Stabilized oxygen vacancies over heterojunction for highly efficient and exceptionally durable VOCs photocatalytic degradation

[Display omitted] •Enrichment of OVs on the BiVO4 component of R-BiVO4/WO3/TNTs composite matrix by a simple electrochemical reduction step.•Achievement of enhanced electron-hole separation and charge transport capabilities by introducing OVs in R-BiVO4/WO3/TNTs.•Improving the reaction stability of...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 273; p. 119061
Main Authors Sun, Minghui, Wang, Xiaoguang, Chen, Zhiquan, Murugananthan, Muthu, Chen, Yong, Zhang, Yanrong
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.09.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Enrichment of OVs on the BiVO4 component of R-BiVO4/WO3/TNTs composite matrix by a simple electrochemical reduction step.•Achievement of enhanced electron-hole separation and charge transport capabilities by introducing OVs in R-BiVO4/WO3/TNTs.•Improving the reaction stability of OVs by transforming active species OH into O2− during the photocatalytic process.•R-BiVO4/WO3/TNTs that exhibit 28 times higher photocurrent density and a highly efficient VOCs photocatalytic degradation. In this study, an electrochemical reduction strategy was adopted to introduce oxygen vacancies (OVs) into BiVO4/WO3/TiO2 nanotubes composite film (R-BiVO4/WO3/TNTs), and the newly generated OVs were mainly distributed on BiVO4. Desired concentration and distribution of the OVs were achieved by optimizing the reduction potential and duration. By introducing the reduced BiVO4, the inherent reaction mechanism dominated by OH and photogenerated hole was changed into the reaction dominated by O2− and hole, thereby improving the stability of the OVs in the catalytic process. The construction of heterojunction with the stabilized OVs had a significant contribution towards charge carrier separation and transmission in the material, and especially the stability of the performance. Thus, the R-BiVO4/WO3/TNTs exhibited a 28 times higher photocurrent intensity than the pristine BiVO4/WO3/TNTs, and the one-time purification experiment further confirmed the excellent performance and persistent nature of R-BiVO4/WO3/TNTs composite film in the actual treatment of VOCs.
AbstractList In this study, an electrochemical reduction strategy was adopted to introduce oxygen vacancies (OVs) into BiVO4/WO3/TiO2 nanotubes composite film (R-BiVO4/WO3/TNTs), and the newly generated OVs were mainly distributed on BiVO4. Desired concentration and distribution of the OVs were achieved by optimizing the reduction potential and duration. By introducing the reduced BiVO4, the inherent reaction mechanism dominated by •OH and photogenerated hole was changed into the reaction dominated by •O2− and hole, thereby improving the stability of the OVs in the catalytic process. The construction of heterojunction with the stabilized OVs had a significant contribution towards charge carrier separation and transmission in the material, and especially the stability of the performance. Thus, the R-BiVO4/WO3/TNTs exhibited a 28 times higher photocurrent intensity than the pristine BiVO4/WO3/TNTs, and the one-time purification experiment further confirmed the excellent performance and persistent nature of R-BiVO4/WO3/TNTs composite film in the actual treatment of VOCs.
[Display omitted] •Enrichment of OVs on the BiVO4 component of R-BiVO4/WO3/TNTs composite matrix by a simple electrochemical reduction step.•Achievement of enhanced electron-hole separation and charge transport capabilities by introducing OVs in R-BiVO4/WO3/TNTs.•Improving the reaction stability of OVs by transforming active species OH into O2− during the photocatalytic process.•R-BiVO4/WO3/TNTs that exhibit 28 times higher photocurrent density and a highly efficient VOCs photocatalytic degradation. In this study, an electrochemical reduction strategy was adopted to introduce oxygen vacancies (OVs) into BiVO4/WO3/TiO2 nanotubes composite film (R-BiVO4/WO3/TNTs), and the newly generated OVs were mainly distributed on BiVO4. Desired concentration and distribution of the OVs were achieved by optimizing the reduction potential and duration. By introducing the reduced BiVO4, the inherent reaction mechanism dominated by OH and photogenerated hole was changed into the reaction dominated by O2− and hole, thereby improving the stability of the OVs in the catalytic process. The construction of heterojunction with the stabilized OVs had a significant contribution towards charge carrier separation and transmission in the material, and especially the stability of the performance. Thus, the R-BiVO4/WO3/TNTs exhibited a 28 times higher photocurrent intensity than the pristine BiVO4/WO3/TNTs, and the one-time purification experiment further confirmed the excellent performance and persistent nature of R-BiVO4/WO3/TNTs composite film in the actual treatment of VOCs.
ArticleNumber 119061
Author Wang, Xiaoguang
Murugananthan, Muthu
Chen, Yong
Zhang, Yanrong
Sun, Minghui
Chen, Zhiquan
Author_xml – sequence: 1
  givenname: Minghui
  surname: Sun
  fullname: Sun, Minghui
