g-C3N4 nano-fragments as highly efficient hydrogen evolution photocatalysts: Boosting effect of nitrogen vacancy
N vacancy modified g-C3N4 nano-fragments exhibit the improvement of photocatalytic performance for H2 evolution due to synergistic effect of N vacancy and quantum confinement effect. [Display omitted] •N vacancy modified g-C3N4 nano-fragments were successfully prepared.•Quantum confinement effect wa...
Saved in:
Published in | Applied catalysis. A, General Vol. 599; p. 117618 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
05.06.2020
Elsevier Science SA |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | N vacancy modified g-C3N4 nano-fragments exhibit the improvement of photocatalytic performance for H2 evolution due to synergistic effect of N vacancy and quantum confinement effect.
[Display omitted]
•N vacancy modified g-C3N4 nano-fragments were successfully prepared.•Quantum confinement effect was introduced in g-C3N4 nano-fragments.•g-C3N4 nano-fragments presented excellent photocatalytic activity.•The conduction band position of g-C3N4 nano-fragments was easily adjusted.
N vacancy modified g-C3N4 nano-fragments were facilely prepared through thermal treatment method. The declined size and thickness of resultant g-C3N4 nano-fragments make it possess quantum confinement effect. The synergistic effect of N vacancy and quantum confinement effect endows resulting g-C3N4 nano-fragments with bigger surface area, stronger light response ability and improved migration effect of photoinduced charge. Not only that, the existence of quantum confinement effect remedies the shortcoming that reduced intrinsic conduction band potential was caused by N vacancy, and the conduction band position was easily adjusted. When N vacancy modified g-C3N4 nano-fragments were used to produce H2, the H2 evolution rate of the best sample (nano-CN5) was 5.9 folds more than bulk g-C3N4 and kept admirable stability of performance, structure and feature. Clearly, the present work develops a useful strategy for adjusting conduction band position of g-C3N4 and a meaningful thought for changing band gap of other photocatalysts. |
---|---|
AbstractList | N vacancy modified g-C3N4 nano-fragments were facilely prepared through thermal treatment method. The declined size and thickness of resultant g-C3N4 nano-fragments make it possess quantum confinement effect. The synergistic effect of N vacancy and quantum confinement effect endows resulting g-C3N4 nano-fragments with bigger surface area, stronger light response ability and improved migration effect of photoinduced charge. Not only that, the existence of quantum confinement effect remedies the shortcoming that reduced intrinsic conduction band potential was caused by N vacancy, and the conduction band position was easily adjusted. When N vacancy modified g-C3N4 nano-fragments were used to produce H2, the H2 evolution rate of the best sample (nano-CN5) was 5.9 folds more than bulk g-C3N4 and kept admirable stability of performance, structure and feature. Clearly, the present work develops a useful strategy for adjusting conduction band position of g-C3N4 and a meaningful thought for changing band gap of other photocatalysts. N vacancy modified g-C3N4 nano-fragments exhibit the improvement of photocatalytic performance for H2 evolution due to synergistic effect of N vacancy and quantum confinement effect. [Display omitted] •N vacancy modified g-C3N4 nano-fragments were successfully prepared.•Quantum confinement effect was introduced in g-C3N4 nano-fragments.•g-C3N4 nano-fragments presented excellent photocatalytic activity.•The conduction band position of g-C3N4 nano-fragments was easily adjusted. N vacancy modified g-C3N4 nano-fragments were facilely prepared through thermal treatment method. The declined size and thickness of resultant g-C3N4 nano-fragments make it possess quantum confinement effect. The synergistic effect of N vacancy and quantum confinement effect endows resulting g-C3N4 nano-fragments with bigger surface area, stronger light response ability and improved migration effect of photoinduced charge. Not only that, the existence of quantum confinement effect remedies the shortcoming that reduced intrinsic conduction band potential was caused by N vacancy, and the conduction band position was easily adjusted. When N vacancy modified g-C3N4 nano-fragments were used to produce H2, the H2 evolution rate of the best sample (nano-CN5) was 5.9 folds more than bulk g-C3N4 and kept admirable stability of performance, structure and feature. Clearly, the present work develops a useful strategy for adjusting conduction band position of g-C3N4 and a meaningful thought for changing band gap of other photocatalysts. |
ArticleNumber | 117618 |
Author | Liang, Lei Wang, Haihua Yang, Zhanxu Cong, Yufeng Wang, Fangxiao Yao, Lizhu Shi, Lei Yan, Pengqiang Qi, Wei |
Author_xml | – sequence: 1 givenname: Lei surname: Liang fullname: Liang, Lei organization: College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China – sequence: 2 givenname: Lei orcidid: 0000-0002-7591-3248 surname: Shi fullname: Shi, Lei email: shilei_hit@qq.com organization: College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China – sequence: 3 givenname: Fangxiao surname: Wang fullname: Wang, Fangxiao organization: College of Chemistry, Chemical Engineering and Material Science, Shandong Normal University, Jinan 250014, China – sequence: 4 givenname: Haihua surname: Wang fullname: Wang, Haihua organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China – sequence: 5 givenname: Pengqiang surname: Yan fullname: Yan, Pengqiang organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China – sequence: 6 givenname: Yufeng surname: Cong fullname: Cong, Yufeng organization: College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China – sequence: 7 givenname: Lizhu surname: Yao fullname: Yao, Lizhu organization: College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China – sequence: 8 givenname: Zhanxu surname: Yang fullname: Yang, Zhanxu organization: College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China – sequence: 9 givenname: Wei orcidid: 0000-0003-1553-7508 surname: Qi fullname: Qi, Wei email: wqi@imr.ac.cn organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
BookMark | eNqFkMtKxDAUhoOM4Dj6Bi4Crjvm0ks6C0EHbzDoRsFdSNOkk6GT1CQz0Le3pa5c6OrA4Xzn5__Owcw6qwC4wmiJEc5vdkvRSRHFkiAyrHCRY3YC5pgVNKGsyGZgjkqSJyxHn2fgPIQdQoikZTYHXZOs6WsKrbAu0V40e2VjgCLArWm2bQ-V1kaaYQm3fe1doyxUR9ceonEWdlsX3Zjc9iGGFbx3LkRjm5FSMkKnoTVxoo5CCiv7C3CqRRvU5c9cgI_Hh_f1c7J5e3pZ320SSWkaE1oqluusJgJpTXJZsqIsJMFEFFWVUplJVpIqw1izTKYVLQVJEcNZXdcE5QLRBbie_nbefR1UiHznDt4OkZyklBGCcMGGq9V0Jb0LwSvNpYli7Ba9MC3HiI-G-Y5PhvlomE-GBzj9BXfe7IXv_8NuJ0wN9Y9GeR5GwVLVxg_SeO3M3w--AUBFmlQ |
CitedBy_id | crossref_primary_10_1002_slct_202403234 crossref_primary_10_1016_j_cej_2024_149506 crossref_primary_10_1016_j_jece_2025_115447 crossref_primary_10_1007_s10854_021_05481_w crossref_primary_10_1016_j_mssp_2024_108713 crossref_primary_10_1002_cctc_202400413 crossref_primary_10_1016_j_jallcom_2023_168921 crossref_primary_10_1039_D3DT01712E crossref_primary_10_1016_j_jcis_2023_08_012 crossref_primary_10_1016_j_microc_2024_110539 crossref_primary_10_1016_j_diamond_2020_108149 crossref_primary_10_1016_j_seppur_2023_125393 crossref_primary_10_1016_j_apcata_2021_118397 crossref_primary_10_1016_j_jece_2022_109201 crossref_primary_10_1016_j_matchemphys_2023_128252 crossref_primary_10_1016_j_snb_2022_131363 crossref_primary_10_1038_s41598_024_52688_y crossref_primary_10_1016_j_mssp_2022_106804 crossref_primary_10_1016_j_cclet_2025_111088 crossref_primary_10_1016_j_materresbull_2020_111156 crossref_primary_10_1016_j_seppur_2022_120532 crossref_primary_10_1007_s42247_022_00421_8 crossref_primary_10_1088_1674_4926_44_8_081701 crossref_primary_10_1016_j_mssp_2023_107459 crossref_primary_10_1016_j_apcata_2020_117912 crossref_primary_10_1016_j_jtice_2021_104179 crossref_primary_10_1016_j_jece_2024_112962 crossref_primary_10_1016_j_jallcom_2024_174923 crossref_primary_10_1016_j_jhazmat_2023_131046 crossref_primary_10_1002_er_6535 crossref_primary_10_1080_24701556_2022_2068586 crossref_primary_10_1016_j_seppur_2023_124636 crossref_primary_10_1002_masy_202100306 crossref_primary_10_1016_j_colsurfa_2022_130165 crossref_primary_10_1039_D0SE01012J crossref_primary_10_1016_j_envres_2025_121302 crossref_primary_10_1039_D1NJ05838J crossref_primary_10_1016_j_ceramint_2023_04_152 crossref_primary_10_1007_s13399_022_03177_7 crossref_primary_10_1016_j_chemosphere_2021_132379 crossref_primary_10_1016_j_cej_2021_128663 crossref_primary_10_1016_j_jphotochem_2024_116211 crossref_primary_10_1007_s12598_023_02403_z crossref_primary_10_1016_j_jece_2024_112860 crossref_primary_10_1016_j_cej_2021_130877 crossref_primary_10_1016_j_mssp_2024_108544 crossref_primary_10_1016_j_optmat_2022_113202 crossref_primary_10_1021_acs_iecr_3c03794 crossref_primary_10_1021_acs_analchem_0c05027 crossref_primary_10_1016_j_seppur_2021_119662 crossref_primary_10_1016_j_colsurfa_2022_128814 crossref_primary_10_1002_slct_202302369 crossref_primary_10_1002_slct_202302880 crossref_primary_10_1021_acs_energyfuels_4c00160 crossref_primary_10_1016_j_ijhydene_2021_02_177 crossref_primary_10_1016_j_optmat_2021_111407 crossref_primary_10_1080_1536383X_2023_2259519 crossref_primary_10_1039_D4CY00825A crossref_primary_10_1016_j_jtice_2021_10_011 crossref_primary_10_1016_j_optmat_2022_112002 crossref_primary_10_1016_j_synthmet_2022_117100 crossref_primary_10_1016_j_colsurfa_2021_126367 crossref_primary_10_1016_j_colsurfa_2021_127732 crossref_primary_10_1016_j_jallcom_2022_165332 crossref_primary_10_1002_asia_202401487 crossref_primary_10_1016_j_ijhydene_2023_09_098 crossref_primary_10_1016_j_apsusc_2021_150369 crossref_primary_10_1016_j_jphotochem_2024_116073 crossref_primary_10_1007_s10854_020_04849_8 crossref_primary_10_1016_j_envres_2021_111002 crossref_primary_10_1016_j_scitotenv_2022_159247 crossref_primary_10_1007_s11581_024_05540_2 crossref_primary_10_1039_D3NA00597F crossref_primary_10_3390_polym17030334 crossref_primary_10_3390_nano12172945 crossref_primary_10_2166_wst_2024_166 crossref_primary_10_1016_j_jallcom_2025_179351 crossref_primary_10_1016_j_jenvman_2022_116431 crossref_primary_10_1016_j_chemosphere_2021_132735 crossref_primary_10_1016_j_mssp_2020_105411 crossref_primary_10_1016_j_apcata_2020_117833 crossref_primary_10_1016_j_materresbull_2024_113019 crossref_primary_10_1016_j_cjsc_2023_100145 crossref_primary_10_1016_j_cej_2022_134505 crossref_primary_10_1016_j_jssc_2021_122066 crossref_primary_10_1016_j_actbio_2022_03_052 crossref_primary_10_1016_j_optmat_2021_111452 crossref_primary_10_1021_acs_energyfuels_2c01256 crossref_primary_10_3390_catal13010154 crossref_primary_10_1016_j_materresbull_2023_112510 crossref_primary_10_1016_j_apcata_2021_118457 crossref_primary_10_1007_s10854_022_07767_z crossref_primary_10_1039_D2CY00831A crossref_primary_10_3390_pr10040787 crossref_primary_10_1016_j_cej_2020_127370 crossref_primary_10_1016_j_jallcom_2024_174993 crossref_primary_10_1016_j_seppur_2022_120526 crossref_primary_10_1039_D1RA06101A crossref_primary_10_1016_j_fuel_2024_133285 crossref_primary_10_1016_j_seppur_2024_131291 crossref_primary_10_1016_j_mssp_2024_108467 crossref_primary_10_1016_j_colsurfa_2022_128577 crossref_primary_10_1002_eom2_12204 crossref_primary_10_1016_j_optmat_2023_114112 crossref_primary_10_1016_j_colsurfa_2023_132292 crossref_primary_10_1016_j_ijhydene_2022_12_126 crossref_primary_10_1002_pat_5908 crossref_primary_10_1016_j_colsurfa_2020_126123 |
Cites_doi | 10.1016/j.apcatb.2016.05.069 10.1016/j.seppur.2018.07.059 10.1002/adfm.201200922 10.1016/j.apcatb.2017.12.044 10.1038/ncomms2152 10.1039/c3cy00871a 10.1016/j.apcatb.2019.118326 10.1016/j.apsusc.2018.12.287 10.1021/acsnano.6b08251 10.1016/j.cej.2013.08.112 10.1039/c3ta12332d 10.1038/nmat2317 10.1016/j.apsusc.2018.08.080 10.1021/ja903923s 10.1016/j.apcatb.2015.12.051 10.1016/j.apcatb.2017.01.058 10.1016/j.carbon.2010.10.010 10.1002/adma.201605148 10.1039/c3en00098b 10.1016/j.nanoen.2017.11.059 10.1021/acsami.9b01421 10.1016/j.cej.2019.122161 10.1016/j.apsusc.2015.08.035 10.1039/C7EE03640J 10.1016/j.apcatb.2019.118281 10.1002/adfm.201900093 10.1021/cr0500535 10.1002/cssc.201901011 10.1016/j.apcatb.2016.08.002 10.1016/j.cej.2019.122282 10.1021/acssuschemeng.7b01477 10.1016/j.cej.2017.10.016 10.1039/C5SC04572J 10.1016/j.apsusc.2019.02.176 10.1039/C5EE02650D 10.1016/j.apsusc.2019.143738 10.1016/j.cclet.2019.03.016 10.1016/j.apcatb.2019.118308 10.1021/jacs.7b08416 10.1016/j.apcatb.2017.05.038 10.1039/C4CY00411F 10.1016/j.apcatb.2014.03.034 10.1016/j.cplett.2005.05.027 10.1021/jp301026y 10.1016/j.apcatb.2019.118251 10.1080/10643389.2018.1487227 10.1016/j.apcatb.2016.01.026 10.1002/adma.201404057 10.1021/acsenergylett.7b01328 10.1016/j.jcis.2018.02.056 10.1039/c3ta14339b 10.1016/j.carbon.2015.12.008 10.1016/j.carbon.2017.02.063 10.3389/fchem.2019.00639 10.1021/la020828u |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier Science SA Jun 5, 2020 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier Science SA Jun 5, 2020 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.apcata.2020.117618 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-3875 |
ExternalDocumentID | 10_1016_j_apcata_2020_117618 S0926860X20302118 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFTJW AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPD SSG SSZ T5K XPP ZMT ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGHFR AGQPQ AGRNS AI. AIIUN ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ 7SR 7U5 8BQ 8FD EFKBS JG9 L7M |
ID | FETCH-LOGICAL-c334t-39e86f5d2a0ff26c98797c212a7bb43c5c892b511f85c4b39a240815ddd206a03 |
IEDL.DBID | .~1 |
ISSN | 0926-860X |
IngestDate | Wed Aug 13 09:41:21 EDT 2025 Tue Jul 01 00:39:21 EDT 2025 Thu Apr 24 22:56:20 EDT 2025 Fri Feb 23 02:47:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | N vacancy Quantum confinement effect H2 evolution g-C3N4 nano-fragments Photocatalysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-39e86f5d2a0ff26c98797c212a7bb43c5c892b511f85c4b39a240815ddd206a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1553-7508 0000-0002-7591-3248 |
PQID | 2438220178 |
PQPubID | 2047481 |
ParticipantIDs | proquest_journals_2438220178 crossref_citationtrail_10_1016_j_apcata_2020_117618 crossref_primary_10_1016_j_apcata_2020_117618 elsevier_sciencedirect_doi_10_1016_j_apcata_2020_117618 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-05 |
PublicationDateYYYYMMDD | 2020-06-05 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Applied catalysis. A, General |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier Science SA |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science SA |
References | Shi, Liang, Ma, Wang, Sun (bib0175) 2014; 4 Lin, Yang, Yang, Zhao (bib0110) 2016; 198 Mo, She, Chen, Xu, Song, Zhu, Qian, Li, Lei, Xu (bib0210) 2020; 12 Ren, Cheng, Ou, Huang, Titirici, Wang (bib0225) 2019; 12 Wang, Zhao, Cao, Yan, Zhu, Tao, Chen, Zhang, Li, Phillips (bib0150) 2019; 11 Wang, Sun, Luo, Yang, Yin (bib0050) 2014; 156-157 Cheng, Xiang, Liao, Zhang (bib0035) 2018; 11 Long, Lin, Wang (bib0215) 2014; 2 Chen, Ding, Khaing, Yang, Jiang (bib0245) 2019; 479 Ramakrishna, Ghosh (bib0020) 2003; 19 Andryushina, Shvalagin, Korzhak, Grodzyuk, Kuchmiy, Skoryk (bib0230) 2019; 475 Tu, Xu, Wang, Zhang, Zhou, Yin, Wu, Li, Huang, Zhou, Zou, Robertson, Kraft, Xu (bib0250) 2017; 58 Zhang, Lan, Lin, Lin, Wang (bib0100) 2016; 7 Shi, Ma, Yao, Cui, Qi (bib0275) 2018; 519 Ma, Zhan, Jia, Shi, Zhou (bib0095) 2016; 186 Zhang, Guo, Zhao (bib0255) 2018; 226 Tong, Yang, Li, Nan, Ding, Shen, Jiang (bib0115) 2017; 11 Hu, Chen, Li, Li, Fan, Wang, Wang, Zheng, Wu (bib0270) 2017; 201 Wang, Wang, Li, Yang, Zhao, Hao, Liu (bib0055) 2013; 234 Zhou, Liu, Guan, Tian, Wang, Zhou, Zhou, Lei, Zhang, Liu (bib0145) 2020; 263 Zhou, Zhang, Huang, Kong, Fan, Wang, Shi (bib0045) 2016; 99 Niu, Zhang, Liu, Cheng (bib0200) 2012; 22 Shi, Liang, Wang, Ma, Sun (bib0220) 2014; 4 Lin, Cheng, Hsu, Lin, Hsieh (bib0025) 2005; 409 Sun, Zhang, Zhang, Antonietti, Fu, Wang (bib0120) 2012; 3 Chen, Mao (bib0005) 2007; 107 Zhu, Kim, Mao, Fujitsuka, Zhang, Wang, Majima (bib0170) 2017; 139 Yu, Shi, Zhao, Bian, Zhao, Zhou, Waterhouse, Wu, Tung, Zhang (bib0260) 2017; 29 Cui, Chen, Sheng, Li, Wang, Dong, Zhou, Sun, Dong (bib0130) 2020; 262 Geng, Chen, Lv, Jiang, Wang (bib0160) 2018; 462 Ran, Chen, Li, Cui, Li, He, Sheng, Sun, Dong (bib0090) 2019; 30 Sun, Li, Yu, Qian, Chen (bib0085) 2017; 117 Shi, Zou, Cheng, Ma, Sun, Mao, Sun, He, Wang (bib0135) 2019; 378 Liu, Yan, Shi, Yao (bib0280) 2019; 7 Leary, Westwood (bib0010) 2011; 49 Chen, Zhang, Fu, Antonietti, Wang (bib0080) 2009; 131 Li, Gu, Shi, Cui, Zhang, Dong, Cheng, Fan, Lv (bib0125) 2020; 262 Li, Zhao, Geng, Li, Li, Wang (bib0060) 2019; 496 Liao, Cui, Li, Sheng, Wang, Dong, Chen, Jiang, Wang, Dong (bib0065) 2020; 379 Liang, Xia, Zhu, Zheng, He, Bi, Liu, Wu (bib0105) 2015; 358 Hu, Qu, Li, Wang, Li, Song, Zhao, Kang (bib0265) 2018; 334 Xia, Antonietti, Zhu, Heil, Yu, Cao (bib0235) 2019; 29 Niu, Liu, Cheng (bib0180) 2012; 116 Cui, Zhang, Zhang, Cheng, Cheng (bib0240) 2019; 210 da Silva, Carvalho, Lopes, Ribeiro (bib0155) 2017; 216 Wang, Rao, Wang, Shi, Zhang (bib0140) 2020; 262 Niu, Yin, Yang, Liu, Cheng (bib0190) 2014; 26 Wang, Maeda, Thomas, Takanabe, Xin, Carlsson, Domenet, Antonietti (bib0040) 2009; 8 Xing, Tu, Han, Hu, Meng, Chen (bib0205) 2018; 3 Hong, Shen, Chen, Lin, Gao (bib0185) 2013; 1 Niu, Qiao, Li, Huang, Zhai (bib0195) 2018; 44 Ran, Ma, Gao, Du, Qiao (bib0070) 2015; 8 Shekofteh-Gohari, Habibi-Yangjeh, Abitorabi, Rouhi (bib0015) 2018; 48 Ye, Su, Jin, Xie, Zhang (bib0030) 2014; 1 Hao, Wang, Tang, Sun, Xu, Han (bib0165) 2016; 187 Qiu, Xu, Chen, Jiang, Wang, Lu, Zhang (bib0075) 2017; 206 Andryushina (10.1016/j.apcata.2020.117618_bib0230) 2019; 475 Li (10.1016/j.apcata.2020.117618_bib0125) 2020; 262 Wang (10.1016/j.apcata.2020.117618_bib0040) 2009; 8 Wang (10.1016/j.apcata.2020.117618_bib0150) 2019; 11 Chen (10.1016/j.apcata.2020.117618_bib0005) 2007; 107 Zhang (10.1016/j.apcata.2020.117618_bib0100) 2016; 7 Sun (10.1016/j.apcata.2020.117618_bib0120) 2012; 3 Hao (10.1016/j.apcata.2020.117618_bib0165) 2016; 187 Xing (10.1016/j.apcata.2020.117618_bib0205) 2018; 3 Leary (10.1016/j.apcata.2020.117618_bib0010) 2011; 49 Xia (10.1016/j.apcata.2020.117618_bib0235) 2019; 29 Sun (10.1016/j.apcata.2020.117618_bib0085) 2017; 117 Liu (10.1016/j.apcata.2020.117618_bib0280) 2019; 7 Wang (10.1016/j.apcata.2020.117618_bib0140) 2020; 262 Tong (10.1016/j.apcata.2020.117618_bib0115) 2017; 11 da Silva (10.1016/j.apcata.2020.117618_bib0155) 2017; 216 Zhu (10.1016/j.apcata.2020.117618_bib0170) 2017; 139 Niu (10.1016/j.apcata.2020.117618_bib0200) 2012; 22 Liang (10.1016/j.apcata.2020.117618_bib0105) 2015; 358 Tu (10.1016/j.apcata.2020.117618_bib0250) 2017; 58 Shi (10.1016/j.apcata.2020.117618_bib0275) 2018; 519 Ran (10.1016/j.apcata.2020.117618_bib0070) 2015; 8 Shi (10.1016/j.apcata.2020.117618_bib0175) 2014; 4 Lin (10.1016/j.apcata.2020.117618_bib0110) 2016; 198 Cui (10.1016/j.apcata.2020.117618_bib0240) 2019; 210 Wang (10.1016/j.apcata.2020.117618_bib0050) 2014; 156-157 Ren (10.1016/j.apcata.2020.117618_bib0225) 2019; 12 Niu (10.1016/j.apcata.2020.117618_bib0195) 2018; 44 Ye (10.1016/j.apcata.2020.117618_bib0030) 2014; 1 Hu (10.1016/j.apcata.2020.117618_bib0265) 2018; 334 Qiu (10.1016/j.apcata.2020.117618_bib0075) 2017; 206 Shekofteh-Gohari (10.1016/j.apcata.2020.117618_bib0015) 2018; 48 Niu (10.1016/j.apcata.2020.117618_bib0180) 2012; 116 Yu (10.1016/j.apcata.2020.117618_bib0260) 2017; 29 Chen (10.1016/j.apcata.2020.117618_bib0080) 2009; 131 Shi (10.1016/j.apcata.2020.117618_bib0135) 2019; 378 Hong (10.1016/j.apcata.2020.117618_bib0185) 2013; 1 Lin (10.1016/j.apcata.2020.117618_bib0025) 2005; 409 Liao (10.1016/j.apcata.2020.117618_bib0065) 2020; 379 Geng (10.1016/j.apcata.2020.117618_bib0160) 2018; 462 Chen (10.1016/j.apcata.2020.117618_bib0245) 2019; 479 Cheng (10.1016/j.apcata.2020.117618_bib0035) 2018; 11 Mo (10.1016/j.apcata.2020.117618_bib0210) 2020; 12 Zhou (10.1016/j.apcata.2020.117618_bib0045) 2016; 99 Ma (10.1016/j.apcata.2020.117618_bib0095) 2016; 186 Shi (10.1016/j.apcata.2020.117618_bib0220) 2014; 4 Cui (10.1016/j.apcata.2020.117618_bib0130) 2020; 262 Long (10.1016/j.apcata.2020.117618_bib0215) 2014; 2 Li (10.1016/j.apcata.2020.117618_bib0060) 2019; 496 Zhang (10.1016/j.apcata.2020.117618_bib0255) 2018; 226 Niu (10.1016/j.apcata.2020.117618_bib0190) 2014; 26 Wang (10.1016/j.apcata.2020.117618_bib0055) 2013; 234 Hu (10.1016/j.apcata.2020.117618_bib0270) 2017; 201 Ran (10.1016/j.apcata.2020.117618_bib0090) 2019; 30 Zhou (10.1016/j.apcata.2020.117618_bib0145) 2020; 263 Ramakrishna (10.1016/j.apcata.2020.117618_bib0020) 2003; 19 |
References_xml | – volume: 19 start-page: 3006 year: 2003 end-page: 3012 ident: bib0020 publication-title: Langmuir – volume: 8 start-page: 76 year: 2009 end-page: 80 ident: bib0040 publication-title: Nat. Mater. – volume: 262 start-page: 118251 year: 2020 ident: bib0130 publication-title: Appl. Catal. B: Environ. – volume: 7 start-page: 3062 year: 2016 end-page: 3066 ident: bib0100 publication-title: Chem. Sci. – volume: 29 start-page: 1605148 year: 2017 ident: bib0260 publication-title: Adv. Mater. – volume: 186 start-page: 77 year: 2016 end-page: 87 ident: bib0095 publication-title: Appl. Catal. B: Environ. – volume: 378 start-page: 122161 year: 2019 ident: bib0135 publication-title: Chem. Eng. J. – volume: 496 start-page: 143738 year: 2019 ident: bib0060 publication-title: Appl. Surf. Sci. – volume: 30 start-page: 875 year: 2019 end-page: 880 ident: bib0090 publication-title: Chin. Chem. Lett. – volume: 11 start-page: 16527 year: 2019 end-page: 16537 ident: bib0150 publication-title: ACS Appl. Mater. Interfaces – volume: 116 start-page: 11013 year: 2012 end-page: 11018 ident: bib0180 publication-title: J. Phys. Chem. C – volume: 48 start-page: 806 year: 2018 end-page: 857 ident: bib0015 publication-title: Crit. Rev. Env. Sci. Tec. – volume: 226 start-page: 1 year: 2018 end-page: 9 ident: bib0255 publication-title: Appl. Catal. B: Environ. – volume: 12 start-page: 3257 year: 2019 end-page: 3262 ident: bib0225 publication-title: Chem. Sus. Chem – volume: 198 start-page: 276 year: 2016 end-page: 285 ident: bib0110 publication-title: Appl. Catal. B: Environ. – volume: 210 start-page: 125 year: 2019 end-page: 134 ident: bib0240 publication-title: Sep. Purif. Technol. – volume: 44 start-page: 73 year: 2018 end-page: 81 ident: bib0195 publication-title: Nano Energy – volume: 334 start-page: 410 year: 2018 end-page: 418 ident: bib0265 publication-title: Chem. Eng. J. – volume: 263 start-page: 118326 year: 2020 ident: bib0145 publication-title: Appl. Catal. B: Environ. – volume: 58 start-page: 7260 year: 2017 end-page: 7268 ident: bib0250 publication-title: ACS Sustainable Chem. Eng. – volume: 11 start-page: 1103 year: 2017 end-page: 1112 ident: bib0115 publication-title: ACS Nano – volume: 22 start-page: 4763 year: 2012 end-page: 4770 ident: bib0200 publication-title: Adv. Funct. Mater. – volume: 475 start-page: 348 year: 2019 end-page: 354 ident: bib0230 publication-title: Appl. Surf. Sci. – volume: 519 start-page: 1 year: 2018 end-page: 10 ident: bib0275 publication-title: J. Colloid Interf. Sci. – volume: 49 start-page: 741 year: 2011 end-page: 772 ident: bib0010 publication-title: Carbon – volume: 206 start-page: 319 year: 2017 end-page: 327 ident: bib0075 publication-title: Appl. Catal. B: Environ. – volume: 262 start-page: 118281 year: 2020 ident: bib0125 publication-title: Appl. Catal. B: Environ. – volume: 107 start-page: 2891 year: 2007 end-page: 2959 ident: bib0005 publication-title: Chem. Rev. – volume: 216 start-page: 70 year: 2017 end-page: 79 ident: bib0155 publication-title: Appl. Catal. B: Environ. – volume: 7 start-page: 639 year: 2019 ident: bib0280 publication-title: Front. Chem. – volume: 379 start-page: 122282 year: 2020 ident: bib0065 publication-title: Chem. Eng. J. – volume: 2 start-page: 2942 year: 2014 end-page: 2951 ident: bib0215 publication-title: J. Mater. Chem. A Mater. Energy Sustain. – volume: 201 start-page: 58 year: 2017 end-page: 69 ident: bib0270 publication-title: Appl. Catal. B: Environ. – volume: 12 start-page: 1169 year: 2020 end-page: 1176 ident: bib0210 publication-title: Chem. Cat. Chem – volume: 479 start-page: 757 year: 2019 end-page: 764 ident: bib0245 publication-title: Appl. Surf. Sci. – volume: 3 start-page: 514 year: 2018 end-page: 519 ident: bib0205 publication-title: ACS Energy Lett. – volume: 462 start-page: 18 year: 2018 end-page: 28 ident: bib0160 publication-title: Appl. Surf. Sci. – volume: 117 start-page: 1 year: 2017 end-page: 11 ident: bib0085 publication-title: Carbon – volume: 358 start-page: 304 year: 2015 end-page: 312 ident: bib0105 publication-title: Appl. Surf. Sci. – volume: 1 start-page: 11754 year: 2013 end-page: 11761 ident: bib0185 publication-title: J. Mater. Chem. A Mater. Energy Sustain. – volume: 234 start-page: 361 year: 2013 end-page: 371 ident: bib0055 publication-title: Chem. Eng. J. – volume: 29 start-page: 1900093 year: 2019 ident: bib0235 publication-title: Adv. Funct. Mater. – volume: 139 start-page: 13234 year: 2017 end-page: 13242 ident: bib0170 publication-title: J. Am. Chem. Soc. – volume: 262 start-page: 118308 year: 2020 ident: bib0140 publication-title: Appl. Catal. B: Environ. – volume: 409 start-page: 208 year: 2005 end-page: 211 ident: bib0025 publication-title: Chem. Phys. Lett. – volume: 4 start-page: 3235 year: 2014 end-page: 3243 ident: bib0220 publication-title: Catal. Sci. Technol. – volume: 187 start-page: 47 year: 2016 end-page: 58 ident: bib0165 publication-title: Appl. Catal. B: Environ. – volume: 3 start-page: 1139 year: 2012 ident: bib0120 publication-title: Nat. Commun. – volume: 1 start-page: 90 year: 2014 end-page: 112 ident: bib0030 publication-title: Environ. Sci. Nano – volume: 8 start-page: 3708 year: 2015 end-page: 3717 ident: bib0070 publication-title: Energy Environ. Sci. – volume: 11 start-page: 1362 year: 2018 end-page: 1391 ident: bib0035 publication-title: Energy Environ. Sci. – volume: 99 start-page: 111 year: 2016 end-page: 117 ident: bib0045 publication-title: Carbon – volume: 156-157 start-page: 323 year: 2014 end-page: 330 ident: bib0050 publication-title: Appl. Catal. B: Environ. – volume: 4 start-page: 758 year: 2014 end-page: 765 ident: bib0175 publication-title: Catal. Sci. Technol. – volume: 26 start-page: 8046 year: 2014 end-page: 8052 ident: bib0190 publication-title: Adv. Mater. – volume: 131 start-page: 11658 year: 2009 end-page: 11659 ident: bib0080 publication-title: J. Am. Chem. Soc. – volume: 198 start-page: 276 year: 2016 ident: 10.1016/j.apcata.2020.117618_bib0110 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2016.05.069 – volume: 210 start-page: 125 year: 2019 ident: 10.1016/j.apcata.2020.117618_bib0240 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2018.07.059 – volume: 22 start-page: 4763 year: 2012 ident: 10.1016/j.apcata.2020.117618_bib0200 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200922 – volume: 226 start-page: 1 year: 2018 ident: 10.1016/j.apcata.2020.117618_bib0255 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.12.044 – volume: 3 start-page: 1139 year: 2012 ident: 10.1016/j.apcata.2020.117618_bib0120 publication-title: Nat. Commun. doi: 10.1038/ncomms2152 – volume: 4 start-page: 758 year: 2014 ident: 10.1016/j.apcata.2020.117618_bib0175 publication-title: Catal. Sci. Technol. doi: 10.1039/c3cy00871a – volume: 263 start-page: 118326 year: 2020 ident: 10.1016/j.apcata.2020.117618_bib0145 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.118326 – volume: 475 start-page: 348 year: 2019 ident: 10.1016/j.apcata.2020.117618_bib0230 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.12.287 – volume: 11 start-page: 1103 year: 2017 ident: 10.1016/j.apcata.2020.117618_bib0115 publication-title: ACS Nano doi: 10.1021/acsnano.6b08251 – volume: 234 start-page: 361 year: 2013 ident: 10.1016/j.apcata.2020.117618_bib0055 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.08.112 – volume: 1 start-page: 11754 year: 2013 ident: 10.1016/j.apcata.2020.117618_bib0185 publication-title: J. Mater. Chem. A Mater. Energy Sustain. doi: 10.1039/c3ta12332d – volume: 8 start-page: 76 year: 2009 ident: 10.1016/j.apcata.2020.117618_bib0040 publication-title: Nat. Mater. doi: 10.1038/nmat2317 – volume: 462 start-page: 18 year: 2018 ident: 10.1016/j.apcata.2020.117618_bib0160 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.08.080 – volume: 131 start-page: 11658 year: 2009 ident: 10.1016/j.apcata.2020.117618_bib0080 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja903923s – volume: 186 start-page: 77 year: 2016 ident: 10.1016/j.apcata.2020.117618_bib0095 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2015.12.051 – volume: 206 start-page: 319 year: 2017 ident: 10.1016/j.apcata.2020.117618_bib0075 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.01.058 – volume: 12 start-page: 1169 year: 2020 ident: 10.1016/j.apcata.2020.117618_bib0210 publication-title: Chem. Cat. Chem – volume: 49 start-page: 741 year: 2011 ident: 10.1016/j.apcata.2020.117618_bib0010 publication-title: Carbon doi: 10.1016/j.carbon.2010.10.010 – volume: 29 start-page: 1605148 year: 2017 ident: 10.1016/j.apcata.2020.117618_bib0260 publication-title: Adv. Mater. doi: 10.1002/adma.201605148 – volume: 1 start-page: 90 year: 2014 ident: 10.1016/j.apcata.2020.117618_bib0030 publication-title: Environ. Sci. Nano doi: 10.1039/c3en00098b – volume: 44 start-page: 73 year: 2018 ident: 10.1016/j.apcata.2020.117618_bib0195 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.11.059 – volume: 11 start-page: 16527 year: 2019 ident: 10.1016/j.apcata.2020.117618_bib0150 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b01421 – volume: 378 start-page: 122161 year: 2019 ident: 10.1016/j.apcata.2020.117618_bib0135 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122161 – volume: 358 start-page: 304 year: 2015 ident: 10.1016/j.apcata.2020.117618_bib0105 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.08.035 – volume: 11 start-page: 1362 year: 2018 ident: 10.1016/j.apcata.2020.117618_bib0035 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE03640J – volume: 262 start-page: 118281 year: 2020 ident: 10.1016/j.apcata.2020.117618_bib0125 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.118281 – volume: 29 start-page: 1900093 year: 2019 ident: 10.1016/j.apcata.2020.117618_bib0235 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201900093 – volume: 107 start-page: 2891 year: 2007 ident: 10.1016/j.apcata.2020.117618_bib0005 publication-title: Chem. Rev. doi: 10.1021/cr0500535 – volume: 12 start-page: 3257 year: 2019 ident: 10.1016/j.apcata.2020.117618_bib0225 publication-title: Chem. Sus. Chem doi: 10.1002/cssc.201901011 – volume: 201 start-page: 58 year: 2017 ident: 10.1016/j.apcata.2020.117618_bib0270 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2016.08.002 – volume: 379 start-page: 122282 year: 2020 ident: 10.1016/j.apcata.2020.117618_bib0065 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122282 – volume: 58 start-page: 7260 year: 2017 ident: 10.1016/j.apcata.2020.117618_bib0250 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b01477 – volume: 334 start-page: 410 year: 2018 ident: 10.1016/j.apcata.2020.117618_bib0265 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.10.016 – volume: 7 start-page: 3062 year: 2016 ident: 10.1016/j.apcata.2020.117618_bib0100 publication-title: Chem. Sci. doi: 10.1039/C5SC04572J – volume: 479 start-page: 757 year: 2019 ident: 10.1016/j.apcata.2020.117618_bib0245 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.02.176 – volume: 8 start-page: 3708 year: 2015 ident: 10.1016/j.apcata.2020.117618_bib0070 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02650D – volume: 496 start-page: 143738 year: 2019 ident: 10.1016/j.apcata.2020.117618_bib0060 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.143738 – volume: 30 start-page: 875 year: 2019 ident: 10.1016/j.apcata.2020.117618_bib0090 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2019.03.016 – volume: 262 start-page: 118308 year: 2020 ident: 10.1016/j.apcata.2020.117618_bib0140 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.118308 – volume: 139 start-page: 13234 year: 2017 ident: 10.1016/j.apcata.2020.117618_bib0170 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b08416 – volume: 216 start-page: 70 year: 2017 ident: 10.1016/j.apcata.2020.117618_bib0155 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.05.038 – volume: 4 start-page: 3235 year: 2014 ident: 10.1016/j.apcata.2020.117618_bib0220 publication-title: Catal. Sci. Technol. doi: 10.1039/C4CY00411F – volume: 156-157 start-page: 323 year: 2014 ident: 10.1016/j.apcata.2020.117618_bib0050 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2014.03.034 – volume: 409 start-page: 208 year: 2005 ident: 10.1016/j.apcata.2020.117618_bib0025 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2005.05.027 – volume: 116 start-page: 11013 year: 2012 ident: 10.1016/j.apcata.2020.117618_bib0180 publication-title: J. Phys. Chem. C doi: 10.1021/jp301026y – volume: 262 start-page: 118251 year: 2020 ident: 10.1016/j.apcata.2020.117618_bib0130 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.118251 – volume: 48 start-page: 806 year: 2018 ident: 10.1016/j.apcata.2020.117618_bib0015 publication-title: Crit. Rev. Env. Sci. Tec. doi: 10.1080/10643389.2018.1487227 – volume: 187 start-page: 47 year: 2016 ident: 10.1016/j.apcata.2020.117618_bib0165 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2016.01.026 – volume: 26 start-page: 8046 year: 2014 ident: 10.1016/j.apcata.2020.117618_bib0190 publication-title: Adv. Mater. doi: 10.1002/adma.201404057 – volume: 3 start-page: 514 year: 2018 ident: 10.1016/j.apcata.2020.117618_bib0205 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b01328 – volume: 519 start-page: 1 year: 2018 ident: 10.1016/j.apcata.2020.117618_bib0275 publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2018.02.056 – volume: 2 start-page: 2942 year: 2014 ident: 10.1016/j.apcata.2020.117618_bib0215 publication-title: J. Mater. Chem. A Mater. Energy Sustain. doi: 10.1039/c3ta14339b – volume: 99 start-page: 111 year: 2016 ident: 10.1016/j.apcata.2020.117618_bib0045 publication-title: Carbon doi: 10.1016/j.carbon.2015.12.008 – volume: 117 start-page: 1 year: 2017 ident: 10.1016/j.apcata.2020.117618_bib0085 publication-title: Carbon doi: 10.1016/j.carbon.2017.02.063 – volume: 7 start-page: 639 year: 2019 ident: 10.1016/j.apcata.2020.117618_bib0280 publication-title: Front. Chem. doi: 10.3389/fchem.2019.00639 – volume: 19 start-page: 3006 year: 2003 ident: 10.1016/j.apcata.2020.117618_bib0020 publication-title: Langmuir doi: 10.1021/la020828u |
SSID | ssj0002495 |
Score | 2.6079118 |
Snippet | N vacancy modified g-C3N4 nano-fragments exhibit the improvement of photocatalytic performance for H2 evolution due to synergistic effect of N vacancy and... N vacancy modified g-C3N4 nano-fragments were facilely prepared through thermal treatment method. The declined size and thickness of resultant g-C3N4... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 117618 |
SubjectTerms | Carbon nitride Conduction bands Fragments g-C3N4 nano-fragments H2 evolution Heat treatment Hydrogen evolution N vacancy Nitrogen Photocatalysis Photocatalysts Quantum confinement Quantum confinement effect Synergistic effect Thickness Vacancies |
Title | g-C3N4 nano-fragments as highly efficient hydrogen evolution photocatalysts: Boosting effect of nitrogen vacancy |
URI | https://dx.doi.org/10.1016/j.apcata.2020.117618 https://www.proquest.com/docview/2438220178 |
Volume | 599 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOiBYQhVL50KvZxO_0VlZUC1X3UirtzfKzLaqSaBMq7YXfXttJSkGVKnGM5Ykiz-SbsT3zDQCHEfQE17ZEugwMRX_LkdGiRMxwWQnngpepOPlsyRcX9PuKrbbAfKqFSWmVI_YPmJ7RehyZjas5a6-vZ-dFhbnkxQpHO43bmFTwS6lIVv759580j9RbOfPtYY7S7Kl8Lud46TYdksRdIs63lzy1_njcPf0D1Nn7nLwGr8awER4PX7YDtny9C57Pp25tu-DlA2LBN6C9RHOypLDWdYPCWl_mQjaoO5joiW820GfmiDgIrzZu3UQrgv52tELYXjV9k891Nl3fHcEvTdOl7Gg4JH_AJsAIBIPUrbYJn9-Ci5OvP-YLNPZWQJYQ2iNSeckDc1gXIWBuKykqYaMf08IYSiyzssImRmNBMksNqXTiQiuZcw4XXBfkHdium9q_B9BQ7ATRJZHOU02pcY7gwIiN-18jtd8DZFpSZUfi8dT_4kZNGWY_1aAIlRShBkXsAXQv1Q7EG0_MF5O21F8GpKJveEJyf1KuGn_gTuF0QRqDIyE__PeLP4IX6SknlrF9sN2vf_lPMYTpzUG20QPw7Pjb6WJ5B3O28TU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9lA4ICggCgV84Gpt4ne4lRXVlrZ7oZX2ZvnZh6ok2oRK---xnaQChFSJq5OJIs_4m7E98w0AnyPoCa5tiXQZGIr-liOjRYmY4bISzgUvU3Hy-YovL-n3NVvvgMVUC5PSKkfsHzA9o_U4Mh9nc97e3Mx_FBXmkhdrHO00bmPkE7Cb2KnYDOwenZwuVw-AnNorZ8o9zFESmCrocpqXbtM5Sdwo4nyByVP3j397qL-wOjug4xfg-Rg5wqPh516CHV_vg73F1LBtHzz7jVvwFWiv0IKsKKx13aCw0Ve5lg3qDiaG4rst9Jk8Ig7C663bNNGQoL8fDRG2103f5KOdbdd3X-DXpulSgjQc8j9gE2DEgkHqXtsE0a_B5fG3i8USje0VkCWE9ohUXvLAHNZFCJjbSopK2OjKtDCGEsusrLCJAVmQzFJDKp3o0ErmnMMF1wV5A2Z1U_u3ABqKnSC6JNJ5qik1zhEcGLFxC2yk9geATFOq7Mg9nlpg3KkpyexWDYpQSRFqUMQBQA9S7cC98cj7YtKW-sOGVHQPj0geTspV4xruFE53pDE-EvLdf3_4E9hbXpyfqbOT1el78DQ9yXlm7BDM-s1P_yFGNL35OFrsL7gW8-Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=g-C3N4+nano-fragments+as+highly+efficient+hydrogen+evolution+photocatalysts%3A+Boosting+effect+of+nitrogen+vacancy&rft.jtitle=Applied+catalysis.+A%2C+General&rft.au=Liang%2C+Lei&rft.au=Shi%2C+Lei&rft.au=Wang%2C+Fangxiao&rft.au=Wang%2C+Haihua&rft.date=2020-06-05&rft.pub=Elsevier+B.V&rft.issn=0926-860X&rft.eissn=1873-3875&rft.volume=599&rft_id=info:doi/10.1016%2Fj.apcata.2020.117618&rft.externalDocID=S0926860X20302118 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-860X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-860X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-860X&client=summon |