.apcata.2020.117618_bib0110) 2016; 198
Cui (10.1016/j.apcata.2020.117618_bib0240) 2019; 210
Wang (10.1016/j.apcata.2020.117618_bib0050) 2014; 156-157
Ren (10.1016/j.apcata.2020.117618_bib0225) 2019; 12
Niu (10.1016/j.apcata.2020.117618_bib0195) 2018; 44
Ye (10.1016/j.apcata.2020.117618_bib0030) 2014; 1
Hu (10.1016/j.apcata.2020.117618_bib0265) 2018; 334
Qiu (10.1016/j.apcata.2020.117618_bib0075) 2017; 206
Shekofteh-Gohari (10.1016/j.apcata.2020.117618_bib0015) 2018; 48
Niu (10.1016/j.apcata.2020.117618_bib0180) 2012; 116
Yu (10.1016/j.apcata.2020.117618_bib0260) 2017; 29
Chen (10.1016/j.apcata.2020.117618_bib0080) 2009; 131
Shi (10.1016/j.apcata.2020.117618_bib0135) 2019; 378
Hong (10.1016/j.apcata.2020.117618_bib0185) 2013; 1
Lin (10.1016/j.apcata.2020.117618_bib0025) 2005; 409
Liao (10.1016/j.apcata.2020.117618_bib0065) 2020; 379
Geng (10.1016/j.apcata.2020.117618_bib0160) 2018; 462
Chen (10.1016/j.apcata.2020.117618_bib0245) 2019; 479
Cheng (10.1016/j.apcata.2020.117618_bib0035) 2018; 11
Mo (10.1016/j.apcata.2020.117618_bib0210) 2020; 12
Zhou (10.1016/j.apcata.2020.117618_bib0045) 2016; 99
Ma (10.1016/j.apcata.2020.117618_bib0095) 2016; 186
Shi (10.1016/j.apcata.2020.117618_bib0220) 2014; 4
Cui (10.1016/j.apcata.2020.117618_bib0130) 2020; 262
Long (10.1016/j.apcata.2020.117618_bib0215) 2014; 2
Li (10.1016/j.apcata.2020.117618_bib0060) 2019; 496
Zhang (10.1016/j.apcata.2020.117618_bib0255) 2018; 226
Niu (10.1016/j.apcata.2020.117618_bib0190) 2014; 26
Wang (10.1016/j.apcata.2020.117618_bib0055) 2013; 234
Hu (10.1016/j.apcata.2020.117618_bib0270) 2017; 201
Ran (10.1016/j.apcata.2020.117618_bib0090) 2019; 30
Zhou (10.1016/j.apcata.2020.117618_bib0145) 2020; 263
Ramakrishna (10.1016/j.apcata.2020.117618_bib0020) 2003; 19
References_xml – volume: 19
  start-page: 3006
  year: 2003
  end-page: 3012
  ident: bib0020
  publication-title: Langmuir
– volume: 8
  start-page: 76
  year: 2009
  end-page: 80
  ident: bib0040
  publication-title: Nat. Mater.
– volume: 262
  start-page: 118251
  year: 2020
  ident: bib0130
  publication-title: Appl. Catal. B: Environ.
– volume: 7
  start-page: 3062
  year: 2016
  end-page: 3066
  ident: bib0100
  publication-title: Chem. Sci.
– volume: 29
  start-page: 1605148
  year: 2017
  ident: bib0260
  publication-title: Adv. Mater.
– volume: 186
  start-page: 77
  year: 2016
  end-page: 87
  ident: bib0095
  publication-title: Appl. Catal. B: Environ.
– volume: 378
  start-page: 122161
  year: 2019
  ident: bib0135
  publication-title: Chem. Eng. J.
– volume: 496
  start-page: 143738
  year: 2019
  ident: bib0060
  publication-title: Appl. Surf. Sci.
– volume: 30
  start-page: 875
  year: 2019
  end-page: 880
  ident: bib0090
  publication-title: Chin. Chem. Lett.
– volume: 11
  start-page: 16527
  year: 2019
  end-page: 16537
  ident: bib0150
  publication-title: ACS Appl. Mater. Interfaces
– volume: 116
  start-page: 11013
  year: 2012
  end-page: 11018
  ident: bib0180
  publication-title: J. Phys. Chem. C
– volume: 48
  start-page: 806
  year: 2018
  end-page: 857
  ident: bib0015
  publication-title: Crit. Rev. Env. Sci. Tec.
– volume: 226
  start-page: 1
  year: 2018
  end-page: 9
  ident: bib0255
  publication-title: Appl. Catal. B: Environ.
– volume: 12
  start-page: 3257
  year: 2019
  end-page: 3262
  ident: bib0225
  publication-title: Chem. Sus. Chem
– volume: 198
  start-page: 276
  year: 2016
  end-page: 285
  ident: bib0110
  publication-title: Appl. Catal. B: Environ.
– volume: 210
  start-page: 125
  year: 2019
  end-page: 134
  ident: bib0240
  publication-title: Sep. Purif. Technol.
– volume: 44
  start-page: 73
  year: 2018
  end-page: 81
  ident: bib0195
  publication-title: Nano Energy
– volume: 334
  start-page: 410
  year: 2018
  end-page: 418
  ident: bib0265
  publication-title: Chem. Eng. J.
– volume: 263
  start-page: 118326
  year: 2020
  ident: bib0145
  publication-title: Appl. Catal. B: Environ.
– volume: 58
  start-page: 7260
  year: 2017
  end-page: 7268
  ident: bib0250
  publication-title: ACS Sustainable Chem. Eng.
– volume: 11
  start-page: 1103
  year: 2017
  end-page: 1112
  ident: bib0115
  publication-title: ACS Nano
– volume: 22
  start-page: 4763
  year: 2012
  end-page: 4770
  ident: bib0200
  publication-title: Adv. Funct. Mater.
– volume: 475
  start-page: 348
  year: 2019
  end-page: 354
  ident: bib0230
  publication-title: Appl. Surf. Sci.
– volume: 519
  start-page: 1
  year: 2018
  end-page: 10
  ident: bib0275
  publication-title: J. Colloid Interf. Sci.
– volume: 49
  start-page: 741
  year: 2011
  end-page: 772
  ident: bib0010
  publication-title: Carbon
– volume: 206
  start-page: 319
  year: 2017
  end-page: 327
  ident: bib0075
  publication-title: Appl. Catal. B: Environ.
– volume: 262
  start-page: 118281
  year: 2020
  ident: bib0125
  publication-title: Appl. Catal. B: Environ.
– volume: 107
  start-page: 2891
  year: 2007
  end-page: 2959
  ident: bib0005
  publication-title: Chem. Rev.
– volume: 216
  start-page: 70
  year: 2017
  end-page: 79
  ident: bib0155
  publication-title: Appl. Catal. B: Environ.
– volume: 7
  start-page: 639
  year: 2019
  ident: bib0280
  publication-title: Front. Chem.
– volume: 379
  start-page: 122282
  year: 2020
  ident: bib0065
  publication-title: Chem. Eng. J.
– volume: 2
  start-page: 2942
  year: 2014
  end-page: 2951
  ident: bib0215
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
– volume: 201
  start-page: 58
  year: 2017
  end-page: 69
  ident: bib0270
  publication-title: Appl. Catal. B: Environ.
– volume: 12
  start-page: 1169
  year: 2020
  end-page: 1176
  ident: bib0210
  publication-title: Chem. Cat. Chem
– volume: 479
  start-page: 757
  year: 2019
  end-page: 764
  ident: bib0245
  publication-title: Appl. Surf. Sci.
– volume: 3
  start-page: 514
  year: 2018
  end-page: 519
  ident: bib0205
  publication-title: ACS Energy Lett.
– volume: 462
  start-page: 18
  year: 2018
  end-page: 28
  ident: bib0160
  publication-title: Appl. Surf. Sci.
– volume: 117
  start-page: 1
  year: 2017
  end-page: 11
  ident: bib0085
  publication-title: Carbon
– volume: 358
  start-page: 304
  year: 2015
  end-page: 312
  ident: bib0105
  publication-title: Appl. Surf. Sci.
– volume: 1
  start-page: 11754
  year: 2013
  end-page: 11761
  ident: bib0185
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
– volume: 234
  start-page: 361
  year: 2013
  end-page: 371
  ident: bib0055
  publication-title: Chem. Eng. J.
– volume: 29
  start-page: 1900093
  year: 2019
  ident: bib0235
  publication-title: Adv. Funct. Mater.
– volume: 139
  start-page: 13234
  year: 2017
  end-page: 13242
  ident: bib0170
  publication-title: J. Am. Chem. Soc.
– volume: 262
  start-page: 118308
  year: 2020
  ident: bib0140
  publication-title: Appl. Catal. B: Environ.
– volume: 409
  start-page: 208
  year: 2005
  end-page: 211
  ident: bib0025
  publication-title: Chem. Phys. Lett.
– volume: 4
  start-page: 3235
  year: 2014
  end-page: 3243
  ident: bib0220
  publication-title: Catal. Sci. Technol.
– volume: 187
  start-page: 47
  year: 2016
  end-page: 58
  ident: bib0165
  publication-title: Appl. Catal. B: Environ.
– volume: 3
  start-page: 1139
  year: 2012
  ident: bib0120
  publication-title: Nat. Commun.
– volume: 1
  start-page: 90
  year: 2014
  end-page: 112
  ident: bib0030
  publication-title: Environ. Sci. Nano
– volume: 8
  start-page: 3708
  year: 2015
  end-page: 3717
  ident: bib0070
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 1362
  year: 2018
  end-page: 1391
  ident: bib0035
  publication-title: Energy Environ. Sci.
– volume: 99
  start-page: 111
  year: 2016
  end-page: 117
  ident: bib0045
  publication-title: Carbon
– volume: 156-157
  start-page: 323
  year: 2014
  end-page: 330
  ident: bib0050
  publication-title: Appl. Catal. B: Environ.
– volume: 4
  start-page: 758
  year: 2014
  end-page: 765
  ident: bib0175
  publication-title: Catal. Sci. Technol.
– volume: 26
  start-page: 8046
  year: 2014
  end-page: 8052
  ident: bib0190
  publication-title: Adv. Mater.
– volume: 131
  start-page: 11658
  year: 2009
  end-page: 11659
  ident: bib0080
  publication-title: J. Am. Chem. Soc.
– volume: 198
  start-page: 276
  year: 2016
  ident: 10.1016/j.apcata.2020.117618_bib0110
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2016.05.069
– volume: 210
  start-page: 125
  year: 2019
  ident: 10.1016/j.apcata.2020.117618_bib0240
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2018.07.059
– volume: 22
  start-page: 4763
  year: 2012
  ident: 10.1016/j.apcata.2020.117618_bib0200
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200922
– volume: 226
  start-page: 1
  year: 2018
  ident: 10.1016/j.apcata.2020.117618_bib0255
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2017.12.044
– volume: 3
  start-page: 1139
  year: 2012
  ident: 10.1016/j.apcata.2020.117618_bib0120
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2152
– volume: 4
  start-page: 758
  year: 2014
  ident: 10.1016/j.apcata.2020.117618_bib0175
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/c3cy00871a
– volume: 263
  start-page: 118326
  year: 2020
  ident: 10.1016/j.apcata.2020.117618_bib0145
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2019.118326
– volume: 475
  start-page: 348
  year: 2019
  ident: 10.1016/j.apcata.2020.117618_bib0230
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.12.287
– volume: 11
  start-page: 1103
  year: 2017
  ident: 10.1016/j.apcata.2020.117618_bib0115
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b08251
– volume: 234
  start-page: 361
  year: 2013
  ident: 10.1016/j.apcata.2020.117618_bib0055
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.08.112
– volume: 1
  start-page: 11754
  year: 2013
  ident: 10.1016/j.apcata.2020.117618_bib0185
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
  doi: 10.1039/c3ta12332d
– volume: 8
  start-page: 76
  year: 2009
  ident: 10.1016/j.apcata.2020.117618_bib0040
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2317
– volume: 462
  start-page: 18
  year: 2018
  ident: 10.1016/j.apcata.2020.117618_bib0160
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.08.080
– volume: 131
  start-page: 11658
  year: 2009
  ident: 10.1016/j.apcata.2020.117618_bib0080
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja903923s
– volume: 186
  start-page: 77
  year: 2016
  ident: 10.1016/j.apcata.2020.117618_bib0095
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2015.12.051
– volume: 206
  start-page: 319
  year: 2017
  ident: 10.1016/j.apcata.2020.117618_bib0075
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2017.01.058
– volume: 12
  start-page: 1169
  year: 2020
  ident: 10.1016/j.apcata.2020.117618_bib0210
  publication-title: Chem. Cat. Chem
– volume: 49
  start-page: 741
  year: 2011
  ident: 10.1016/j.apcata.2020.117618_bib0010
  publication-title: Carbon
  doi: 10.1016/j.carbon.2010.10.010
– volume: 29
  start-page: 1605148
  year: 2017
  ident: 10.1016/j.apcata.2020.117618_bib0260
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605148
– volume: 1
  start-page: 90
  year: 2014
  ident: 10.1016/j.apcata.2020.117618_bib0030
  publication-title: Environ. Sci. Nano
  doi: 10.1039/c3en00098b
– volume: 44
  start-page: 73
  year: 2018
  ident: 10.1016/j.apcata.2020.117618_bib0195
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.11.059
– volume: 11
  start-page: 16527
  year: 2019
  ident: 10.1016/j.apcata.2020.117618_bib0150
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b01421
– volume: 378
  start-page: 122161
  year: 2019
  ident: 10.1016/j.apcata.2020.117618_bib0135
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122161
– volume: 358
  start-page: 304
  year: 2015
  ident: 10.1016/j.apcata.2020.117618_bib0105
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.08.035
– volume: 11
  start-page: 1362
  year: 2018
  ident: 10.1016/j.apcata.2020.117618_bib0035
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE03640J
– volume: 262
  start-page: 118281
  year: 2020
  ident: 10.1016/j.apcata.2020.117618_bib0125
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2019.118281
– volume: 29
  start-page: 1900093
  year: 2019
  ident: 10.1016/j.apcata.2020.117618_bib0235
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201900093
– volume: 107
  start-page: 2891
  year: 2007
  ident: 10.1016/j.apcata.2020.117618_bib0005
  publication-title: Chem. Rev.
  doi: 10.1021/cr0500535
– volume: 12
  start-page: 3257
  year: 2019
  ident: 10.1016/j.apcata.2020.117618_bib0225
  publication-title: Chem. Sus. Chem
  doi: 10.1002/cssc.201901011
– volume: 201
  start-page: 58
  year: 2017
  ident: 10.1016/j.apcata.2020.117618_bib0270
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2016.08.002
– volume: 379
  start-page: 122282
  year: 2020
  ident: 10.1016/j.apcata.2020.117618_bib0065
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122282
– volume: 58
  start-page: 7260
  year: 2017
  ident: 10.1016/j.apcata.2020.117618_bib0250
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b01477
– volume: 334
  start-page: 410
  year: 2018
  ident: 10.1016/j.apcata.2020.117618_bib0265
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.10.016
– volume: 7
  start-page: 3062
  year: 2016
  ident: 10.1016/j.apcata.2020.117618_bib0100
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC04572J
– volume: 479
  start-page: 757
  year: 2019
  ident: 10.1016/j.apcata.2020.117618_bib0245
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.02.176
– volume: 8
  start-page: 3708
  year: 2015
  ident: 10.1016/j.apcata.2020.117618_bib0070
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02650D
– volume: 496
  start-page: 143738
  year: 2019
  ident: 10.1016/j.apcata.2020.117618_bib0060
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.143738
– volume: 30
  start-page: 875
  year: 2019
  ident: 10.1016/j.apcata.2020.117618_bib0090
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2019.03.016
– volume: 262
  start-page: 118308
  year: 2020
  ident: 10.1016/j.apcata.2020.117618_bib0140
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2019.118308
– volume: 139
  start-page: 13234
  year: 2017
  ident: 10.1016/j.apcata.2020.117618_bib0170
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b08416
– volume: 216
  start-page: 70
  year: 2017
  ident: 10.1016/j.apcata.2020.117618_bib0155
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2017.05.038
– volume: 4
  start-page: 3235
  year: 2014
  ident: 10.1016/j.apcata.2020.117618_bib0220
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C4CY00411F
– volume: 156-157
  start-page: 323
  year: 2014
  ident: 10.1016/j.apcata.2020.117618_bib0050
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2014.03.034
– volume: 409
  start-page: 208
  year: 2005
  ident: 10.1016/j.apcata.2020.117618_bib0025
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2005.05.027
– volume: 116
  start-page: 11013
  year: 2012
  ident: 10.1016/j.apcata.2020.117618_bib0180
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp301026y
– volume: 262
  start-page: 118251
  year: 2020
  ident: 10.1016/j.apcata.2020.117618_bib0130
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2019.118251
– volume: 48
  start-page: 806
  year: 2018
  ident: 10.1016/j.apcata.2020.117618_bib0015
  publication-title: Crit. Rev. Env. Sci. Tec.
  doi: 10.1080/10643389.2018.1487227
– volume: 187
  start-page: 47
  year: 2016
  ident: 10.1016/j.apcata.2020.117618_bib0165
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2016.01.026
– volume: 26
  start-page: 8046
  year: 2014
  ident: 10.1016/j.apcata.2020.117618_bib0190
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404057
– volume: 3
  start-page: 514
  year: 2018
  ident: 10.1016/j.apcata.2020.117618_bib0205
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b01328
– volume: 519
  start-page: 1
  year: 2018
  ident: 10.1016/j.apcata.2020.117618_bib0275
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2018.02.056
– volume: 2
  start-page: 2942
  year: 2014
  ident: 10.1016/j.apcata.2020.117618_bib0215
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
  doi: 10.1039/c3ta14339b
– volume: 99
  start-page: 111
  year: 2016
  ident: 10.1016/j.apcata.2020.117618_bib0045
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.12.008
– volume: 117
  start-page: 1
  year: 2017
  ident: 10.1016/j.apcata.2020.117618_bib0085
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.02.063
– volume: 7
  start-page: 639
  year: 2019
  ident: 10.1016/j.apcata.2020.117618_bib0280
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2019.00639
– volume: 19
  start-page: 3006
  year: 2003
  ident: 10.1016/j.apcata.2020.117618_bib0020
  publication-title: Langmuir
  doi: 10.1021/la020828u
SSID ssj0002495
Score 2.6079118
Snippet N vacancy modified g-C3N4 nano-fragments exhibit the improvement of photocatalytic performance for H2 evolution due to synergistic effect of N vacancy and...
N vacancy modified g-C3N4 nano-fragments were facilely prepared through thermal treatment method. The declined size and thickness of resultant g-C3N4...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 117618
SubjectTerms Carbon nitride
Conduction bands
Fragments
g-C3N4 nano-fragments
H2 evolution
Heat treatment
Hydrogen evolution
N vacancy
Nitrogen
Photocatalysis
Photocatalysts
Quantum confinement
Quantum confinement effect
Synergistic effect
Thickness
Vacancies
Title g-C3N4 nano-fragments as highly efficient hydrogen evolution photocatalysts: Boosting effect of nitrogen vacancy
URI https://dx.doi.org/10.1016/j.apcata.2020.117618
https://www.proquest.com/docview/2438220178
Volume 599
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOiBYQhVL50KvZxO_0VlZUC1X3UirtzfKzLaqSaBMq7YXfXttJSkGVKnGM5Ykiz-SbsT3zDQCHEfQE17ZEugwMRX_LkdGiRMxwWQnngpepOPlsyRcX9PuKrbbAfKqFSWmVI_YPmJ7RehyZjas5a6-vZ-dFhbnkxQpHO43bmFTwS6lIVv759580j9RbOfPtYY7S7Kl8Lud46TYdksRdIs63lzy1_njcPf0D1Nn7nLwGr8awER4PX7YDtny9C57Pp25tu-DlA2LBN6C9RHOypLDWdYPCWl_mQjaoO5joiW820GfmiDgIrzZu3UQrgv52tELYXjV9k891Nl3fHcEvTdOl7Gg4JH_AJsAIBIPUrbYJn9-Ci5OvP-YLNPZWQJYQ2iNSeckDc1gXIWBuKykqYaMf08IYSiyzssImRmNBMksNqXTiQiuZcw4XXBfkHdium9q_B9BQ7ATRJZHOU02pcY7gwIiN-18jtd8DZFpSZUfi8dT_4kZNGWY_1aAIlRShBkXsAXQv1Q7EG0_MF5O21F8GpKJveEJyf1KuGn_gTuF0QRqDIyE__PeLP4IX6SknlrF9sN2vf_lPMYTpzUG20QPw7Pjb6WJ5B3O28TU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9lA4ICggCgV84Gpt4ne4lRXVlrZ7oZX2ZvnZh6ok2oRK---xnaQChFSJq5OJIs_4m7E98w0AnyPoCa5tiXQZGIr-liOjRYmY4bISzgUvU3Hy-YovL-n3NVvvgMVUC5PSKkfsHzA9o_U4Mh9nc97e3Mx_FBXmkhdrHO00bmPkE7Cb2KnYDOwenZwuVw-AnNorZ8o9zFESmCrocpqXbtM5Sdwo4nyByVP3j397qL-wOjug4xfg-Rg5wqPh516CHV_vg73F1LBtHzz7jVvwFWiv0IKsKKx13aCw0Ve5lg3qDiaG4rst9Jk8Ig7C663bNNGQoL8fDRG2103f5KOdbdd3X-DXpulSgjQc8j9gE2DEgkHqXtsE0a_B5fG3i8USje0VkCWE9ohUXvLAHNZFCJjbSopK2OjKtDCGEsusrLCJAVmQzFJDKp3o0ErmnMMF1wV5A2Z1U_u3ABqKnSC6JNJ5qik1zhEcGLFxC2yk9geATFOq7Mg9nlpg3KkpyexWDYpQSRFqUMQBQA9S7cC98cj7YtKW-sOGVHQPj0geTspV4xruFE53pDE-EvLdf3_4E9hbXpyfqbOT1el78DQ9yXlm7BDM-s1P_yFGNL35OFrsL7gW8-Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=g-C3N4+nano-fragments+as+highly+efficient+hydrogen+evolution+photocatalysts%3A+Boosting+effect+of+nitrogen+vacancy&rft.jtitle=Applied+catalysis.+A%2C+General&rft.au=Liang%2C+Lei&rft.au=Shi%2C+Lei&rft.au=Wang%2C+Fangxiao&rft.au=Wang%2C+Haihua&rft.date=2020-06-05&rft.pub=Elsevier+B.V&rft.issn=0926-860X&rft.eissn=1873-3875&rft.volume=599&rft_id=info:doi/10.1016%2Fj.apcata.2020.117618&rft.externalDocID=S0926860X20302118
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-860X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-860X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-860X&client=summon