  organization: School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
– sequence: 2
  givenname: Xiaoguang
  surname: Wang
  fullname: Wang, Xiaoguang
  organization: School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
– sequence: 3
  givenname: Zhiquan
  orcidid: 0000-0002-9518-7837
  surname: Chen
  fullname: Chen, Zhiquan
  organization: Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan, 430072, PR China
– sequence: 4
  givenname: Muthu
  orcidid: 0000-0003-0575-5018
  surname: Murugananthan
  fullname: Murugananthan, Muthu
  organization: Department of Chemistry, PSG College of Technology, Peelamedu, Coimbatore, 641004, India
– sequence: 5
  givenname: Yong
  surname: Chen
  fullname: Chen, Yong
  organization: School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
– sequence: 6
  givenname: Yanrong
  orcidid: 0000-0002-8793-090X
  surname: Zhang
  fullname: Zhang, Yanrong
  email: yanrong_zhang@hust.edu.cn
  organization: School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
BookMark eNqFkE-P0zAQxS20K9Ht8g04WOKc4tiO63BAQhX_pJX2wMLVmjrj1lGIg-1WWw589nUIJw5wGmnmvdF7vxtyNYYRCXlZs03NavW638BkIe83nPGyqlum6mdkVeutqITW4oqsWMtVJcRWPCc3KfWMMS64XpFfXzLs_eB_YkfD4-WAIz2DhdF6TDScMdIjZoyhP402-zBSF8rKH47DhaJzvujGTGHsKD5anGYJDOXWnSLsB6Tf7neJTseQQwkIwyV7Szs8ROhg1t6SawdDwhd_5pp8_fD-Yfepurv_-Hn37q6yQshc8UYyVFgyb7FhSraCW93WAjhIKUE5t9Ws0Zy7VgmlnWq7rgFwDeoapdJiTV4tf6cYfpwwZdOHUyxRk-FSMtbqpsBaE7mobAwpRXRmiv47xIupmZlJm94spM1M2iyki-3NXzbr8-96OYIf_md-u5ix1D97jCbNTC12PqLNpgv-3w-eAA1jn_E
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_171521
crossref_primary_10_1016_j_seppur_2024_129919
crossref_primary_10_1016_j_chemosphere_2024_144051
crossref_primary_10_1021_aps_4c00025
crossref_primary_10_1016_j_chemosphere_2021_129534
crossref_primary_10_1016_j_apcatb_2023_122862
crossref_primary_10_1016_j_apcatb_2022_121174
crossref_primary_10_1016_j_jechem_2024_07_061
crossref_primary_10_1002_aoc_7872
crossref_primary_10_1039_D2CY01181F
crossref_primary_10_1016_j_apcatb_2022_121336
crossref_primary_10_1016_j_apcatb_2022_121610
crossref_primary_10_1016_j_apsusc_2023_158922
crossref_primary_10_1016_j_jece_2024_112321
crossref_primary_10_1080_00150193_2024_2325905
crossref_primary_10_1021_acscatal_1c05324
crossref_primary_10_1016_j_mtchem_2024_102292
crossref_primary_10_1021_acsami_4c17745
crossref_primary_10_1021_acssensors_4c01592
crossref_primary_10_1016_j_jcis_2022_08_142
crossref_primary_10_1016_j_jhazmat_2023_131041
crossref_primary_10_1007_s11814_021_0977_z
crossref_primary_10_1016_j_chemosphere_2024_141197
crossref_primary_10_1039_D1TA08143H
crossref_primary_10_1016_j_apcata_2023_119031
crossref_primary_10_1016_j_apcatb_2021_120053
crossref_primary_10_1016_j_jcis_2020_09_090
crossref_primary_10_1016_j_jhazmat_2024_136951
crossref_primary_10_1016_j_jallcom_2021_158636
crossref_primary_10_1016_j_apcatb_2022_121249
crossref_primary_10_1021_acs_iecr_1c04894
crossref_primary_10_3390_nano13091528
crossref_primary_10_1016_j_cej_2023_145366
crossref_primary_10_1016_j_jallcom_2024_178351
crossref_primary_10_1016_j_clay_2023_107081
crossref_primary_10_1016_j_seppur_2022_122186
crossref_primary_10_1021_acsanm_2c04397
crossref_primary_10_1016_j_seppur_2020_118288
crossref_primary_10_1016_j_envres_2021_111143
crossref_primary_10_1021_acsanm_4c07288
crossref_primary_10_1021_acs_energyfuels_1c00503
crossref_primary_10_1016_j_jece_2021_105069
crossref_primary_10_1016_j_envres_2021_110851
crossref_primary_10_1007_s10562_025_04967_0
crossref_primary_10_1016_j_cej_2024_152627
crossref_primary_10_1016_j_apcatb_2022_121994
crossref_primary_10_1021_acs_est_2c05444
crossref_primary_10_1007_s11051_022_05440_4
crossref_primary_10_1016_j_jece_2024_113790
crossref_primary_10_1016_j_jcis_2022_06_016
crossref_primary_10_1016_j_cej_2024_150245
crossref_primary_10_1007_s10854_020_04730_8
crossref_primary_10_1515_revic_2023_0013
crossref_primary_10_1016_j_nanoen_2024_110364
crossref_primary_10_1039_D3TA07593A
crossref_primary_10_1002_slct_202303064
crossref_primary_10_1016_j_cej_2021_132766
crossref_primary_10_1016_j_seppur_2024_128958
crossref_primary_10_1016_j_apcatb_2024_123763
crossref_primary_10_3390_molecules28114350
Cites_doi 10.1021/jacs.6b04629
10.1016/j.apcatb.2017.10.014
10.1016/j.electacta.2014.05.091
10.1039/c3nr00476g
10.1021/acs.est.8b07322
10.1039/C1CP22876E
10.1021/jacs.6b11263
10.1021/acs.est.6b04415
10.1016/j.apcatb.2018.03.035
10.1039/C5CE00173K
10.1016/j.apcatb.2015.07.029
10.1039/C6TA07592D
10.1021/nl2000743
10.1039/b100553g
10.1039/C3TA14052K
10.1021/acs.est.8b02282
10.1016/j.apcatb.2019.117912
10.1016/j.apcatb.2018.08.029
10.1016/j.apcatb.2017.11.028
10.1021/acsenergylett.8b00925
10.1016/j.apcatb.2019.02.041
10.1016/j.apcatb.2009.05.012
10.1021/jp4082883
10.1021/jacs.8b08309
10.1016/j.jallcom.2015.12.032
10.1016/j.apcatb.2018.01.018
10.1002/anie.201708709
10.1016/j.nanoen.2018.08.058
10.1016/j.apcatb.2012.05.036
10.1039/c3dt53575d
10.1016/j.jcat.2018.12.003
10.1016/j.jhazmat.2017.05.013
10.1021/cm504248d
10.1016/j.apcatb.2020.118969
10.1016/j.apcatb.2020.118755
10.1016/j.apcatb.2016.10.056
10.1039/C6GC02856J
10.1002/adma.201102752
