Stabilized oxygen vacancies over heterojunction for highly efficient and exceptionally durable VOCs photocatalytic degradation
[Display omitted] •Enrichment of OVs on the BiVO4 component of R-BiVO4/WO3/TNTs composite matrix by a simple electrochemical reduction step.•Achievement of enhanced electron-hole separation and charge transport capabilities by introducing OVs in R-BiVO4/WO3/TNTs.•Improving the reaction stability of...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 273; p. 119061 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.09.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Enrichment of OVs on the BiVO4 component of R-BiVO4/WO3/TNTs composite matrix by a simple electrochemical reduction step.•Achievement of enhanced electron-hole separation and charge transport capabilities by introducing OVs in R-BiVO4/WO3/TNTs.•Improving the reaction stability of OVs by transforming active species OH into O2− during the photocatalytic process.•R-BiVO4/WO3/TNTs that exhibit 28 times higher photocurrent density and a highly efficient VOCs photocatalytic degradation.
In this study, an electrochemical reduction strategy was adopted to introduce oxygen vacancies (OVs) into BiVO4/WO3/TiO2 nanotubes composite film (R-BiVO4/WO3/TNTs), and the newly generated OVs were mainly distributed on BiVO4. Desired concentration and distribution of the OVs were achieved by optimizing the reduction potential and duration. By introducing the reduced BiVO4, the inherent reaction mechanism dominated by OH and photogenerated hole was changed into the reaction dominated by O2− and hole, thereby improving the stability of the OVs in the catalytic process. The construction of heterojunction with the stabilized OVs had a significant contribution towards charge carrier separation and transmission in the material, and especially the stability of the performance. Thus, the R-BiVO4/WO3/TNTs exhibited a 28 times higher photocurrent intensity than the pristine BiVO4/WO3/TNTs, and the one-time purification experiment further confirmed the excellent performance and persistent nature of R-BiVO4/WO3/TNTs composite film in the actual treatment of VOCs. |
---|---|
AbstractList | In this study, an electrochemical reduction strategy was adopted to introduce oxygen vacancies (OVs) into BiVO4/WO3/TiO2 nanotubes composite film (R-BiVO4/WO3/TNTs), and the newly generated OVs were mainly distributed on BiVO4. Desired concentration and distribution of the OVs were achieved by optimizing the reduction potential and duration. By introducing the reduced BiVO4, the inherent reaction mechanism dominated by •OH and photogenerated hole was changed into the reaction dominated by •O2− and hole, thereby improving the stability of the OVs in the catalytic process. The construction of heterojunction with the stabilized OVs had a significant contribution towards charge carrier separation and transmission in the material, and especially the stability of the performance. Thus, the R-BiVO4/WO3/TNTs exhibited a 28 times higher photocurrent intensity than the pristine BiVO4/WO3/TNTs, and the one-time purification experiment further confirmed the excellent performance and persistent nature of R-BiVO4/WO3/TNTs composite film in the actual treatment of VOCs. [Display omitted] •Enrichment of OVs on the BiVO4 component of R-BiVO4/WO3/TNTs composite matrix by a simple electrochemical reduction step.•Achievement of enhanced electron-hole separation and charge transport capabilities by introducing OVs in R-BiVO4/WO3/TNTs.•Improving the reaction stability of OVs by transforming active species OH into O2− during the photocatalytic process.•R-BiVO4/WO3/TNTs that exhibit 28 times higher photocurrent density and a highly efficient VOCs photocatalytic degradation. In this study, an electrochemical reduction strategy was adopted to introduce oxygen vacancies (OVs) into BiVO4/WO3/TiO2 nanotubes composite film (R-BiVO4/WO3/TNTs), and the newly generated OVs were mainly distributed on BiVO4. Desired concentration and distribution of the OVs were achieved by optimizing the reduction potential and duration. By introducing the reduced BiVO4, the inherent reaction mechanism dominated by OH and photogenerated hole was changed into the reaction dominated by O2− and hole, thereby improving the stability of the OVs in the catalytic process. The construction of heterojunction with the stabilized OVs had a significant contribution towards charge carrier separation and transmission in the material, and especially the stability of the performance. Thus, the R-BiVO4/WO3/TNTs exhibited a 28 times higher photocurrent intensity than the pristine BiVO4/WO3/TNTs, and the one-time purification experiment further confirmed the excellent performance and persistent nature of R-BiVO4/WO3/TNTs composite film in the actual treatment of VOCs. |
ArticleNumber | 119061 |
Author | Wang, Xiaoguang Murugananthan, Muthu Chen, Yong Zhang, Yanrong Sun, Minghui Chen, Zhiquan |
Author_xml | – sequence: 1 givenname: Minghui surname: Sun fullname: Sun, Minghui organization: School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China – sequence: 2 givenname: Xiaoguang surname: Wang fullname: Wang, Xiaoguang organization: School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China – sequence: 3 givenname: Zhiquan orcidid: 0000-0002-9518-7837 surname: Chen fullname: Chen, Zhiquan organization: Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan, 430072, PR China – sequence: 4 givenname: Muthu orcidid: 0000-0003-0575-5018 surname: Murugananthan fullname: Murugananthan, Muthu organization: Department of Chemistry, PSG College of Technology, Peelamedu, Coimbatore, 641004, India – sequence: 5 givenname: Yong surname: Chen fullname: Chen, Yong organization: School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China – sequence: 6 givenname: Yanrong orcidid: 0000-0002-8793-090X surname: Zhang fullname: Zhang, Yanrong email: yanrong_zhang@hust.edu.cn organization: School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China |
BookMark | eNqFkE-P0zAQxS20K9Ht8g04WOKc4tiO63BAQhX_pJX2wMLVmjrj1lGIg-1WWw589nUIJw5wGmnmvdF7vxtyNYYRCXlZs03NavW638BkIe83nPGyqlum6mdkVeutqITW4oqsWMtVJcRWPCc3KfWMMS64XpFfXzLs_eB_YkfD4-WAIz2DhdF6TDScMdIjZoyhP402-zBSF8rKH47DhaJzvujGTGHsKD5anGYJDOXWnSLsB6Tf7neJTseQQwkIwyV7Szs8ROhg1t6SawdDwhd_5pp8_fD-Yfepurv_-Hn37q6yQshc8UYyVFgyb7FhSraCW93WAjhIKUE5t9Ws0Zy7VgmlnWq7rgFwDeoapdJiTV4tf6cYfpwwZdOHUyxRk-FSMtbqpsBaE7mobAwpRXRmiv47xIupmZlJm94spM1M2iyki-3NXzbr8-96OYIf_md-u5ix1D97jCbNTC12PqLNpgv-3w-eAA1jn_E |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2024_171521 crossref_primary_10_1016_j_seppur_2024_129919 crossref_primary_10_1016_j_chemosphere_2024_144051 crossref_primary_10_1021_aps_4c00025 crossref_primary_10_1016_j_chemosphere_2021_129534 crossref_primary_10_1016_j_apcatb_2023_122862 crossref_primary_10_1016_j_apcatb_2022_121174 crossref_primary_10_1016_j_jechem_2024_07_061 crossref_primary_10_1002_aoc_7872 crossref_primary_10_1039_D2CY01181F crossref_primary_10_1016_j_apcatb_2022_121336 crossref_primary_10_1016_j_apcatb_2022_121610 crossref_primary_10_1016_j_apsusc_2023_158922 crossref_primary_10_1016_j_jece_2024_112321 crossref_primary_10_1080_00150193_2024_2325905 crossref_primary_10_1021_acscatal_1c05324 crossref_primary_10_1016_j_mtchem_2024_102292 crossref_primary_10_1021_acsami_4c17745 crossref_primary_10_1021_acssensors_4c01592 crossref_primary_10_1016_j_jcis_2022_08_142 crossref_primary_10_1016_j_jhazmat_2023_131041 crossref_primary_10_1007_s11814_021_0977_z crossref_primary_10_1016_j_chemosphere_2024_141197 crossref_primary_10_1039_D1TA08143H crossref_primary_10_1016_j_apcata_2023_119031 crossref_primary_10_1016_j_apcatb_2021_120053 crossref_primary_10_1016_j_jcis_2020_09_090 crossref_primary_10_1016_j_jhazmat_2024_136951 crossref_primary_10_1016_j_jallcom_2021_158636 crossref_primary_10_1016_j_apcatb_2022_121249 crossref_primary_10_1021_acs_iecr_1c04894 crossref_primary_10_3390_nano13091528 crossref_primary_10_1016_j_cej_2023_145366 crossref_primary_10_1016_j_jallcom_2024_178351 crossref_primary_10_1016_j_clay_2023_107081 crossref_primary_10_1016_j_seppur_2022_122186 crossref_primary_10_1021_acsanm_2c04397 crossref_primary_10_1016_j_seppur_2020_118288 crossref_primary_10_1016_j_envres_2021_111143 crossref_primary_10_1021_acsanm_4c07288 crossref_primary_10_1021_acs_energyfuels_1c00503 crossref_primary_10_1016_j_jece_2021_105069 crossref_primary_10_1016_j_envres_2021_110851 crossref_primary_10_1007_s10562_025_04967_0 crossref_primary_10_1016_j_cej_2024_152627 crossref_primary_10_1016_j_apcatb_2022_121994 crossref_primary_10_1021_acs_est_2c05444 crossref_primary_10_1007_s11051_022_05440_4 crossref_primary_10_1016_j_jece_2024_113790 crossref_primary_10_1016_j_jcis_2022_06_016 crossref_primary_10_1016_j_cej_2024_150245 crossref_primary_10_1007_s10854_020_04730_8 crossref_primary_10_1515_revic_2023_0013 crossref_primary_10_1016_j_nanoen_2024_110364 crossref_primary_10_1039_D3TA07593A crossref_primary_10_1002_slct_202303064 crossref_primary_10_1016_j_cej_2021_132766 crossref_primary_10_1016_j_seppur_2024_128958 crossref_primary_10_1016_j_apcatb_2024_123763 crossref_primary_10_3390_molecules28114350 |
Cites_doi | 10.1021/jacs.6b04629 10.1016/j.apcatb.2017.10.014 10.1016/j.electacta.2014.05.091 10.1039/c3nr00476g 10.1021/acs.est.8b07322 10.1039/C1CP22876E 10.1021/jacs.6b11263 10.1021/acs.est.6b04415 10.1016/j.apcatb.2018.03.035 10.1039/C5CE00173K 10.1016/j.apcatb.2015.07.029 10.1039/C6TA07592D 10.1021/nl2000743 10.1039/b100553g 10.1039/C3TA14052K 10.1021/acs.est.8b02282 10.1016/j.apcatb.2019.117912 10.1016/j.apcatb.2018.08.029 10.1016/j.apcatb.2017.11.028 10.1021/acsenergylett.8b00925 10.1016/j.apcatb.2019.02.041 10.1016/j.apcatb.2009.05.012 10.1021/jp4082883 10.1021/jacs.8b08309 10.1016/j.jallcom.2015.12.032 10.1016/j.apcatb.2018.01.018 10.1002/anie.201708709 10.1016/j.nanoen.2018.08.058 10.1016/j.apcatb.2012.05.036 10.1039/c3dt53575d 10.1016/j.jcat.2018.12.003 10.1016/j.jhazmat.2017.05.013 10.1021/cm504248d 10.1016/j.apcatb.2020.118969 10.1016/j.apcatb.2020.118755 10.1016/j.apcatb.2016.10.056 10.1039/C6GC02856J 10.1002/adma.201102752 10.1021/jp5013076 10.1002/adma.201503730 10.1016/j.apcatb.2019.118205 10.1039/C4EE02914C 10.1016/j.jpcs.2013.06.011 10.1021/acs.chemrev.7b00161 10.1021/ja207826q 10.1039/C7TA08117K 10.1016/j.apcatb.2017.08.049 10.1016/j.apcatb.2017.09.031 10.1016/j.nanoen.2016.02.004 10.1016/j.apcatb.2011.06.039 10.1039/c0jm04085a 10.1021/ja0518777 10.1021/acs.est.5b05418 |
ContentType | Journal Article |
Copyright | 2020 Copyright Elsevier BV Sep 15, 2020 |
Copyright_xml | – notice: 2020 – notice: Copyright Elsevier BV Sep 15, 2020 |
DBID | AAYXX CITATION 7SR 7ST 7U5 8BQ 8FD C1K FR3 JG9 KR7 L7M SOI |
DOI | 10.1016/j.apcatb.2020.119061 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
ExternalDocumentID | 10_1016_j_apcatb_2020_119061 S0926337320304768 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPD SSG SSZ T5K ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ XPP 7SR 7ST 7U5 8BQ 8FD C1K EFKBS FR3 JG9 KR7 L7M SOI |
ID | FETCH-LOGICAL-c334t-2540e6e0237e5064932c8913a2a444a6ff7805822f96368f69dd5aaf5e81e4683 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Wed Aug 13 06:29:39 EDT 2025 Thu Apr 24 22:58:40 EDT 2025 Tue Jul 01 04:35:05 EDT 2025 Sat Mar 02 15:59:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electrochemical reduction Photodegradation of VOCs BiVO4/WO3/TiO2 nanotubes Stabilized OVs |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-2540e6e0237e5064932c8913a2a444a6ff7805822f96368f69dd5aaf5e81e4683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9518-7837 0000-0003-0575-5018 0000-0002-8793-090X |
PQID | 2440098587 |
PQPubID | 2045281 |
ParticipantIDs | proquest_journals_2440098587 crossref_primary_10_1016_j_apcatb_2020_119061 crossref_citationtrail_10_1016_j_apcatb_2020_119061 elsevier_sciencedirect_doi_10_1016_j_apcatb_2020_119061 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-15 |
PublicationDateYYYYMMDD | 2020-09-15 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Su, Guo, Bao, Grimes (bib0240) 2011; 11 Sun, Li, Zhao, Ke, Zhang (bib0120) 2014; 118 Paik, Cargnello, Gordon, Zhang, Yun, Lee, Woo, Oh, Kagan, Fornasiero, Murray (bib0180) 2018; 3 Weon, Choi, Kim, Kim, Park, Kim, Kim, Choi (bib0025) 2018; 52 Chen, He, Ji, Li, An, Choi (bib0035) 2019; 257 Li, Wu, Pan, Zhang, Chen (bib0130) 2018; 57 Song, Liu, Zhang, Cao (bib0155) 2016; 22 Shang, Li, Li, Huang, Mao, Ai, Zhang (bib0245) 2019; 53 Venkatesan, Velumani, Tabellout, Errien, Kassiba (bib0195) 2013; 74 Gao, Gu, Jiao, Sun, Zu, Yang, Zhu, Wang, Feng, Ye, Xie (bib0105) 2017; 139 Bai, Zhang, Gao, Xiong (bib0075) 2018; 53 Nosaka, Nosaka (bib0235) 2017; 117 Wang, Sun, Murugananthan, Zhang, Zhang (bib0040) 2020; 260 Kalanur, Yoo, Park, Seo (bib0115) 2017; 5 Zhu, Pan, Murugananthan, Gong, Zhang (bib0095) 2018; 232 Zhang, Gao, Creamer, Cao, Li (bib0250) 2017; 338 Amalric Popescu, Herrmann, Ensuque, Bozon-Verduraz (bib0185) 2001; 3 Grigioni, Abdellah, Corti, Dozzi, Hammarstrom, Selli (bib0160) 2018; 140 Ye, Deng, Xu, Tian, Peng, Zan (bib0175) 2012; 14 Zhang, Li, Liu, Chen, Ma, Wen, Kong, An (bib0215) 2020; 272 Wang, Tang, Zeng, Deng, Dong, Liu, Wang, Peng, Zhang, Chen (bib0205) 2018; 222 Ding, Dai, Tian, Zhou, Zhao, Zhao, Chen, Liu, Chen (bib0135) 2017; 5 Tong, Ouyang, Bi, Umezawa, Oshikiri, Ye (bib0010) 2012; 24 Kong, Li, Chen, Tian, Fang, Zheng, Zhao (bib0125) 2011; 133 Aguero, Barbero, Gambaro, Cadús (bib0255) 2009; 91 Merupo, Velumani, Ordon, Errien, Szade, Kassiba (bib0190) 2015; 17 Rossell, Agrawal, Borgschulte, Hébert, Passerone, Erni (bib0165) 2015; 27 Kong, Xiang, Li, An (bib0265) 2020; 269 Kong, Li, Wen, Chen, Liu, An (bib0260) 2019; 370 Yuan, Ruan, Barber, Joachim Loo, Xue (bib0045) 2014; 7 Shi, Zhao, Xie, Chen, Zhang, Li (bib0270) 2016; 662 Pelaez, Nolan, Pillai, Seery, Falaras, Kontos, Dunlop, Hamilton, Byrne, O’Shea, Entezari, Dionysiou (bib0065) 2012; 125 Pan, Yang, Fu, Zhang, Xu (bib0200) 2013; 5 Zhang, Li, Ye, Chen, Ju, Liu, Lin, Ye, Wang, Xu, Zhu, Song, Jiang, Xiong (bib0070) 2016; 138 Tang, Misztal, Nazaroff, Goldstein (bib0005) 2016; 50 Maeda, Takata, Hara, Saito, Inoue, Kobayashi, Domen (bib0050) 2005; 127 Wu, Chen, Pan, Wang, Cui, Kong, Wang, Zhang, Zou (bib0090) 2018; 221 Khan, Ansari, Pradhan, Ansari, Han, Lee, Cho (bib0230) 2014; 2 Zhang, Li, Liu, Chen, Ma, An (bib0210) 2019; 6 Mao, Cheng, Tian, Li, Xiao, Xu, Zhao, Zhang (bib0110) 2018; 228 Han, Pelaez, Likodimos, Kontos, Falaras, O’Shea, Dionysiou (bib0020) 2011; 107 Weon, Choi (bib0030) 2016; 50 Salari, Konstantinov, Liu (bib0015) 2011; 21 Liu, Li, Ke, Wang, Wang, Xiao (bib0080) 2018; 224 Thalluri, Hernández, Bensaid, Saracco, Russo (bib0150) 2016; 180 Wang, Murugananthan, Zhang (bib0220) 2019; 248 Li, Xu, Tu, Chen, Xu (bib0055) 2017; 19 Wang, Cai, Wu, Chen, Zhao, Tian, Ding, Zhang, Jiang, Li (bib0145) 2018; 239 Liao, Yang, Zhou, Murugananthan, Zhang (bib0060) 2014; 136 Zhu, Shah, Wang (bib0085) 2017; 203 Zhou, Zhang (bib0100) 2014; 118 Qin, Wang, Song, Tao (bib0170) 2014; 43 Wang, Wang, Zhong, Liu, Cao, Cui (bib0225) 2018; 220 Zhao, Chen, Bian, Zhou, Waterhouse, Wu, Tung, Smith, O’Hare, Zhang (bib0140) 2015; 27 Zhu (10.1016/j.apcatb.2020.119061_bib0095) 2018; 232 Pelaez (10.1016/j.apcatb.2020.119061_bib0065) 2012; 125 Shi (10.1016/j.apcatb.2020.119061_bib0270) 2016; 662 Zhang (10.1016/j.apcatb.2020.119061_bib0210) 2019; 6 Pan (10.1016/j.apcatb.2020.119061_bib0200) 2013; 5 Wang (10.1016/j.apcatb.2020.119061_bib0040) 2020; 260 Shang (10.1016/j.apcatb.2020.119061_bib0245) 2019; 53 Gao (10.1016/j.apcatb.2020.119061_bib0105) 2017; 139 Nosaka (10.1016/j.apcatb.2020.119061_bib0235) 2017; 117 Weon (10.1016/j.apcatb.2020.119061_bib0030) 2016; 50 Ye (10.1016/j.apcatb.2020.119061_bib0175) 2012; 14 Kong (10.1016/j.apcatb.2020.119061_bib0265) 2020; 269 Han (10.1016/j.apcatb.2020.119061_bib0020) 2011; 107 Rossell (10.1016/j.apcatb.2020.119061_bib0165) 2015; 27 Su (10.1016/j.apcatb.2020.119061_bib0240) 2011; 11 Merupo (10.1016/j.apcatb.2020.119061_bib0190) 2015; 17 Song (10.1016/j.apcatb.2020.119061_bib0155) 2016; 22 Aguero (10.1016/j.apcatb.2020.119061_bib0255) 2009; 91 Qin (10.1016/j.apcatb.2020.119061_bib0170) 2014; 43 Zhang (10.1016/j.apcatb.2020.119061_bib0215) 2020; 272 Wang (10.1016/j.apcatb.2020.119061_bib0220) 2019; 248 Salari (10.1016/j.apcatb.2020.119061_bib0015) 2011; 21 Tong (10.1016/j.apcatb.2020.119061_bib0010) 2012; 24 Sun (10.1016/j.apcatb.2020.119061_bib0120) 2014; 118 Grigioni (10.1016/j.apcatb.2020.119061_bib0160) 2018; 140 Bai (10.1016/j.apcatb.2020.119061_bib0075) 2018; 53 Khan (10.1016/j.apcatb.2020.119061_bib0230) 2014; 2 Tang (10.1016/j.apcatb.2020.119061_bib0005) 2016; 50 Li (10.1016/j.apcatb.2020.119061_bib0130) 2018; 57 Wang (10.1016/j.apcatb.2020.119061_bib0145) 2018; 239 Venkatesan (10.1016/j.apcatb.2020.119061_bib0195) 