Numerical simulation of a commercial FCC regenerator using Multiphase Particle-in-Cell methodology (MP-PIC)
Isovolumes of average oxygen concentrations within the regenerator as predicted by the numerical model. [Display omitted] •MP-PIC approach is used to model the fluid-particle flow in an FCC regenerator.•The simulation is performed using a 3D regenerator design with complex internals.•Bed hydrodynami...
Saved in:
Published in | Advanced powder technology : the international journal of the Society of Powder Technology, Japan Vol. 28; no. 11; pp. 2947 - 2960 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0921-8831 1568-5527 |
DOI | 10.1016/j.apt.2017.09.002 |
Cover
Loading…
Abstract | Isovolumes of average oxygen concentrations within the regenerator as predicted by the numerical model.
[Display omitted]
•MP-PIC approach is used to model the fluid-particle flow in an FCC regenerator.•The simulation is performed using a 3D regenerator design with complex internals.•Bed hydrodynamics, thermal effects, and chemical kinetics are predicted.•Erosion areas, standpipe drainage, and CO emission levels are investigated.•MP-PIC approach is successfully used to identify performance and reliability issues.
Catalyst regeneration process has recently been the subject of comprehensive research investigations focusing mainly on the chemistry of the regeneration while overlooking the bed hydrodynamics and its effects on the regeneration performance. For this purpose, an industrial Fluid Catalytic Cracking (FCC) regenerator is simulated using a Multi-Phase Particle-In-Cell (MP-PIC) approach. The simulation is performed using a three-dimensional regenerator design with complex internals in order to study bed hydrodynamics, thermal effects, and chemical kinetics. The numerical model is then used to study typical industrial issues linked to the operation of industrial regenerators such as erosion areas, standpipe drainage, and CO emission levels. It is noticed that total outlet gas flow exceeds total inlet flow due to the formation of coke combustion products, an undersized standpipe, and inefficient placement of the air distributor rings. Highest erosion occurs in the feed line and plate. A low-temperature column exists in the center of the unit, and the highest temperatures are outside of the diplegs in the periphery of the freeboard. Elevated CO levels are present in the outlet gas because of poorly designed air distributor rings and lower than optimal temperatures in the unit. These simulation results show the numerous modeling capabilities of the MP-PIC approach to identify possible performance and reliability issues of an industrial process. Some redesign proposals have been made to enhance the FCC regenerator operations. |
---|---|
AbstractList | Isovolumes of average oxygen concentrations within the regenerator as predicted by the numerical model.
[Display omitted]
•MP-PIC approach is used to model the fluid-particle flow in an FCC regenerator.•The simulation is performed using a 3D regenerator design with complex internals.•Bed hydrodynamics, thermal effects, and chemical kinetics are predicted.•Erosion areas, standpipe drainage, and CO emission levels are investigated.•MP-PIC approach is successfully used to identify performance and reliability issues.
Catalyst regeneration process has recently been the subject of comprehensive research investigations focusing mainly on the chemistry of the regeneration while overlooking the bed hydrodynamics and its effects on the regeneration performance. For this purpose, an industrial Fluid Catalytic Cracking (FCC) regenerator is simulated using a Multi-Phase Particle-In-Cell (MP-PIC) approach. The simulation is performed using a three-dimensional regenerator design with complex internals in order to study bed hydrodynamics, thermal effects, and chemical kinetics. The numerical model is then used to study typical industrial issues linked to the operation of industrial regenerators such as erosion areas, standpipe drainage, and CO emission levels. It is noticed that total outlet gas flow exceeds total inlet flow due to the formation of coke combustion products, an undersized standpipe, and inefficient placement of the air distributor rings. Highest erosion occurs in the feed line and plate. A low-temperature column exists in the center of the unit, and the highest temperatures are outside of the diplegs in the periphery of the freeboard. Elevated CO levels are present in the outlet gas because of poorly designed air distributor rings and lower than optimal temperatures in the unit. These simulation results show the numerous modeling capabilities of the MP-PIC approach to identify possible performance and reliability issues of an industrial process. Some redesign proposals have been made to enhance the FCC regenerator operations. |
Author | Berrouk, Abdallah S. Nandakumar, Krishnaswamy Thampi, Priyanka Bale, Shivkumar Huang, Allen |
Author_xml | – sequence: 1 givenname: Abdallah S. surname: Berrouk fullname: Berrouk, Abdallah S. email: aberrouk@pi.ac.ae organization: Chemical Engineering Department, Khalifa University of Science and Technology, Petroleum Institute, PO Box 2533, Abu Dhabi, United Arab Emirates – sequence: 2 givenname: Allen surname: Huang fullname: Huang, Allen organization: Chemical Engineering Department, Khalifa University of Science and Technology, Petroleum Institute, PO Box 2533, Abu Dhabi, United Arab Emirates – sequence: 3 givenname: Shivkumar surname: Bale fullname: Bale, Shivkumar organization: Chemical Engineering Department, Louisiana State University, Baton Rouge, LA, USA – sequence: 4 givenname: Priyanka surname: Thampi fullname: Thampi, Priyanka organization: Chemical Engineering Department, Khalifa University of Science and Technology, Petroleum Institute, PO Box 2533, Abu Dhabi, United Arab Emirates – sequence: 5 givenname: Krishnaswamy surname: Nandakumar fullname: Nandakumar, Krishnaswamy organization: Chemical Engineering Department, Louisiana State University, Baton Rouge, LA, USA |
BookMark | eNp9kLFOwzAURS0EEm3hA9g8wpDw7DR1IiYUUahEoQPMluu8tC5OXNkuUv-elDIxdHrDfedK9wzJeec6JOSGQcqATe43qdrGlAMTKZQpAD8jA5ZPiiTPuTgnAyg5S4oiY5dkGMIG-kc-Lgfk623XojdaWRpMu7MqGtdR11BFtWv7SJs-mlYV9bjCDr2KztNdMN2Kznc2mu1aBaQL5aPRFhPTJRVaS1uMa1c761Z7ejtfJItZdXdFLhplA17_3RH5nD59VC_J6_vzrHp8TXSWjWPCgRcageV13hR10QgQDJa6ZuOlLkUOvMxYgVjXgjPgy6zMxRhQqEIrviwZz0aEHXu1dyF4bOTWm1b5vWQgD7bkRva25MGWhFL2tnpG_GO0ib8yolfGniQfjiT2k74Nehm0wU5jbTzqKGtnTtA_NNKG0g |
CitedBy_id | crossref_primary_10_1016_j_cherd_2021_10_031 crossref_primary_10_1016_j_fuel_2024_132673 crossref_primary_10_1016_j_powtec_2022_117137 crossref_primary_10_1016_j_enconman_2019_112213 crossref_primary_10_1016_j_applthermaleng_2023_120356 crossref_primary_10_1080_10494820_2021_1916766 crossref_primary_10_1007_s00894_019_4180_7 crossref_primary_10_1016_j_renene_2024_120068 crossref_primary_10_1016_j_enconman_2021_114029 crossref_primary_10_1016_j_powtec_2019_05_067 crossref_primary_10_1515_ijcre_2021_0249 crossref_primary_10_1021_acs_energyfuels_9b00474 crossref_primary_10_1016_j_ces_2021_117300 crossref_primary_10_1016_j_ces_2021_117301 crossref_primary_10_1016_j_energy_2022_123859 crossref_primary_10_3390_en15062061 crossref_primary_10_1016_j_supflu_2021_105306 crossref_primary_10_1016_j_powtec_2019_04_032 crossref_primary_10_1016_j_cej_2021_129694 crossref_primary_10_1016_j_powtec_2021_03_043 crossref_primary_10_1007_s11630_025_2092_7 crossref_primary_10_1016_j_aej_2021_02_062 crossref_primary_10_1063_5_0140307 crossref_primary_10_1016_j_euromechflu_2019_05_005 crossref_primary_10_1016_j_cej_2021_128634 crossref_primary_10_1016_j_cej_2023_141952 crossref_primary_10_1016_j_powtec_2022_117608 crossref_primary_10_3390_math12233700 crossref_primary_10_1016_j_ijmultiphaseflow_2024_105117 crossref_primary_10_1016_j_pecs_2021_100930 crossref_primary_10_1016_j_cej_2025_159348 crossref_primary_10_1016_j_powtec_2019_04_028 crossref_primary_10_1177_0954408920987695 crossref_primary_10_1002_cjce_23748 crossref_primary_10_1080_10916466_2020_1825966 crossref_primary_10_1021_acs_iecr_1c04035 crossref_primary_10_1021_acs_energyfuels_9b01616 crossref_primary_10_1016_j_ecmx_2021_100104 crossref_primary_10_1016_j_fuproc_2018_10_023 crossref_primary_10_1016_j_powtec_2024_119386 |
Cites_doi | 10.1006/jcph.1993.1197 10.1016/S0301-9322(98)00030-5 10.1016/j.ces.2010.08.032 10.1021/ie00043a027 10.1016/0009-2509(95)00271-5 10.1016/j.powtec.2007.01.032 10.1016/j.wear.2010.03.002 10.1016/j.cej.2009.05.024 10.1016/j.powtec.2009.08.018 10.1016/0032-5910(92)88030-L 10.1016/j.ces.2008.11.014 10.1016/j.ces.2014.07.043 10.1016/0301-9322(95)00072-0 10.1021/i160024a007 10.1006/jcph.2001.6747 10.1016/S0008-6223(99)00034-2 10.1016/j.ces.2010.12.042 |
ContentType | Journal Article |
Copyright | 2017 The Society of Powder Technology Japan |
Copyright_xml | – notice: 2017 The Society of Powder Technology Japan |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apt.2017.09.002 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1568-5527 |
EndPage | 2960 |
ExternalDocumentID | 10_1016_j_apt_2017_09_002 S0921883117303497 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 23M 4.4 457 4G. 5GY 5VS 63Z 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAFNC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDBF ABFNM ABJNI ABLST ABMAC ABNUV ABUBZ ABXDB ABXRA ABYKQ ACDAQ ACGFS ACMRT ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADYHW AEBSH AEKER AENEX AEVUW AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMFWP AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 EAP EAS EBS EFJIC EFLBG EJD EMK ENUVR EP2 EP3 EST ESX F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN GBLVA HLY HVGLF HZ~ I-F J1W KC5 KCYFY KOM LY7 M41 MAGPM MM1 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- R4W RIG RNI ROL RZC SCE SDF SES SPC SPCBC SSG SSM SSZ T5K TUS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACUHS ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c334t-2028ce015d5f8d8f70710bcd14bc975029318eedd72102b395740e7a8ca2b9123 |
IEDL.DBID | .~1 |
ISSN | 0921-8831 |
IngestDate | Tue Jul 01 02:42:27 EDT 2025 Thu Apr 24 23:03:07 EDT 2025 Fri Feb 23 02:30:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Computational particle-fluid dynamics CO emission Multiphase Particle-in-Cell Regenerator Catalyst particle |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-2028ce015d5f8d8f70710bcd14bc975029318eedd72102b395740e7a8ca2b9123 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1016_j_apt_2017_09_002 crossref_citationtrail_10_1016_j_apt_2017_09_002 elsevier_sciencedirect_doi_10_1016_j_apt_2017_09_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-01 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Advanced powder technology : the international journal of the Society of Powder Technology, Japan |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Snider, Clark, O'Rourke (b0025) 2011; 66 Anderson, Jackson (b0030) 1967; 6 Cunkui, Minev, Luo, Nandakumar (b0120) 2010; 269 Gary, Handwerk, Kaiser (b0005) 2007 O'Rourke, Brackbill, Larrouturou (b0020) 1993; 109 Wu, Ayeni, Berrouk, Nandakumar (b0070) 2014; 118 Jackson (b0035) 2000 Mills, Mason (b0115) 1979; 3 Wen, Yu (b0100) 1966; 62 O’Rourke (b0105) 1981 Wu, Berrouk, Nandakumar (b0050) 2009; 152 Arbel, Huang, Rinard, Shinnar, Sapre (b0010) 1995; 34 Tsuji, Tanaka, Ishida (b0060) 1992; 71 Wu, Zhan, Li, Lam, Berrouk (b0045) 2009; 64 Gidaspow (b0040) 1994 Andrews, O'Rourke (b0075) 1996; 22 Snider (b0085) 2001; 170 Jones, Patterson, Pourkashanian, Williams (b0110) 1999; 37 Snider (b0095) 2007; 176 Hoomans, Kuipers, Briels, Swaaij (b0065) 1996; 51 Snider, O'Rourke, Andrews (b0080) 1998; 24 Wilson (b0015) 1997 Wu, Berrouk, Nandakumar (b0055) 2010; 197 O’Rourke, Snider (b0090) 2010; 65 Jackson (10.1016/j.apt.2017.09.002_b0035) 2000 Wen (10.1016/j.apt.2017.09.002_b0100) 1966; 62 Anderson (10.1016/j.apt.2017.09.002_b0030) 1967; 6 Wu (10.1016/j.apt.2017.09.002_b0050) 2009; 152 Wu (10.1016/j.apt.2017.09.002_b0055) 2010; 197 Gidaspow (10.1016/j.apt.2017.09.002_b0040) 1994 Snider (10.1016/j.apt.2017.09.002_b0025) 2011; 66 Wu (10.1016/j.apt.2017.09.002_b0045) 2009; 64 Mills (10.1016/j.apt.2017.09.002_b0115) 1979; 3 Andrews (10.1016/j.apt.2017.09.002_b0075) 1996; 22 Wilson (10.1016/j.apt.2017.09.002_b0015) 1997 Hoomans (10.1016/j.apt.2017.09.002_b0065) 1996; 51 Snider (10.1016/j.apt.2017.09.002_b0085) 2001; 170 Snider (10.1016/j.apt.2017.09.002_b0095) 2007; 176 O’Rourke (10.1016/j.apt.2017.09.002_b0105) 1981 Jones (10.1016/j.apt.2017.09.002_b0110) 1999; 37 O'Rourke (10.1016/j.apt.2017.09.002_b0020) 1993; 109 Gary (10.1016/j.apt.2017.09.002_b0005) 2007 Snider (10.1016/j.apt.2017.09.002_b0080) 1998; 24 Arbel (10.1016/j.apt.2017.09.002_b0010) 1995; 34 Wu (10.1016/j.apt.2017.09.002_b0070) 2014; 118 O’Rourke (10.1016/j.apt.2017.09.002_b0090) 2010; 65 Tsuji (10.1016/j.apt.2017.09.002_b0060) 1992; 71 Cunkui (10.1016/j.apt.2017.09.002_b0120) 2010; 269 |
References_xml | – volume: 66 start-page: 1285 year: 2011 end-page: 1295 ident: b0025 article-title: Eulerian-Lagrangian method for three-dimensional thermal reacting flow with application to coal gasifiers publication-title: Chem. Eng. Sci. – year: 1994 ident: b0040 article-title: Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions – year: 2000 ident: b0035 article-title: The Dynamics of Fluidized Particles – volume: 269 start-page: 190 year: 2010 end-page: 196 ident: b0120 article-title: A phenomenological model for erosion of material in a horizontal slurry pipeline flow publication-title: Wear – volume: 22 start-page: 379 year: 1996 end-page: 402 ident: b0075 article-title: The multiphase particle-in-cell (MP-PIC) method for dense particle flow publication-title: Int. J. Multiphase Flow – volume: 24 start-page: 1359 year: 1998 end-page: 1382 ident: b0080 article-title: Sediment flow in inclined vessels calculated using a multiphase particle-in-cell model for dense particle flows publication-title: Int. J. Multiphase Flow – volume: 3 start-page: 13 year: 1979 end-page: 20 ident: b0115 article-title: Evaluating the conveying capacity and service life of pipe bends in pneumatic conveying systems publication-title: J. Powder Bulk Solids Technol. – volume: 118 start-page: 221 year: 2014 end-page: 244 ident: b0070 article-title: Parallel algorithms for CFD-DEM modelling of dense particulate flows publication-title: Chem. Eng. Sci. – volume: 34 start-page: 1228 year: 1995 end-page: 1243 ident: b0010 article-title: Dynamic and control of fluidized catalytic crackers. 1. Modeling of the current generation of FCC’s publication-title: Ind. Eng. Chem. Res. – volume: 176 start-page: 36 year: 2007 end-page: 46 ident: b0095 article-title: Three fundamental granular flow experiments and CPFD predictions publication-title: Powder Tech. – year: 1997 ident: b0015 article-title: Fluid Catalytic Cracking technology and Operations – volume: 64 start-page: 1260 year: 2009 end-page: 1266 ident: b0045 article-title: Accurate void fraction calculation for three-dimensional discrete particle model for gas-solid fluidized beds on unstructured mesh publication-title: Chem. Eng. Sci. – year: 1981 ident: b0105 article-title: Collective Drop Effects on Vaporizing Liquid Sprays [dissertation] – volume: 51 start-page: 99 year: 1996 end-page: 118 ident: b0065 article-title: Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: a hard-sphere approach publication-title: Chem. Eng. Sci. – volume: 109 start-page: 37 year: 1993 end-page: 52 ident: b0020 article-title: On particle-grid interpolation and calculating chemistry in particle-in-cell methods publication-title: J. Comp. Phys. – volume: 6 start-page: 527 year: 1967 end-page: 539 ident: b0030 article-title: A fluid mechanical description of fluidized beds publication-title: Ind. Eng. Chem. Fundamen. – volume: 62 start-page: 100 year: 1966 end-page: 111 ident: b0100 article-title: Mechanics of fluidization publication-title: Chem. Eng. Progr. Sympos. Ser. – volume: 152 start-page: 514 year: 2009 end-page: 529 ident: b0050 article-title: Three-dimensional discrete particle model for gas–solid fluidized beds on unstructured mesh publication-title: Chem. Eng. J. – year: 2007 ident: b0005 article-title: Petroleum Refining: Technology and Economics – volume: 71 start-page: 239 year: 1992 end-page: 250 ident: b0060 article-title: Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe publication-title: Powder Tech. – volume: 197 start-page: 58 year: 2010 end-page: 67 ident: b0055 article-title: An efficient chained-hash-table strategy for collision handling in hard-sphere discrete particle modeling publication-title: Powder Tech. – volume: 65 start-page: 6014 year: 2010 end-page: 6028 ident: b0090 article-title: An improved collision damping time for MP-PIC calculations of dense particle flows with applications to polydisperse sedimenting beds and colliding particle jets publication-title: Chem. Eng. Sci. – volume: 170 start-page: 523 year: 2001 end-page: 549 ident: b0085 article-title: An incompressible three dimensional multiphase particle-in-cell model for dense particle flows publication-title: J. Comp. Phys. – volume: 37 start-page: 1545 year: 1999 end-page: 1552 ident: b0110 article-title: Approaches to modelling heterogeneous char NO formation/destruction during Pulverized coal combustion publication-title: Carbon – year: 1994 ident: 10.1016/j.apt.2017.09.002_b0040 – year: 2007 ident: 10.1016/j.apt.2017.09.002_b0005 – volume: 109 start-page: 37 issue: 1 year: 1993 ident: 10.1016/j.apt.2017.09.002_b0020 article-title: On particle-grid interpolation and calculating chemistry in particle-in-cell methods publication-title: J. Comp. Phys. doi: 10.1006/jcph.1993.1197 – volume: 24 start-page: 1359 issue: 8 year: 1998 ident: 10.1016/j.apt.2017.09.002_b0080 article-title: Sediment flow in inclined vessels calculated using a multiphase particle-in-cell model for dense particle flows publication-title: Int. J. Multiphase Flow doi: 10.1016/S0301-9322(98)00030-5 – volume: 65 start-page: 6014 issue: 22 year: 2010 ident: 10.1016/j.apt.2017.09.002_b0090 article-title: An improved collision damping time for MP-PIC calculations of dense particle flows with applications to polydisperse sedimenting beds and colliding particle jets publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2010.08.032 – volume: 62 start-page: 100 year: 1966 ident: 10.1016/j.apt.2017.09.002_b0100 article-title: Mechanics of fluidization publication-title: Chem. Eng. Progr. Sympos. Ser. – volume: 34 start-page: 1228 issue: 4 year: 1995 ident: 10.1016/j.apt.2017.09.002_b0010 article-title: Dynamic and control of fluidized catalytic crackers. 1. Modeling of the current generation of FCC’s publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie00043a027 – volume: 51 start-page: 99 issue: 1 year: 1996 ident: 10.1016/j.apt.2017.09.002_b0065 article-title: Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: a hard-sphere approach publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(95)00271-5 – year: 1981 ident: 10.1016/j.apt.2017.09.002_b0105 – volume: 176 start-page: 36 issue: 1 year: 2007 ident: 10.1016/j.apt.2017.09.002_b0095 article-title: Three fundamental granular flow experiments and CPFD predictions publication-title: Powder Tech. doi: 10.1016/j.powtec.2007.01.032 – volume: 269 start-page: 190 year: 2010 ident: 10.1016/j.apt.2017.09.002_b0120 article-title: A phenomenological model for erosion of material in a horizontal slurry pipeline flow publication-title: Wear doi: 10.1016/j.wear.2010.03.002 – volume: 152 start-page: 514 issue: 2–3 year: 2009 ident: 10.1016/j.apt.2017.09.002_b0050 article-title: Three-dimensional discrete particle model for gas–solid fluidized beds on unstructured mesh publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2009.05.024 – volume: 197 start-page: 58 issue: 1–2 year: 2010 ident: 10.1016/j.apt.2017.09.002_b0055 article-title: An efficient chained-hash-table strategy for collision handling in hard-sphere discrete particle modeling publication-title: Powder Tech. doi: 10.1016/j.powtec.2009.08.018 – year: 2000 ident: 10.1016/j.apt.2017.09.002_b0035 – volume: 71 start-page: 239 issue: 3 year: 1992 ident: 10.1016/j.apt.2017.09.002_b0060 article-title: Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe publication-title: Powder Tech. doi: 10.1016/0032-5910(92)88030-L – volume: 64 start-page: 1260 issue: 6 year: 2009 ident: 10.1016/j.apt.2017.09.002_b0045 article-title: Accurate void fraction calculation for three-dimensional discrete particle model for gas-solid fluidized beds on unstructured mesh publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2008.11.014 – volume: 118 start-page: 221 year: 2014 ident: 10.1016/j.apt.2017.09.002_b0070 article-title: Parallel algorithms for CFD-DEM modelling of dense particulate flows publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2014.07.043 – volume: 22 start-page: 379 issue: 2 year: 1996 ident: 10.1016/j.apt.2017.09.002_b0075 article-title: The multiphase particle-in-cell (MP-PIC) method for dense particle flow publication-title: Int. J. Multiphase Flow doi: 10.1016/0301-9322(95)00072-0 – volume: 6 start-page: 527 issue: 4 year: 1967 ident: 10.1016/j.apt.2017.09.002_b0030 article-title: A fluid mechanical description of fluidized beds publication-title: Ind. Eng. Chem. Fundamen. doi: 10.1021/i160024a007 – volume: 170 start-page: 523 issue: 2 year: 2001 ident: 10.1016/j.apt.2017.09.002_b0085 article-title: An incompressible three dimensional multiphase particle-in-cell model for dense particle flows publication-title: J. Comp. Phys. doi: 10.1006/jcph.2001.6747 – year: 1997 ident: 10.1016/j.apt.2017.09.002_b0015 – volume: 3 start-page: 13 issue: 2 year: 1979 ident: 10.1016/j.apt.2017.09.002_b0115 article-title: Evaluating the conveying capacity and service life of pipe bends in pneumatic conveying systems publication-title: J. Powder Bulk Solids Technol. – volume: 37 start-page: 1545 issue: 10 year: 1999 ident: 10.1016/j.apt.2017.09.002_b0110 article-title: Approaches to modelling heterogeneous char NO formation/destruction during Pulverized coal combustion publication-title: Carbon doi: 10.1016/S0008-6223(99)00034-2 – volume: 66 start-page: 1285 issue: 6 year: 2011 ident: 10.1016/j.apt.2017.09.002_b0025 article-title: Eulerian-Lagrangian method for three-dimensional thermal reacting flow with application to coal gasifiers publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2010.12.042 |
SSID | ssj0017249 |
Score | 2.3232503 |
Snippet | Isovolumes of average oxygen concentrations within the regenerator as predicted by the numerical model.
[Display omitted]
•MP-PIC approach is used to model the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 2947 |
SubjectTerms | Catalyst particle CO emission Computational particle-fluid dynamics Multiphase Particle-in-Cell Regenerator |
Title | Numerical simulation of a commercial FCC regenerator using Multiphase Particle-in-Cell methodology (MP-PIC) |
URI | https://dx.doi.org/10.1016/j.apt.2017.09.002 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IXvRg_Iz4QXrwoCaVjXasO5JFAhoIiZJwW9a1w-kYC8LVv93XrSMYoweP295L1re393vt-0LoGlAklMJziYwlJ0x5HuHMsYkuF6HCUTGTujh5OOr0J-xx6kxryK9qYXRapbH9pU0vrLW50zLSbOVJ0nq2PIAnTm0blJQyT1eUM-ZqLb__3KR5AD6XLjAQE01dRTaLHK8w1-mUtlu0OjUnKz-waQtvegdo3ziKuFu-yyGqqewI7W21DzxG76N1GW9J8UcyN3O48CLGIYblzPUsJXjU8328VLOivTRssLHOdJ_hovA2fwUMw2OzXpJkxFdpisup0sV5O74Zjsl44N-eoEnv4cXvEzM8gUSUshVof5tHCsBeOjGXPHa1LyEiaTMReeAmAMzbHABSunrTJ3S4jlnKDXkUtoUHeHaK6tkiU2cIW1I4HTCotojA36BKuJTG3FawNYnhH1MNZFViCyLTWVwPuEiDKoXsLQBJB1rSgeUFIOkGutuw5GVbjb-IWfUtgm-6EYDZ_53t_H9sF2hXX5X1hpeovlqu1RU4HivRLDSriXa6g6f-6AvbctZB |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYAB8RTl6YEBkKwmjUOcsYqoWmirSoDEZsWxUwJ9RND-f86Jg4oQDKyxT4rP5_vOvhfABaJIrGQYUJUqTpkOQ8qZ71KTLuJJX6dMmeTk_uCm88Tunv3nFYiqXBgTVml1f6nTC21tvzQsNxt5ljUenBDhiXuui0LqsTBYhTVTncqvwVqre98ZfDkTgmZpBeN8aggq52YR5hXnJqLSDYpqp_Zx5Qc8LUFOexu2rK1IWuXv7MCKnu7C5lIFwT14GyxKl8uYfGQT24qLzFISE1zRxLRTwqF2FJF3PSoqTOMdm5hg9xEpcm_zF4QxMrRLptmURno8JmVj6eLJnVz2h3TYja724al9-xh1qO2fQBPPY3M8AE2eaMR75adc8TQw5oRMlMtkEqKlgEjvcsRIFZh7nzQeO-boIOZJ3JQhQtoB1KazqT4E4ijp36BOdWWCJoenZeB5KXc13k5SPGa6Dk7FNpHY4uKmx8VYVFFkrwI5LQynhRMK5HQdrr9I8rKyxl-TWbUX4pt4CNT8v5Md_Y_sHNY7j_2e6HUH98ewYUbK9MMTqM3fF_oU7ZC5PLNy9glFB9jy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+a+commercial+FCC+regenerator+using+Multiphase+Particle-in-Cell+methodology+%28MP-PIC%29&rft.jtitle=Advanced+powder+technology+%3A+the+international+journal+of+the+Society+of+Powder+Technology%2C+Japan&rft.au=Berrouk%2C+Abdallah+S.&rft.au=Huang%2C+Allen&rft.au=Bale%2C+Shivkumar&rft.au=Thampi%2C+Priyanka&rft.date=2017-11-01&rft.issn=0921-8831&rft.volume=28&rft.issue=11&rft.spage=2947&rft.epage=2960&rft_id=info:doi/10.1016%2Fj.apt.2017.09.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apt_2017_09_002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-8831&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-8831&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-8831&client=summon |