A three-stage algorithm on community detection in social networks

Detecting communities or clusters of networks is a considerable interesting problem in various fields and interdisciplinary subjects in recent years. Tens of hundreds of methods with significant efforts devoted to community detection in networks, while an open problem in all methods is the unknown n...

Full description

Saved in:
Bibliographic Details
Published inKnowledge-based systems Vol. 187; p. 104822
Main Authors You, Xuemei, Ma, Yinghong, Liu, Zhiyuan
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.01.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0950-7051
1872-7409
DOI10.1016/j.knosys.2019.06.030

Cover

Loading…
Abstract Detecting communities or clusters of networks is a considerable interesting problem in various fields and interdisciplinary subjects in recent years. Tens of hundreds of methods with significant efforts devoted to community detection in networks, while an open problem in all methods is the unknown number of communities in real networks. It is believed that the central node in a community might be highly surrounded by its neighbors and any two centers of the community reside far from each other, and also believed the similarity among nodes in the same community is larger than the others. Therefore, the local and the global structures’ information shed important light on community detection. In this work, we present a three-stage algorithm to detect communities based on the local and the global information without giving the number of communities beforehand. The three stages include the central nodes identification, the label propagation and the communities combination. The central nodes are identified according to the distance between them larger than the average; the label propagation is to label nodes with the same colors when they reach to the maximum similarity; the communities combination is to merge two communities into one if the increment of the modularity is positive and maximum when the two communities were combined. Experiments and simulation results both on real world and synthetic networks show that the three-stage algorithm possesses well matched properties compared with seven other widely used algorithms, which indicates that three-stage algorithm can be used to detect community in social networks. •The presented three-stage algorithm detects communities without knowing the number of them beforehand.•The central nodes’ identification completely depends on the node degree and the distance of nodes in networks.•The number of communities is determined by the size of central nodes’ set.•The three-stage algorithm converges to global optimum because of the integrated local and global structure information in it.
AbstractList Detecting communities or clusters of networks is a considerable interesting problem in various fields and interdisciplinary subjects in recent years. Tens of hundreds of methods with significant efforts devoted to community detection in networks, while an open problem in all methods is the unknown number of communities in real networks. It is believed that the central node in a community might be highly surrounded by its neighbors and any two centers of the community reside far from each other, and also believed the similarity among nodes in the same community is larger than the others. Therefore, the local and the global structures’ information shed important light on community detection. In this work, we present a three-stage algorithm to detect communities based on the local and the global information without giving the number of communities beforehand. The three stages include the central nodes identification, the label propagation and the communities combination. The central nodes are identified according to the distance between them larger than the average; the label propagation is to label nodes with the same colors when they reach to the maximum similarity; the communities combination is to merge two communities into one if the increment of the modularity is positive and maximum when the two communities were combined. Experiments and simulation results both on real world and synthetic networks show that the three-stage algorithm possesses well matched properties compared with seven other widely used algorithms, which indicates that three-stage algorithm can be used to detect community in social networks. •The presented three-stage algorithm detects communities without knowing the number of them beforehand.•The central nodes’ identification completely depends on the node degree and the distance of nodes in networks.•The number of communities is determined by the size of central nodes’ set.•The three-stage algorithm converges to global optimum because of the integrated local and global structure information in it.
Detecting communities or clusters of networks is a considerable interesting problem in various fields and interdisciplinary subjects in recent years. Tens of hundreds of methods with significant efforts devoted to community detection in networks, while an open problem in all methods is the unknown number of communities in real networks. It is believed that the central node in a community might be highly surrounded by its neighbors and any two centers of the community reside far from each other, and also believed the similarity among nodes in the same community is larger than the others. Therefore, the local and the global structures' information shed important light on community detection. In this work, we present a three-stage algorithm to detect communities based on the local and the global information without giving the number of communities beforehand. The three stages include the central nodes identification, the label propagation and the communities combination. The central nodes are identified according to the distance between them larger than the average; the label propagation is to label nodes with the same colors when they reach to the maximum similarity; the communities combination is to merge two communities into one if the increment of the modularity is positive and maximum when the two communities were combined. Experiments and simulation results both on real world and synthetic networks show that the three-stage algorithm possesses well matched properties compared with seven other widely used algorithms, which indicates that three-stage algorithm can be used to detect community in social networks.
ArticleNumber 104822
Author Liu, Zhiyuan
Ma, Yinghong
You, Xuemei
Author_xml – sequence: 1
  givenname: Xuemei
  surname: You
  fullname: You, Xuemei
– sequence: 2
  givenname: Yinghong
  surname: Ma
  fullname: Ma, Yinghong
  email: yinghongma71@163.com
– sequence: 3
  givenname: Zhiyuan
  surname: Liu
  fullname: Liu, Zhiyuan
BookMark eNqFkM1OwzAQhC1UJNrCG3CIxDlhHSexwwGpqviTKnGBs-U4Tus0sYvtgvr2JAonDnBaaTUzO_st0MxYoxC6xpBgwMVtm-yN9SefpIDLBIoECJyhOWY0jWkG5QzNocwhppDjC7TwvgWANMVsjlarKOycUrEPYqsi0W2t02HXR9ZE0vb90ehwimoVlAx62GkTeSu16CKjwpd1e3-JzhvReXX1M5fo_fHhbf0cb16fXtarTSwJyUKckkYqSVIqcQO4oUWeFVgUFATLKkrGPqxQmDKGG1KLrKgbqEgFkgIpq0aSJbqZcg_OfhyVD7y1R2eGkzwlBHKWM8CD6m5SSWe9d6rhUgcxVg9O6I5j4CMy3vIJGR-RcSj4gGwwZ7_MB6d74U7_2e4nmxre_9TKcS-1MlLV2g3YeG313wHfdKKJ6A
CitedBy_id crossref_primary_10_1142_S021962202350030X
crossref_primary_10_1007_s11227_021_04174_9
crossref_primary_10_1016_j_engappai_2024_109996
crossref_primary_10_32604_cmes_2022_018050
crossref_primary_10_1016_j_eswa_2022_118188
crossref_primary_10_3390_su15021249
crossref_primary_10_1080_13658816_2022_2055037
crossref_primary_10_1109_LSP_2020_3044259
crossref_primary_10_1016_j_jnca_2022_103492
crossref_primary_10_1007_s10100_021_00738_5
crossref_primary_10_1007_s11042_023_17025_x
crossref_primary_10_1142_S2196888824300011
crossref_primary_10_1016_j_eswa_2022_116607
crossref_primary_10_22399_ijcesen_574
crossref_primary_10_3390_app131810496
crossref_primary_10_1155_2021_9986895
crossref_primary_10_3389_fphy_2023_1114296
crossref_primary_10_1007_s13042_021_01384_8
crossref_primary_10_1109_TCYB_2022_3159584
crossref_primary_10_1007_s10489_024_05424_y
crossref_primary_10_32604_iasc_2022_020189
crossref_primary_10_3390_ai4010011
crossref_primary_10_1016_j_eswa_2021_115377
crossref_primary_10_1080_10242694_2024_2378566
crossref_primary_10_1109_ACCESS_2024_3497216
crossref_primary_10_1109_ACCESS_2022_3208360
crossref_primary_10_1007_s12652_021_03374_8
crossref_primary_10_1016_j_physa_2020_125420
crossref_primary_10_1155_2022_4368829
crossref_primary_10_3233_JIFS_236587
crossref_primary_10_1007_s12652_020_02608_5
crossref_primary_10_1016_j_knosys_2022_110077
crossref_primary_10_7717_peerj_cs_1386
crossref_primary_10_1007_s13369_021_05514_w
crossref_primary_10_1016_j_jnca_2024_104070
crossref_primary_10_55529_jecnam_36_29_43
crossref_primary_10_1155_2021_6675759
crossref_primary_10_1016_j_knosys_2021_107345
crossref_primary_10_1016_j_knosys_2021_107741
crossref_primary_10_1007_s12652_020_02681_w
crossref_primary_10_1007_s00607_022_01121_1
crossref_primary_10_1016_j_eswa_2022_117794
crossref_primary_10_32604_cmc_2021_017870
crossref_primary_10_1016_j_engappai_2024_107947
crossref_primary_10_1016_j_knosys_2020_106363
crossref_primary_10_1109_TCSS_2023_3282572
crossref_primary_10_1007_s11042_022_12745_y
crossref_primary_10_1109_ACCESS_2024_3374882
crossref_primary_10_1002_cpe_6141
crossref_primary_10_1016_j_knosys_2021_107112
crossref_primary_10_1142_S0219622023500062
crossref_primary_10_1109_TCSS_2022_3223159
crossref_primary_10_1016_j_chaos_2024_115126
crossref_primary_10_1016_j_eswa_2023_120971
crossref_primary_10_1109_TCSII_2023_3275153
crossref_primary_10_23919_cje_2021_00_276
crossref_primary_10_1002_cpe_6669
crossref_primary_10_1007_s00521_021_06723_y
crossref_primary_10_1016_j_jclepro_2023_136587
Cites_doi 10.1038/srep00336
10.1038/srep05739
10.1016/j.knosys.2018.04.026
10.1088/1742-5468/2008/10/P10008
10.1162/NECO_a_00314
10.1016/j.socnet.2017.11.004
10.1016/j.physa.2006.07.023
10.1016/S0378-8733(03)00009-1
10.1098/rsbl.2003.0057
10.1038/srep18374
10.1073/pnas.122653799
10.1103/PhysRevE.74.036104
10.1016/j.ins.2018.06.015
10.1103/PhysRevE.76.036106
10.1073/pnas.0706851105
10.1103/PhysRevE.78.046110
10.1142/S0219525903001067
10.1038/30918
10.1086/jar.33.4.3629752
10.1103/PhysRevE.68.065103
10.1145/1134271.1134277
10.1103/PhysRevE.69.026113
10.1140/epjb/e2009-00335-8
10.1073/pnas.0601602103
10.1016/j.ins.2018.02.063
10.1145/2939672.2939754
10.1103/PhysRevE.70.066111
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier Science Ltd. Jan 2020
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Jan 2020
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2019.06.030
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2019_06_030
S0950705119302977
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 71701115; 71471106
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Higher School Science and Technology Foundation of Shandong Province
  grantid: J17KA172
– fundername: Nature Science Foundation of Shandong Province
  grantid: ZR2017MF058
  funderid: http://dx.doi.org/10.13039/501100007129
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
UHS
WH7
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
8FD
E3H
EFKBS
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-23fcec327c1f01f765461a670a84b73002286e17881f3da46df0b3b0c7039bfc3
IEDL.DBID .~1
ISSN 0950-7051
IngestDate Fri Jul 25 02:27:45 EDT 2025
Thu Apr 24 23:08:55 EDT 2025
Tue Jul 01 04:37:57 EDT 2025
Fri Feb 23 02:18:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Three-stage algorithm
Community detection
Communities combination
Label propagation
Central nodes identification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-23fcec327c1f01f765461a670a84b73002286e17881f3da46df0b3b0c7039bfc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2330585801
PQPubID 2035257
ParticipantIDs proquest_journals_2330585801
crossref_citationtrail_10_1016_j_knosys_2019_06_030
crossref_primary_10_1016_j_knosys_2019_06_030
elsevier_sciencedirect_doi_10_1016_j_knosys_2019_06_030
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2020
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Bello-Orgaz, Salcedo-Sanz, Camacho (b12) 2018; 462
Žalik, Žalik (b11) 2018; 445–446
Newman, Girvan (b27) 2004; 69
D.E. Knuth, The stanford graphbase: a platform for combinatorial algorithms, in: Acm-Siam Symposium on Discrete Algorithms Society for Industrial and Applied Mathematics, 1993, pp. 41–43.
Liu, Pellegrini, Wang (b10) 2014; 4
Pan, Li, Liu, Liang (b15) 2012; 389(14)
Newman (b19) 2006; 74
Ahajjam, Haddad, Badir (b17) 2018; 54
Guimera, Danon, Diaz-Guilera, Giralt, Arenas (b30) 2003; 68
Lancichinetti, Fortunato, Radicchi (b22) 2008; 78
Raghavan, Albert, Kumara (b20) 2007; 76
Gleiser, Danon (b29) 2003; 6
L.A. Adamic, N. Glance, The political blogosphere and the 2004 us election: divided they blog, in: Proceedings of the 3rd International Workshop on Link Discovery, 2005, pp. 36–43.
Blondel, Guillaume, Lambiotte, Lefebvre (b3) 2008
Lusseau (b25) 2003; 270
Zhou, Lv, Zhang (b32) 2009; 71
Zachary (b24) 1977; 33
Adamic, Adar (b33) 2003; 25
A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 13–17.
Ding, Zhang, Sun, Luo (b7) 2018; 155
Newman (b2) 2006; 103
Danon, Diaz-Guilera, Duch, Arenas (b23) 2005
Girvan, Newman (b1) 2002; 99
Zhang, Wang, Zhang (b14) 2007; 374
Newman, Girvan (b21) 2004; 69
Lancichinetti, Fortunato (b13) 2012; 2
Watts, Strogatz (b31) 1998; 393
Žalik (b16) 2015; 5
Shang, Feng, Zhao, Fan (b6) 2015; 6
Rosvall, Bergstrom (b18) 2008; 105
M(pi)up, Schmidt (b9) 2012; 24
Clauset, Newman, Moore (b4) 2004; 70
Lv, Tan, Yi, Huang (b8) 2010; 18
Clauset (10.1016/j.knosys.2019.06.030_b4) 2004; 70
Rosvall (10.1016/j.knosys.2019.06.030_b18) 2008; 105
Danon (10.1016/j.knosys.2019.06.030_b23) 2005
Newman (10.1016/j.knosys.2019.06.030_b2) 2006; 103
Zhou (10.1016/j.knosys.2019.06.030_b32) 2009; 71
Ahajjam (10.1016/j.knosys.2019.06.030_b17) 2018; 54
Shang (10.1016/j.knosys.2019.06.030_b6) 2015; 6
M(pi)up (10.1016/j.knosys.2019.06.030_b9) 2012; 24
Zachary (10.1016/j.knosys.2019.06.030_b24) 1977; 33
Lv (10.1016/j.knosys.2019.06.030_b8) 2010; 18
Pan (10.1016/j.knosys.2019.06.030_b15) 2012; 389(14)
Newman (10.1016/j.knosys.2019.06.030_b21) 2004; 69
Raghavan (10.1016/j.knosys.2019.06.030_b20) 2007; 76
Lancichinetti (10.1016/j.knosys.2019.06.030_b22) 2008; 78
Adamic (10.1016/j.knosys.2019.06.030_b33) 2003; 25
Guimera (10.1016/j.knosys.2019.06.030_b30) 2003; 68
Lancichinetti (10.1016/j.knosys.2019.06.030_b13) 2012; 2
Newman (10.1016/j.knosys.2019.06.030_b19) 2006; 74
Žalik (10.1016/j.knosys.2019.06.030_b16) 2015; 5
Girvan (10.1016/j.knosys.2019.06.030_b1) 2002; 99
Lusseau (10.1016/j.knosys.2019.06.030_b25) 2003; 270
Žalik (10.1016/j.knosys.2019.06.030_b11) 2018; 445–446
Zhang (10.1016/j.knosys.2019.06.030_b14) 2007; 374
Ding (10.1016/j.knosys.2019.06.030_b7) 2018; 155
Bello-Orgaz (10.1016/j.knosys.2019.06.030_b12) 2018; 462
Blondel (10.1016/j.knosys.2019.06.030_b3) 2008
10.1016/j.knosys.2019.06.030_b26
10.1016/j.knosys.2019.06.030_b5
Watts (10.1016/j.knosys.2019.06.030_b31) 1998; 393
Gleiser (10.1016/j.knosys.2019.06.030_b29) 2003; 6
10.1016/j.knosys.2019.06.030_b28
Liu (10.1016/j.knosys.2019.06.030_b10) 2014; 4
Newman (10.1016/j.knosys.2019.06.030_b27) 2004; 69
References_xml – reference: L.A. Adamic, N. Glance, The political blogosphere and the 2004 us election: divided they blog, in: Proceedings of the 3rd International Workshop on Link Discovery, 2005, pp. 36–43.
– volume: 69
  start-page: 026113
  year: 2004
  ident: b21
  article-title: Finding and evaluating community structure in networks
  publication-title: Phys. Rev. E
– volume: 25
  start-page: 211
  year: 2003
  end-page: 230
  ident: b33
  article-title: Friends and neighbors on the web
  publication-title: Soc. Netw.
– volume: 155
  start-page: 71
  year: 2018
  end-page: 82
  ident: b7
  article-title: Low-rank subspace learning based network community detection
  publication-title: Knowl.-Based Syst.
– volume: 78
  start-page: 046110
  year: 2008
  ident: b22
  article-title: Benchmark graphs for testing community detection algorithms
  publication-title: Phys. Rev. E
– volume: 6
  start-page: 565
  year: 2003
  end-page: 573
  ident: b29
  article-title: Community structure in jazz
  publication-title: Adv. Complex Syst.
– volume: 69
  start-page: 026113
  year: 2004
  ident: b27
  article-title: Finding and evaluating community structure in networks
  publication-title: Phys. Rev. E
– volume: 54
  start-page: 41
  year: 2018
  end-page: 49
  ident: b17
  article-title: A new scalable leader-community detection approach for community detection in social networks
  publication-title: Social Networks
– volume: 374
  start-page: 483
  year: 2007
  end-page: 490
  ident: b14
  article-title: Identification of overlapping community structure in complex networks using fuzzy c-means clustering
  publication-title: Physica A
– volume: 393
  start-page: 440
  year: 1998
  end-page: 442
  ident: b31
  article-title: Collective dynamics of ’small-world’ networks
  publication-title: Nature
– volume: 18
  start-page: 217
  year: 2010
  end-page: 226
  ident: b8
  article-title: A family of fuzzy learning algorithms for robust principal component analysis neural networks, fuzzy systems
  publication-title: IEEE Trans.
– volume: 270
  start-page: S186
  year: 2003
  end-page: S188
  ident: b25
  article-title: The emergent properties of a dolphin social network
  publication-title: Proc. R. Soc. B
– volume: 5
  start-page: 18374
  year: 2015
  ident: b16
  article-title: Maximal neighbor similarity reveals real communities in networks
  publication-title: Sci. Rep.
– volume: 105
  start-page: 1118
  year: 2008
  end-page: 1123
  ident: b18
  article-title: Maps of information flow reveal community structure in complex networks
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 99
  start-page: 7821
  year: 2002
  end-page: 7826
  ident: b1
  article-title: Community structure in social and biological networks
  publication-title: Proc. Natl. Acad. Sci. USA
– reference: A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 13–17.
– volume: 71
  start-page: 623
  year: 2009
  end-page: 630
  ident: b32
  article-title: Predicting missing links via local information
  publication-title: Eur. Phys. J. B
– volume: 74
  start-page: 036104
  year: 2006
  ident: b19
  article-title: Finding community structure in networks using the eigenvectors of matrices
  publication-title: Phys. Rev. E
– volume: 68
  year: 2003
  ident: b30
  article-title: Self-similar community structure in a network of human interactions
  publication-title: Phys. Rev. E
– volume: 4
  start-page: 5739
  year: 2014
  ident: b10
  article-title: Detecting communities based on network topology
  publication-title: Sci. Rep.
– volume: 2
  start-page: 336
  year: 2012
  ident: b13
  article-title: Consensus clustering in complex networks
  publication-title: Sci. Rep.
– reference: D.E. Knuth, The stanford graphbase: a platform for combinatorial algorithms, in: Acm-Siam Symposium on Discrete Algorithms Society for Industrial and Applied Mathematics, 1993, pp. 41–43.
– volume: 462
  start-page: 290
  year: 2018
  end-page: 314
  ident: b12
  article-title: A multi-objective genetic algorithm for overlapping community detection based on edge encoding
  publication-title: Inform. Sci.
– start-page: P09008
  year: 2005
  ident: b23
  article-title: Comparing community structure identification
  publication-title: J. Stat. Mech. Theory Exp.
– volume: 445–446
  start-page: 38
  year: 2018
  end-page: 49
  ident: b11
  article-title: Memetic algorithm using node entropy and partition entropy for community detection in networks
  publication-title: Inform. Sci.
– volume: 76
  start-page: 036106
  year: 2007
  ident: b20
  article-title: Near linear time algorithm to detect community structures in large-scale networks
  publication-title: Phys. Rev. E
– volume: 24
  start-page: 2434
  year: 2012
  end-page: 2456
  ident: b9
  article-title: Bayesian community detection
  publication-title: Neural Comput.
– volume: 70
  year: 2004
  ident: b4
  article-title: Finding community structure in very large networks
  publication-title: Phys. Rev. E
– volume: 6
  start-page: 1
  year: 2015
  end-page: 14
  ident: b6
  article-title: Efficiently detecting overlapping communities using seeding and semi-supervised learning
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 103
  start-page: 8577
  year: 2006
  end-page: 8582
  ident: b2
  article-title: Modularity and community structure in networks
  publication-title: Proc. Natl. Acad. Sci. USA
– start-page: 10008
  year: 2008
  ident: b3
  article-title: Fast unfolding of communities in large networks
  publication-title: Stat. Mech. Theory Exp.
– volume: 33
  start-page: 452
  year: 1977
  end-page: 473
  ident: b24
  article-title: An information flow model for conflict and fission in small groups
  publication-title: J. Anthropol. Res.
– volume: 389(14)
  start-page: 2849
  year: 2012
  end-page: 2857
  ident: b15
  article-title: Detecting community structure in complex networks via node similarity
  publication-title: Physica A
– volume: 2
  start-page: 336
  year: 2012
  ident: 10.1016/j.knosys.2019.06.030_b13
  article-title: Consensus clustering in complex networks
  publication-title: Sci. Rep.
  doi: 10.1038/srep00336
– volume: 4
  start-page: 5739
  year: 2014
  ident: 10.1016/j.knosys.2019.06.030_b10
  article-title: Detecting communities based on network topology
  publication-title: Sci. Rep.
  doi: 10.1038/srep05739
– volume: 155
  start-page: 71
  year: 2018
  ident: 10.1016/j.knosys.2019.06.030_b7
  article-title: Low-rank subspace learning based network community detection
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.04.026
– start-page: 10008
  year: 2008
  ident: 10.1016/j.knosys.2019.06.030_b3
  article-title: Fast unfolding of communities in large networks
  publication-title: Stat. Mech. Theory Exp.
  doi: 10.1088/1742-5468/2008/10/P10008
– volume: 24
  start-page: 2434
  year: 2012
  ident: 10.1016/j.knosys.2019.06.030_b9
  article-title: Bayesian community detection
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00314
– volume: 54
  start-page: 41
  year: 2018
  ident: 10.1016/j.knosys.2019.06.030_b17
  article-title: A new scalable leader-community detection approach for community detection in social networks
  publication-title: Social Networks
  doi: 10.1016/j.socnet.2017.11.004
– volume: 374
  start-page: 483
  year: 2007
  ident: 10.1016/j.knosys.2019.06.030_b14
  article-title: Identification of overlapping community structure in complex networks using fuzzy c-means clustering
  publication-title: Physica A
  doi: 10.1016/j.physa.2006.07.023
– volume: 25
  start-page: 211
  year: 2003
  ident: 10.1016/j.knosys.2019.06.030_b33
  article-title: Friends and neighbors on the web
  publication-title: Soc. Netw.
  doi: 10.1016/S0378-8733(03)00009-1
– volume: 270
  start-page: S186
  year: 2003
  ident: 10.1016/j.knosys.2019.06.030_b25
  article-title: The emergent properties of a dolphin social network
  publication-title: Proc. R. Soc. B
  doi: 10.1098/rsbl.2003.0057
– volume: 5
  start-page: 18374
  year: 2015
  ident: 10.1016/j.knosys.2019.06.030_b16
  article-title: Maximal neighbor similarity reveals real communities in networks
  publication-title: Sci. Rep.
  doi: 10.1038/srep18374
– volume: 99
  start-page: 7821
  year: 2002
  ident: 10.1016/j.knosys.2019.06.030_b1
  article-title: Community structure in social and biological networks
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.122653799
– start-page: P09008
  year: 2005
  ident: 10.1016/j.knosys.2019.06.030_b23
  article-title: Comparing community structure identification
  publication-title: J. Stat. Mech. Theory Exp.
– volume: 74
  start-page: 036104
  year: 2006
  ident: 10.1016/j.knosys.2019.06.030_b19
  article-title: Finding community structure in networks using the eigenvectors of matrices
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.74.036104
– volume: 462
  start-page: 290
  year: 2018
  ident: 10.1016/j.knosys.2019.06.030_b12
  article-title: A multi-objective genetic algorithm for overlapping community detection based on edge encoding
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.06.015
– volume: 76
  start-page: 036106
  year: 2007
  ident: 10.1016/j.knosys.2019.06.030_b20
  article-title: Near linear time algorithm to detect community structures in large-scale networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.76.036106
– volume: 105
  start-page: 1118
  year: 2008
  ident: 10.1016/j.knosys.2019.06.030_b18
  article-title: Maps of information flow reveal community structure in complex networks
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0706851105
– volume: 78
  start-page: 046110
  year: 2008
  ident: 10.1016/j.knosys.2019.06.030_b22
  article-title: Benchmark graphs for testing community detection algorithms
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.78.046110
– volume: 6
  start-page: 565
  year: 2003
  ident: 10.1016/j.knosys.2019.06.030_b29
  article-title: Community structure in jazz
  publication-title: Adv. Complex Syst.
  doi: 10.1142/S0219525903001067
– volume: 393
  start-page: 440
  year: 1998
  ident: 10.1016/j.knosys.2019.06.030_b31
  article-title: Collective dynamics of ’small-world’ networks
  publication-title: Nature
  doi: 10.1038/30918
– volume: 33
  start-page: 452
  year: 1977
  ident: 10.1016/j.knosys.2019.06.030_b24
  article-title: An information flow model for conflict and fission in small groups
  publication-title: J. Anthropol. Res.
  doi: 10.1086/jar.33.4.3629752
– volume: 68
  year: 2003
  ident: 10.1016/j.knosys.2019.06.030_b30
  article-title: Self-similar community structure in a network of human interactions
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.68.065103
– ident: 10.1016/j.knosys.2019.06.030_b28
– volume: 18
  start-page: 217
  year: 2010
  ident: 10.1016/j.knosys.2019.06.030_b8
  article-title: A family of fuzzy learning algorithms for robust principal component analysis neural networks, fuzzy systems
  publication-title: IEEE Trans.
– volume: 389(14)
  start-page: 2849
  year: 2012
  ident: 10.1016/j.knosys.2019.06.030_b15
  article-title: Detecting community structure in complex networks via node similarity
  publication-title: Physica A
– ident: 10.1016/j.knosys.2019.06.030_b26
  doi: 10.1145/1134271.1134277
– volume: 69
  start-page: 026113
  year: 2004
  ident: 10.1016/j.knosys.2019.06.030_b27
  article-title: Finding and evaluating community structure in networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.69.026113
– volume: 71
  start-page: 623
  year: 2009
  ident: 10.1016/j.knosys.2019.06.030_b32
  article-title: Predicting missing links via local information
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2009-00335-8
– volume: 103
  start-page: 8577
  year: 2006
  ident: 10.1016/j.knosys.2019.06.030_b2
  article-title: Modularity and community structure in networks
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0601602103
– volume: 445–446
  start-page: 38
  year: 2018
  ident: 10.1016/j.knosys.2019.06.030_b11
  article-title: Memetic algorithm using node entropy and partition entropy for community detection in networks
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.02.063
– volume: 6
  start-page: 1
  year: 2015
  ident: 10.1016/j.knosys.2019.06.030_b6
  article-title: Efficiently detecting overlapping communities using seeding and semi-supervised learning
  publication-title: Int. J. Mach. Learn. Cybern.
– ident: 10.1016/j.knosys.2019.06.030_b5
  doi: 10.1145/2939672.2939754
– volume: 70
  year: 2004
  ident: 10.1016/j.knosys.2019.06.030_b4
  article-title: Finding community structure in very large networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.70.066111
– volume: 69
  start-page: 026113
  year: 2004
  ident: 10.1016/j.knosys.2019.06.030_b21
  article-title: Finding and evaluating community structure in networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.69.026113
SSID ssj0002218
Score 2.4925199
Snippet Detecting communities or clusters of networks is a considerable interesting problem in various fields and interdisciplinary subjects in recent years. Tens of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104822
SubjectTerms Algorithms
Central nodes identification
Communities combination
Community detection
Computer simulation
Interdisciplinary subjects
Label propagation
Modularity
Nodes
Propagation
Similarity
Social networks
Three-stage algorithm
Title A three-stage algorithm on community detection in social networks
URI https://dx.doi.org/10.1016/j.knosys.2019.06.030
https://www.proquest.com/docview/2330585801
Volume 187
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRjxK5YHV1Imd11hVVAVEF6jULUocuxSKU9EwdOG343McEAipEmtiR9H57ruz_d0dQpcMGr4rkZMkkYpwERibE6FHosJgYcioyG37tvtxOJrw22kwbaFBkwsDtEqH_TWmW7R2T3pOmr3lfN57MMGB0Ve4B2PQgQkyyjmPQMuvPr5pHr5vz_hgMIHRTfqc5Xi96HK1hqLdXmKreAIX-m_39AuorfcZ7qEdFzbifv1n-6gl9QHabVoyYGehh6jfx5VZHUlM0DeTOFvMSrP7f3rFpcaizgWp1riQlWVgaTzXuD41x7rmg6-O0GR4_TgYEdclgQjGeEV8poQUzI-Ep6inIshO8rIwolnMc6hG7_txKD0oG69YkfGwUDRnORXG1pNcCXaM2rrU8gThJIypEElcmBiDq6zIA1-YDWyQJFnGCxqdItYIJxWuhDh0slikDVfsOa1FmoJIU6DMMXqKyNesZV1CY8P4qJF7-kMVUoPyG2Z2mmVKnSma98xAWhwYT3z27w-fo20f9tn26KWD2tXbu7wwwUiVd622ddFW_-ZuNP4EGyHeQA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdoCFN6JQwAOr1STOc4wqqpQ-Flqpm5U4dimUpGrD0H-PnThIIKRKrIkdRWff57P93XcAj0QVfBcswUHABbaZI32OuSb2UomFLjFYUpZvG0_caGY_z515A3p1LoyiVWrsrzC9RGv9pKut2V0vl90XGRzI-aruwYiqwOQdQEupUzlNaIWDYTT5BmTLKo_5VHusOtQZdCXN6z3Ltzul220GpZCnokP_vUL9wupyAeqfwrGOHFFY_dwZNHh2Did1VQaknfQCwhAVcoA4lnHfgqN4tcg3y-L1A-UZYlU6SLFDKS9KElaGlhmqDs5RVlHCt5cw6z9NexHWhRIwI8QusEUE44xYHjOFYQpPJSiZsesZsW8nSpDesnyXm0o5XpA0tt1UGAlJDCbdPUgEI1fQzPKMXwMKXN9gLPBTGWbYIk4Tx2JyD-sEQRzbqeG1gdTGoUyriKtiFita08XeaGVSqkxKFWuOGG3A373WlYrGnvZebXf6YzZQCfR7enbqYaLaG-V7IlHNd-RifPPvDz_AYTQdj-hoMBnewpGltt3lSUwHmsXmk9_J2KRI7vXc-wLDV-Dx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+three-stage+algorithm+on+community+detection+in+social+networks&rft.jtitle=Knowledge-based+systems&rft.au=You%2C+Xuemei&rft.au=Ma%2C+Yinghong&rft.au=Liu%2C+Zhiyuan&rft.date=2020-01-01&rft.issn=0950-7051&rft.volume=187&rft.spage=104822&rft_id=info:doi/10.1016%2Fj.knosys.2019.06.030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2019_06_030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon