A three-stage algorithm on community detection in social networks
Detecting communities or clusters of networks is a considerable interesting problem in various fields and interdisciplinary subjects in recent years. Tens of hundreds of methods with significant efforts devoted to community detection in networks, while an open problem in all methods is the unknown n...
Saved in:
Published in | Knowledge-based systems Vol. 187; p. 104822 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.01.2020
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0950-7051 1872-7409 |
DOI | 10.1016/j.knosys.2019.06.030 |
Cover
Loading…
Abstract | Detecting communities or clusters of networks is a considerable interesting problem in various fields and interdisciplinary subjects in recent years. Tens of hundreds of methods with significant efforts devoted to community detection in networks, while an open problem in all methods is the unknown number of communities in real networks. It is believed that the central node in a community might be highly surrounded by its neighbors and any two centers of the community reside far from each other, and also believed the similarity among nodes in the same community is larger than the others. Therefore, the local and the global structures’ information shed important light on community detection. In this work, we present a three-stage algorithm to detect communities based on the local and the global information without giving the number of communities beforehand. The three stages include the central nodes identification, the label propagation and the communities combination. The central nodes are identified according to the distance between them larger than the average; the label propagation is to label nodes with the same colors when they reach to the maximum similarity; the communities combination is to merge two communities into one if the increment of the modularity is positive and maximum when the two communities were combined. Experiments and simulation results both on real world and synthetic networks show that the three-stage algorithm possesses well matched properties compared with seven other widely used algorithms, which indicates that three-stage algorithm can be used to detect community in social networks.
•The presented three-stage algorithm detects communities without knowing the number of them beforehand.•The central nodes’ identification completely depends on the node degree and the distance of nodes in networks.•The number of communities is determined by the size of central nodes’ set.•The three-stage algorithm converges to global optimum because of the integrated local and global structure information in it. |
---|---|
AbstractList | Detecting communities or clusters of networks is a considerable interesting problem in various fields and interdisciplinary subjects in recent years. Tens of hundreds of methods with significant efforts devoted to community detection in networks, while an open problem in all methods is the unknown number of communities in real networks. It is believed that the central node in a community might be highly surrounded by its neighbors and any two centers of the community reside far from each other, and also believed the similarity among nodes in the same community is larger than the others. Therefore, the local and the global structures’ information shed important light on community detection. In this work, we present a three-stage algorithm to detect communities based on the local and the global information without giving the number of communities beforehand. The three stages include the central nodes identification, the label propagation and the communities combination. The central nodes are identified according to the distance between them larger than the average; the label propagation is to label nodes with the same colors when they reach to the maximum similarity; the communities combination is to merge two communities into one if the increment of the modularity is positive and maximum when the two communities were combined. Experiments and simulation results both on real world and synthetic networks show that the three-stage algorithm possesses well matched properties compared with seven other widely used algorithms, which indicates that three-stage algorithm can be used to detect community in social networks.
•The presented three-stage algorithm detects communities without knowing the number of them beforehand.•The central nodes’ identification completely depends on the node degree and the distance of nodes in networks.•The number of communities is determined by the size of central nodes’ set.•The three-stage algorithm converges to global optimum because of the integrated local and global structure information in it. Detecting communities or clusters of networks is a considerable interesting problem in various fields and interdisciplinary subjects in recent years. Tens of hundreds of methods with significant efforts devoted to community detection in networks, while an open problem in all methods is the unknown number of communities in real networks. It is believed that the central node in a community might be highly surrounded by its neighbors and any two centers of the community reside far from each other, and also believed the similarity among nodes in the same community is larger than the others. Therefore, the local and the global structures' information shed important light on community detection. In this work, we present a three-stage algorithm to detect communities based on the local and the global information without giving the number of communities beforehand. The three stages include the central nodes identification, the label propagation and the communities combination. The central nodes are identified according to the distance between them larger than the average; the label propagation is to label nodes with the same colors when they reach to the maximum similarity; the communities combination is to merge two communities into one if the increment of the modularity is positive and maximum when the two communities were combined. Experiments and simulation results both on real world and synthetic networks show that the three-stage algorithm possesses well matched properties compared with seven other widely used algorithms, which indicates that three-stage algorithm can be used to detect community in social networks. |
ArticleNumber | 104822 |
Author | Liu, Zhiyuan Ma, Yinghong You, Xuemei |
Author_xml | – sequence: 1 givenname: Xuemei surname: You fullname: You, Xuemei – sequence: 2 givenname: Yinghong surname: Ma fullname: Ma, Yinghong email: yinghongma71@163.com – sequence: 3 givenname: Zhiyuan surname: Liu fullname: Liu, Zhiyuan |
BookMark | eNqFkM1OwzAQhC1UJNrCG3CIxDlhHSexwwGpqviTKnGBs-U4Tus0sYvtgvr2JAonDnBaaTUzO_st0MxYoxC6xpBgwMVtm-yN9SefpIDLBIoECJyhOWY0jWkG5QzNocwhppDjC7TwvgWANMVsjlarKOycUrEPYqsi0W2t02HXR9ZE0vb90ehwimoVlAx62GkTeSu16CKjwpd1e3-JzhvReXX1M5fo_fHhbf0cb16fXtarTSwJyUKckkYqSVIqcQO4oUWeFVgUFATLKkrGPqxQmDKGG1KLrKgbqEgFkgIpq0aSJbqZcg_OfhyVD7y1R2eGkzwlBHKWM8CD6m5SSWe9d6rhUgcxVg9O6I5j4CMy3vIJGR-RcSj4gGwwZ7_MB6d74U7_2e4nmxre_9TKcS-1MlLV2g3YeG313wHfdKKJ6A |
CitedBy_id | crossref_primary_10_1142_S021962202350030X crossref_primary_10_1007_s11227_021_04174_9 crossref_primary_10_1016_j_engappai_2024_109996 crossref_primary_10_32604_cmes_2022_018050 crossref_primary_10_1016_j_eswa_2022_118188 crossref_primary_10_3390_su15021249 crossref_primary_10_1080_13658816_2022_2055037 crossref_primary_10_1109_LSP_2020_3044259 crossref_primary_10_1016_j_jnca_2022_103492 crossref_primary_10_1007_s10100_021_00738_5 crossref_primary_10_1007_s11042_023_17025_x crossref_primary_10_1142_S2196888824300011 crossref_primary_10_1016_j_eswa_2022_116607 crossref_primary_10_22399_ijcesen_574 crossref_primary_10_3390_app131810496 crossref_primary_10_1155_2021_9986895 crossref_primary_10_3389_fphy_2023_1114296 crossref_primary_10_1007_s13042_021_01384_8 crossref_primary_10_1109_TCYB_2022_3159584 crossref_primary_10_1007_s10489_024_05424_y crossref_primary_10_32604_iasc_2022_020189 crossref_primary_10_3390_ai4010011 crossref_primary_10_1016_j_eswa_2021_115377 crossref_primary_10_1080_10242694_2024_2378566 crossref_primary_10_1109_ACCESS_2024_3497216 crossref_primary_10_1109_ACCESS_2022_3208360 crossref_primary_10_1007_s12652_021_03374_8 crossref_primary_10_1016_j_physa_2020_125420 crossref_primary_10_1155_2022_4368829 crossref_primary_10_3233_JIFS_236587 crossref_primary_10_1007_s12652_020_02608_5 crossref_primary_10_1016_j_knosys_2022_110077 crossref_primary_10_7717_peerj_cs_1386 crossref_primary_10_1007_s13369_021_05514_w crossref_primary_10_1016_j_jnca_2024_104070 crossref_primary_10_55529_jecnam_36_29_43 crossref_primary_10_1155_2021_6675759 crossref_primary_10_1016_j_knosys_2021_107345 crossref_primary_10_1016_j_knosys_2021_107741 crossref_primary_10_1007_s12652_020_02681_w crossref_primary_10_1007_s00607_022_01121_1 crossref_primary_10_1016_j_eswa_2022_117794 crossref_primary_10_32604_cmc_2021_017870 crossref_primary_10_1016_j_engappai_2024_107947 crossref_primary_10_1016_j_knosys_2020_106363 crossref_primary_10_1109_TCSS_2023_3282572 crossref_primary_10_1007_s11042_022_12745_y crossref_primary_10_1109_ACCESS_2024_3374882 crossref_primary_10_1002_cpe_6141 crossref_primary_10_1016_j_knosys_2021_107112 crossref_primary_10_1142_S0219622023500062 crossref_primary_10_1109_TCSS_2022_3223159 crossref_primary_10_1016_j_chaos_2024_115126 crossref_primary_10_1016_j_eswa_2023_120971 crossref_primary_10_1109_TCSII_2023_3275153 crossref_primary_10_23919_cje_2021_00_276 crossref_primary_10_1002_cpe_6669 crossref_primary_10_1007_s00521_021_06723_y crossref_primary_10_1016_j_jclepro_2023_136587 |
Cites_doi | 10.1038/srep00336 10.1038/srep05739 10.1016/j.knosys.2018.04.026 10.1088/1742-5468/2008/10/P10008 10.1162/NECO_a_00314 10.1016/j.socnet.2017.11.004 10.1016/j.physa.2006.07.023 10.1016/S0378-8733(03)00009-1 10.1098/rsbl.2003.0057 10.1038/srep18374 10.1073/pnas.122653799 10.1103/PhysRevE.74.036104 10.1016/j.ins.2018.06.015 10.1103/PhysRevE.76.036106 10.1073/pnas.0706851105 10.1103/PhysRevE.78.046110 10.1142/S0219525903001067 10.1038/30918 10.1086/jar.33.4.3629752 10.1103/PhysRevE.68.065103 10.1145/1134271.1134277 10.1103/PhysRevE.69.026113 10.1140/epjb/e2009-00335-8 10.1073/pnas.0601602103 10.1016/j.ins.2018.02.063 10.1145/2939672.2939754 10.1103/PhysRevE.70.066111 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier Science Ltd. Jan 2020 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Jan 2020 |
DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
DOI | 10.1016/j.knosys.2019.06.030 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-7409 |
ExternalDocumentID | 10_1016_j_knosys_2019_06_030 S0950705119302977 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 71701115; 71471106 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Higher School Science and Technology Foundation of Shandong Province grantid: J17KA172 – fundername: Nature Science Foundation of Shandong Province grantid: ZR2017MF058 funderid: http://dx.doi.org/10.13039/501100007129 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSW SSZ T5K UHS WH7 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 8FD E3H EFKBS F2A JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c334t-23fcec327c1f01f765461a670a84b73002286e17881f3da46df0b3b0c7039bfc3 |
IEDL.DBID | .~1 |
ISSN | 0950-7051 |
IngestDate | Fri Jul 25 02:27:45 EDT 2025 Thu Apr 24 23:08:55 EDT 2025 Tue Jul 01 04:37:57 EDT 2025 Fri Feb 23 02:18:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Three-stage algorithm Community detection Communities combination Label propagation Central nodes identification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-23fcec327c1f01f765461a670a84b73002286e17881f3da46df0b3b0c7039bfc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2330585801 |
PQPubID | 2035257 |
ParticipantIDs | proquest_journals_2330585801 crossref_citationtrail_10_1016_j_knosys_2019_06_030 crossref_primary_10_1016_j_knosys_2019_06_030 elsevier_sciencedirect_doi_10_1016_j_knosys_2019_06_030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2020 2020-01-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Knowledge-based systems |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Bello-Orgaz, Salcedo-Sanz, Camacho (b12) 2018; 462 Žalik, Žalik (b11) 2018; 445–446 Newman, Girvan (b27) 2004; 69 D.E. Knuth, The stanford graphbase: a platform for combinatorial algorithms, in: Acm-Siam Symposium on Discrete Algorithms Society for Industrial and Applied Mathematics, 1993, pp. 41–43. Liu, Pellegrini, Wang (b10) 2014; 4 Pan, Li, Liu, Liang (b15) 2012; 389(14) Newman (b19) 2006; 74 Ahajjam, Haddad, Badir (b17) 2018; 54 Guimera, Danon, Diaz-Guilera, Giralt, Arenas (b30) 2003; 68 Lancichinetti, Fortunato, Radicchi (b22) 2008; 78 Raghavan, Albert, Kumara (b20) 2007; 76 Gleiser, Danon (b29) 2003; 6 L.A. Adamic, N. Glance, The political blogosphere and the 2004 us election: divided they blog, in: Proceedings of the 3rd International Workshop on Link Discovery, 2005, pp. 36–43. Blondel, Guillaume, Lambiotte, Lefebvre (b3) 2008 Lusseau (b25) 2003; 270 Zhou, Lv, Zhang (b32) 2009; 71 Zachary (b24) 1977; 33 Adamic, Adar (b33) 2003; 25 A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 13–17. Ding, Zhang, Sun, Luo (b7) 2018; 155 Newman (b2) 2006; 103 Danon, Diaz-Guilera, Duch, Arenas (b23) 2005 Girvan, Newman (b1) 2002; 99 Zhang, Wang, Zhang (b14) 2007; 374 Newman, Girvan (b21) 2004; 69 Lancichinetti, Fortunato (b13) 2012; 2 Watts, Strogatz (b31) 1998; 393 Žalik (b16) 2015; 5 Shang, Feng, Zhao, Fan (b6) 2015; 6 Rosvall, Bergstrom (b18) 2008; 105 M(pi)up, Schmidt (b9) 2012; 24 Clauset, Newman, Moore (b4) 2004; 70 Lv, Tan, Yi, Huang (b8) 2010; 18 Clauset (10.1016/j.knosys.2019.06.030_b4) 2004; 70 Rosvall (10.1016/j.knosys.2019.06.030_b18) 2008; 105 Danon (10.1016/j.knosys.2019.06.030_b23) 2005 Newman (10.1016/j.knosys.2019.06.030_b2) 2006; 103 Zhou (10.1016/j.knosys.2019.06.030_b32) 2009; 71 Ahajjam (10.1016/j.knosys.2019.06.030_b17) 2018; 54 Shang (10.1016/j.knosys.2019.06.030_b6) 2015; 6 M(pi)up (10.1016/j.knosys.2019.06.030_b9) 2012; 24 Zachary (10.1016/j.knosys.2019.06.030_b24) 1977; 33 Lv (10.1016/j.knosys.2019.06.030_b8) 2010; 18 Pan (10.1016/j.knosys.2019.06.030_b15) 2012; 389(14) Newman (10.1016/j.knosys.2019.06.030_b21) 2004; 69 Raghavan (10.1016/j.knosys.2019.06.030_b20) 2007; 76 Lancichinetti (10.1016/j.knosys.2019.06.030_b22) 2008; 78 Adamic (10.1016/j.knosys.2019.06.030_b33) 2003; 25 Guimera (10.1016/j.knosys.2019.06.030_b30) 2003; 68 Lancichinetti (10.1016/j.knosys.2019.06.030_b13) 2012; 2 Newman (10.1016/j.knosys.2019.06.030_b19) 2006; 74 Žalik (10.1016/j.knosys.2019.06.030_b16) 2015; 5 Girvan (10.1016/j.knosys.2019.06.030_b1) 2002; 99 Lusseau (10.1016/j.knosys.2019.06.030_b25) 2003; 270 Žalik (10.1016/j.knosys.2019.06.030_b11) 2018; 445–446 Zhang (10.1016/j.knosys.2019.06.030_b14) 2007; 374 Ding (10.1016/j.knosys.2019.06.030_b7) 2018; 155 Bello-Orgaz (10.1016/j.knosys.2019.06.030_b12) 2018; 462 Blondel (10.1016/j.knosys.2019.06.030_b3) 2008 10.1016/j.knosys.2019.06.030_b26 10.1016/j.knosys.2019.06.030_b5 Watts (10.1016/j.knosys.2019.06.030_b31) 1998; 393 Gleiser (10.1016/j.knosys.2019.06.030_b29) 2003; 6 10.1016/j.knosys.2019.06.030_b28 Liu (10.1016/j.knosys.2019.06.030_b10) 2014; 4 Newman (10.1016/j.knosys.2019.06.030_b27) 2004; 69 |
References_xml | – reference: L.A. Adamic, N. Glance, The political blogosphere and the 2004 us election: divided they blog, in: Proceedings of the 3rd International Workshop on Link Discovery, 2005, pp. 36–43. – volume: 69 start-page: 026113 year: 2004 ident: b21 article-title: Finding and evaluating community structure in networks publication-title: Phys. Rev. E – volume: 25 start-page: 211 year: 2003 end-page: 230 ident: b33 article-title: Friends and neighbors on the web publication-title: Soc. Netw. – volume: 155 start-page: 71 year: 2018 end-page: 82 ident: b7 article-title: Low-rank subspace learning based network community detection publication-title: Knowl.-Based Syst. – volume: 78 start-page: 046110 year: 2008 ident: b22 article-title: Benchmark graphs for testing community detection algorithms publication-title: Phys. Rev. E – volume: 6 start-page: 565 year: 2003 end-page: 573 ident: b29 article-title: Community structure in jazz publication-title: Adv. Complex Syst. – volume: 69 start-page: 026113 year: 2004 ident: b27 article-title: Finding and evaluating community structure in networks publication-title: Phys. Rev. E – volume: 54 start-page: 41 year: 2018 end-page: 49 ident: b17 article-title: A new scalable leader-community detection approach for community detection in social networks publication-title: Social Networks – volume: 374 start-page: 483 year: 2007 end-page: 490 ident: b14 article-title: Identification of overlapping community structure in complex networks using fuzzy c-means clustering publication-title: Physica A – volume: 393 start-page: 440 year: 1998 end-page: 442 ident: b31 article-title: Collective dynamics of ’small-world’ networks publication-title: Nature – volume: 18 start-page: 217 year: 2010 end-page: 226 ident: b8 article-title: A family of fuzzy learning algorithms for robust principal component analysis neural networks, fuzzy systems publication-title: IEEE Trans. – volume: 270 start-page: S186 year: 2003 end-page: S188 ident: b25 article-title: The emergent properties of a dolphin social network publication-title: Proc. R. Soc. B – volume: 5 start-page: 18374 year: 2015 ident: b16 article-title: Maximal neighbor similarity reveals real communities in networks publication-title: Sci. Rep. – volume: 105 start-page: 1118 year: 2008 end-page: 1123 ident: b18 article-title: Maps of information flow reveal community structure in complex networks publication-title: Proc. Natl. Acad. Sci. USA – volume: 99 start-page: 7821 year: 2002 end-page: 7826 ident: b1 article-title: Community structure in social and biological networks publication-title: Proc. Natl. Acad. Sci. USA – reference: A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 13–17. – volume: 71 start-page: 623 year: 2009 end-page: 630 ident: b32 article-title: Predicting missing links via local information publication-title: Eur. Phys. J. B – volume: 74 start-page: 036104 year: 2006 ident: b19 article-title: Finding community structure in networks using the eigenvectors of matrices publication-title: Phys. Rev. E – volume: 68 year: 2003 ident: b30 article-title: Self-similar community structure in a network of human interactions publication-title: Phys. Rev. E – volume: 4 start-page: 5739 year: 2014 ident: b10 article-title: Detecting communities based on network topology publication-title: Sci. Rep. – volume: 2 start-page: 336 year: 2012 ident: b13 article-title: Consensus clustering in complex networks publication-title: Sci. Rep. – reference: D.E. Knuth, The stanford graphbase: a platform for combinatorial algorithms, in: Acm-Siam Symposium on Discrete Algorithms Society for Industrial and Applied Mathematics, 1993, pp. 41–43. – volume: 462 start-page: 290 year: 2018 end-page: 314 ident: b12 article-title: A multi-objective genetic algorithm for overlapping community detection based on edge encoding publication-title: Inform. Sci. – start-page: P09008 year: 2005 ident: b23 article-title: Comparing community structure identification publication-title: J. Stat. Mech. Theory Exp. – volume: 445–446 start-page: 38 year: 2018 end-page: 49 ident: b11 article-title: Memetic algorithm using node entropy and partition entropy for community detection in networks publication-title: Inform. Sci. – volume: 76 start-page: 036106 year: 2007 ident: b20 article-title: Near linear time algorithm to detect community structures in large-scale networks publication-title: Phys. Rev. E – volume: 24 start-page: 2434 year: 2012 end-page: 2456 ident: b9 article-title: Bayesian community detection publication-title: Neural Comput. – volume: 70 year: 2004 ident: b4 article-title: Finding community structure in very large networks publication-title: Phys. Rev. E – volume: 6 start-page: 1 year: 2015 end-page: 14 ident: b6 article-title: Efficiently detecting overlapping communities using seeding and semi-supervised learning publication-title: Int. J. Mach. Learn. Cybern. – volume: 103 start-page: 8577 year: 2006 end-page: 8582 ident: b2 article-title: Modularity and community structure in networks publication-title: Proc. Natl. Acad. Sci. USA – start-page: 10008 year: 2008 ident: b3 article-title: Fast unfolding of communities in large networks publication-title: Stat. Mech. Theory Exp. – volume: 33 start-page: 452 year: 1977 end-page: 473 ident: b24 article-title: An information flow model for conflict and fission in small groups publication-title: J. Anthropol. Res. – volume: 389(14) start-page: 2849 year: 2012 end-page: 2857 ident: b15 article-title: Detecting community structure in complex networks via node similarity publication-title: Physica A – volume: 2 start-page: 336 year: 2012 ident: 10.1016/j.knosys.2019.06.030_b13 article-title: Consensus clustering in complex networks publication-title: Sci. Rep. doi: 10.1038/srep00336 – volume: 4 start-page: 5739 year: 2014 ident: 10.1016/j.knosys.2019.06.030_b10 article-title: Detecting communities based on network topology publication-title: Sci. Rep. doi: 10.1038/srep05739 – volume: 155 start-page: 71 year: 2018 ident: 10.1016/j.knosys.2019.06.030_b7 article-title: Low-rank subspace learning based network community detection publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.04.026 – start-page: 10008 year: 2008 ident: 10.1016/j.knosys.2019.06.030_b3 article-title: Fast unfolding of communities in large networks publication-title: Stat. Mech. Theory Exp. doi: 10.1088/1742-5468/2008/10/P10008 – volume: 24 start-page: 2434 year: 2012 ident: 10.1016/j.knosys.2019.06.030_b9 article-title: Bayesian community detection publication-title: Neural Comput. doi: 10.1162/NECO_a_00314 – volume: 54 start-page: 41 year: 2018 ident: 10.1016/j.knosys.2019.06.030_b17 article-title: A new scalable leader-community detection approach for community detection in social networks publication-title: Social Networks doi: 10.1016/j.socnet.2017.11.004 – volume: 374 start-page: 483 year: 2007 ident: 10.1016/j.knosys.2019.06.030_b14 article-title: Identification of overlapping community structure in complex networks using fuzzy c-means clustering publication-title: Physica A doi: 10.1016/j.physa.2006.07.023 – volume: 25 start-page: 211 year: 2003 ident: 10.1016/j.knosys.2019.06.030_b33 article-title: Friends and neighbors on the web publication-title: Soc. Netw. doi: 10.1016/S0378-8733(03)00009-1 – volume: 270 start-page: S186 year: 2003 ident: 10.1016/j.knosys.2019.06.030_b25 article-title: The emergent properties of a dolphin social network publication-title: Proc. R. Soc. B doi: 10.1098/rsbl.2003.0057 – volume: 5 start-page: 18374 year: 2015 ident: 10.1016/j.knosys.2019.06.030_b16 article-title: Maximal neighbor similarity reveals real communities in networks publication-title: Sci. Rep. doi: 10.1038/srep18374 – volume: 99 start-page: 7821 year: 2002 ident: 10.1016/j.knosys.2019.06.030_b1 article-title: Community structure in social and biological networks publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.122653799 – start-page: P09008 year: 2005 ident: 10.1016/j.knosys.2019.06.030_b23 article-title: Comparing community structure identification publication-title: J. Stat. Mech. Theory Exp. – volume: 74 start-page: 036104 year: 2006 ident: 10.1016/j.knosys.2019.06.030_b19 article-title: Finding community structure in networks using the eigenvectors of matrices publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.74.036104 – volume: 462 start-page: 290 year: 2018 ident: 10.1016/j.knosys.2019.06.030_b12 article-title: A multi-objective genetic algorithm for overlapping community detection based on edge encoding publication-title: Inform. Sci. doi: 10.1016/j.ins.2018.06.015 – volume: 76 start-page: 036106 year: 2007 ident: 10.1016/j.knosys.2019.06.030_b20 article-title: Near linear time algorithm to detect community structures in large-scale networks publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.76.036106 – volume: 105 start-page: 1118 year: 2008 ident: 10.1016/j.knosys.2019.06.030_b18 article-title: Maps of information flow reveal community structure in complex networks publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0706851105 – volume: 78 start-page: 046110 year: 2008 ident: 10.1016/j.knosys.2019.06.030_b22 article-title: Benchmark graphs for testing community detection algorithms publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.78.046110 – volume: 6 start-page: 565 year: 2003 ident: 10.1016/j.knosys.2019.06.030_b29 article-title: Community structure in jazz publication-title: Adv. Complex Syst. doi: 10.1142/S0219525903001067 – volume: 393 start-page: 440 year: 1998 ident: 10.1016/j.knosys.2019.06.030_b31 article-title: Collective dynamics of ’small-world’ networks publication-title: Nature doi: 10.1038/30918 – volume: 33 start-page: 452 year: 1977 ident: 10.1016/j.knosys.2019.06.030_b24 article-title: An information flow model for conflict and fission in small groups publication-title: J. Anthropol. Res. doi: 10.1086/jar.33.4.3629752 – volume: 68 year: 2003 ident: 10.1016/j.knosys.2019.06.030_b30 article-title: Self-similar community structure in a network of human interactions publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.68.065103 – ident: 10.1016/j.knosys.2019.06.030_b28 – volume: 18 start-page: 217 year: 2010 ident: 10.1016/j.knosys.2019.06.030_b8 article-title: A family of fuzzy learning algorithms for robust principal component analysis neural networks, fuzzy systems publication-title: IEEE Trans. – volume: 389(14) start-page: 2849 year: 2012 ident: 10.1016/j.knosys.2019.06.030_b15 article-title: Detecting community structure in complex networks via node similarity publication-title: Physica A – ident: 10.1016/j.knosys.2019.06.030_b26 doi: 10.1145/1134271.1134277 – volume: 69 start-page: 026113 year: 2004 ident: 10.1016/j.knosys.2019.06.030_b27 article-title: Finding and evaluating community structure in networks publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.69.026113 – volume: 71 start-page: 623 year: 2009 ident: 10.1016/j.knosys.2019.06.030_b32 article-title: Predicting missing links via local information publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2009-00335-8 – volume: 103 start-page: 8577 year: 2006 ident: 10.1016/j.knosys.2019.06.030_b2 article-title: Modularity and community structure in networks publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0601602103 – volume: 445–446 start-page: 38 year: 2018 ident: 10.1016/j.knosys.2019.06.030_b11 article-title: Memetic algorithm using node entropy and partition entropy for community detection in networks publication-title: Inform. Sci. doi: 10.1016/j.ins.2018.02.063 – volume: 6 start-page: 1 year: 2015 ident: 10.1016/j.knosys.2019.06.030_b6 article-title: Efficiently detecting overlapping communities using seeding and semi-supervised learning publication-title: Int. J. Mach. Learn. Cybern. – ident: 10.1016/j.knosys.2019.06.030_b5 doi: 10.1145/2939672.2939754 – volume: 70 year: 2004 ident: 10.1016/j.knosys.2019.06.030_b4 article-title: Finding community structure in very large networks publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.70.066111 – volume: 69 start-page: 026113 year: 2004 ident: 10.1016/j.knosys.2019.06.030_b21 article-title: Finding and evaluating community structure in networks publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.69.026113 |
SSID | ssj0002218 |
Score | 2.4925199 |
Snippet | Detecting communities or clusters of networks is a considerable interesting problem in various fields and interdisciplinary subjects in recent years. Tens of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 104822 |
SubjectTerms | Algorithms Central nodes identification Communities combination Community detection Computer simulation Interdisciplinary subjects Label propagation Modularity Nodes Propagation Similarity Social networks Three-stage algorithm |
Title | A three-stage algorithm on community detection in social networks |
URI | https://dx.doi.org/10.1016/j.knosys.2019.06.030 https://www.proquest.com/docview/2330585801 |
Volume | 187 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRjxK5YHV1Imd11hVVAVEF6jULUocuxSKU9EwdOG343McEAipEmtiR9H57ruz_d0dQpcMGr4rkZMkkYpwERibE6FHosJgYcioyG37tvtxOJrw22kwbaFBkwsDtEqH_TWmW7R2T3pOmr3lfN57MMGB0Ve4B2PQgQkyyjmPQMuvPr5pHr5vz_hgMIHRTfqc5Xi96HK1hqLdXmKreAIX-m_39AuorfcZ7qEdFzbifv1n-6gl9QHabVoyYGehh6jfx5VZHUlM0DeTOFvMSrP7f3rFpcaizgWp1riQlWVgaTzXuD41x7rmg6-O0GR4_TgYEdclgQjGeEV8poQUzI-Ep6inIshO8rIwolnMc6hG7_txKD0oG69YkfGwUDRnORXG1pNcCXaM2rrU8gThJIypEElcmBiDq6zIA1-YDWyQJFnGCxqdItYIJxWuhDh0slikDVfsOa1FmoJIU6DMMXqKyNesZV1CY8P4qJF7-kMVUoPyG2Z2mmVKnSma98xAWhwYT3z27w-fo20f9tn26KWD2tXbu7wwwUiVd622ddFW_-ZuNP4EGyHeQA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdoCFN6JQwAOr1STOc4wqqpQ-Flqpm5U4dimUpGrD0H-PnThIIKRKrIkdRWff57P93XcAj0QVfBcswUHABbaZI32OuSb2UomFLjFYUpZvG0_caGY_z515A3p1LoyiVWrsrzC9RGv9pKut2V0vl90XGRzI-aruwYiqwOQdQEupUzlNaIWDYTT5BmTLKo_5VHusOtQZdCXN6z3Ltzul220GpZCnokP_vUL9wupyAeqfwrGOHFFY_dwZNHh2Did1VQaknfQCwhAVcoA4lnHfgqN4tcg3y-L1A-UZYlU6SLFDKS9KElaGlhmqDs5RVlHCt5cw6z9NexHWhRIwI8QusEUE44xYHjOFYQpPJSiZsesZsW8nSpDesnyXm0o5XpA0tt1UGAlJDCbdPUgEI1fQzPKMXwMKXN9gLPBTGWbYIk4Tx2JyD-sEQRzbqeG1gdTGoUyriKtiFita08XeaGVSqkxKFWuOGG3A373WlYrGnvZebXf6YzZQCfR7enbqYaLaG-V7IlHNd-RifPPvDz_AYTQdj-hoMBnewpGltt3lSUwHmsXmk9_J2KRI7vXc-wLDV-Dx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+three-stage+algorithm+on+community+detection+in+social+networks&rft.jtitle=Knowledge-based+systems&rft.au=You%2C+Xuemei&rft.au=Ma%2C+Yinghong&rft.au=Liu%2C+Zhiyuan&rft.date=2020-01-01&rft.issn=0950-7051&rft.volume=187&rft.spage=104822&rft_id=info:doi/10.1016%2Fj.knosys.2019.06.030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2019_06_030 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |