Metal ion independent conductance through bis-chelated metal complex molecular wires based on a bis(diphenylphosphino)aniline derivative
It is becoming increasingly evident that transition metal complexes impart desirable qualities in single-molecule electronics, and testing metallic centres in combination with appropriate ligands is salient to building the next generation of single-molecule devices. Metal-phosphine complexes have be...
Saved in:
Published in | Dalton transactions : an international journal of inorganic chemistry Vol. 54; no. 19; pp. 7874 - 7881 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
13.05.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It is becoming increasingly evident that transition metal complexes impart desirable qualities in single-molecule electronics, and testing metallic centres in combination with appropriate ligands is salient to building the next generation of single-molecule devices. Metal-phosphine complexes have been the subject of very few studies, despite their extensive use in other areas of chemistry. In this contribution, we fabricated and studied robust single-molecule junctions using linear bis-chelated ligand-metal-ligand complexes of the type [M(PNP)
2
]PF
6
(M = Cu(
i
), Ag(
i
) or Au(
i
); PNP = bis(diphenylphosphino)aniline functionalised with methylthio contact groups). The robustness of the devices was evinced by surface-enhanced Raman spectroscopy (SERS) and scanning-tunnelling microscopy break junction (STM-BJ) methods, and the conductance of the devices was found to be independent of the central transition metal. Quantum transport calculations show consistent HOMO-LUMO gaps between the studied complexes in the transmission plots, supporting the experimental findings. This study shows that bis-chelation is a viable approach to the fabrication of stable and robust metal-phosphine devices.
Bis(chelated) molecular wires allow fabrication of robust single-molecule junctions and show ion-independent charge transport properties. |
---|---|
AbstractList | It is becoming increasingly evident that transition metal complexes impart desirable qualities in single-molecule electronics, and testing metallic centres in combination with appropriate ligands is salient to building the next generation of single-molecule devices. Metal-phosphine complexes have been the subject of very few studies, despite their extensive use in other areas of chemistry. In this contribution, we fabricated and studied robust single-molecule junctions using linear bis-chelated ligand-metal-ligand complexes of the type [M(PNP)2]PF6 (M = Cu(I), Ag(I) or Au(I); PNP = bis(diphenylphosphino)aniline functionalised with methylthio contact groups). The robustness of the devices was evinced by surface-enhanced Raman spectroscopy (SERS) and scanning-tunnelling microscopy break junction (STM-BJ) methods, and the conductance of the devices was found to be independent of the central transition metal. Quantum transport calculations show consistent HOMO-LUMO gaps between the studied complexes in the transmission plots, supporting the experimental findings. This study shows that bis-chelation is a viable approach to the fabrication of stable and robust metal-phosphine devices.It is becoming increasingly evident that transition metal complexes impart desirable qualities in single-molecule electronics, and testing metallic centres in combination with appropriate ligands is salient to building the next generation of single-molecule devices. Metal-phosphine complexes have been the subject of very few studies, despite their extensive use in other areas of chemistry. In this contribution, we fabricated and studied robust single-molecule junctions using linear bis-chelated ligand-metal-ligand complexes of the type [M(PNP)2]PF6 (M = Cu(I), Ag(I) or Au(I); PNP = bis(diphenylphosphino)aniline functionalised with methylthio contact groups). The robustness of the devices was evinced by surface-enhanced Raman spectroscopy (SERS) and scanning-tunnelling microscopy break junction (STM-BJ) methods, and the conductance of the devices was found to be independent of the central transition metal. Quantum transport calculations show consistent HOMO-LUMO gaps between the studied complexes in the transmission plots, supporting the experimental findings. This study shows that bis-chelation is a viable approach to the fabrication of stable and robust metal-phosphine devices. It is becoming increasingly evident that transition metal complexes impart desirable qualities in single-molecule electronics, and testing metallic centres in combination with appropriate ligands is salient to building the next generation of single-molecule devices. Metal-phosphine complexes have been the subject of very few studies, despite their extensive use in other areas of chemistry. In this contribution, we fabricated and studied robust single-molecule junctions using linear bis-chelated ligand-metal-ligand complexes of the type [M(PNP) ]PF (M = Cu(I), Ag(I) or Au(I); PNP = bis(diphenylphosphino)aniline functionalised with methylthio contact groups). The robustness of the devices was evinced by surface-enhanced Raman spectroscopy (SERS) and scanning-tunnelling microscopy break junction (STM-BJ) methods, and the conductance of the devices was found to be independent of the central transition metal. Quantum transport calculations show consistent HOMO-LUMO gaps between the studied complexes in the transmission plots, supporting the experimental findings. This study shows that bis-chelation is a viable approach to the fabrication of stable and robust metal-phosphine devices. It is becoming increasingly evident that transition metal complexes impart desirable qualities in single-molecule electronics, and testing metallic centres in combination with appropriate ligands is salient to building the next generation of single-molecule devices. Metal-phosphine complexes have been the subject of very few studies, despite their extensive use in other areas of chemistry. In this contribution, we fabricated and studied robust single-molecule junctions using linear bis-chelated ligand–metal–ligand complexes of the type [M(PNP)2]PF6 (M = Cu(i), Ag(i) or Au(i); PNP = bis(diphenylphosphino)aniline functionalised with methylthio contact groups). The robustness of the devices was evinced by surface-enhanced Raman spectroscopy (SERS) and scanning-tunnelling microscopy break junction (STM-BJ) methods, and the conductance of the devices was found to be independent of the central transition metal. Quantum transport calculations show consistent HOMO–LUMO gaps between the studied complexes in the transmission plots, supporting the experimental findings. This study shows that bis-chelation is a viable approach to the fabrication of stable and robust metal-phosphine devices. It is becoming increasingly evident that transition metal complexes impart desirable qualities in single-molecule electronics, and testing metallic centres in combination with appropriate ligands is salient to building the next generation of single-molecule devices. Metal-phosphine complexes have been the subject of very few studies, despite their extensive use in other areas of chemistry. In this contribution, we fabricated and studied robust single-molecule junctions using linear bis-chelated ligand–metal–ligand complexes of the type [M(PNP) 2 ]PF 6 (M = Cu( i ), Ag( i ) or Au( i ); PNP = bis(diphenylphosphino)aniline functionalised with methylthio contact groups). The robustness of the devices was evinced by surface-enhanced Raman spectroscopy (SERS) and scanning-tunnelling microscopy break junction (STM-BJ) methods, and the conductance of the devices was found to be independent of the central transition metal. Quantum transport calculations show consistent HOMO–LUMO gaps between the studied complexes in the transmission plots, supporting the experimental findings. This study shows that bis-chelation is a viable approach to the fabrication of stable and robust metal-phosphine devices. It is becoming increasingly evident that transition metal complexes impart desirable qualities in single-molecule electronics, and testing metallic centres in combination with appropriate ligands is salient to building the next generation of single-molecule devices. Metal-phosphine complexes have been the subject of very few studies, despite their extensive use in other areas of chemistry. In this contribution, we fabricated and studied robust single-molecule junctions using linear bis-chelated ligand-metal-ligand complexes of the type [M(PNP) 2 ]PF 6 (M = Cu( i ), Ag( i ) or Au( i ); PNP = bis(diphenylphosphino)aniline functionalised with methylthio contact groups). The robustness of the devices was evinced by surface-enhanced Raman spectroscopy (SERS) and scanning-tunnelling microscopy break junction (STM-BJ) methods, and the conductance of the devices was found to be independent of the central transition metal. Quantum transport calculations show consistent HOMO-LUMO gaps between the studied complexes in the transmission plots, supporting the experimental findings. This study shows that bis-chelation is a viable approach to the fabrication of stable and robust metal-phosphine devices. Bis(chelated) molecular wires allow fabrication of robust single-molecule junctions and show ion-independent charge transport properties. |
Author | Sil, Amit Vezzoli, Andrea Gatto, Marco F Sangtarash, Sara Jago, David Koutsantonis, George A Robertson, Craig M Higgins, Simon J Abram, R. Tom Barrett, Eleanor Sadeghi, Hatef Nichols, Richard J |
AuthorAffiliation | Department of Chemistry University of Liverpool Device Modelling Group University of Western Australia School of Molecular Sciences School of Engineering University of Warwick |
AuthorAffiliation_xml | – name: University of Liverpool – name: University of Western Australia – name: Department of Chemistry – name: University of Warwick – name: School of Molecular Sciences – name: School of Engineering – name: Device Modelling Group |
Author_xml | – sequence: 1 givenname: Marco F surname: Gatto fullname: Gatto, Marco F – sequence: 2 givenname: Sara surname: Sangtarash fullname: Sangtarash, Sara – sequence: 3 givenname: David surname: Jago fullname: Jago, David – sequence: 4 givenname: R. Tom surname: Abram fullname: Abram, R. Tom – sequence: 5 givenname: Eleanor surname: Barrett fullname: Barrett, Eleanor – sequence: 6 givenname: Amit surname: Sil fullname: Sil, Amit – sequence: 7 givenname: George A surname: Koutsantonis fullname: Koutsantonis, George A – sequence: 8 givenname: Simon J surname: Higgins fullname: Higgins, Simon J – sequence: 9 givenname: Craig M surname: Robertson fullname: Robertson, Craig M – sequence: 10 givenname: Richard J surname: Nichols fullname: Nichols, Richard J – sequence: 11 givenname: Hatef surname: Sadeghi fullname: Sadeghi, Hatef – sequence: 12 givenname: Andrea surname: Vezzoli fullname: Vezzoli, Andrea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40275730$$D View this record in MEDLINE/PubMed |
BookMark | eNpd0ctu1DAUBmALFdF2YMMeZIlNQQr4GmeW1ZSbVMSmrCPHPiGuHDvYTqFvwGPjdsogsbG9-M4v6_yn6CjEAAg9p-QtJXz7zkpbCGFbZh6hEyqUaraMi6PDm7XH6DTn62oYkewJOhaEKak4OUG_v0DRHrsYsAsWFqhHKNjEYFdTdDCAy5Ti-n3Cg8uNmcDrAhbP92MmzouHX3iOHszqdcI_XYKMB52rqZn6burMumWCcOuXKeZlciG-1sF5FwBbSO5GF3cDT9HjUfsMzx7uDfr24f3V7lNz-fXj5935ZWM4F6WhFkZtYWByVLJjVI2cyMGyUatRMhhbRYQESVQnaGuskKztON1a2SljrBn4Bp3tc5cUf6yQSz-7bMB7HSCuua9YtJLTutkNevUfvY5rCvV3PWeE007U7KpePqh1mMH2S3KzTrf93x1X8GYPTIo5JxgPhJL-rsD-Ql5c3Re4q_jFHqdsDu5fwfwPedWY7g |
Cites_doi | 10.1021/acs.nanolett.5b04899 10.1016/S0020-1693(00)88751-4 10.1126/science.1087481 10.1002/smll.200800390 10.1002/anie.201205607 10.1039/C6DT04755F 10.1021/acs.jpclett.8b02051 10.1002/jrs.4213 10.1021/jz100656s 10.1007/s11426-010-4206-6 10.1016/j.jorganchem.2015.08.026 10.1002/anie.201508199 10.1039/D2CP02654F 10.1039/D0NR00195C 10.1038/nmat2332 10.1002/chem.201001908 10.1073/pnas.1814825116 10.1002/chem.201303626 10.1002/anie.202302150 10.1021/acs.nanolett.0c01956 10.1039/B712978E 10.1021/jacs.8b04484 10.1021/ic00241a023 10.1021/ja505277z 10.1038/nprot.2012.141 10.1021/ja5012417 10.1088/1367-2630/16/9/093029 10.1021/acs.jpcc.0c06044 10.1002/anie.202002174 10.1002/anie.202116985 10.1002/ejic.200501141 10.1016/j.chemphys.2006.02.022 10.1016/j.electacta.2016.10.095 10.1039/C4AY02112F 10.1039/C8DT02103A 10.1002/anie.202403577 10.1143/JJAP.47.7369 10.1038/nature00791 10.1039/C6FD00080K 10.1039/DT9810000655 10.1038/nnano.2009.10 10.1021/jacs.1c05142 10.1039/c39810000900 10.1016/j.ica.2011.03.035 10.1039/C7CC01831B 10.1021/ja201042h 10.1088/1361-6528/aace21 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2025 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2025 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d5dt00292c |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1477-9234 |
EndPage | 7881 |
ExternalDocumentID | 40275730 10_1039_D5DT00292C d5dt00292c |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 0-7 0R~ 29F 4.4 53G 5GY 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO HZ~ H~N IDZ J3G J3H J3I M4U O9- R56 R7B R7C RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UPT VH6 WH7 AAYXX CITATION H13 NPM UMC 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c334t-1defadeb25f758217f305bd2fa7f52ef67045e5078416cd45268319d587ccdcb3 |
ISSN | 1477-9226 1477-9234 |
IngestDate | Wed Jul 02 04:49:48 EDT 2025 Mon Jun 30 08:57:44 EDT 2025 Thu May 15 23:20:00 EDT 2025 Tue Jul 01 04:40:00 EDT 2025 Tue May 27 12:22:09 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c334t-1defadeb25f758217f305bd2fa7f52ef67045e5078416cd45268319d587ccdcb3 |
Notes | Electronic supplementary information (ESI) available. CCDC For ESI and crystallographic data in CIF or other electronic format see DOI https://doi.org/10.1039/d5dt00292c 2408349-2408351 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3518-9061 0000-0002-8059-0113 0000-0001-8755-3596 0000-0001-5398-8620 |
OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2025/dt/d5dt00292c |
PMID | 40275730 |
PQID | 3203184683 |
PQPubID | 2047498 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_3194653110 proquest_journals_3203184683 pubmed_primary_40275730 rsc_primary_d5dt00292c crossref_primary_10_1039_D5DT00292C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-13 |
PublicationDateYYYYMMDD | 2025-05-13 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Dalton transactions : an international journal of inorganic chemistry |
PublicationTitleAlternate | Dalton Trans |
PublicationYear | 2025 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Zhou (D5DT00292C/cit11/1) 2011; 133 Li (D5DT00292C/cit50/1) 2013; 8 Xiao (D5DT00292C/cit2/1) 2006; 326 Fliedel (D5DT00292C/cit27/1) 2014; 20 Berners-Price (D5DT00292C/cit31/1) 1986; 25 Osawa (D5DT00292C/cit32/1) 2010; 16 Parameswaran (D5DT00292C/cit45/1) 2010; 1 Ferrer (D5DT00292C/cit47/1) 2014; 16 Koyama (D5DT00292C/cit13/1) 2008; 47 Skipper (D5DT00292C/cit24/1) 2021; 143 Elder (D5DT00292C/cit30/1) 1981 Sadeghi (D5DT00292C/cit48/1) 2018; 29 Park (D5DT00292C/cit16/1) 2002; 417 Tandiana (D5DT00292C/cit40/1) 2022; 24 Naghibi (D5DT00292C/cit42/1) 2022; 61 Tuccitto (D5DT00292C/cit17/1) 2009; 8 Quek (D5DT00292C/cit44/1) 2009; 4 Meng (D5DT00292C/cit20/1) 2020; 12 Camarasa-Gómez (D5DT00292C/cit7/1) 2020; 20 Daaoub (D5DT00292C/cit41/1) 2023; 62 Milan (D5DT00292C/cit8/1) 2018; 47 Cheng (D5DT00292C/cit21/1) 2020; 124 Lee (D5DT00292C/cit15/1) 2011; 54 Ting (D5DT00292C/cit4/1) 2015; 54 Ghisolfi (D5DT00292C/cit26/1) 2017; 46 Xu (D5DT00292C/cit28/1) 2003; 301 Liu (D5DT00292C/cit39/1) 2013; 44 Ward (D5DT00292C/cit36/1) 2024; 63 Chen (D5DT00292C/cit5/1) 2017; 53 Tanaka (D5DT00292C/cit9/1) 2018; 140 Lee (D5DT00292C/cit14/1) 2008; 1 Usón (D5DT00292C/cit34/1) 1981 Ahuja (D5DT00292C/cit29/1) 2011; 372 Frisenda (D5DT00292C/cit6/1) 2016; 16 Wu (D5DT00292C/cit49/1) 2020; 59 Ruben (D5DT00292C/cit18/1) 2008; 4 Soler (D5DT00292C/cit46/1) 2002; 14 Capozzi (D5DT00292C/cit43/1) 2014; 136 Otero (D5DT00292C/cit22/1) 2015; 799–800 Li (D5DT00292C/cit3/1) 2019; 116 Ponce (D5DT00292C/cit12/1) 2014; 136 Chappell (D5DT00292C/cit10/1) 2016; 193 Choi (D5DT00292C/cit25/1) 2016; 5 Herrer (D5DT00292C/cit38/1) 2018; 9 Vezzoli (D5DT00292C/cit1/1) 2021 Bates (D5DT00292C/cit33/1) 1984; 81 Kiriakidou Kazemifar (D5DT00292C/cit23/1) 2006; 2006 Cao (D5DT00292C/cit19/1) 2012; 51 Tian (D5DT00292C/cit35/1) 2014; 6 Liang (D5DT00292C/cit37/1) 2016; 220 |
References_xml | – issn: 2021 publication-title: Encycl. Inorg. Bioinorg. Chem doi: Vezzoli – volume: 16 start-page: 4733 year: 2016 ident: D5DT00292C/cit6/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04899 – volume: 81 start-page: 151 year: 1984 ident: D5DT00292C/cit33/1 publication-title: Inorg. Chim. Acta doi: 10.1016/S0020-1693(00)88751-4 – volume: 301 start-page: 1221 year: 2003 ident: D5DT00292C/cit28/1 publication-title: Science doi: 10.1126/science.1087481 – volume: 4 start-page: 2229 year: 2008 ident: D5DT00292C/cit18/1 publication-title: Small doi: 10.1002/smll.200800390 – volume: 51 start-page: 12228 year: 2012 ident: D5DT00292C/cit19/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201205607 – volume: 46 start-page: 5571 year: 2017 ident: D5DT00292C/cit26/1 publication-title: Dalton Trans. doi: 10.1039/C6DT04755F – volume: 9 start-page: 5364 year: 2018 ident: D5DT00292C/cit38/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b02051 – volume: 44 start-page: 440 year: 2013 ident: D5DT00292C/cit39/1 publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.4213 – volume: 1 start-page: 2114 year: 2010 ident: D5DT00292C/cit45/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz100656s – volume: 54 start-page: 410 year: 2011 ident: D5DT00292C/cit15/1 publication-title: Sci. China: Chem. doi: 10.1007/s11426-010-4206-6 – volume: 799–800 start-page: 45 year: 2015 ident: D5DT00292C/cit22/1 publication-title: J. Organomet. Chem. doi: 10.1016/j.jorganchem.2015.08.026 – volume: 54 start-page: 15734 year: 2015 ident: D5DT00292C/cit4/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201508199 – volume: 24 start-page: 25327 year: 2022 ident: D5DT00292C/cit40/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D2CP02654F – volume: 12 start-page: 10320 year: 2020 ident: D5DT00292C/cit20/1 publication-title: Nanoscale doi: 10.1039/D0NR00195C – volume: 8 start-page: 41 year: 2009 ident: D5DT00292C/cit17/1 publication-title: Nat. Mater. doi: 10.1038/nmat2332 – volume: 16 start-page: 12114 year: 2010 ident: D5DT00292C/cit32/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201001908 – volume: 116 start-page: 3407 year: 2019 ident: D5DT00292C/cit3/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1814825116 – volume: 5 start-page: 476 year: 2016 ident: D5DT00292C/cit25/1 publication-title: Chem. Sci. – volume: 20 start-page: 1263 year: 2014 ident: D5DT00292C/cit27/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201303626 – volume: 62 start-page: e202302150 year: 2023 ident: D5DT00292C/cit41/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202302150 – volume: 20 start-page: 6381 year: 2020 ident: D5DT00292C/cit7/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c01956 – volume: 1 start-page: 247 year: 2008 ident: D5DT00292C/cit14/1 publication-title: Chem. Commun. doi: 10.1039/B712978E – volume: 140 start-page: 10080 year: 2018 ident: D5DT00292C/cit9/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04484 – volume: 25 start-page: 3822 year: 1986 ident: D5DT00292C/cit31/1 publication-title: Inorg. Chem. doi: 10.1021/ic00241a023 – volume: 136 start-page: 10486 year: 2014 ident: D5DT00292C/cit43/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja505277z – volume: 8 start-page: 52 year: 2013 ident: D5DT00292C/cit50/1 publication-title: Nat. Protoc. doi: 10.1038/nprot.2012.141 – volume: 136 start-page: 8314 year: 2014 ident: D5DT00292C/cit12/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5012417 – volume: 16 start-page: 093029 year: 2014 ident: D5DT00292C/cit47/1 publication-title: New J. Phys. doi: 10.1088/1367-2630/16/9/093029 – volume-title: Encycl. Inorg. Bioinorg. Chem year: 2021 ident: D5DT00292C/cit1/1 – volume: 124 start-page: 21137 year: 2020 ident: D5DT00292C/cit21/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c06044 – volume: 59 start-page: 12029 year: 2020 ident: D5DT00292C/cit49/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202002174 – volume: 61 start-page: e202116985 year: 2022 ident: D5DT00292C/cit42/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202116985 – volume: 2006 start-page: 2058 year: 2006 ident: D5DT00292C/cit23/1 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.200501141 – volume: 326 start-page: 138 year: 2006 ident: D5DT00292C/cit2/1 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2006.02.022 – volume: 220 start-page: 436 year: 2016 ident: D5DT00292C/cit37/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.10.095 – volume: 6 start-page: 9116 year: 2014 ident: D5DT00292C/cit35/1 publication-title: Anal. Methods doi: 10.1039/C4AY02112F – volume: 47 start-page: 14125 year: 2018 ident: D5DT00292C/cit8/1 publication-title: Dalton Trans. doi: 10.1039/C8DT02103A – volume: 63 start-page: e202403577 year: 2024 ident: D5DT00292C/cit36/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202403577 – volume: 47 start-page: 7369 year: 2008 ident: D5DT00292C/cit13/1 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.47.7369 – volume: 417 start-page: 722 year: 2002 ident: D5DT00292C/cit16/1 publication-title: Nature doi: 10.1038/nature00791 – volume: 193 start-page: 113 year: 2016 ident: D5DT00292C/cit10/1 publication-title: Faraday Discuss. doi: 10.1039/C6FD00080K – start-page: 655 year: 1981 ident: D5DT00292C/cit34/1 publication-title: J. Chem. Soc., Dalton Trans. doi: 10.1039/DT9810000655 – volume: 4 start-page: 230 year: 2009 ident: D5DT00292C/cit44/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.10 – volume: 143 start-page: 16439 year: 2021 ident: D5DT00292C/cit24/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c05142 – start-page: 900 year: 1981 ident: D5DT00292C/cit30/1 publication-title: J. Chem. Soc., Chem. Commun. doi: 10.1039/c39810000900 – volume: 372 start-page: 220 year: 2011 ident: D5DT00292C/cit29/1 publication-title: Inorg. Chim. Acta doi: 10.1016/j.ica.2011.03.035 – volume: 53 start-page: 4673 year: 2017 ident: D5DT00292C/cit5/1 publication-title: Chem. Commun. doi: 10.1039/C7CC01831B – volume: 133 start-page: 7509 year: 2011 ident: D5DT00292C/cit11/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja201042h – volume: 29 start-page: 373001 year: 2018 ident: D5DT00292C/cit48/1 publication-title: Nanotechnology doi: 10.1088/1361-6528/aace21 – volume: 14 start-page: 2745 year: 2002 ident: D5DT00292C/cit46/1 publication-title: J. Phys.: Condens. Matter |
SSID | ssj0022052 |
Score | 2.461767 |
Snippet | It is becoming increasingly evident that transition metal complexes impart desirable qualities in single-molecule electronics, and testing metallic centres in... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 7874 |
SubjectTerms | Aniline Chelation Coordination compounds Copper Devices Gold Ligands Molecular orbitals Phosphines Quantum transport Raman spectroscopy Robustness Transition metal compounds |
Title | Metal ion independent conductance through bis-chelated metal complex molecular wires based on a bis(diphenylphosphino)aniline derivative |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40275730 https://www.proquest.com/docview/3203184683 https://www.proquest.com/docview/3194653110 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaW9gAXxF8hUJARHEBR2q3tJJtjtVtUEOWAUqm3lWMn7R6arTZZ1PIEPBdPxoxjOyktEnCJVvY62fV88Yw938wQ8lagj7CY4PFSmkWC6ywqUp1EnFWJ0BwsBhMLc_QlOTwWn07ik9Ho54C1tG6LHfX91riS_5EqtIFcMUr2HyTrbwoN8BnkC1eQMFz_SsZHJYYydmxFV822RSI5JnE1sQCuDE-xaCLkfEo0MM_NMEMmLy_Dc1cgN8S0xU2Iek2jD0HiKDBA9QJ5YFfIYm8uzhZYqzuT9cLYpxr-5jfpQjWdlTuTWKsay0-4WuSNOXqQtUlP0Z9AXstb0RWYUqFyNeg8N0i2ptgTBhap5YCLLOvTVq5kc-bOtj0fSJ4uf2Pso4dr1aH_606Yd9Jw5x0sRld9F65ql2iBTmfGbALtYZs9FrXrepec2uE3G6zSsEiJgcbHjPq3apMxx2SsOtYtOi-Z6nWmZzL2nXfIJoOtCqy1m_sH-cfPftvPxqbuk__dLkkuz3b70dfNoht7HbB8Vq4ijbF88gfkvt2y0P0Ofw_JqKwfkbtTJ6XH5IfBIQWR0gEO6QCH1OKQDnFIDQ6pxSH1OKQGh9TgkMI9JY56dwOF7y0GaY_BJ-T4w0E-PYxshY9IcS7aaE-XldRlweIqxYjttAL1U2hWybSKWVklKew4StiyoHNcaYG5iUBn6HiSKqVVwbfIRr2sy2eEcsknEhSQTCowUmP0Z49jTJg3KWABkjIgb9wEzy-6RC5zQ8Dg2XwWz3IjhmlAtt3cz-0r0Mw5Q80n4NEBee27YY7RtybrcrmG7-xlmKkQjOmAPO1k5h8jkBoAmjQgWyBE39wL__mfOl6Qe_0rsE022tW6fAlGcFu8sij7Bd5LuSI |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+ion+independent+conductance+through+bis-chelated+metal+complex+molecular+wires+based+on+a+bis%28diphenylphosphino%29aniline+derivative&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=Gatto%2C+Marco+F&rft.au=Sangtarash%2C+Sara&rft.au=Jago%2C+David&rft.au=Abram%2C+R.+Tom&rft.date=2025-05-13&rft.issn=1477-9226&rft.eissn=1477-9234&rft.volume=54&rft.issue=19&rft.spage=7874&rft.epage=7881&rft_id=info:doi/10.1039%2Fd5dt00292c&rft.externalDocID=d5dt00292c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9226&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9226&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9226&client=summon |