2013; 74 Paik (10.1016/j.apcatb.2020.119061_bib0180) 2018; 3 Kong (10.1016/j.apcatb.2020.119061_bib0260) 2019; 370 Liao (10.1016/j.apcatb.2020.119061_bib0060) 2014; 136 Thalluri (10.1016/j.apcatb.2020.119061_bib0150) 2016; 180 Ding (10.1016/j.apcatb.2020.119061_bib0135) 2017; 5 Yuan (10.1016/j.apcatb.2020.119061_bib0045) 2014; 7 Wu (10.1016/j.apcatb.2020.119061_bib0090) 2018; 221 Zhang (10.1016/j.apcatb.2020.119061_bib0250) 2017; 338 Kong (10.1016/j.apcatb.2020.119061_bib0125) 2011; 133 Wang (10.1016/j.apcatb.2020.119061_bib0205) 2018; 222 Chen (10.1016/j.apcatb.2020.119061_bib0035) 2019; 257 Zhang (10.1016/j.apcatb.2020.119061_bib0070) 2016; 138 Zhou (10.1016/j.apcatb.2020.119061_bib0100) 2014; 118 Maeda (10.1016/j.apcatb.2020.119061_bib0050) 2005; 127 Wang (10.1016/j.apcatb.2020.119061_bib0225) 2018; 220 Weon (10.1016/j.apcatb.2020.119061_bib0025) 2018; 52 Li (10.1016/j.apcatb.2020.119061_bib0055) 2017; 19 Zhao (10.1016/j.apcatb.2020.119061_bib0140) 2015; 27 Amalric Popescu (10.1016/j.apcatb.2020.119061_bib0185) 2001; 3 Mao (10.1016/j.apcatb.2020.119061_bib0110) 2018; 228 Kalanur (10.1016/j.apcatb.2020.119061_bib0115) 2017; 5 Zhu (10.1016/j.apcatb.2020.119061_bib0085) 2017; 203 Liu (10.1016/j.apcatb.2020.119061_bib0080) 2018; 224 |
References_xml | – volume: 662 start-page: 108 year: 2016 end-page: 117 ident: bib0270 article-title: Enhanced visible-light driven photocatalytic mineralization of indoor toluene via a BiVO publication-title: J. Alloys Compd. – volume: 127 start-page: 8286 year: 2005 end-page: 8287 ident: bib0050 article-title: GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting publication-title: J. Am. Chem. Soc. – volume: 117 start-page: 11302 year: 2017 end-page: 11336 ident: bib0235 article-title: Generation and detection of reactive oxygen species in photocatalysis publication-title: Chem. Rev. – volume: 370 start-page: 88 year: 2019 end-page: 96 ident: bib0260 article-title: The synergic degradation mechanism and photothermocatalytic mineralization of typical VOCs over PtCu/CeO publication-title: J. Catal. – volume: 24 start-page: 229 year: 2012 end-page: 251 ident: bib0010 article-title: Nano-photocatalytic materials: possibilities and challenges publication-title: Adv. Mater. – volume: 5 start-page: 23453 year: 2017 end-page: 23459 ident: bib0135 article-title: Generation of defect clusters for publication-title: J. Mater. Chem. A – volume: 53 start-page: 6444 year: 2019 end-page: 6453 ident: bib0245 article-title: Oxygen vacancies promoted the selective photocatalytic removal of NO with Blue TiO publication-title: Environ. Sci. Technol. – volume: 91 start-page: 108 year: 2009 end-page: 112 ident: bib0255 article-title: Catalytic combustion of volatile organic compounds in binary mixtures over MnO publication-title: Appl. Catal. B: Environ. – volume: 27 start-page: 3593 year: 2015 end-page: 3600 ident: bib0165 article-title: Direct evidence of surface reduction in monoclinic BiVO publication-title: Chem. Mater. – volume: 50 start-page: 12686 year: 2016 end-page: 12694 ident: bib0005 article-title: Volatile organic compound emissions from humans indoors publication-title: Environ. Sci. Technol. – volume: 222 start-page: 115 year: 2018 end-page: 123 ident: bib0205 article-title: 0D/2D interface engineering of carbon quantum dots modified Bi publication-title: Appl. Catal. B: Environ. – volume: 53 start-page: 296 year: 2018 end-page: 336 ident: bib0075 article-title: Defect engineering in photocatalytic materials publication-title: Nano Energy – volume: 133 start-page: 16414 year: 2011 end-page: 16417 ident: bib0125 article-title: Tuning the relative concentration ratio of bulk defects to surface defects in TiO publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 491 year: 2018 end-page: 495 ident: bib0130 article-title: Vacancy-rich monolayer BiO publication-title: Angew. Chem. – volume: 50 start-page: 2556 year: 2016 end-page: 2563 ident: bib0030 article-title: TiO publication-title: Environ. Sci. Technol. – volume: 257 year: 2019 ident: bib0035 article-title: OH radicals determined photocatalytic degradation mechanisms of gaseous styrene in TiO publication-title: Appl. Catal. B: Environ. – volume: 2 start-page: 637 year: 2014 end-page: 644 ident: bib0230 article-title: Band gap engineered TiO publication-title: J. Mater. Chem. A – volume: 248 start-page: 349 year: 2019 end-page: 356 ident: bib0220 article-title: Graphitic carbon nitride based photocatalysis for redox conversion of arsenic(III) and chromium(VI) in acid aqueous solution publication-title: Appl. Catal. B: Environ. – volume: 228 start-page: 87 year: 2018 end-page: 96 ident: bib0110 article-title: Visible light driven selective oxidation of amines to imines with BiOCl: does oxygen vacancy concentration matter? publication-title: Appl. Catal. B: Environ. – volume: 17 start-page: 3366 year: 2015 end-page: 3375 ident: bib0190 article-title: Structural and optical characterization of ball-milled copper-doped bismuth vanadium oxide (BiVO publication-title: CrystEngComm – volume: 11 start-page: 1928 year: 2011 end-page: 1933 ident: bib0240 article-title: Nanostructured WO publication-title: Nano Lett. – volume: 14 start-page: 82 year: 2012 end-page: 85 ident: bib0175 article-title: Increasing visible-light absorption for photocatalysis with black BiOCl publication-title: Phys. Chem. Chem. Phys. – volume: 220 start-page: 290 year: 2018 end-page: 302 ident: bib0225 article-title: Oxygen vacancy-rich 2D/2D BiOCl-g-C publication-title: Appl. Catal. B: Environ. – volume: 3 start-page: 2522 year: 2001 end-page: 2530 ident: bib0185 article-title: Nanosized tin dioxide: spectroscopic (UV–VIS, NIR, EPR) and electrical conductivity studies publication-title: Phys. Chem. Chem. Phys. – volume: 5 start-page: 1455 year: 2017 end-page: 1461 ident: bib0115 article-title: Insights into the electronic bands of WO publication-title: J. Mater. Chem. A – volume: 140 start-page: 14042 year: 2018 end-page: 14045 ident: bib0160 article-title: Photoinduced charge-transfer dynamics in WO publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 310 year: 2014 end-page: 317 ident: bib0060 article-title: Electrochemically self-doped TiO publication-title: Electrochim. Acta – volume: 22 start-page: 1 year: 2016 end-page: 10 ident: bib0155 article-title: Self-doped V publication-title: Nano Energy – volume: 232 start-page: 19 year: 2018 end-page: 25 ident: bib0095 article-title: Visible light-driven photocatalytically active g-C publication-title: Appl. Catal. B: Environ. – volume: 272 year: 2020 ident: bib0215 article-title: Photocatalytic degradation mechanism of gaseous styrene over Au/TiO publication-title: Appl. Catal. B: Environ. – volume: 125 start-page: 331 year: 2012 end-page: 349 ident: bib0065 article-title: A review on the visible light active titanium dioxide photocatalysts for environmental applications publication-title: Appl. Catal. B: Environ. – volume: 27 start-page: 7824 year: 2015 end-page: 7831 ident: bib0140 article-title: Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO publication-title: Adv. Mater. – volume: 5 start-page: 3601 year: 2013 end-page: 3614 ident: bib0200 article-title: Defective TiO publication-title: Nanoscale – volume: 269 year: 2020 ident: bib0265 article-title: Introduce oxygen vacancies into CeO publication-title: Appl. Catal. B: Environ. – volume: 239 start-page: 398 year: 2018 end-page: 407 ident: bib0145 article-title: Rational construction of oxygen vacancies onto tungsten trioxide to improve visible light photocatalytic water oxidation reaction publication-title: Appl. Catal. B: Environ. – volume: 260 year: 2020 ident: bib0040 article-title: Electrochemically self-doped WO publication-title: Appl. Catal. B: Environ. – volume: 19 start-page: 882 year: 2017 end-page: 899 ident: bib0055 article-title: Metal-free photocatalysts for various applications in energy conversion and environmental purification publication-title: Green Chem. – volume: 224 start-page: 705 year: 2018 end-page: 714 ident: bib0080 article-title: Black NiO-TiO publication-title: Appl. Catal. B: Environ. – volume: 139 start-page: 3438 year: 2017 end-page: 3445 ident: bib0105 article-title: Highly efficient and exceptionally durable CO publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 8928 year: 2016 end-page: 8935 ident: bib0070 article-title: Oxide defect engineering enables to couple solar energy into oxygen activation publication-title: J. Am. Chem. Soc. – volume: 118 start-page: 10113 year: 2014 end-page: 10121 ident: bib0120 article-title: Novel V publication-title: J. Phys. Chem. C – volume: 221 start-page: 187 year: 2018 end-page: 195 ident: bib0090 article-title: Multi-layer monoclinic BiVO publication-title: Appl. Catal. B: Environ. – volume: 21 start-page: 5128 year: 2011 ident: bib0015 article-title: Enhancement of the capacitance in TiO publication-title: J. Mater. Chem. – volume: 7 start-page: 3934 year: 2014 end-page: 3951 ident: bib0045 article-title: Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion publication-title: Energy Environ. Sci. – volume: 107 start-page: 77 year: 2011 end-page: 87 ident: bib0020 article-title: Innovative visible light-activated sulfur doped TiO publication-title: Appl. Catal. B: Environ. – volume: 3 start-page: 1904 year: 2018 end-page: 1910 ident: bib0180 article-title: Photocatalytic hydrogen evolution from substoichiometric colloidal WO publication-title: ACS Energy Lett. – volume: 74 start-page: 1695 year: 2013 end-page: 1702 ident: bib0195 article-title: Dielectric behavior, conduction and EPR active centres in BiVO publication-title: J. Phys. Chem. Solids – volume: 6 start-page: 948 year: 2019 end-page: 958 ident: bib0210 article-title: Micro/nano-bubble assisted synthesis of Au/TiO publication-title: Environ. Sci.: Nano – volume: 52 start-page: 9330 year: 2018 end-page: 9340 ident: bib0025 article-title: Active {001} facet exposed TiO publication-title: Environ. Sci. Technol. – volume: 338 start-page: 102 year: 2017 end-page: 123 ident: bib0250 article-title: Adsorption of VOCs onto engineered carbon materials: a review publication-title: J. Hazard. Mater. – volume: 43 start-page: 7691 year: 2014 end-page: 7694 ident: bib0170 article-title: Reduced monoclinic BiVO publication-title: Dalton Trans. – volume: 203 start-page: 526 year: 2017 end-page: 532 ident: bib0085 article-title: Insight into the role of Ti publication-title: Appl. Catal. B: Environ. – volume: 180 start-page: 630 year: 2016 end-page: 636 ident: bib0150 article-title: Green-synthesized W- and Mo-doped BiVO publication-title: Appl. Catal. B: Environ. – volume: 118 start-page: 5626 year: 2014 end-page: 5636 ident: bib0100 article-title: Electrochemically self-doped TiO publication-title: J. Phys. Chem. C – volume: 138 start-page: 8928 year: 2016 ident: 10.1016/j.apcatb.2020.119061_bib0070 article-title: Oxide defect engineering enables to couple solar energy into oxygen activation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b04629 – volume: 222 start-page: 115 year: 2018 ident: 10.1016/j.apcatb.2020.119061_bib0205 article-title: 0D/2D interface engineering of carbon quantum dots modified Bi2WO6 ultrathin nanosheets with enhanced photoactivity for full spectrum light utilization and mechanism insight publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.10.014 – volume: 136 start-page: 310 year: 2014 ident: 10.1016/j.apcatb.2020.119061_bib0060 article-title: Electrochemically self-doped TiO2 nanotube arrays for efficient visible light photoelectrocatalytic degradation of contaminants publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.05.091 – volume: 5 start-page: 3601 year: 2013 ident: 10.1016/j.apcatb.2020.119061_bib0200 article-title: Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications publication-title: Nanoscale doi: 10.1039/c3nr00476g – volume: 6 start-page: 948 year: 2019 ident: 10.1016/j.apcatb.2020.119061_bib0210 article-title: Micro/nano-bubble assisted synthesis of Au/TiO2@CNTs composite photocatalyst for photocatalytic degradation of gaseous styrene and its enhanced catalytic mechanism publication-title: Environ. Sci.: Nano – volume: 53 start-page: 6444 year: 2019 ident: 10.1016/j.apcatb.2020.119061_bib0245 article-title: Oxygen vacancies promoted the selective photocatalytic removal of NO with Blue TiO2 via simultaneous molecular oxygen activation and photogenerated hole annihilation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b07322 – volume: 14 start-page: 82 year: 2012 ident: 10.1016/j.apcatb.2020.119061_bib0175 article-title: Increasing visible-light absorption for photocatalysis with black BiOCl publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C1CP22876E – volume: 139 start-page: 3438 year: 2017 ident: 10.1016/j.apcatb.2020.119061_bib0105 article-title: Highly efficient and exceptionally durable CO2 photoreduction to methanol over freestanding defective single-unit-cell bismuth vanadate layers publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11263 – volume: 50 start-page: 12686 year: 2016 ident: 10.1016/j.apcatb.2020.119061_bib0005 article-title: Volatile organic compound emissions from humans indoors publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b04415 – volume: 232 start-page: 19 year: 2018 ident: 10.1016/j.apcatb.2020.119061_bib0095 article-title: Visible light-driven photocatalytically active g-C3N4 material for enhanced generation of H2O2 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.03.035 – volume: 17 start-page: 3366 year: 2015 ident: 10.1016/j.apcatb.2020.119061_bib0190 article-title: Structural and optical characterization of ball-milled copper-doped bismuth vanadium oxide (BiVO4) publication-title: CrystEngComm doi: 10.1039/C5CE00173K – volume: 180 start-page: 630 year: 2016 ident: 10.1016/j.apcatb.2020.119061_bib0150 article-title: Green-synthesized W- and Mo-doped BiVO4 oriented along the {0 4 0} facet with enhanced activity for the sun-driven water oxidation publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2015.07.029 – volume: 5 start-page: 1455 year: 2017 ident: 10.1016/j.apcatb.2020.119061_bib0115 article-title: Insights into the electronic bands of WO3/BiVO4/TiO2, revealing high solar water splitting efficiency publication-title: J. Mater. Chem. A doi: 10.1039/C6TA07592D – volume: 11 start-page: 1928 year: 2011 ident: 10.1016/j.apcatb.2020.119061_bib0240 article-title: Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting publication-title: Nano Lett. doi: 10.1021/nl2000743 – volume: 3 start-page: 2522 year: 2001 ident: 10.1016/j.apcatb.2020.119061_bib0185 article-title: Nanosized tin dioxide: spectroscopic (UV–VIS, NIR, EPR) and electrical conductivity studies publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b100553g – volume: 2 start-page: 637 year: 2014 ident: 10.1016/j.apcatb.2020.119061_bib0230 article-title: Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies publication-title: J. Mater. Chem. A doi: 10.1039/C3TA14052K – volume: 52 start-page: 9330 year: 2018 ident: 10.1016/j.apcatb.2020.119061_bib0025 article-title: Active {001} facet exposed TiO2 nanotubes photocatalyst filter for volatile organic compounds removal: from material development to commercial indoor air cleaner application publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b02282 – volume: 257 year: 2019 ident: 10.1016/j.apcatb.2020.119061_bib0035 article-title: OH radicals determined photocatalytic degradation mechanisms of gaseous styrene in TiO2 system under 254 nm versus 185 nm irradiation: combined experimental and theoretical studies publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.117912 – volume: 239 start-page: 398 year: 2018 ident: 10.1016/j.apcatb.2020.119061_bib0145 article-title: Rational construction of oxygen vacancies onto tungsten trioxide to improve visible light photocatalytic water oxidation reaction publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.08.029 – volume: 224 start-page: 705 year: 2018 ident: 10.1016/j.apcatb.2020.119061_bib0080 article-title: Black NiO-TiO2 nanorods for solar photocatalysis: recognition of electronic structure and reaction mechanism publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.11.028 – volume: 3 start-page: 1904 year: 2018 ident: 10.1016/j.apcatb.2020.119061_bib0180 article-title: Photocatalytic hydrogen evolution from substoichiometric colloidal WO3–x nanowires publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00925 – volume: 248 start-page: 349 year: 2019 ident: 10.1016/j.apcatb.2020.119061_bib0220 article-title: Graphitic carbon nitride based photocatalysis for redox conversion of arsenic(III) and chromium(VI) in acid aqueous solution publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.02.041 – volume: 91 start-page: 108 year: 2009 ident: 10.1016/j.apcatb.2020.119061_bib0255 article-title: Catalytic combustion of volatile organic compounds in binary mixtures over MnOx/Al2O3 catalyst publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2009.05.012 – volume: 118 start-page: 5626 year: 2014 ident: 10.1016/j.apcatb.2020.119061_bib0100 article-title: Electrochemically self-doped TiO2 nanotube arrays for supercapacitors publication-title: J. Phys. Chem. C doi: 10.1021/jp4082883 – volume: 140 start-page: 14042 year: 2018 ident: 10.1016/j.apcatb.2020.119061_bib0160 article-title: Photoinduced charge-transfer dynamics in WO3/BiVO4 photoanodes probed through midinfrared transient absorption spectroscopy publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08309 – volume: 662 start-page: 108 year: 2016 ident: 10.1016/j.apcatb.2020.119061_bib0270 article-title: Enhanced visible-light driven photocatalytic mineralization of indoor toluene via a BiVO4/reduced graphene oxide/Bi2O3 all-solid-state Z-scheme system publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.12.032 – volume: 228 start-page: 87 year: 2018 ident: 10.1016/j.apcatb.2020.119061_bib0110 article-title: Visible light driven selective oxidation of amines to imines with BiOCl: does oxygen vacancy concentration matter? publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.01.018 – volume: 57 start-page: 491 year: 2018 ident: 10.1016/j.apcatb.2020.119061_bib0130 article-title: Vacancy-rich monolayer BiO2-x as a highly efficient UV, visible, and near-infrared responsive photocatalyst publication-title: Angew. Chem. doi: 10.1002/anie.201708709 – volume: 53 start-page: 296 year: 2018 ident: 10.1016/j.apcatb.2020.119061_bib0075 article-title: Defect engineering in photocatalytic materials publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.08.058 – volume: 125 start-page: 331 year: 2012 ident: 10.1016/j.apcatb.2020.119061_bib0065 article-title: A review on the visible light active titanium dioxide photocatalysts for environmental applications publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2012.05.036 – volume: 43 start-page: 7691 year: 2014 ident: 10.1016/j.apcatb.2020.119061_bib0170 article-title: Reduced monoclinic BiVO4 for improved photoelectrochemical oxidation of water under visible light publication-title: Dalton Trans. doi: 10.1039/c3dt53575d – volume: 370 start-page: 88 year: 2019 ident: 10.1016/j.apcatb.2020.119061_bib0260 article-title: The synergic degradation mechanism and photothermocatalytic mineralization of typical VOCs over PtCu/CeO2 ordered porous catalysts under simulated solar irradiation publication-title: J. Catal. doi: 10.1016/j.jcat.2018.12.003 – volume: 338 start-page: 102 year: 2017 ident: 10.1016/j.apcatb.2020.119061_bib0250 article-title: Adsorption of VOCs onto engineered carbon materials: a review publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.05.013 – volume: 27 start-page: 3593 year: 2015 ident: 10.1016/j.apcatb.2020.119061_bib0165 article-title: Direct evidence of surface reduction in monoclinic BiVO4 publication-title: Chem. Mater. doi: 10.1021/cm504248d – volume: 272 year: 2020 ident: 10.1016/j.apcatb.2020.119061_bib0215 article-title: Photocatalytic degradation mechanism of gaseous styrene over Au/TiO2@CNTs: relevance of superficial state with deactivation mechanism publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2020.118969 – volume: 269 year: 2020 ident: 10.1016/j.apcatb.2020.119061_bib0265 article-title: Introduce oxygen vacancies into CeO2 catalyst for enhanced coke resistance during photothermocatalytic oxidation of typical VOCs publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2020.118755 – volume: 203 start-page: 526 year: 2017 ident: 10.1016/j.apcatb.2020.119061_bib0085 article-title: Insight into the role of Ti3+ in photocatalytic performance of shuriken-shaped BiVO4/TiO2−x heterojunction publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2016.10.056 – volume: 19 start-page: 882 year: 2017 ident: 10.1016/j.apcatb.2020.119061_bib0055 article-title: Metal-free photocatalysts for various applications in energy conversion and environmental purification publication-title: Green Chem. doi: 10.1039/C6GC02856J – volume: 24 start-page: 229 year: 2012 ident: 10.1016/j.apcatb.2020.119061_bib0010 article-title: Nano-photocatalytic materials: possibilities and challenges publication-title: Adv. Mater. doi: 10.1002/adma.201102752 – volume: 118 start-page: 10113 year: 2014 ident: 10.1016/j.apcatb.2020.119061_bib0120 article-title: Novel V2O5/BiVO4/TiO2 nanocomposites with high visible-light-induced photocatalytic activity for the degradation of toluene publication-title: J. Phys. Chem. C doi: 10.1021/jp5013076 – volume: 27 start-page: 7824 year: 2015 ident: 10.1016/j.apcatb.2020.119061_bib0140 article-title: Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water publication-title: Adv. Mater. doi: 10.1002/adma.201503730 – volume: 260 year: 2020 ident: 10.1016/j.apcatb.2020.119061_bib0040 article-title: Electrochemically self-doped WO3/TiO2 nanotubes for photocatalytic degradation of volatile organic compounds publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.118205 – volume: 7 start-page: 3934 year: 2014 ident: 10.1016/j.apcatb.2020.119061_bib0045 article-title: Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion publication-title: Energy Environ. Sci. doi: 10.1039/C4EE02914C – volume: 74 start-page: 1695 year: 2013 ident: 10.1016/j.apcatb.2020.119061_bib0195 article-title: Dielectric behavior, conduction and EPR active centres in BiVO4 nanoparticles publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2013.06.011 – volume: 117 start-page: 11302 year: 2017 ident: 10.1016/j.apcatb.2020.119061_bib0235 article-title: Generation and detection of reactive oxygen species in photocatalysis publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00161 – volume: 133 start-page: 16414 year: 2011 ident: 10.1016/j.apcatb.2020.119061_bib0125 article-title: Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency publication-title: J. Am. Chem. Soc. doi: 10.1021/ja207826q – volume: 5 start-page: 23453 year: 2017 ident: 10.1016/j.apcatb.2020.119061_bib0135 article-title: Generation of defect clusters for 1O2 production for molecular oxygen activation in photocatalysis publication-title: J. Mater. Chem. A doi: 10.1039/C7TA08117K – volume: 220 start-page: 290 year: 2018 ident: 10.1016/j.apcatb.2020.119061_bib0225 article-title: Oxygen vacancy-rich 2D/2D BiOCl-g-C3N4 ultrathin heterostructure nanosheets for enhanced visible-light-driven photocatalytic activity in environmental remediation publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.08.049 – volume: 221 start-page: 187 year: 2018 ident: 10.1016/j.apcatb.2020.119061_bib0090 article-title: Multi-layer monoclinic BiVO4 with oxygen vacancies and V4+ species for highly efficient visible-light photoelectrochemical applications publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.09.031 – volume: 22 start-page: 1 year: 2016 ident: 10.1016/j.apcatb.2020.119061_bib0155 article-title: Self-doped V4+–V2O5 nanoflake for 2 Li-ion intercalation with enhanced rate and cycling performance publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.02.004 – volume: 107 start-page: 77 year: 2011 ident: 10.1016/j.apcatb.2020.119061_bib0020 article-title: Innovative visible light-activated sulfur doped TiO2 films for water treatment publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2011.06.039 – volume: 21 start-page: 5128 year: 2011 ident: 10.1016/j.apcatb.2020.119061_bib0015 article-title: Enhancement of the capacitance in TiO2 nanotubes through controlled introduction of oxygen vacancies publication-title: J. Mater. Chem. doi: 10.1039/c0jm04085a – volume: 127 start-page: 8286 year: 2005 ident: 10.1016/j.apcatb.2020.119061_bib0050 article-title: GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0518777 – volume: 50 start-page: 2556 year: 2016 ident: 10.1016/j.apcatb.2020.119061_bib0030 article-title: TiO2 nanotubes with open channels as deactivation-resistant photocatalyst for the degradation of volatile organic compounds publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b05418 |
SSID | ssj0002328 |
Score | 2.5418937 |
Snippet | [Display omitted]
•Enrichment of OVs on the BiVO4 component of R-BiVO4/WO3/TNTs composite matrix by a simple electrochemical reduction step.•Achievement of... In this study, an electrochemical reduction strategy was adopted to introduce oxygen vacancies (OVs) into BiVO4/WO3/TiO2 nanotubes composite film... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 119061 |
SubjectTerms | Bismuth oxides BiVO4/WO3/TiO2 nanotubes Chemical reduction Current carriers Electrochemical reduction Electrochemistry Heterojunctions Nanotechnology Nanotubes Oxygen Photodegradation Photodegradation of VOCs Photoelectric effect Photoelectric emission Reaction mechanisms Stability Stabilized OVs Titanium dioxide Tungsten oxides Vacancies Vanadates |
Title | Stabilized oxygen vacancies over heterojunction for highly efficient and exceptionally durable VOCs photocatalytic degradation |
URI | https://dx.doi.org/10.1016/j.apcatb.2020.119061 https://www.proquest.com/docview/2440098587 |
Volume | 273 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4heoAeqrIFlUeRD1zNJmvHSY5oBVpAwKGAuFmO7QjQarPaDYjtgd_OTOKUglQhcYoSP2R5xuPP8TczAHsyKlxSFJbbWHgu8yLiubCOZzZJXeqUTSNyTj47V6MreXKT3CzBsPOFIVplsP2tTW-sdfjSD7PZn97d9X9H-UAJkYoB3e4haiYPdnyiTu8_v9I8EDE01hgrc6rduc81HC8ztaYu8JQ4INuRRyr-3_b0zlA3u8_Rd_gWYCM7aEe2Bkt-0oOVYZetrQdf_wks2IONw1f_NWwWFvD8BzwjuCQ67B_vWPW0QO1hj8Y2GXrnjNic7Jb4MdU9bnckMoaYllFI4_GC-SbaBPbIzMQx_xQIMWaMZe5hRj5Y7PpiOGfT26qumv9CCxwucxSPok3dtA5XR4eXwxEPKRi4FULWHI-PkVceZzH1FNoO0Z6li00zMFJKo8qSciIgyChxIausVLlziTFl4rPYS5WJDVieVBP_E1gZY6FBfGUyg4YjL2KLfUXSShRLZrNNEN3Maxvik1OajLHuiGj3upWXJnnpVl6bwP-2mrbxOT6on3ZC1W_0TOMW8kHLnU4HdFjnc43giCKyJlm69emOt2GV3oiEEic7sFzPHvwvRDp1sduo8i58OTg-HZ2_AO5I_1s |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOEAPqN0W8WrrA1ezydpxkmO1Am3L6wBU3CzHdgRotVmxoWI58Ns7kzgFKiEkrvFDlufhz_E3MwC7MipcUhSW21h4LvMi4rmwjmc2SV3qlE0jCk4-PlGjC_nrMrlcgGEXC0O0yuD7W5_eeOvwpR92sz-9vu6fRflACZGKAb3uIWpehGWJ5ktlDPYen3geCBkad4y9OXXv4ucakpeZWlMXeE0ckPPIIxW_dj7956mb4-fgI6wF3Mh-tEv7BAt-0oOVYVeurQcfnmUW7MH6_lMAGw4LFjz7DI-ILokP--Adq-7nqD7sj7FNid4ZIzonuyKCTHWD5x3JjCGoZZTTeDxnvkk3gTMyM3HM3wdGjBljm7u7pSAs9vt0OGPTq6qumh9Dc1wuc5SQoq3d9AUuDvbPhyMeajBwK4SsOd4fI6887mLqKbcdwj1LL5tmYKSURpUlFUVAlFGiJausVLlziTFl4rPYS5WJdViaVBO_AayMsdEgwDKZQc-RF7HFuSJpJYols9kmiG7ntQ0JyqlOxlh3TLQb3cpLk7x0K69N4P9GTdsEHW_0Tzuh6heKpvEMeWPkTqcDOhj6TCM6opSsSZZuvXvi77AyOj8-0kc_Tw63YZVaiJESJzuwVN_e-a8Ie-riW6PWfwG1IgD4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stabilized+oxygen+vacancies+over+heterojunction+for+highly+efficient+and+exceptionally+durable+VOCs+photocatalytic+degradation&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Sun%2C+Minghui&rft.au=Wang%2C+Xiaoguang&rft.au=Chen%2C+Zhiquan&rft.au=Murugananthan%2C+Muthu&rft.date=2020-09-15&rft.issn=0926-3373&rft.volume=273&rft.spage=119061&rft_id=info:doi/10.1016%2Fj.apcatb.2020.119061&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2020_119061 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |