Metal ion independent conductance through bis-chelated metal complex molecular wires based on a bis(diphenylphosphino)aniline derivative

It is becoming increasingly evident that transition metal complexes impart desirable qualities in single-molecule electronics, and testing metallic centres in combination with appropriate ligands is salient to building the next generation of single-molecule devices. Metal-phosphine complexes have be...

Full description

Saved in:
Bibliographic Details
Published inDalton transactions : an international journal of inorganic chemistry Vol. 54; no. 19; pp. 7874 - 7881
Main Authors Gatto, Marco F, Sangtarash, Sara, Jago, David, Abram, R. Tom, Barrett, Eleanor, Sil, Amit, Koutsantonis, George A, Higgins, Simon J, Robertson, Craig M, Nichols, Richard J, Sadeghi, Hatef, Vezzoli, Andrea
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 13.05.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is becoming increasingly evident that transition metal complexes impart desirable qualities in single-molecule electronics, and testing metallic centres in combination with appropriate ligands is salient to building the next generation of single-molecule devices. Metal-phosphine complexes have been the subject of very few studies, despite their extensive use in other areas of chemistry. In this contribution, we fabricated and studied robust single-molecule junctions using linear bis-chelated ligand-metal-ligand complexes of the type [M(PNP) 2 ]PF 6 (M = Cu( i ), Ag( i ) or Au( i ); PNP = bis(diphenylphosphino)aniline functionalised with methylthio contact groups). The robustness of the devices was evinced by surface-enhanced Raman spectroscopy (SERS) and scanning-tunnelling microscopy break junction (STM-BJ) methods, and the conductance of the devices was found to be independent of the central transition metal. Quantum transport calculations show consistent HOMO-LUMO gaps between the studied complexes in the transmission plots, supporting the experimental findings. This study shows that bis-chelation is a viable approach to the fabrication of stable and robust metal-phosphine devices. Bis(chelated) molecular wires allow fabrication of robust single-molecule junctions and show ion-independent charge transport properties.
AbstractList It is becoming increasingly evident that transition metal complexes impart desirable qualities in single-molecule electronics, and testing metallic centres in combination with appropriate ligands is salient to building the next generation of single-molecule devices. Metal-phosphine complexes have been the subject of very few studies, despite their extensive use in other areas of chemistry. In this contribution, we fabricated and studied robust single-molecule junctions using linear bis-chelated ligand-metal-ligand complexes of the type [M(PNP)2]PF6 (M = Cu(I), Ag(I) or Au(I); PNP = bis(diphenylphosphino)aniline functionalised with methylthio contact groups). The robustness of the devices was evinced by surface-enhanced Raman spectroscopy (SERS) and scanning-tunnelling microscopy break junction (STM-BJ) methods, and the conductance of the devices was found to be independent of the central transition metal. Quantum transport calculations show consistent HOMO-LUMO gaps between the studied complexes in the transmission plots, supporting the experimental findings. This study shows that bis-chelation is a viable approach to the fabrication of stable and robust metal-phosphine devices.It is becoming increasingly evident that transition metal complexes impart desirable qualities in single-molecule electronics, and testing metallic centres in combination with appropriate ligands is salient to building the next generation of single-molecule devices. Metal-phosphine complexes have been the subject of very few studies, despite their extensive use in other areas of chemistry. In this contribution, we fabricated and studied robust single-molecule junctions using linear bis-chelated ligand-metal-ligand complexes of the type [M(PNP)2]PF6 (M = Cu(I), Ag(I) or Au(I); PNP = bis(diphenylphosphino)aniline functionalised with methylthio contact groups). The robustness of the devices was evinced by surface-enhanced Raman spectroscopy (SERS) and scanning-tunnelling microscopy break junction (STM-BJ) methods, and the conductance of the devices was found to be independent of the central transition metal. Quantum transport calculations show consistent HOMO-LUMO gaps between the studied complexes in the transmission plots, supporting the experimental findings. This study shows that bis-chelation is a viable approach to the fabrication of stable and robust metal-phosphine devices.
It is becoming increasingly evident that transition metal complexes impart desirable qualities in single-molecule electronics, and testing metallic centres in combination with appropriate ligands is salient to building the next generation of single-molecule devices. Metal-phosphine complexes have been the subject of very few studies, despite their extensive use in other areas of chemistry. In this contribution, we fabricated and studied robust single-molecule junctions using linear bis-chelated ligand-metal-ligand complexes of the type [M(PNP) ]PF (M = Cu(I), Ag(I) or Au(I); PNP = bis(diphenylphosphino)aniline functionalised with methylthio contact groups). The robustness of the devices was evinced by surface-enhanced Raman spectroscopy (SERS) and scanning-tunnelling microscopy break junction (STM-BJ) methods, and the conductance of the devices was found to be independent of the central transition metal. Quantum transport calculations show consistent HOMO-LUMO gaps between the studied complexes in the transmission plots, supporting the experimental findings. This study shows that bis-chelation is a viable approach to the fabrication of stable and robust metal-phosphine devices.
It is becoming increasingly evident that transition metal complexes impart desirable qualities in single-molecule electronics, and testing metallic centres in combination with appropriate ligands is salient to building the next generation of single-molecule devices. Metal-phosphine complexes have been the subject of very few studies, despite their extensive use in other areas of chemistry. In this contribution, we fabricated and studied robust single-molecule junctions using linear bis-chelated ligand–metal–ligand complexes of the type [M(PNP)2]PF6 (M = Cu(i), Ag(i) or Au(i); PNP = bis(diphenylphosphino)aniline functionalised with methylthio contact groups). The robustness of the devices was evinced by surface-enhanced Raman spectroscopy (SERS) and scanning-tunnelling microscopy break junction (STM-BJ) methods, and the conductance of the devices was found to be independent of the central transition metal. Quantum transport calculations show consistent HOMO–LUMO gaps between the studied complexes in the transmission plots, supporting the experimental findings. This study shows that bis-chelation is a viable approach to the fabrication of stable and robust metal-phosphine devices.
It is becoming increasingly evident that transition metal complexes impart desirable qualities in single-molecule electronics, and testing metallic centres in combination with appropriate ligands is salient to building the next generation of single-molecule devices. Metal-phosphine complexes have been the subject of very few studies, despite their extensive use in other areas of chemistry. In this contribution, we fabricated and studied robust single-molecule junctions using linear bis-chelated ligand–metal–ligand complexes of the type [M(PNP) 2 ]PF 6 (M = Cu( i ), Ag( i ) or Au( i ); PNP = bis(diphenylphosphino)aniline functionalised with methylthio contact groups). The robustness of the devices was evinced by surface-enhanced Raman spectroscopy (SERS) and scanning-tunnelling microscopy break junction (STM-BJ) methods, and the conductance of the devices was found to be independent of the central transition metal. Quantum transport calculations show consistent HOMO–LUMO gaps between the studied complexes in the transmission plots, supporting the experimental findings. This study shows that bis-chelation is a viable approach to the fabrication of stable and robust metal-phosphine devices.
It is becoming increasingly evident that transition metal complexes impart desirable qualities in single-molecule electronics, and testing metallic centres in combination with appropriate ligands is salient to building the next generation of single-molecule devices. Metal-phosphine complexes have been the subject of very few studies, despite their extensive use in other areas of chemistry. In this contribution, we fabricated and studied robust single-molecule junctions using linear bis-chelated ligand-metal-ligand complexes of the type [M(PNP) 2 ]PF 6 (M = Cu( i ), Ag( i ) or Au( i ); PNP = bis(diphenylphosphino)aniline functionalised with methylthio contact groups). The robustness of the devices was evinced by surface-enhanced Raman spectroscopy (SERS) and scanning-tunnelling microscopy break junction (STM-BJ) methods, and the conductance of the devices was found to be independent of the central transition metal. Quantum transport calculations show consistent HOMO-LUMO gaps between the studied complexes in the transmission plots, supporting the experimental findings. This study shows that bis-chelation is a viable approach to the fabrication of stable and robust metal-phosphine devices. Bis(chelated) molecular wires allow fabrication of robust single-molecule junctions and show ion-independent charge transport properties.
Author Sil, Amit
Vezzoli, Andrea
Gatto, Marco F
Sangtarash, Sara
Jago, David
Koutsantonis, George A
Robertson, Craig M
Higgins, Simon J
Abram, R. Tom
Barrett, Eleanor
Sadeghi, Hatef
Nichols, Richard J
AuthorAffiliation Department of Chemistry
University of Liverpool
Device Modelling Group
University of Western Australia
School of Molecular Sciences
School of Engineering
University of Warwick
AuthorAffiliation_xml – name: University of Liverpool
– name: University of Western Australia
– name: Department of Chemistry
– name: University of Warwick
– name: School of Molecular Sciences
– name: School of Engineering
– name: Device Modelling Group
Author_xml – sequence: 1
  givenname: Marco F
  surname: Gatto
  fullname: Gatto, Marco F
– sequence: 2
  givenname: Sara
  surname: Sangtarash
  fullname: Sangtarash, Sara
– sequence: 3
  givenname: David
  surname: Jago
  fullname: Jago, David
– sequence: 4
  givenname: R. Tom
  surname: Abram
  fullname: Abram, R. Tom
– sequence: 5
  givenname: Eleanor
  surname: Barrett
  fullname: Barrett, Eleanor
– sequence: 6
  givenname: Amit
  surname: Sil
  fullname: Sil, Amit
– sequence: 7
  givenname: George A
  surname: Koutsantonis
  fullname: Koutsantonis, George A
– sequence: 8
  givenname: Simon J
  surname: Higgins
  fullname: Higgins, Simon J
– sequence: 9
  givenname: Craig M
  surname: Robertson
  fullname: Robertson, Craig M
– sequence: 10
  givenname: Richard J
  surname: Nichols
  fullname: Nichols, Richard J
– sequence: 11
  givenname: Hatef
  surname: Sadeghi
  fullname: Sadeghi, Hatef
– sequence: 12
  givenname: Andrea
  surname: Vezzoli
  fullname: Vezzoli, Andrea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40275730$$D View this record in MEDLINE/PubMed
BookMark eNpd0ctu1DAUBmALFdF2YMMeZIlNQQr4GmeW1ZSbVMSmrCPHPiGuHDvYTqFvwGPjdsogsbG9-M4v6_yn6CjEAAg9p-QtJXz7zkpbCGFbZh6hEyqUaraMi6PDm7XH6DTn62oYkewJOhaEKak4OUG_v0DRHrsYsAsWFqhHKNjEYFdTdDCAy5Ti-n3Cg8uNmcDrAhbP92MmzouHX3iOHszqdcI_XYKMB52rqZn6burMumWCcOuXKeZlciG-1sF5FwBbSO5GF3cDT9HjUfsMzx7uDfr24f3V7lNz-fXj5935ZWM4F6WhFkZtYWByVLJjVI2cyMGyUatRMhhbRYQESVQnaGuskKztON1a2SljrBn4Bp3tc5cUf6yQSz-7bMB7HSCuua9YtJLTutkNevUfvY5rCvV3PWeE007U7KpePqh1mMH2S3KzTrf93x1X8GYPTIo5JxgPhJL-rsD-Ql5c3Re4q_jFHqdsDu5fwfwPedWY7g
Cites_doi 10.1021/acs.nanolett.5b04899
10.1016/S0020-1693(00)88751-4
10.1126/science.1087481
10.1002/smll.200800390
10.1002/anie.201205607
10.1039/C6DT04755F
10.1021/acs.jpclett.8b02051
10.1002/jrs.4213
10.1021/jz100656s
10.1007/s11426-010-4206-6
10.1016/j.jorganchem.2015.08.026
10.1002/anie.201508199
10.1039/D2CP02654F
10.1039/D0NR00195C
10.1038/nmat2332
10.1002/chem.201001908
10.1073/pnas.1814825116
10.1002/chem.201303626
10.1002/anie.202302150
10.1021/acs.nanolett.0c01956
10.1039/B712978E
10.1021/jacs.8b04484
10.1021/ic00241a023
10.1021/ja505277z
10.1038/nprot.2012.141
10.1021/ja5012417
10.1088/1367-2630/16/9/093029
10.1021/acs.jpcc.0c06044
10.1002/anie.202002174
10.1002/anie.202116985
10.1002/ejic.200501141
10.1016/j.chemphys.2006.02.022
10.1016/j.electacta.2016.10.095
10.1039/C4AY02112F
10.1039/C8DT02103A
10.1002/anie.202403577
10.1143/JJAP.47.7369
10.1038/nature00791
10.1039/C6FD00080K
10.1039/DT9810000655
10.1038/nnano.2009.10
10.1021/jacs.1c05142
10.1039/c39810000900
10.1016/j.ica.2011.03.035
10.1039/C7CC01831B
10.1021/ja201042h
10.1088/1361-6528/aace21
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2025
Copyright_xml – notice: Copyright Royal Society of Chemistry 2025
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d5dt00292c
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Materials Research Database
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1477-9234
EndPage 7881
ExternalDocumentID 40275730
10_1039_D5DT00292C
d5dt00292c
Genre Journal Article
GroupedDBID ---
-DZ
-~X
0-7
0R~
29F
4.4
53G
5GY
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
HZ~
H~N
IDZ
J3G
J3H
J3I
M4U
O9-
R56
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UPT
VH6
WH7
AAYXX
CITATION
H13
NPM
UMC
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c334t-1defadeb25f758217f305bd2fa7f52ef67045e5078416cd45268319d587ccdcb3
ISSN 1477-9226
1477-9234
IngestDate Wed Jul 02 04:49:48 EDT 2025
Mon Jun 30 08:57:44 EDT 2025
Thu May 15 23:20:00 EDT 2025
Tue Jul 01 04:40:00 EDT 2025
Tue May 27 12:22:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-1defadeb25f758217f305bd2fa7f52ef67045e5078416cd45268319d587ccdcb3
Notes Electronic supplementary information (ESI) available. CCDC
For ESI and crystallographic data in CIF or other electronic format see DOI
https://doi.org/10.1039/d5dt00292c
2408349-2408351
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3518-9061
0000-0002-8059-0113
0000-0001-8755-3596
0000-0001-5398-8620
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2025/dt/d5dt00292c
PMID 40275730
PQID 3203184683
PQPubID 2047498
PageCount 8
ParticipantIDs proquest_miscellaneous_3194653110
proquest_journals_3203184683
pubmed_primary_40275730
rsc_primary_d5dt00292c
crossref_primary_10_1039_D5DT00292C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-13
PublicationDateYYYYMMDD 2025-05-13
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-13
  day: 13
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Dalton transactions : an international journal of inorganic chemistry
PublicationTitleAlternate Dalton Trans
PublicationYear 2025
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Zhou (D5DT00292C/cit11/1) 2011; 133
Li (D5DT00292C/cit50/1) 2013; 8
Xiao (D5DT00292C/cit2/1) 2006; 326
Fliedel (D5DT00292C/cit27/1) 2014; 20
Berners-Price (D5DT00292C/cit31/1) 1986; 25
Osawa (D5DT00292C/cit32/1) 2010; 16
Parameswaran (D5DT00292C/cit45/1) 2010; 1
Ferrer (D5DT00292C/cit47/1) 2014; 16
Koyama (D5DT00292C/cit13/1) 2008; 47
Skipper (D5DT00292C/cit24/1) 2021; 143
Elder (D5DT00292C/cit30/1) 1981
Sadeghi (D5DT00292C/cit48/1) 2018; 29
Park (D5DT00292C/cit16/1) 2002; 417
Tandiana (D5DT00292C/cit40/1) 2022; 24
Naghibi (D5DT00292C/cit42/1) 2022; 61
Tuccitto (D5DT00292C/cit17/1) 2009; 8
Quek (D5DT00292C/cit44/1) 2009; 4
Meng (D5DT00292C/cit20/1) 2020; 12
Camarasa-Gómez (D5DT00292C/cit7/1) 2020; 20
Daaoub (D5DT00292C/cit41/1) 2023; 62
Milan (D5DT00292C/cit8/1) 2018; 47
Cheng (D5DT00292C/cit21/1) 2020; 124
Lee (D5DT00292C/cit15/1) 2011; 54
Ting (D5DT00292C/cit4/1) 2015; 54
Ghisolfi (D5DT00292C/cit26/1) 2017; 46
Xu (D5DT00292C/cit28/1) 2003; 301
Liu (D5DT00292C/cit39/1) 2013; 44
Ward (D5DT00292C/cit36/1) 2024; 63
Chen (D5DT00292C/cit5/1) 2017; 53
Tanaka (D5DT00292C/cit9/1) 2018; 140
Lee (D5DT00292C/cit14/1) 2008; 1
Usón (D5DT00292C/cit34/1) 1981
Ahuja (D5DT00292C/cit29/1) 2011; 372
Frisenda (D5DT00292C/cit6/1) 2016; 16
Wu (D5DT00292C/cit49/1) 2020; 59
Ruben (D5DT00292C/cit18/1) 2008; 4
Soler (D5DT00292C/cit46/1) 2002; 14
Capozzi (D5DT00292C/cit43/1) 2014; 136
Otero (D5DT00292C/cit22/1) 2015; 799–800
Li (D5DT00292C/cit3/1) 2019; 116
Ponce (D5DT00292C/cit12/1) 2014; 136
Chappell (D5DT00292C/cit10/1) 2016; 193
Choi (D5DT00292C/cit25/1) 2016; 5
Herrer (D5DT00292C/cit38/1) 2018; 9
Vezzoli (D5DT00292C/cit1/1) 2021
Bates (D5DT00292C/cit33/1) 1984; 81
Kiriakidou Kazemifar (D5DT00292C/cit23/1) 2006; 2006
Cao (D5DT00292C/cit19/1) 2012; 51
Tian (D5DT00292C/cit35/1) 2014; 6
Liang (D5DT00292C/cit37/1) 2016; 220
References_xml – issn: 2021
  publication-title: Encycl. Inorg. Bioinorg. Chem
  doi: Vezzoli
– volume: 16
  start-page: 4733
  year: 2016
  ident: D5DT00292C/cit6/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04899
– volume: 81
  start-page: 151
  year: 1984
  ident: D5DT00292C/cit33/1
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/S0020-1693(00)88751-4
– volume: 301
  start-page: 1221
  year: 2003
  ident: D5DT00292C/cit28/1
  publication-title: Science
  doi: 10.1126/science.1087481
– volume: 4
  start-page: 2229
  year: 2008
  ident: D5DT00292C/cit18/1
  publication-title: Small
  doi: 10.1002/smll.200800390
– volume: 51
  start-page: 12228
  year: 2012
  ident: D5DT00292C/cit19/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201205607
– volume: 46
  start-page: 5571
  year: 2017
  ident: D5DT00292C/cit26/1
  publication-title: Dalton Trans.
  doi: 10.1039/C6DT04755F
– volume: 9
  start-page: 5364
  year: 2018
  ident: D5DT00292C/cit38/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b02051
– volume: 44
  start-page: 440
  year: 2013
  ident: D5DT00292C/cit39/1
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.4213
– volume: 1
  start-page: 2114
  year: 2010
  ident: D5DT00292C/cit45/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz100656s
– volume: 54
  start-page: 410
  year: 2011
  ident: D5DT00292C/cit15/1
  publication-title: Sci. China: Chem.
  doi: 10.1007/s11426-010-4206-6
– volume: 799–800
  start-page: 45
  year: 2015
  ident: D5DT00292C/cit22/1
  publication-title: J. Organomet. Chem.
  doi: 10.1016/j.jorganchem.2015.08.026
– volume: 54
  start-page: 15734
  year: 2015
  ident: D5DT00292C/cit4/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201508199
– volume: 24
  start-page: 25327
  year: 2022
  ident: D5DT00292C/cit40/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D2CP02654F
– volume: 12
  start-page: 10320
  year: 2020
  ident: D5DT00292C/cit20/1
  publication-title: Nanoscale
  doi: 10.1039/D0NR00195C
– volume: 8
  start-page: 41
  year: 2009
  ident: D5DT00292C/cit17/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2332
– volume: 16
  start-page: 12114
  year: 2010
  ident: D5DT00292C/cit32/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201001908
– volume: 116
  start-page: 3407
  year: 2019
  ident: D5DT00292C/cit3/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1814825116
– volume: 5
  start-page: 476
  year: 2016
  ident: D5DT00292C/cit25/1
  publication-title: Chem. Sci.
– volume: 20
  start-page: 1263
  year: 2014
  ident: D5DT00292C/cit27/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201303626
– volume: 62
  start-page: e202302150
  year: 2023
  ident: D5DT00292C/cit41/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202302150
– volume: 20
  start-page: 6381
  year: 2020
  ident: D5DT00292C/cit7/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c01956
– volume: 1
  start-page: 247
  year: 2008
  ident: D5DT00292C/cit14/1
  publication-title: Chem. Commun.
  doi: 10.1039/B712978E
– volume: 140
  start-page: 10080
  year: 2018
  ident: D5DT00292C/cit9/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04484
– volume: 25
  start-page: 3822
  year: 1986
  ident: D5DT00292C/cit31/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00241a023
– volume: 136
  start-page: 10486
  year: 2014
  ident: D5DT00292C/cit43/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja505277z
– volume: 8
  start-page: 52
  year: 2013
  ident: D5DT00292C/cit50/1
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2012.141
– volume: 136
  start-page: 8314
  year: 2014
  ident: D5DT00292C/cit12/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5012417
– volume: 16
  start-page: 093029
  year: 2014
  ident: D5DT00292C/cit47/1
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/16/9/093029
– volume-title: Encycl. Inorg. Bioinorg. Chem
  year: 2021
  ident: D5DT00292C/cit1/1
– volume: 124
  start-page: 21137
  year: 2020
  ident: D5DT00292C/cit21/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c06044
– volume: 59
  start-page: 12029
  year: 2020
  ident: D5DT00292C/cit49/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202002174
– volume: 61
  start-page: e202116985
  year: 2022
  ident: D5DT00292C/cit42/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202116985
– volume: 2006
  start-page: 2058
  year: 2006
  ident: D5DT00292C/cit23/1
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.200501141
– volume: 326
  start-page: 138
  year: 2006
  ident: D5DT00292C/cit2/1
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2006.02.022
– volume: 220
  start-page: 436
  year: 2016
  ident: D5DT00292C/cit37/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.10.095
– volume: 6
  start-page: 9116
  year: 2014
  ident: D5DT00292C/cit35/1
  publication-title: Anal. Methods
  doi: 10.1039/C4AY02112F
– volume: 47
  start-page: 14125
  year: 2018
  ident: D5DT00292C/cit8/1
  publication-title: Dalton Trans.
  doi: 10.1039/C8DT02103A
– volume: 63
  start-page: e202403577
  year: 2024
  ident: D5DT00292C/cit36/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202403577
– volume: 47
  start-page: 7369
  year: 2008
  ident: D5DT00292C/cit13/1
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.47.7369
– volume: 417
  start-page: 722
  year: 2002
  ident: D5DT00292C/cit16/1
  publication-title: Nature
  doi: 10.1038/nature00791
– volume: 193
  start-page: 113
  year: 2016
  ident: D5DT00292C/cit10/1
  publication-title: Faraday Discuss.
  doi: 10.1039/C6FD00080K
– start-page: 655
  year: 1981
  ident: D5DT00292C/cit34/1
  publication-title: J. Chem. Soc., Dalton Trans.
  doi: 10.1039/DT9810000655
– volume: 4
  start-page: 230
  year: 2009
  ident: D5DT00292C/cit44/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.10
– volume: 143
  start-page: 16439
  year: 2021
  ident: D5DT00292C/cit24/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c05142
– start-page: 900
  year: 1981
  ident: D5DT00292C/cit30/1
  publication-title: J. Chem. Soc., Chem. Commun.
  doi: 10.1039/c39810000900
– volume: 372
  start-page: 220
  year: 2011
  ident: D5DT00292C/cit29/1
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/j.ica.2011.03.035
– volume: 53
  start-page: 4673
  year: 2017
  ident: D5DT00292C/cit5/1
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC01831B
– volume: 133
  start-page: 7509
  year: 2011
  ident: D5DT00292C/cit11/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja201042h
– volume: 29
  start-page: 373001
  year: 2018
  ident: D5DT00292C/cit48/1
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aace21
– volume: 14
  start-page: 2745
  year: 2002
  ident: D5DT00292C/cit46/1
  publication-title: J. Phys.: Condens. Matter
SSID ssj0022052
Score 2.461767
Snippet It is becoming increasingly evident that transition metal complexes impart desirable qualities in single-molecule electronics, and testing metallic centres in...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 7874
SubjectTerms Aniline
Chelation
Coordination compounds
Copper
Devices
Gold
Ligands
Molecular orbitals
Phosphines
Quantum transport
Raman spectroscopy
Robustness
Transition metal compounds
Title Metal ion independent conductance through bis-chelated metal complex molecular wires based on a bis(diphenylphosphino)aniline derivative
URI https://www.ncbi.nlm.nih.gov/pubmed/40275730
https://www.proquest.com/docview/3203184683
https://www.proquest.com/docview/3194653110
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaW9gAXxF8hUJARHEBR2q3tJJtjtVtUEOWAUqm3lWMn7R6arTZZ1PIEPBdPxoxjOyktEnCJVvY62fV88Yw938wQ8lagj7CY4PFSmkWC6ywqUp1EnFWJ0BwsBhMLc_QlOTwWn07ik9Ho54C1tG6LHfX91riS_5EqtIFcMUr2HyTrbwoN8BnkC1eQMFz_SsZHJYYydmxFV822RSI5JnE1sQCuDE-xaCLkfEo0MM_NMEMmLy_Dc1cgN8S0xU2Iek2jD0HiKDBA9QJ5YFfIYm8uzhZYqzuT9cLYpxr-5jfpQjWdlTuTWKsay0-4WuSNOXqQtUlP0Z9AXstb0RWYUqFyNeg8N0i2ptgTBhap5YCLLOvTVq5kc-bOtj0fSJ4uf2Pso4dr1aH_606Yd9Jw5x0sRld9F65ql2iBTmfGbALtYZs9FrXrepec2uE3G6zSsEiJgcbHjPq3apMxx2SsOtYtOi-Z6nWmZzL2nXfIJoOtCqy1m_sH-cfPftvPxqbuk__dLkkuz3b70dfNoht7HbB8Vq4ijbF88gfkvt2y0P0Ofw_JqKwfkbtTJ6XH5IfBIQWR0gEO6QCH1OKQDnFIDQ6pxSH1OKQGh9TgkMI9JY56dwOF7y0GaY_BJ-T4w0E-PYxshY9IcS7aaE-XldRlweIqxYjttAL1U2hWybSKWVklKew4StiyoHNcaYG5iUBn6HiSKqVVwbfIRr2sy2eEcsknEhSQTCowUmP0Z49jTJg3KWABkjIgb9wEzy-6RC5zQ8Dg2XwWz3IjhmlAtt3cz-0r0Mw5Q80n4NEBee27YY7RtybrcrmG7-xlmKkQjOmAPO1k5h8jkBoAmjQgWyBE39wL__mfOl6Qe_0rsE022tW6fAlGcFu8sij7Bd5LuSI
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+ion+independent+conductance+through+bis-chelated+metal+complex+molecular+wires+based+on+a+bis%28diphenylphosphino%29aniline+derivative&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=Gatto%2C+Marco+F&rft.au=Sangtarash%2C+Sara&rft.au=Jago%2C+David&rft.au=Abram%2C+R.+Tom&rft.date=2025-05-13&rft.issn=1477-9226&rft.eissn=1477-9234&rft.volume=54&rft.issue=19&rft.spage=7874&rft.epage=7881&rft_id=info:doi/10.1039%2Fd5dt00292c&rft.externalDocID=d5dt00292c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9226&client=summon