10.1021/jp5013076
10.1002/adma.201503730
10.1016/j.apcatb.2019.118205
10.1039/C4EE02914C
10.1016/j.jpcs.2013.06.011
10.1021/acs.chemrev.7b00161
10.1021/ja207826q
10.1039/C7TA08117K
10.1016/j.apcatb.2017.08.049
10.1016/j.apcatb.2017.09.031
10.1016/j.nanoen.2016.02.004
10.1016/j.apcatb.2011.06.039
10.1039/c0jm04085a
10.1021/ja0518777
10.1021/acs.est.5b05418
ContentType Journal Article
Copyright 2020
Copyright Elsevier BV Sep 15, 2020
Copyright_xml – notice: 2020
– notice: Copyright Elsevier BV Sep 15, 2020
DBID AAYXX
CITATION
7SR
7ST
7U5
8BQ
8FD
C1K
FR3
JG9
KR7
L7M
SOI
DOI 10.1016/j.apcatb.2020.119061
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
ExternalDocumentID 10_1016_j_apcatb_2020_119061
S0926337320304768
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPD
SSG
SSZ
T5K
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
XPP
7SR
7ST
7U5
8BQ
8FD
C1K
EFKBS
FR3
JG9
KR7
L7M
SOI
ID FETCH-LOGICAL-c334t-2540e6e0237e5064932c8913a2a444a6ff7805822f96368f69dd5aaf5e81e4683
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Wed Aug 13 06:29:39 EDT 2025
Thu Apr 24 22:58:40 EDT 2025
Tue Jul 01 04:35:05 EDT 2025
Sat Mar 02 15:59:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electrochemical reduction
Photodegradation of VOCs
BiVO4/WO3/TiO2 nanotubes
Stabilized OVs
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-2540e6e0237e5064932c8913a2a444a6ff7805822f96368f69dd5aaf5e81e4683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9518-7837
0000-0003-0575-5018
0000-0002-8793-090X
PQID 2440098587
PQPubID 2045281
ParticipantIDs proquest_journals_2440098587
crossref_primary_10_1016_j_apcatb_2020_119061
crossref_citationtrail_10_1016_j_apcatb_2020_119061
elsevier_sciencedirect_doi_10_1016_j_apcatb_2020_119061
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-15
PublicationDateYYYYMMDD 2020-09-15
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-15
  day: 15
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Su, Guo, Bao, Grimes (bib0240) 2011; 11
Sun, Li, Zhao, Ke, Zhang (bib0120) 2014; 118
Paik, Cargnello, Gordon, Zhang, Yun, Lee, Woo, Oh, Kagan, Fornasiero, Murray (bib0180) 2018; 3
Weon, Choi, Kim, Kim, Park, Kim, Kim, Choi (bib0025) 2018; 52
Chen, He, Ji, Li, An, Choi (bib0035) 2019; 257
Li, Wu, Pan, Zhang, Chen (bib0130) 2018; 57
Song, Liu, Zhang, Cao (bib0155) 2016; 22
Shang, Li, Li, Huang, Mao, Ai, Zhang (bib0245) 2019; 53
Venkatesan, Velumani, Tabellout, Errien, Kassiba (bib0195) 2013; 74
Gao, Gu, Jiao, Sun, Zu, Yang, Zhu, Wang, Feng, Ye, Xie (bib0105) 2017; 139
Bai, Zhang, Gao, Xiong (bib0075) 2018; 53
Nosaka, Nosaka (bib0235) 2017; 117
Wang, Sun, Murugananthan, Zhang, Zhang (bib0040) 2020; 260
Kalanur, Yoo, Park, Seo (bib0115) 2017; 5
Zhu, Pan, Murugananthan, Gong, Zhang (bib0095) 2018; 232
Zhang, Gao, Creamer, Cao, Li (bib0250) 2017; 338
Amalric Popescu, Herrmann, Ensuque, Bozon-Verduraz (bib0185) 2001; 3
Grigioni, Abdellah, Corti, Dozzi, Hammarstrom, Selli (bib0160) 2018; 140
Ye, Deng, Xu, Tian, Peng, Zan (bib0175) 2012; 14
Zhang, Li, Liu, Chen, Ma, Wen, Kong, An (bib0215) 2020; 272
Wang, Tang, Zeng, Deng, Dong, Liu, Wang, Peng, Zhang, Chen (bib0205) 2018; 222
Ding, Dai, Tian, Zhou, Zhao, Zhao, Chen, Liu, Chen (bib0135) 2017; 5
Tong, Ouyang, Bi, Umezawa, Oshikiri, Ye (bib0010) 2012; 24
Kong, Li, Chen, Tian, Fang, Zheng, Zhao (bib0125) 2011; 133
Aguero, Barbero, Gambaro, Cadús (bib0255) 2009; 91
Merupo, Velumani, Ordon, Errien, Szade, Kassiba (bib0190) 2015; 17
Rossell, Agrawal, Borgschulte, Hébert, Passerone, Erni (bib0165) 2015; 27
Kong, Xiang, Li, An (bib0265) 2020; 269
Kong, Li, Wen, Chen, Liu, An (bib0260) 2019; 370
Yuan, Ruan, Barber, Joachim Loo, Xue (bib0045) 2014; 7
Shi, Zhao, Xie, Chen, Zhang, Li (bib0270) 2016; 662
Pelaez, Nolan, Pillai, Seery, Falaras, Kontos, Dunlop, Hamilton, Byrne, O’Shea, Entezari, Dionysiou (bib0065) 2012; 125
Pan, Yang, Fu, Zhang, Xu (bib0200) 2013; 5
Zhang, Li, Ye, Chen, Ju, Liu, Lin, Ye, Wang, Xu, Zhu, Song, Jiang, Xiong (bib0070) 2016; 138
Tang, Misztal, Nazaroff, Goldstein (bib0005) 2016; 50
Maeda, Takata, Hara, Saito, Inoue, Kobayashi, Domen (bib0050) 2005; 127
Wu, Chen, Pan, Wang, Cui, Kong, Wang, Zhang, Zou (bib0090) 2018; 221
Khan, Ansari, Pradhan, Ansari, Han, Lee, Cho (bib0230) 2014; 2
Zhang, Li, Liu, Chen, Ma, An (bib0210) 2019; 6
Mao, Cheng, Tian, Li, Xiao, Xu, Zhao, Zhang (bib0110) 2018; 228
Han, Pelaez, Likodimos, Kontos, Falaras, O’Shea, Dionysiou (bib0020) 2011; 107
Weon, Choi (bib0030) 2016; 50
Salari, Konstantinov, Liu (bib0015) 2011; 21
Liu, Li, Ke, Wang, Wang, Xiao (bib0080) 2018; 224
Thalluri, Hernández, Bensaid, Saracco, Russo (bib0150) 2016; 180
Wang, Murugananthan, Zhang (bib0220) 2019; 248
Li, Xu, Tu, Chen, Xu (bib0055) 2017; 19
Wang, Cai, Wu, Chen, Zhao, Tian, Ding, Zhang, Jiang, Li (bib0145) 2018; 239
Liao, Yang, Zhou, Murugananthan, Zhang (bib0060) 2014; 136
Zhu, Shah, Wang (bib0085) 2017; 203
Zhou, Zhang (bib0100) 2014; 118
Qin, Wang, Song, Tao (bib0170) 2014; 43
Wang, Wang, Zhong, Liu, Cao, Cui (bib0225) 2018; 220
Zhao, Chen, Bian, Zhou, Waterhouse, Wu, Tung, Smith, O’Hare, Zhang (bib0140) 2015; 27
Zhu (10.1016/j.apcatb.2020.119061_bib0095) 2018; 232
Pelaez (10.1016/j.apcatb.2020.119061_bib0065) 2012; 125
Shi (10.1016/j.apcatb.2020.119061_bib0270) 2016; 662
Zhang (10.1016/j.apcatb.2020.119061_bib0210) 2019; 6
Pan (10.1016/j.apcatb.2020.119061_bib0200) 2013; 5
Wang (10.1016/j.apcatb.2020.119061_bib0040) 2020; 260
Shang (10.1016/j.apcatb.2020.119061_bib0245) 2019; 53
Gao (10.1016/j.apcatb.2020.119061_bib0105) 2017; 139
Nosaka (10.1016/j.apcatb.2020.119061_bib0235) 2017; 117
Weon (10.1016/j.apcatb.2020.119061_bib0030) 2016; 50
Ye (10.1016/j.apcatb.2020.119061_bib0175) 2012; 14
Kong (10.1016/j.apcatb.2020.119061_bib0265) 2020; 269
Han (10.1016/j.apcatb.2020.119061_bib0020) 2011; 107
Rossell (10.1016/j.apcatb.2020.119061_bib0165) 2015; 27
Su (10.1016/j.apcatb.2020.119061_bib0240) 2011; 11
Merupo (10.1016/j.apcatb.2020.119061_bib0190) 2015; 17
Song (10.1016/j.apcatb.2020.119061_bib0155) 2016; 22
Aguero (10.1016/j.apcatb.2020.119061_bib0255) 2009; 91
Qin (10.1016/j.apcatb.2020.119061_bib0170) 2014; 43
Zhang (10.1016/j.apcatb.2020.119061_bib0215) 2020; 272
Wang (10.1016/j.apcatb.2020.119061_bib0220) 2019; 248
Salari (10.1016/j.apcatb.2020.119061_bib0015) 2011; 21
Tong (10.1016/j.apcatb.2020.119061_bib0010) 2012; 24
Sun (10.1016/j.apcatb.2020.119061_bib0120) 2014; 118
Grigioni (10.1016/j.apcatb.2020.119061_bib0160) 2018; 140
Bai (10.1016/j.apcatb.2020.119061_bib0075) 2018; 53
Khan (10.1016/j.apcatb.2020.119061_bib0230) 2014; 2
Tang (10.1016/j.apcatb.2020.119061_bib0005) 2016; 50
Li (10.1016/j.apcatb.2020.119061_bib0130) 2018; 57
Wang (10.1016/j.apcatb.2020.119061_bib0145) 2018; 239
Venkatesan (10.1016/j.apcatb.2020.119061_bib0195) 2013; 74
Paik (10.1016/j.apcatb.2020.119061_bib0180) 2018; 3
Kong (10.1016/j.apcatb.2020.119061_bib0260) 2019; 370
Liao (10.1016/j.apcatb.2020.119061_bib0060) 2014; 136
Thalluri (10.1016/j.apcatb.2020.119061_bib0150) 2016; 180
Ding (10.1016/j.apcatb.2020.119061_bib0135) 2017; 5
Yuan (10.1016/j.apcatb.2020.119061_bib0045) 2014; 7
Wu (10.1016/j.apcatb.2020.119061_bib0090) 2018; 221
Zhang (10.1016/j.apcatb.2020.119061_bib0250) 2017; 338
Kong (10.1016/j.apcatb.2020.119061_bib0125) 2011; 133
Wang (10.1016/j.apcatb.2020.119061_bib0205) 2018; 222
Chen (10.1016/j.apcatb.2020.119061_bib0035) 2019; 257
Zhang (10.1016/j.apcatb.2020.119061_bib0070) 2016; 138
Zhou (10.1016/j.apcatb.2020.119061_bib0100) 2014; 118
Maeda (10.1016/j.apcatb.2020.119061_bib0050) 2005; 127
Wang (10.1016/j.apcatb.2020.119061_bib0225) 2018; 220
Weon (10.1016/j.apcatb.2020.119061_bib0025) 2018; 52
Li (10.1016/j.apcatb.2020.119061_bib0055) 2017; 19
Zhao (10.1016/j.apcatb.2020.119061_bib0140) 2015; 27
Amalric Popescu (10.1016/j.apcatb.2020.119061_bib0185) 2001; 3
Mao (10.1016/j.apcatb.2020.119061_bib0110) 2018; 228
Kalanur (10.1016/j.apcatb.2020.119061_bib0115) 2017; 5
Zhu (10.1016/j.apcatb.2020.119061_bib0085) 2017; 203
Liu (10.1016/j.apcatb.2020.119061_bib0080) 2018; 224
References_xml – volume: 662
  start-page: 108
  year: 2016
  end-page: 117
  ident: bib0270
  article-title: Enhanced visible-light driven photocatalytic mineralization of indoor toluene via a BiVO
  publication-title: J. Alloys Compd.
– volume: 127
  start-page: 8286
  year: 2005
  end-page: 8287
  ident: bib0050
  article-title: GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting
  publication-title: J. Am. Chem. Soc.
– volume: 117
  start-page: 11302
  year: 2017
  end-page: 11336
  ident: bib0235
  article-title: Generation and detection of reactive oxygen species in photocatalysis
  publication-title: Chem. Rev.
– volume: 370
  start-page: 88
  year: 2019
  end-page: 96
  ident: bib0260
  article-title: The synergic degradation mechanism and photothermocatalytic mineralization of typical VOCs over PtCu/CeO
  publication-title: J. Catal.
– volume: 24
  start-page: 229
  year: 2012
  end-page: 251
  ident: bib0010
  article-title: Nano-photocatalytic materials: possibilities and challenges
  publication-title: Adv. Mater.
– volume: 5
  start-page: 23453
  year: 2017
  end-page: 23459
  ident: bib0135
  article-title: Generation of defect clusters for
  publication-title: J. Mater. Chem. A
– volume: 53
  start-page: 6444
  year: 2019
  end-page: 6453
  ident: bib0245
  article-title: Oxygen vacancies promoted the selective photocatalytic removal of NO with Blue TiO
  publication-title: Environ. Sci. Technol.
– volume: 91
  start-page: 108
  year: 2009
  end-page: 112
  ident: bib0255
  article-title: Catalytic combustion of volatile organic compounds in binary mixtures over MnO
  publication-title: Appl. Catal. B: Environ.
– volume: 27
  start-page: 3593
  year: 2015
  end-page: 3600
  ident: bib0165
  article-title: Direct evidence of surface reduction in monoclinic BiVO
  publication-title: Chem. Mater.
– volume: 50
  start-page: 12686
  year: 2016
  end-page: 12694
  ident: bib0005
  article-title: Volatile organic compound emissions from humans indoors
  publication-title: Environ. Sci. Technol.
– volume: 222
  start-page: 115
  year: 2018
  end-page: 123
  ident: bib0205
  article-title: 0D/2D interface engineering of carbon quantum dots modified Bi
  publication-title: Appl. Catal. B: Environ.
– volume: 53
  start-page: 296
  year: 2018
  end-page: 336
  ident: bib0075
  article-title: Defect engineering in photocatalytic materials
  publication-title: Nano Energy
– volume: 133
  start-page: 16414
  year: 2011
  end-page: 16417
  ident: bib0125
  article-title: Tuning the relative concentration ratio of bulk defects to surface defects in TiO
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 491
  year: 2018
  end-page: 495
  ident: bib0130
  article-title: Vacancy-rich monolayer BiO
  publication-title: Angew. Chem.
– volume: 50
  start-page: 2556
  year: 2016
  end-page: 2563
  ident: bib0030
  article-title: TiO
  publication-title: Environ. Sci. Technol.
– volume: 257
  year: 2019
  ident: bib0035
  article-title: OH radicals determined photocatalytic degradation mechanisms of gaseous styrene in TiO
  publication-title: Appl. Catal. B: Environ.
– volume: 2
  start-page: 637
  year: 2014
  end-page: 644
  ident: bib0230
  article-title: Band gap engineered TiO
  publication-title: J. Mater. Chem. A
– volume: 248
  start-page: 349
  year: 2019
  end-page: 356
  ident: bib0220
  article-title: Graphitic carbon nitride based photocatalysis for redox conversion of arsenic(III) and chromium(VI) in acid aqueous solution
  publication-title: Appl. Catal. B: Environ.
– volume: 228
  start-page: 87
  year: 2018
  end-page: 96
  ident: bib0110
  article-title: Visible light driven selective oxidation of amines to imines with BiOCl: does oxygen vacancy concentration matter?
  publication-title: Appl. Catal. B: Environ.
– volume: 17
  start-page: 3366
  year: 2015
  end-page: 3375
  ident: bib0190
  article-title: Structural and optical characterization of ball-milled copper-doped bismuth vanadium oxide (BiVO
  publication-title: CrystEngComm
– volume: 11
  start-page: 1928
  year: 2011
  end-page: 1933
  ident: bib0240
  article-title: Nanostructured WO
  publication-title: Nano Lett.
– volume: 14
  start-page: 82
  year: 2012
  end-page: 85
  ident: bib0175
  article-title: Increasing visible-light absorption for photocatalysis with black BiOCl
  publication-title: Phys. Chem. Chem. Phys.
– volume: 220
  start-page: 290
  year: 2018
  end-page: 302
  ident: bib0225
  article-title: Oxygen vacancy-rich 2D/2D BiOCl-g-C
  publication-title: Appl. Catal. B: Environ.
– volume: 3
  start-page: 2522
  year: 2001
  end-page: 2530
  ident: bib0185
  article-title: Nanosized tin dioxide: spectroscopic (UV–VIS, NIR, EPR) and electrical conductivity studies
  publication-title: Phys. Chem. Chem. Phys.
– volume: 5
  start-page: 1455
  year: 2017
  end-page: 1461
  ident: bib0115
  article-title: Insights into the electronic bands of WO
  publication-title: J. Mater. Chem. A
– volume: 140
  start-page: 14042
  year: 2018
  end-page: 14045
  ident: bib0160
  article-title: Photoinduced charge-transfer dynamics in WO
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 310
  year: 2014
  end-page: 317
  ident: bib0060
  article-title: Electrochemically self-doped TiO
  publication-title: Electrochim. Acta
– volume: 22
  start-page: 1
  year: 2016
  end-page: 10
  ident: bib0155
  article-title: Self-doped V
  publication-title: Nano Energy
– volume: 232
  start-page: 19
  year: 2018
  end-page: 25
  ident: bib0095
  article-title: Visible light-driven photocatalytically active g-C
  publication-title: Appl. Catal. B: Environ.
– volume: 272
  year: 2020
  ident: bib0215
  article-title: Photocatalytic degradation mechanism of gaseous styrene over Au/TiO
  publication-title: Appl. Catal. B: Environ.
– volume: 125
  start-page: 331
  year: 2012
  end-page: 349
  ident: bib0065
  article-title: A review on the visible light active titanium dioxide photocatalysts for environmental applications
  publication-title: Appl. Catal. B: Environ.
– volume: 27
  start-page: 7824
  year: 2015
  end-page: 7831
  ident: bib0140
  article-title: Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO
  publication-title: Adv. Mater.
– volume: 5
  start-page: 3601
  year: 2013
  end-page: 3614
  ident: bib0200
  article-title: Defective TiO
  publication-title: Nanoscale
– volume: 269
  year: 2020
  ident: bib0265
  article-title: Introduce oxygen vacancies into CeO
  publication-title: Appl. Catal. B: Environ.
– volume: 239
  start-page: 398
  year: 2018
  end-page: 407
  ident: bib0145
  article-title: Rational construction of oxygen vacancies onto tungsten trioxide to improve visible light photocatalytic water oxidation reaction
  publication-title: Appl. Catal. B: Environ.
– volume: 260
  year: 2020
  ident: bib0040
  article-title: Electrochemically self-doped WO
  publication-title: Appl. Catal. B: Environ.
– volume: 19
  start-page: 882
  year: 2017
  end-page: 899
  ident: bib0055
  article-title: Metal-free photocatalysts for various applications in energy conversion and environmental purification
  publication-title: Green Chem.
– volume: 224
  start-page: 705
  year: 2018
  end-page: 714
  ident: bib0080
  article-title: Black NiO-TiO
  publication-title: Appl. Catal. B: Environ.
– volume: 139
  start-page: 3438
  year: 2017
  end-page: 3445
  ident: bib0105
  article-title: Highly efficient and exceptionally durable CO
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 8928
  year: 2016
  end-page: 8935
  ident: bib0070
  article-title: Oxide defect engineering enables to couple solar energy into oxygen activation
  publication-title: J. Am. Chem. Soc.
– volume: 118
  start-page: 10113
  year: 2014
  end-page: 10121
  ident: bib0120
  article-title: Novel V
  publication-title: J. Phys. Chem. C
– volume: 221
  start-page: 187
  year: 2018
  end-page: 195
  ident: bib0090
  article-title: Multi-layer monoclinic BiVO
  publication-title: Appl. Catal. B: Environ.
– volume: 21
  start-page: 5128
  year: 2011
  ident: bib0015
  article-title: Enhancement of the capacitance in TiO
  publication-title: J. Mater. Chem.
– volume: 7
  start-page: 3934
  year: 2014
  end-page: 3951
  ident: bib0045
  article-title: Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion
  publication-title: Energy Environ. Sci.
– volume: 107
  start-page: 77
  year: 2011
  end-page: 87
  ident: bib0020
  article-title: Innovative visible light-activated sulfur doped TiO
  publication-title: Appl. Catal. B: Environ.
– volume: 3
  start-page: 1904
  year: 2018
  end-page: 1910
  ident: bib0180
  article-title: Photocatalytic hydrogen evolution from substoichiometric colloidal WO
  publication-title: ACS Energy Lett.
– volume: 74
  start-page: 1695
  year: 2013
  end-page: 1702
  ident: bib0195
  article-title: Dielectric behavior, conduction and EPR active centres in BiVO
  publication-title: J. Phys. Chem. Solids
– volume: 6
  start-page: 948
  year: 2019
  end-page: 958
  ident: bib0210
  article-title: Micro/nano-bubble assisted synthesis of Au/TiO
  publication-title: Environ. Sci.: Nano
– volume: 52
  start-page: 9330
  year: 2018
  end-page: 9340
  ident: bib0025
  article-title: Active {001} facet exposed TiO
  publication-title: Environ. Sci. Technol.
– volume: 338
  start-page: 102
  year: 2017
  end-page: 123
  ident: bib0250
  article-title: Adsorption of VOCs onto engineered carbon materials: a review
  publication-title: J. Hazard. Mater.
– volume: 43
  start-page: 7691
  year: 2014
  end-page: 7694
  ident: bib0170
  article-title: Reduced monoclinic BiVO
  publication-title: Dalton Trans.
– volume: 203
  start-page: 526
  year: 2017
  end-page: 532
  ident: bib0085
  article-title: Insight into the role of Ti
  publication-title: Appl. Catal. B: Environ.
– volume: 180
  start-page: 630
  year: 2016
  end-page: 636
  ident: bib0150
  article-title: Green-synthesized W- and Mo-doped BiVO
  publication-title: Appl. Catal. B: Environ.
– volume: 118
  start-page: 5626
  year: 2014
  end-page: 5636
  ident: bib0100
  article-title: Electrochemically self-doped TiO
  publication-title: J. Phys. Chem. C
– volume: 138
  start-page: 8928
  year: 2016
  ident: 10.1016/j.apcatb.2020.119061_bib0070
  article-title: Oxide defect engineering enables to couple solar energy into oxygen activation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b04629
– volume: 222
  start-page: 115
  year: 2018
  ident: 10.1016/j.apcatb.2020.119061_bib0205
  article-title: 0D/2D interface engineering of carbon quantum dots modified Bi2WO6 ultrathin nanosheets with enhanced photoactivity for full spectrum light utilization and mechanism insight
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2017.10.014
– volume: 136
  start-page: 310
  year: 2014
  ident: 10.1016/j.apcatb.2020.119061_bib0060
  article-title: Electrochemically self-doped TiO2 nanotube arrays for efficient visible light photoelectrocatalytic degradation of contaminants
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.05.091
– volume: 5
  start-page: 3601
  year: 2013
  ident: 10.1016/j.apcatb.2020.119061_bib0200
  article-title: Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications
  publication-title: Nanoscale
  doi: 10.1039/c3nr00476g
– volume: 6
  start-page: 948
  year: 2019
  ident: 10.1016/j.apcatb.2020.119061_bib0210
  article-title: Micro/nano-bubble assisted synthesis of Au/TiO2@CNTs composite photocatalyst for photocatalytic degradation of gaseous styrene and its enhanced catalytic mechanism
  publication-title: Environ. Sci.: Nano
– volume: 53
  start-page: 6444
  year: 2019
  ident: 10.1016/j.apcatb.2020.119061_bib0245
  article-title: Oxygen vacancies promoted the selective photocatalytic removal of NO with Blue TiO2 via simultaneous molecular oxygen activation and photogenerated hole annihilation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b07322
– volume: 14
  start-page: 82
  year: 2012
  ident: 10.1016/j.apcatb.2020.119061_bib0175
  article-title: Increasing visible-light absorption for photocatalysis with black BiOCl
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C1CP22876E
– volume: 139
  start-page: 3438
  year: 2017
  ident: 10.1016/j.apcatb.2020.119061_bib0105
  article-title: Highly efficient and exceptionally durable CO2 photoreduction to methanol over freestanding defective single-unit-cell bismuth vanadate layers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11263
– volume: 50
  start-page: 12686
  year: 2016
  ident: 10.1016/j.apcatb.2020.119061_bib0005
  article-title: Volatile organic compound emissions from humans indoors
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b04415
– volume: 232
  start-page: 19
  year: 2018
  ident: 10.1016/j.apcatb.2020.119061_bib0095
  article-title: Visible light-driven photocatalytically active g-C3N4 material for enhanced generation of H2O2
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2018.03.035
– volume: 17
  start-page: 3366
  year: 2015
  ident: 10.1016/j.apcatb.2020.119061_bib0190
  article-title: Structural and optical characterization of ball-milled copper-doped bismuth vanadium oxide (BiVO4)
  publication-title: CrystEngComm
  doi: 10.1039/C5CE00173K
– volume: 180
  start-page: 630
  year: 2016
  ident: 10.1016/j.apcatb.2020.119061_bib0150
  article-title: Green-synthesized W- and Mo-doped BiVO4 oriented along the {0 4 0} facet with enhanced activity for the sun-driven water oxidation
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2015.07.029
– volume: 5
  start-page: 1455
  year: 2017
  ident: 10.1016/j.apcatb.2020.119061_bib0115
  article-title: Insights into the electronic bands of WO3/BiVO4/TiO2, revealing high solar water splitting efficiency
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA07592D
– volume: 11
  start-page: 1928
  year: 2011
  ident: 10.1016/j.apcatb.2020.119061_bib0240
  article-title: Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting
  publication-title: Nano Lett.
  doi: 10.1021/nl2000743
– volume: 3
  start-page: 2522
  year: 2001
  ident: 10.1016/j.apcatb.2020.119061_bib0185
  article-title: Nanosized tin dioxide: spectroscopic (UV–VIS, NIR, EPR) and electrical conductivity studies
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b100553g
– volume: 2
  start-page: 637
  year: 2014
  ident: 10.1016/j.apcatb.2020.119061_bib0230
  article-title: Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA14052K
– volume: 52
  start-page: 9330
  year: 2018
  ident: 10.1016/j.apcatb.2020.119061_bib0025
  article-title: Active {001} facet exposed TiO2 nanotubes photocatalyst filter for volatile organic compounds removal: from material development to commercial indoor air cleaner application
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b02282
– volume: 257
  year: 2019
  ident: 10.1016/j.apcatb.2020.119061_bib0035
  article-title: OH radicals determined photocatalytic degradation mechanisms of gaseous styrene in TiO2 system under 254 nm versus 185 nm irradiation: combined experimental and theoretical studies
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2019.117912
– volume: 239
  start-page: 398
  year: 2018
  ident: 10.1016/j.apcatb.2020.119061_bib0145
  article-title: Rational construction of oxygen vacancies onto tungsten trioxide to improve visible light photocatalytic water oxidation reaction
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2018.08.029
– volume: 224
  start-page: 705
  year: 2018
  ident: 10.1016/j.apcatb.2020.119061_bib0080
  article-title: Black NiO-TiO2 nanorods for solar photocatalysis: recognition of electronic structure and reaction mechanism
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2017.11.028
– volume: 3
  start-page: 1904
  year: 2018
  ident: 10.1016/j.apcatb.2020.119061_bib0180
  article-title: Photocatalytic hydrogen evolution from substoichiometric colloidal WO3–x nanowires
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00925
– volume: 248
  start-page: 349
  year: 2019
  ident: 10.1016/j.apcatb.2020.119061_bib0220
  article-title: Graphitic carbon nitride based photocatalysis for redox conversion of arsenic(III) and chromium(VI) in acid aqueous solution
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2019.02.041
– volume: 91
  start-page: 108
  year: 2009
  ident: 10.1016/j.apcatb.2020.119061_bib0255
  article-title: Catalytic combustion of volatile organic compounds in binary mixtures over MnOx/Al2O3 catalyst
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2009.05.012
– volume: 118
  start-page: 5626
  year: 2014
  ident: 10.1016/j.apcatb.2020.119061_bib0100
  article-title: Electrochemically self-doped TiO2 nanotube arrays for supercapacitors
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4082883
– volume: 140
  start-page: 14042
  year: 2018
  ident: 10.1016/j.apcatb.2020.119061_bib0160
  article-title: Photoinduced charge-transfer dynamics in WO3/BiVO4 photoanodes probed through midinfrared transient absorption spectroscopy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08309
– volume: 662
  start-page: 108
  year: 2016
  ident: 10.1016/j.apcatb.2020.119061_bib0270
  article-title: Enhanced visible-light driven photocatalytic mineralization of indoor toluene via a BiVO4/reduced graphene oxide/Bi2O3 all-solid-state Z-scheme system
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.12.032
– volume: 228
  start-page: 87
  year: 2018
  ident: 10.1016/j.apcatb.2020.119061_bib0110
  article-title: Visible light driven selective oxidation of amines to imines with BiOCl: does oxygen vacancy concentration matter?
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2018.01.018
– volume: 57
  start-page: 491
  year: 2018
  ident: 10.1016/j.apcatb.2020.119061_bib0130
  article-title: Vacancy-rich monolayer BiO2-x as a highly efficient UV, visible, and near-infrared responsive photocatalyst
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201708709
– volume: 53
  start-page: 296
  year: 2018
  ident: 10.1016/j.apcatb.2020.119061_bib0075
  article-title: Defect engineering in photocatalytic materials
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.08.058
– volume: 125
  start-page: 331
  year: 2012
  ident: 10.1016/j.apcatb.2020.119061_bib0065
  article-title: A review on the visible light active titanium dioxide photocatalysts for environmental applications
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2012.05.036
– volume: 43
  start-page: 7691
  year: 2014
  ident: 10.1016/j.apcatb.2020.119061_bib0170
  article-title: Reduced monoclinic BiVO4 for improved photoelectrochemical oxidation of water under visible light
  publication-title: Dalton Trans.
  doi: 10.1039/c3dt53575d
– volume: 370
  start-page: 88
  year: 2019
  ident: 10.1016/j.apcatb.2020.119061_bib0260
  article-title: The synergic degradation mechanism and photothermocatalytic mineralization of typical VOCs over PtCu/CeO2 ordered porous catalysts under simulated solar irradiation
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2018.12.003
– volume: 338
  start-page: 102
  year: 2017
  ident: 10.1016/j.apcatb.2020.119061_bib0250
  article-title: Adsorption of VOCs onto engineered carbon materials: a review
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.05.013
– volume: 27
  start-page: 3593
  year: 2015
  ident: 10.1016/j.apcatb.2020.119061_bib0165
  article-title: Direct evidence of surface reduction in monoclinic BiVO4
  publication-title: Chem. Mater.
  doi: 10.1021/cm504248d
– volume: 272
  year: 2020
  ident: 10.1016/j.apcatb.2020.119061_bib0215
  article-title: Photocatalytic degradation mechanism of gaseous styrene over Au/TiO2@CNTs: relevance of superficial state with deactivation mechanism
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2020.118969
– volume: 269
  year: 2020
  ident: 10.1016/j.apcatb.2020.119061_bib0265
  article-title: Introduce oxygen vacancies into CeO2 catalyst for enhanced coke resistance during photothermocatalytic oxidation of typical VOCs
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2020.118755
– volume: 203
  start-page: 526
  year: 2017
  ident: 10.1016/j.apcatb.2020.119061_bib0085
  article-title: Insight into the role of Ti3+ in photocatalytic performance of shuriken-shaped BiVO4/TiO2−x heterojunction
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2016.10.056
– volume: 19
  start-page: 882
  year: 2017
  ident: 10.1016/j.apcatb.2020.119061_bib0055
  article-title: Metal-free photocatalysts for various applications in energy conversion and environmental purification
  publication-title: Green Chem.
  doi: 10.1039/C6GC02856J
– volume: 24
  start-page: 229
  year: 2012
  ident: 10.1016/j.apcatb.2020.119061_bib0010
  article-title: Nano-photocatalytic materials: possibilities and challenges
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102752
– volume: 118
  start-page: 10113
  year: 2014
  ident: 10.1016/j.apcatb.2020.119061_bib0120
  article-title: Novel V2O5/BiVO4/TiO2 nanocomposites with high visible-light-induced photocatalytic activity for the degradation of toluene
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp5013076
– volume: 27
  start-page: 7824
  year: 2015
  ident: 10.1016/j.apcatb.2020.119061_bib0140
  article-title: Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503730
– volume: 260
  year: 2020
  ident: 10.1016/j.apcatb.2020.119061_bib0040
  article-title: Electrochemically self-doped WO3/TiO2 nanotubes for photocatalytic degradation of volatile organic compounds
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2019.118205
– volume: 7
  start-page: 3934
  year: 2014
  ident: 10.1016/j.apcatb.2020.119061_bib0045
  article-title: Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE02914C
– volume: 74
  start-page: 1695
  year: 2013
  ident: 10.1016/j.apcatb.2020.119061_bib0195
  article-title: Dielectric behavior, conduction and EPR active centres in BiVO4 nanoparticles
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2013.06.011
– volume: 117
  start-page: 11302
  year: 2017
  ident: 10.1016/j.apcatb.2020.119061_bib0235
  article-title: Generation and detection of reactive oxygen species in photocatalysis
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00161
– volume: 133
  start-page: 16414
  year: 2011
  ident: 10.1016/j.apcatb.2020.119061_bib0125
  article-title: Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja207826q
– volume: 5
  start-page: 23453
  year: 2017
  ident: 10.1016/j.apcatb.2020.119061_bib0135
  article-title: Generation of defect clusters for 1O2 production for molecular oxygen activation in photocatalysis
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA08117K
– volume: 220
  start-page: 290
  year: 2018
  ident: 10.1016/j.apcatb.2020.119061_bib0225
  article-title: Oxygen vacancy-rich 2D/2D BiOCl-g-C3N4 ultrathin heterostructure nanosheets for enhanced visible-light-driven photocatalytic activity in environmental remediation
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2017.08.049
– volume: 221
  start-page: 187
  year: 2018
  ident: 10.1016/j.apcatb.2020.119061_bib0090
  article-title: Multi-layer monoclinic BiVO4 with oxygen vacancies and V4+ species for highly efficient visible-light photoelectrochemical applications
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2017.09.031
– volume: 22
  start-page: 1
  year: 2016
  ident: 10.1016/j.apcatb.2020.119061_bib0155
  article-title: Self-doped V4+–V2O5 nanoflake for 2 Li-ion intercalation with enhanced rate and cycling performance
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.02.004
– volume: 107
  start-page: 77
  year: 2011
  ident: 10.1016/j.apcatb.2020.119061_bib0020
  article-title: Innovative visible light-activated sulfur doped TiO2 films for water treatment
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2011.06.039
– volume: 21
  start-page: 5128
  year: 2011
  ident: 10.1016/j.apcatb.2020.119061_bib0015
  article-title: Enhancement of the capacitance in TiO2 nanotubes through controlled introduction of oxygen vacancies
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm04085a
– volume: 127
  start-page: 8286
  year: 2005
  ident: 10.1016/j.apcatb.2020.119061_bib0050
  article-title: GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0518777
– volume: 50
  start-page: 2556
  year: 2016
  ident: 10.1016/j.apcatb.2020.119061_bib0030
  article-title: TiO2 nanotubes with open channels as deactivation-resistant photocatalyst for the degradation of volatile organic compounds
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b05418
SSID ssj0002328
Score 2.5418937
Snippet [Display omitted] •Enrichment of OVs on the BiVO4 component of R-BiVO4/WO3/TNTs composite matrix by a simple electrochemical reduction step.•Achievement of...
In this study, an electrochemical reduction strategy was adopted to introduce oxygen vacancies (OVs) into BiVO4/WO3/TiO2 nanotubes composite film...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119061
SubjectTerms Bismuth oxides
BiVO4/WO3/TiO2 nanotubes
Chemical reduction
Current carriers
Electrochemical reduction
Electrochemistry
Heterojunctions
Nanotechnology
Nanotubes
Oxygen
Photodegradation
Photodegradation of VOCs
Photoelectric effect
Photoelectric emission
Reaction mechanisms
Stability
Stabilized OVs
Titanium dioxide
Tungsten oxides
Vacancies
Vanadates
Title Stabilized oxygen vacancies over heterojunction for highly efficient and exceptionally durable VOCs photocatalytic degradation
URI https://dx.doi.org/10.1016/j.apcatb.2020.119061
https://www.proquest.com/docview/2440098587
Volume 273
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4heoAeqrIFlUeRD1zNJmvHSY5oBVpAwKGAuFmO7QjQarPaDYjtgd_OTOKUglQhcYoSP2R5xuPP8TczAHsyKlxSFJbbWHgu8yLiubCOZzZJXeqUTSNyTj47V6MreXKT3CzBsPOFIVplsP2tTW-sdfjSD7PZn97d9X9H-UAJkYoB3e4haiYPdnyiTu8_v9I8EDE01hgrc6rduc81HC8ztaYu8JQ4INuRRyr-3_b0zlA3u8_Rd_gWYCM7aEe2Bkt-0oOVYZetrQdf_wks2IONw1f_NWwWFvD8BzwjuCQ67B_vWPW0QO1hj8Y2GXrnjNic7Jb4MdU9bnckMoaYllFI4_GC-SbaBPbIzMQx_xQIMWaMZe5hRj5Y7PpiOGfT26qumv9CCxwucxSPok3dtA5XR4eXwxEPKRi4FULWHI-PkVceZzH1FNoO0Z6li00zMFJKo8qSciIgyChxIausVLlziTFl4rPYS5WJDVieVBP_E1gZY6FBfGUyg4YjL2KLfUXSShRLZrNNEN3Maxvik1OajLHuiGj3upWXJnnpVl6bwP-2mrbxOT6on3ZC1W_0TOMW8kHLnU4HdFjnc43giCKyJlm69emOt2GV3oiEEic7sFzPHvwvRDp1sduo8i58OTg-HZ2_AO5I_1s
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOEAPqN0W8WrrA1ezydpxkmO1Am3L6wBU3CzHdgRotVmxoWI58Ns7kzgFKiEkrvFDlufhz_E3MwC7MipcUhSW21h4LvMi4rmwjmc2SV3qlE0jCk4-PlGjC_nrMrlcgGEXC0O0yuD7W5_eeOvwpR92sz-9vu6fRflACZGKAb3uIWpehGWJ5ktlDPYen3geCBkad4y9OXXv4ucakpeZWlMXeE0ckPPIIxW_dj7956mb4-fgI6wF3Mh-tEv7BAt-0oOVYVeurQcfnmUW7MH6_lMAGw4LFjz7DI-ILokP--Adq-7nqD7sj7FNid4ZIzonuyKCTHWD5x3JjCGoZZTTeDxnvkk3gTMyM3HM3wdGjBljm7u7pSAs9vt0OGPTq6qumh9Dc1wuc5SQoq3d9AUuDvbPhyMeajBwK4SsOd4fI6887mLqKbcdwj1LL5tmYKSURpUlFUVAlFGiJausVLlziTFl4rPYS5WJdViaVBO_AayMsdEgwDKZQc-RF7HFuSJpJYols9kmiG7ntQ0JyqlOxlh3TLQb3cpLk7x0K69N4P9GTdsEHW_0Tzuh6heKpvEMeWPkTqcDOhj6TCM6opSsSZZuvXvi77AyOj8-0kc_Tw63YZVaiJESJzuwVN_e-a8Ie-riW6PWfwG1IgD4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stabilized+oxygen+vacancies+over+heterojunction+for+highly+efficient+and+exceptionally+durable+VOCs+photocatalytic+degradation&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Sun%2C+Minghui&rft.au=Wang%2C+Xiaoguang&rft.au=Chen%2C+Zhiquan&rft.au=Murugananthan%2C+Muthu&rft.date=2020-09-15&rft.issn=0926-3373&rft.volume=273&rft.spage=119061&rft_id=info:doi/10.1016%2Fj.apcatb.2020.119061&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2020_119061
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon