Persulfate activation induced by ascorbic acid for efficient organic pollutants oxidation
[Display omitted] •Ascorbic acid exhibited extremely high activity on persulfate activation to produce SO4− and OH.•Atrazine degradation rate constant during PS activation in presence of AA was 29 times that in absence of AA.•Atrazine, pentachlorophenol, alachlor, tetracycline, and chloramphenicol w...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 382; p. 122355 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Ascorbic acid exhibited extremely high activity on persulfate activation to produce SO4− and OH.•Atrazine degradation rate constant during PS activation in presence of AA was 29 times that in absence of AA.•Atrazine, pentachlorophenol, alachlor, tetracycline, and chloramphenicol were effectively degraded by AA/PS.•Persulfate activation by ascorbic acid was attributed to the electron transfer from AA to PS.•Atrazine in the real aquifer sediment system could be totally oxidized by AA/PS process.
In this study, we demonstrate that ascorbic acid (AA) exhibited extremely high activity on persulfate (PS) activation (AA/PS) to produce SO4− and OH for the degradation of various organic pollutants, including atrazine, pentachlorophenol, alachlor, tetracycline, and chloramphenicol. Taken atrazine as a model natural organic micropollutants, we surprisingly found that the degradation rate constant of atrazine during PS activation in presence of AA was about 29 times larger than that in the absence of AA. The underlying mechanism of persulfate activation induced by AA was then systematically investigated by electron spin resonance (ESR) analysis, theoretical density functional theory (DFT) calculations, and kinetic experiments. The combination of ESR and DFT results confirmed that the persulfate activation induced by ascorbic acid was attributed to the electron transfer from AA to PS. In this process, AA undergoes a two-step oxidation by PS to generate SO4− and dehydroascorbic acid with the formation of an intermediate ascorbate free radical. More interestingly, atrazine in the real aquifer sediment system could be totally oxidized in the presence of PS and AA. These findings offer a new economically feasible persulfate activation strategy for the in situ chemical oxidation of organic compounds in contaminated water and sediment systems. |
---|---|
AbstractList | [Display omitted]
•Ascorbic acid exhibited extremely high activity on persulfate activation to produce SO4− and OH.•Atrazine degradation rate constant during PS activation in presence of AA was 29 times that in absence of AA.•Atrazine, pentachlorophenol, alachlor, tetracycline, and chloramphenicol were effectively degraded by AA/PS.•Persulfate activation by ascorbic acid was attributed to the electron transfer from AA to PS.•Atrazine in the real aquifer sediment system could be totally oxidized by AA/PS process.
In this study, we demonstrate that ascorbic acid (AA) exhibited extremely high activity on persulfate (PS) activation (AA/PS) to produce SO4− and OH for the degradation of various organic pollutants, including atrazine, pentachlorophenol, alachlor, tetracycline, and chloramphenicol. Taken atrazine as a model natural organic micropollutants, we surprisingly found that the degradation rate constant of atrazine during PS activation in presence of AA was about 29 times larger than that in the absence of AA. The underlying mechanism of persulfate activation induced by AA was then systematically investigated by electron spin resonance (ESR) analysis, theoretical density functional theory (DFT) calculations, and kinetic experiments. The combination of ESR and DFT results confirmed that the persulfate activation induced by ascorbic acid was attributed to the electron transfer from AA to PS. In this process, AA undergoes a two-step oxidation by PS to generate SO4− and dehydroascorbic acid with the formation of an intermediate ascorbate free radical. More interestingly, atrazine in the real aquifer sediment system could be totally oxidized in the presence of PS and AA. These findings offer a new economically feasible persulfate activation strategy for the in situ chemical oxidation of organic compounds in contaminated water and sediment systems. |
ArticleNumber | 122355 |
Author | Zhang, Lizhi Zhan, Guangming Hou, Xiaojing Wang, Nan Ai, Zhihui Huang, Xiaopeng |
Author_xml | – sequence: 1 givenname: Xiaojing surname: Hou fullname: Hou, Xiaojing – sequence: 2 givenname: Guangming surname: Zhan fullname: Zhan, Guangming – sequence: 3 givenname: Xiaopeng orcidid: 0000-0001-6606-7468 surname: Huang fullname: Huang, Xiaopeng – sequence: 4 givenname: Nan surname: Wang fullname: Wang, Nan – sequence: 5 givenname: Zhihui orcidid: 0000-0002-8236-3643 surname: Ai fullname: Ai, Zhihui email: jennifer.ai@mail.ccnu.edu.cn – sequence: 6 givenname: Lizhi orcidid: 0000-0002-6842-9167 surname: Zhang fullname: Zhang, Lizhi email: zhanglz@mail.ccnu.edu.cn |
BookMark | eNp9kMtOwzAQRS0EEm3hA9jlBxI8kzhxxApVvKRKsIAFK8vxAzkKcWW7Ff170pYVi65mpKtzNXPm5Hz0oyHkBmgBFOrbvlCmL5BCWwBiydgZmQFvyrxEwPNpLznLeVs1l2QeY08prVtoZ-TzzYS4GaxMJpMqua1Mzo-ZG_VGGZ11u0xG5UPn1BQ7nVkfMmOtU86MKfPhS45TtPbDsElyTDHzP04fOq7IhZVDNNd_c0E-Hh_el8_56vXpZXm_ylVZVikHjQ2nKLllHCuDNasRG5CGaQaswRotgO1Ad7TijUaJrAWrK8pbkFjzckGaY68KPsZgrFAuHS5IQbpBABV7Q6IXkyGxNySOhiYS_pHr4L5l2J1k7o6MmV7aOhNE3KuYXLlgVBLauxP0L-PtgKM |
CitedBy_id | crossref_primary_10_1016_j_dwt_2024_100201 crossref_primary_10_1016_j_seppur_2022_121279 crossref_primary_10_1016_j_jhazmat_2022_128738 crossref_primary_10_1016_j_seppur_2022_121599 crossref_primary_10_1016_j_eurpolymj_2023_111852 crossref_primary_10_1016_j_seppur_2022_122563 crossref_primary_10_1016_j_chemosphere_2020_128000 crossref_primary_10_1021_acs_chemrev_0c01286 crossref_primary_10_1016_j_jclepro_2021_126451 crossref_primary_10_1039_D2EN00027J crossref_primary_10_1016_j_apgeochem_2023_105605 crossref_primary_10_1016_j_hydromet_2023_106110 crossref_primary_10_1016_j_jenvman_2020_111728 crossref_primary_10_1016_j_seppur_2023_125634 crossref_primary_10_1016_j_coche_2022_100837 crossref_primary_10_1016_j_jenvman_2025_124817 crossref_primary_10_1016_j_fbio_2024_105406 crossref_primary_10_1039_D3CC03176D crossref_primary_10_1007_s11270_022_05831_2 crossref_primary_10_1007_s11356_023_31566_6 crossref_primary_10_1016_j_jhazmat_2021_126106 crossref_primary_10_1016_j_xcrp_2020_100149 crossref_primary_10_1016_j_talanta_2024_126931 crossref_primary_10_1016_j_cej_2021_134241 crossref_primary_10_1016_j_chemosphere_2020_129520 crossref_primary_10_1007_s11356_021_13972_w crossref_primary_10_3390_cleantechnol4040065 crossref_primary_10_1016_j_hazl_2024_100102 crossref_primary_10_1016_j_coche_2022_100841 crossref_primary_10_1016_j_seppur_2021_120239 crossref_primary_10_1016_j_eng_2023_06_010 crossref_primary_10_1039_D0EW00358A crossref_primary_10_1016_j_cej_2020_127188 crossref_primary_10_1016_j_envres_2023_117883 crossref_primary_10_1016_j_ccr_2024_215765 crossref_primary_10_1016_j_watres_2024_122488 crossref_primary_10_1016_j_jwpe_2025_107409 crossref_primary_10_1016_j_jece_2024_113526 crossref_primary_10_1016_j_jhazmat_2021_125804 crossref_primary_10_1007_s11356_023_25191_6 crossref_primary_10_1016_j_jhazmat_2025_137793 crossref_primary_10_1002_kin_21768 crossref_primary_10_1021_acs_est_3c10898 crossref_primary_10_1016_j_chemosphere_2022_133663 crossref_primary_10_3390_w12030733 crossref_primary_10_1016_j_chemosphere_2023_139202 crossref_primary_10_1039_D4RA02340D crossref_primary_10_1007_s11356_024_32405_y crossref_primary_10_5322_JESI_2020_29_1_69 crossref_primary_10_1016_j_jece_2023_110380 crossref_primary_10_3390_su131910993 crossref_primary_10_3390_ijerph16245129 crossref_primary_10_1016_j_seppur_2022_122571 crossref_primary_10_1007_s00604_020_04459_5 crossref_primary_10_1016_j_jhazmat_2023_132152 crossref_primary_10_3390_molecules28104237 crossref_primary_10_1016_j_jclepro_2023_136468 crossref_primary_10_3390_su14159324 crossref_primary_10_1016_j_chemosphere_2022_135132 crossref_primary_10_1007_s11356_022_19108_y crossref_primary_10_1016_j_cej_2020_126232 |
Cites_doi | 10.1016/j.jhazmat.2013.07.054 10.1016/S1001-0742(08)62399-2 10.1016/j.chemosphere.2008.08.043 10.1071/CH9821133 10.1021/es1013714 10.1063/1.555808 10.1021/j100584a005 10.1021/es404535q 10.1016/j.watres.2009.01.021 10.1016/j.chemosphere.2004.01.029 10.1021/jp063552y 10.1006/abio.1997.2293 10.1021/es991132z 10.1016/j.jclepro.2019.01.323 10.1016/j.jhazmat.2009.07.050 10.1021/es0263792 10.1021/ja00756a009 10.1021/ja00389a001 10.1063/1.2436888 10.1021/es400262n 10.1007/BF01055644 10.1016/j.cej.2012.06.029 10.1016/j.chemosphere.2016.09.103 10.1016/j.jhazmat.2016.12.048 10.1016/j.jhazmat.2009.02.065 10.1080/09593339409385446 10.1016/j.chemosphere.2004.01.030 10.1016/j.jhazmat.2015.09.029 10.1016/j.cej.2012.04.084 10.1021/acs.est.5b03595 10.1002/elps.201300439 10.1021/acsami.6b16600 10.1016/j.jhazmat.2016.01.020 10.1063/1.555805 10.1021/acs.est.8b04669 10.1021/es400728c 10.1016/j.chemosphere.2015.04.007 10.1021/es0300822 10.1016/j.jhazmat.2013.03.056 10.1021/es304441e 10.1021/ja01002a046 10.1007/s00894-014-2326-1 10.1073/pnas.19.9.875 10.1016/j.cej.2015.02.014 10.1021/es990724e 10.1016/j.chemosphere.2016.02.055 10.1016/j.cej.2019.01.035 10.1021/es404741x 10.1016/S0006-2952(03)00475-1 10.1021/j100495a028 10.1002/(SICI)1521-401X(200001)28:1<15::AID-AHEH15>3.0.CO;2-2 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2019.122355 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
ExternalDocumentID | 10_1016_j_cej_2019_122355 S1385894719317589 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION FEDTE FGOYB HVGLF HZ~ R2- RIG SEW SSH ZY4 |
ID | FETCH-LOGICAL-c334t-1d27802a8f5824e26562271ae5d5157262f11fb1db0487d2a2591fd40891a2683 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Thu Apr 24 23:09:02 EDT 2025 Tue Jul 01 03:52:23 EDT 2025 Fri Feb 23 02:49:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Organic pollutants Ascorbic acid Persulfate activation In situ chemical oxidation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-1d27802a8f5824e26562271ae5d5157262f11fb1db0487d2a2591fd40891a2683 |
ORCID | 0000-0001-6606-7468 0000-0002-8236-3643 0000-0002-6842-9167 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cej_2019_122355 crossref_primary_10_1016_j_cej_2019_122355 elsevier_sciencedirect_doi_10_1016_j_cej_2019_122355 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-15 |
PublicationDateYYYYMMDD | 2020-02-15 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhou, Jiang, Gao, Ma, Pang, Li, Lu, Yuan (b0020) 2015; 49 Huang, Hou, Jia, Song, Zhao, Zhang (b0130) 2017; 9 Lee, Lo, Kuo, Huang (b0035) 2013; 261 Liang, Bruell, Marley, Sperry (b0010) 2004; 55 Anipsitakis, Dionysiou (b0015) 2003; 37 Chen, Shi, Xia, Lei, Wang, Gong (b0175) 2014; 20 Hou, Huang, Ai, Zhao, Zhang (b0125) 2016; 310 Zhao, Liao, Yan, Huling, Chai, Tao (b0070) 2013; 254 Yang, Wang, Yang, Wei, Zhang, Shan (b0080) 2009; 21 Matzek, Carter (b0060) 2016; 151 Bslci, Oturan, Cherrier, Oturan (b0255) 2009; 43 Wang, Cao, Ai, Zhang (b0155) 2014; 48 Williams, Yandell (b0225) 1982; 35 Stratton (b0260) 1984; 13 Lin, Liang (b0105) 2015; 136 Burman, Shertzer, Senft, Dalton, Genter (b0150) 2003; 66 Cuypers, Grotenhuis, Joziasse, Rulkens (b0030) 2000; 34 Kelly, Cramer, Truhlar (b0180) 2006; 110 Fang, Gao, Dionysiou, Liu, Zhou (b0025) 2013; 47 De Laat, Chramosta, Dore, Suty, Pouillot (b0230) 1994; 15 Kang, Zhang, Duan, Sun, Tan, Liu, Wang (b0050) 2019; 362 Lei, Zhang, Wang, Ai (b0135) 2015; 270 Neta, Huie, Ross (b0200) 1988; 17 Liang, Huang, Mohanty, Kurakalva (b0145) 2008; 73 Ahmad, Teel, Watts (b0090) 2013; 47 Lin, Liang (b0100) 2013; 47 Kang, Zhang, Duan, Sun, Tan, Wang (b0055) 2019; 218 Eibenberger, Steenken, O’Neill, Schulte-Frohlinde (b0205) 1978; 82 Borsook, Keighley (b0190) 1933; 19 Curtiss, Redfern, Raghavachari (b0170) 2007; 126 Hou, Huang, Ai, Zhao, Zhang (b0120) 2017; 327 Furman, Teel, Watts (b0075) 2010; 44 Liang, Lin, Shiu (b0110) 2016; 302 Yuan, Liao, Alshawabkeh (b0045) 2014; 48 Davies, Partridge, Austin (b0095) 1991 Xu, Zeng, Peng, Zeng (b0245) 2012; 200 Ciou, Liang (b0115) 2017; 166 White, Bard (b0185) 1982; 104 Zhu, Li, Kang, Duan, Wang (b0040) 2018; 53 Chen, Yang, Guo, Sun, Gu, Xu (b0250) 2009; 172 Hayon, Treinin, Wilf (b0210) 1972; 94 Gao, Gao, Deng, Yang, Ma (b0065) 2012; 195 Silva, Fialho, Sá-Correia, Burns, Shaw (b0140) 2004; 38 Acero, Stemmler, von Gunten (b0240) 2000; 34 Klein, Bhatia, Madhavan, Schuler (b0215) 1975; 79 Khan, Martell (b0220) 1967; 89 Liang, Bruell, Marley, Sperry (b0005) 2004; 55 Buxton, Greenstock, Helman, Ross (b0195) 1988; 17 Oh, Kim, Park, Park, Yoon (b0085) 2009; 168 Tauber, von Sonntag (b0235) 2000; 28 Deutsch (b0160) 1998; 255 Szultka, Buszewska-Forajta, Kaliszan, Buszewski (b0165) 2014; 35 Acero (10.1016/j.cej.2019.122355_b0240) 2000; 34 Kang (10.1016/j.cej.2019.122355_b0050) 2019; 362 Yang (10.1016/j.cej.2019.122355_b0080) 2009; 21 Anipsitakis (10.1016/j.cej.2019.122355_b0015) 2003; 37 Chen (10.1016/j.cej.2019.122355_b0175) 2014; 20 Liang (10.1016/j.cej.2019.122355_b0005) 2004; 55 Hou (10.1016/j.cej.2019.122355_b0120) 2017; 327 Lin (10.1016/j.cej.2019.122355_b0100) 2013; 47 Borsook (10.1016/j.cej.2019.122355_b0190) 1933; 19 Williams (10.1016/j.cej.2019.122355_b0225) 1982; 35 Xu (10.1016/j.cej.2019.122355_b0245) 2012; 200 White (10.1016/j.cej.2019.122355_b0185) 1982; 104 Buxton (10.1016/j.cej.2019.122355_b0195) 1988; 17 Fang (10.1016/j.cej.2019.122355_b0025) 2013; 47 Huang (10.1016/j.cej.2019.122355_b0130) 2017; 9 Bslci (10.1016/j.cej.2019.122355_b0255) 2009; 43 Kelly (10.1016/j.cej.2019.122355_b0180) 2006; 110 Burman (10.1016/j.cej.2019.122355_b0150) 2003; 66 Wang (10.1016/j.cej.2019.122355_b0155) 2014; 48 Yuan (10.1016/j.cej.2019.122355_b0045) 2014; 48 Szultka (10.1016/j.cej.2019.122355_b0165) 2014; 35 Oh (10.1016/j.cej.2019.122355_b0085) 2009; 168 Matzek (10.1016/j.cej.2019.122355_b0060) 2016; 151 Furman (10.1016/j.cej.2019.122355_b0075) 2010; 44 Tauber (10.1016/j.cej.2019.122355_b0235) 2000; 28 Lee (10.1016/j.cej.2019.122355_b0035) 2013; 261 Kang (10.1016/j.cej.2019.122355_b0055) 2019; 218 Hayon (10.1016/j.cej.2019.122355_b0210) 1972; 94 Ahmad (10.1016/j.cej.2019.122355_b0090) 2013; 47 Lin (10.1016/j.cej.2019.122355_b0105) 2015; 136 Curtiss (10.1016/j.cej.2019.122355_b0170) 2007; 126 Liang (10.1016/j.cej.2019.122355_b0145) 2008; 73 Eibenberger (10.1016/j.cej.2019.122355_b0205) 1978; 82 Davies (10.1016/j.cej.2019.122355_b0095) 1991 Zhao (10.1016/j.cej.2019.122355_b0070) 2013; 254 Gao (10.1016/j.cej.2019.122355_b0065) 2012; 195 Hou (10.1016/j.cej.2019.122355_b0125) 2016; 310 Chen (10.1016/j.cej.2019.122355_b0250) 2009; 172 Ciou (10.1016/j.cej.2019.122355_b0115) 2017; 166 Stratton (10.1016/j.cej.2019.122355_b0260) 1984; 13 Liang (10.1016/j.cej.2019.122355_b0010) 2004; 55 Neta (10.1016/j.cej.2019.122355_b0200) 1988; 17 De Laat (10.1016/j.cej.2019.122355_b0230) 1994; 15 Khan (10.1016/j.cej.2019.122355_b0220) 1967; 89 Klein (10.1016/j.cej.2019.122355_b0215) 1975; 79 Lei (10.1016/j.cej.2019.122355_b0135) 2015; 270 Zhu (10.1016/j.cej.2019.122355_b0040) 2018; 53 Zhou (10.1016/j.cej.2019.122355_b0020) 2015; 49 Deutsch (10.1016/j.cej.2019.122355_b0160) 1998; 255 Cuypers (10.1016/j.cej.2019.122355_b0030) 2000; 34 Silva (10.1016/j.cej.2019.122355_b0140) 2004; 38 Liang (10.1016/j.cej.2019.122355_b0110) 2016; 302 |
References_xml | – volume: 55 start-page: 1213 year: 2004 end-page: 1223 ident: b0005 article-title: Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate–thiosulfate redox couple publication-title: Chemosphere – volume: 136 start-page: 27 year: 2015 end-page: 31 ident: b0105 article-title: Reductive dechlorination of carbon tetrachloride using buffered alkaline ascorbic acid publication-title: Chemosphere – volume: 89 start-page: 7104 year: 1967 end-page: 7111 ident: b0220 article-title: Metal ion and metal chelate catalyzed oxidation of ascorbic acid by molecular oxygen. II. Cupric and ferric chelate catalyzed oxidation publication-title: J. Am. Chem. Soc. – volume: 110 start-page: 16066 year: 2006 end-page: 16081 ident: b0180 article-title: Aqueous solvation free energies of ions and ion−water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton publication-title: J. Phys. Chem. B – volume: 34 start-page: 2057 year: 2000 end-page: 2063 ident: b0030 article-title: Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments publication-title: Environ. Sci. Technol. – volume: 13 start-page: 35 year: 1984 end-page: 42 ident: b0260 article-title: Effects of the herbicide atrazine and its degradation productsalone and in combination, on phototrophic microorganisms publication-title: Arch. Environ. Contam. Toxicol. – volume: 302 start-page: 137 year: 2016 end-page: 143 ident: b0110 article-title: Reduction of nitrobenzene with alkaline ascorbic acid: Kinetics and pathways publication-title: J. Hazard. Mater. – volume: 19 start-page: 875 year: 1933 end-page: 879 ident: b0190 article-title: Oxidation-reduction potential of ascorbic acid (Vitamin C) publication-title: Proc. Natl. Acad. Sci. – volume: 66 start-page: 1707 year: 2003 end-page: 1715 ident: b0150 article-title: Antioxidant perturbations in the olfactory mucosa of alachlor-treated rats publication-title: Biochem. Pharmacol. – volume: 37 start-page: 4790 year: 2003 end-page: 4797 ident: b0015 article-title: Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt publication-title: Environ. Sci. Technol. – volume: 21 start-page: 1175 year: 2009 end-page: 1180 ident: b0080 article-title: A novel advanced oxidation process to degrade organic pollutants in wastewater: Microwave-activated persulfate oxidation publication-title: J. Environ. Sci. – volume: 195 start-page: 248 year: 2012 end-page: 253 ident: b0065 article-title: Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water publication-title: Chem. Eng. J. – volume: 166 start-page: 482 year: 2017 end-page: 488 ident: b0115 article-title: 1,3–Dinitrobenzene reductive degradation by alkaline ascorbic acid – reaction mechanisms, degradation pathways and reagent optimization publication-title: Chemosphere – volume: 20 start-page: 2326 year: 2014 end-page: 2335 ident: b0175 article-title: Theoretical study of solvent effects on RDX crystal quality and sensitivity using an implicit solvation model publication-title: J. Mol. Model. – volume: 47 start-page: 3299 year: 2013 end-page: 3307 ident: b0100 article-title: Carbon tetrachloride degradation by alkaline ascorbic acid solution publication-title: Environ. Sci. Technol. – volume: 270 start-page: 73 year: 2015 end-page: 79 ident: b0135 article-title: Rapid and continuous oxidation of organic contaminants with ascorbic acid and a modified ferric/persulfate system publication-title: Chem. Eng. J. – volume: 35 start-page: 1133 year: 1982 end-page: 1144 ident: b0225 article-title: Outer-sphere electron-transfer reactions of ascorbate anions publication-title: Aust. J. Chem. – volume: 94 start-page: 47 year: 1972 end-page: 57 ident: b0210 article-title: Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. SO publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 8751 year: 2017 end-page: 8758 ident: b0130 article-title: Ascorbate-promoted surface iron cycle for efficient heterogeneous Fenton alachlor degradation with hematite nanocrystals publication-title: ACS Appl. Mater. Interfaces – volume: 43 start-page: 1924 year: 2009 end-page: 1934 ident: b0255 article-title: Degradation of atrazine inaqueous medium by electrocatalytically generated hydroxyl radicalselectrocatalytically generated hydroxyl radicals, a kinetic and mechanisticstudy publication-title: Water Res. – volume: 49 start-page: 12941 year: 2015 end-page: 12950 ident: b0020 article-title: Activation of peroxymonosulfate by benzoquinone: a novel nonradical oxidation process publication-title: Environ. Sci. Technol. – volume: 34 start-page: 591 year: 2000 end-page: 597 ident: b0240 article-title: Degradation kinetics of atrazine and its degradation products with ozone and •OH radicals: a predictive tool for drinking water treatment publication-title: Environ. Sci. Technol. – volume: 48 start-page: 656 year: 2014 end-page: 663 ident: b0045 article-title: Electrolytic Manipulation of persulfate reactivity by iron electrodes for trichloroethylene degradation in groundwater publication-title: Environ. Sci. Technol. – volume: 28 start-page: 15 year: 2000 end-page: 23 ident: b0235 article-title: Products and kinetics of the •OH radical-induced dealkylation of atrazine publication-title: Acta Hydrochim. Hydrobiol. – volume: 168 start-page: 346 year: 2009 end-page: 351 ident: b0085 article-title: Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe publication-title: J. Hazard. Mater – volume: 255 start-page: 1 year: 1998 end-page: 7 ident: b0160 article-title: Ascorbic acid oxidation by hydrogen peroxide publication-title: Anal. Biochem. – volume: 53 start-page: 307 year: 2018 end-page: 315 ident: b0040 article-title: Persulfate activation on crystallographic manganese oxides: mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants publication-title: Environ. Sci. Technol. – volume: 151 start-page: 178 year: 2016 end-page: 188 ident: b0060 article-title: Activated persulfate for organic chemical degradation: a review publication-title: Chemosphere – volume: 48 start-page: 3354 year: 2014 end-page: 3362 ident: b0155 article-title: Dramatically enhanced aerobic atrazine degradation with Fe@Fe publication-title: Environ. Sci. Technol. – volume: 82 start-page: 749 year: 1978 end-page: 750 ident: b0205 article-title: Pulse radiolysis and electron spin resonance studies concerning the reaction of SO publication-title: J. Phys. Chem. – volume: 254 start-page: 228 year: 2013 end-page: 235 ident: b0070 article-title: Effect and mechanism of persulfate activated by different methods for PAHs removal in soil publication-title: J. Hazard. Mater. – volume: 47 start-page: 5864 year: 2013 end-page: 5871 ident: b0090 article-title: Mechanism of persulfate activation by phenols publication-title: Environ. Sci. Technol. – volume: 35 start-page: 585 year: 2014 end-page: 592 ident: b0165 article-title: Determination of ascorbic acid and its degradation products by high-performance liquid chromatography-triple quadrupole mass spectrometry publication-title: Electrophoresis – volume: 73 start-page: 1540 year: 2008 end-page: 1543 ident: b0145 article-title: A rapid spectrophotometric determination of persulfate anion in ISCO publication-title: Chemosphere – year: 1991 ident: b0095 article-title: Vitamin C: Its Chemistry and Biochemistry – volume: 200 start-page: 25 year: 2012 end-page: 31 ident: b0245 article-title: Potassium persulfate promoted catalytic wet oxidation of fulvic acid as a model organic compound in landfill leachate with activated carbon publication-title: Chem. Eng. J. – volume: 15 start-page: 419 year: 1994 end-page: 428 ident: b0230 article-title: Rate constants for reaction of hydroxyl radicals with some degradation byproducts of atrazine by O publication-title: Environ. Technol. – volume: 172 start-page: 675 year: 2009 end-page: 684 ident: b0250 article-title: Photolytic destruction ofendocrine disruptor atrazine in aqueous solution under UV irradiation: products and pathways publication-title: J. Hazard. Mater. – volume: 310 start-page: 170 year: 2016 end-page: 178 ident: b0125 article-title: Ascorbic acid/Fe@Fe publication-title: J. Hazard. Mater. – volume: 38 start-page: 632 year: 2004 end-page: 637 ident: b0140 article-title: Combined bioaugmentation and biostimulation to cleanup soil contaminated with high concentrations of atrazine publication-title: Environ. Sci. Technol. – volume: 17 start-page: 1027 year: 1988 end-page: 1284 ident: b0200 article-title: Rate constants for reactions of inorganic radicals in aqueous solution publication-title: J. Phys. Chem. Ref. Data – volume: 17 start-page: 513 year: 1988 end-page: 886 ident: b0195 article-title: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O publication-title: J. Phys. Chem. Ref. Data – volume: 44 start-page: 6423 year: 2010 end-page: 6428 ident: b0075 article-title: Mechanism of base activation of persulfate publication-title: Environ. Sci. Technol. – volume: 362 start-page: 251 year: 2019 end-page: 261 ident: b0050 article-title: Magnetic Ni-Co alloy encapsulated N-doped carbon nanotubes for catalytic membrane degradation of emerging contaminants publication-title: Chem. Eng. J. – volume: 79 start-page: 1767 year: 1975 end-page: 1774 ident: b0215 article-title: Reaction of •OH with benzoic acid: Isomer distribution in the radical intermediates publication-title: J. Phys. Chem. – volume: 261 start-page: 463 year: 2013 end-page: 469 ident: b0035 article-title: Promoted degradation of perfluorooctanic acid by persulfate when adding activated carbon publication-title: J. Hazard. Mater. – volume: 104 start-page: 6891 year: 1982 end-page: 6895 ident: b0185 article-title: Electrogenerated chemiluminescence. 41. Electrogenerated chemiluminescence and chemiluminescence of the Ru(2,2’-bpy) publication-title: J. Am. Chem. Soc. – volume: 126 year: 2007 ident: b0170 article-title: Gaussian-4 theory publication-title: J. Chem. Phys. – volume: 327 start-page: 71 year: 2017 end-page: 78 ident: b0120 article-title: Ascorbic acid induced atrazine degradation publication-title: J. Hazard. Mater. – volume: 218 start-page: 202 year: 2019 end-page: 211 ident: b0055 article-title: Nickel in hierarchically structured nitrogen-doped graphene for robust and promoted degradation of antibiotics publication-title: J. Clean. Prod – volume: 55 start-page: 1225 year: 2004 end-page: 1233 ident: b0010 article-title: Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion publication-title: Chemosphere – volume: 47 start-page: 4605 year: 2013 end-page: 4611 ident: b0025 article-title: Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs publication-title: Environ. Sci. Technol. – volume: 261 start-page: 463 year: 2013 ident: 10.1016/j.cej.2019.122355_b0035 article-title: Promoted degradation of perfluorooctanic acid by persulfate when adding activated carbon publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2013.07.054 – volume: 21 start-page: 1175 year: 2009 ident: 10.1016/j.cej.2019.122355_b0080 article-title: A novel advanced oxidation process to degrade organic pollutants in wastewater: Microwave-activated persulfate oxidation publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(08)62399-2 – volume: 73 start-page: 1540 year: 2008 ident: 10.1016/j.cej.2019.122355_b0145 article-title: A rapid spectrophotometric determination of persulfate anion in ISCO publication-title: Chemosphere doi: 10.1016/j.chemosphere.2008.08.043 – volume: 35 start-page: 1133 year: 1982 ident: 10.1016/j.cej.2019.122355_b0225 article-title: Outer-sphere electron-transfer reactions of ascorbate anions publication-title: Aust. J. Chem. doi: 10.1071/CH9821133 – volume: 44 start-page: 6423 year: 2010 ident: 10.1016/j.cej.2019.122355_b0075 article-title: Mechanism of base activation of persulfate publication-title: Environ. Sci. Technol. doi: 10.1021/es1013714 – volume: 17 start-page: 1027 year: 1988 ident: 10.1016/j.cej.2019.122355_b0200 article-title: Rate constants for reactions of inorganic radicals in aqueous solution publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.555808 – volume: 79 start-page: 1767 year: 1975 ident: 10.1016/j.cej.2019.122355_b0215 article-title: Reaction of •OH with benzoic acid: Isomer distribution in the radical intermediates publication-title: J. Phys. Chem. doi: 10.1021/j100584a005 – volume: 48 start-page: 656 year: 2014 ident: 10.1016/j.cej.2019.122355_b0045 article-title: Electrolytic Manipulation of persulfate reactivity by iron electrodes for trichloroethylene degradation in groundwater publication-title: Environ. Sci. Technol. doi: 10.1021/es404535q – volume: 43 start-page: 1924 year: 2009 ident: 10.1016/j.cej.2019.122355_b0255 article-title: Degradation of atrazine inaqueous medium by electrocatalytically generated hydroxyl radicalselectrocatalytically generated hydroxyl radicals, a kinetic and mechanisticstudy publication-title: Water Res. doi: 10.1016/j.watres.2009.01.021 – volume: 55 start-page: 1213 year: 2004 ident: 10.1016/j.cej.2019.122355_b0005 article-title: Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate–thiosulfate redox couple publication-title: Chemosphere doi: 10.1016/j.chemosphere.2004.01.029 – volume: 110 start-page: 16066 year: 2006 ident: 10.1016/j.cej.2019.122355_b0180 article-title: Aqueous solvation free energies of ions and ion−water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton publication-title: J. Phys. Chem. B doi: 10.1021/jp063552y – volume: 255 start-page: 1 year: 1998 ident: 10.1016/j.cej.2019.122355_b0160 article-title: Ascorbic acid oxidation by hydrogen peroxide publication-title: Anal. Biochem. doi: 10.1006/abio.1997.2293 – volume: 34 start-page: 2057 year: 2000 ident: 10.1016/j.cej.2019.122355_b0030 article-title: Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments publication-title: Environ. Sci. Technol. doi: 10.1021/es991132z – volume: 218 start-page: 202 year: 2019 ident: 10.1016/j.cej.2019.122355_b0055 article-title: Nickel in hierarchically structured nitrogen-doped graphene for robust and promoted degradation of antibiotics publication-title: J. Clean. Prod doi: 10.1016/j.jclepro.2019.01.323 – volume: 172 start-page: 675 year: 2009 ident: 10.1016/j.cej.2019.122355_b0250 article-title: Photolytic destruction ofendocrine disruptor atrazine in aqueous solution under UV irradiation: products and pathways publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.07.050 – volume: 37 start-page: 4790 year: 2003 ident: 10.1016/j.cej.2019.122355_b0015 article-title: Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt publication-title: Environ. Sci. Technol. doi: 10.1021/es0263792 – volume: 94 start-page: 47 year: 1972 ident: 10.1016/j.cej.2019.122355_b0210 article-title: Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. SO2-, SO3-, SO4-, and SO5- radicals publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00756a009 – volume: 104 start-page: 6891 year: 1982 ident: 10.1016/j.cej.2019.122355_b0185 article-title: Electrogenerated chemiluminescence. 41. Electrogenerated chemiluminescence and chemiluminescence of the Ru(2,2’-bpy)32+–S2O82− system in acetonitrile–water solutions publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00389a001 – volume: 126 year: 2007 ident: 10.1016/j.cej.2019.122355_b0170 article-title: Gaussian-4 theory publication-title: J. Chem. Phys. doi: 10.1063/1.2436888 – volume: 47 start-page: 4605 year: 2013 ident: 10.1016/j.cej.2019.122355_b0025 article-title: Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs publication-title: Environ. Sci. Technol. doi: 10.1021/es400262n – volume: 13 start-page: 35 year: 1984 ident: 10.1016/j.cej.2019.122355_b0260 article-title: Effects of the herbicide atrazine and its degradation productsalone and in combination, on phototrophic microorganisms publication-title: Arch. Environ. Contam. Toxicol. doi: 10.1007/BF01055644 – volume: 200 start-page: 25 year: 2012 ident: 10.1016/j.cej.2019.122355_b0245 article-title: Potassium persulfate promoted catalytic wet oxidation of fulvic acid as a model organic compound in landfill leachate with activated carbon publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.06.029 – volume: 166 start-page: 482 year: 2017 ident: 10.1016/j.cej.2019.122355_b0115 article-title: 1,3–Dinitrobenzene reductive degradation by alkaline ascorbic acid – reaction mechanisms, degradation pathways and reagent optimization publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.09.103 – volume: 327 start-page: 71 year: 2017 ident: 10.1016/j.cej.2019.122355_b0120 article-title: Ascorbic acid induced atrazine degradation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.12.048 – volume: 168 start-page: 346 year: 2009 ident: 10.1016/j.cej.2019.122355_b0085 article-title: Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero-valent iron publication-title: J. Hazard. Mater doi: 10.1016/j.jhazmat.2009.02.065 – volume: 15 start-page: 419 year: 1994 ident: 10.1016/j.cej.2019.122355_b0230 article-title: Rate constants for reaction of hydroxyl radicals with some degradation byproducts of atrazine by O3 or O3/H2O2 publication-title: Environ. Technol. doi: 10.1080/09593339409385446 – volume: 55 start-page: 1225 year: 2004 ident: 10.1016/j.cej.2019.122355_b0010 article-title: Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion publication-title: Chemosphere doi: 10.1016/j.chemosphere.2004.01.030 – volume: 302 start-page: 137 year: 2016 ident: 10.1016/j.cej.2019.122355_b0110 article-title: Reduction of nitrobenzene with alkaline ascorbic acid: Kinetics and pathways publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.09.029 – volume: 195 start-page: 248 year: 2012 ident: 10.1016/j.cej.2019.122355_b0065 article-title: Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.04.084 – volume: 49 start-page: 12941 year: 2015 ident: 10.1016/j.cej.2019.122355_b0020 article-title: Activation of peroxymonosulfate by benzoquinone: a novel nonradical oxidation process publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b03595 – volume: 35 start-page: 585 year: 2014 ident: 10.1016/j.cej.2019.122355_b0165 article-title: Determination of ascorbic acid and its degradation products by high-performance liquid chromatography-triple quadrupole mass spectrometry publication-title: Electrophoresis doi: 10.1002/elps.201300439 – volume: 9 start-page: 8751 year: 2017 ident: 10.1016/j.cej.2019.122355_b0130 article-title: Ascorbate-promoted surface iron cycle for efficient heterogeneous Fenton alachlor degradation with hematite nanocrystals publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b16600 – volume: 310 start-page: 170 year: 2016 ident: 10.1016/j.cej.2019.122355_b0125 article-title: Ascorbic acid/Fe@Fe2O3: a highly efficient combined Fenton reagent to remove organic contaminants publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.01.020 – volume: 17 start-page: 513 year: 1988 ident: 10.1016/j.cej.2019.122355_b0195 article-title: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O-) in aqueous solution publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.555805 – volume: 53 start-page: 307 year: 2018 ident: 10.1016/j.cej.2019.122355_b0040 article-title: Persulfate activation on crystallographic manganese oxides: mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b04669 – volume: 47 start-page: 5864 year: 2013 ident: 10.1016/j.cej.2019.122355_b0090 article-title: Mechanism of persulfate activation by phenols publication-title: Environ. Sci. Technol. doi: 10.1021/es400728c – volume: 136 start-page: 27 year: 2015 ident: 10.1016/j.cej.2019.122355_b0105 article-title: Reductive dechlorination of carbon tetrachloride using buffered alkaline ascorbic acid publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.04.007 – volume: 38 start-page: 632 year: 2004 ident: 10.1016/j.cej.2019.122355_b0140 article-title: Combined bioaugmentation and biostimulation to cleanup soil contaminated with high concentrations of atrazine publication-title: Environ. Sci. Technol. doi: 10.1021/es0300822 – year: 1991 ident: 10.1016/j.cej.2019.122355_b0095 – volume: 254 start-page: 228 year: 2013 ident: 10.1016/j.cej.2019.122355_b0070 article-title: Effect and mechanism of persulfate activated by different methods for PAHs removal in soil publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2013.03.056 – volume: 47 start-page: 3299 year: 2013 ident: 10.1016/j.cej.2019.122355_b0100 article-title: Carbon tetrachloride degradation by alkaline ascorbic acid solution publication-title: Environ. Sci. Technol. doi: 10.1021/es304441e – volume: 89 start-page: 7104 year: 1967 ident: 10.1016/j.cej.2019.122355_b0220 article-title: Metal ion and metal chelate catalyzed oxidation of ascorbic acid by molecular oxygen. II. Cupric and ferric chelate catalyzed oxidation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01002a046 – volume: 20 start-page: 2326 year: 2014 ident: 10.1016/j.cej.2019.122355_b0175 article-title: Theoretical study of solvent effects on RDX crystal quality and sensitivity using an implicit solvation model publication-title: J. Mol. Model. doi: 10.1007/s00894-014-2326-1 – volume: 19 start-page: 875 year: 1933 ident: 10.1016/j.cej.2019.122355_b0190 article-title: Oxidation-reduction potential of ascorbic acid (Vitamin C) publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.19.9.875 – volume: 270 start-page: 73 year: 2015 ident: 10.1016/j.cej.2019.122355_b0135 article-title: Rapid and continuous oxidation of organic contaminants with ascorbic acid and a modified ferric/persulfate system publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.02.014 – volume: 34 start-page: 591 year: 2000 ident: 10.1016/j.cej.2019.122355_b0240 article-title: Degradation kinetics of atrazine and its degradation products with ozone and •OH radicals: a predictive tool for drinking water treatment publication-title: Environ. Sci. Technol. doi: 10.1021/es990724e – volume: 151 start-page: 178 year: 2016 ident: 10.1016/j.cej.2019.122355_b0060 article-title: Activated persulfate for organic chemical degradation: a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.02.055 – volume: 362 start-page: 251 year: 2019 ident: 10.1016/j.cej.2019.122355_b0050 article-title: Magnetic Ni-Co alloy encapsulated N-doped carbon nanotubes for catalytic membrane degradation of emerging contaminants publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.01.035 – volume: 48 start-page: 3354 year: 2014 ident: 10.1016/j.cej.2019.122355_b0155 article-title: Dramatically enhanced aerobic atrazine degradation with Fe@Fe2O3 core–shell nanowires by tetrapolyphosphate publication-title: Environ. Sci. Technol. doi: 10.1021/es404741x – volume: 66 start-page: 1707 year: 2003 ident: 10.1016/j.cej.2019.122355_b0150 article-title: Antioxidant perturbations in the olfactory mucosa of alachlor-treated rats publication-title: Biochem. Pharmacol. doi: 10.1016/S0006-2952(03)00475-1 – volume: 82 start-page: 749 year: 1978 ident: 10.1016/j.cej.2019.122355_b0205 article-title: Pulse radiolysis and electron spin resonance studies concerning the reaction of SO4•- with alcohols and ethers in aqueous solution publication-title: J. Phys. Chem. doi: 10.1021/j100495a028 – volume: 28 start-page: 15 year: 2000 ident: 10.1016/j.cej.2019.122355_b0235 article-title: Products and kinetics of the •OH radical-induced dealkylation of atrazine publication-title: Acta Hydrochim. Hydrobiol. doi: 10.1002/(SICI)1521-401X(200001)28:1<15::AID-AHEH15>3.0.CO;2-2 |
SSID | ssj0006919 |
Score | 2.5604072 |
Snippet | [Display omitted]
•Ascorbic acid exhibited extremely high activity on persulfate activation to produce SO4− and OH.•Atrazine degradation rate constant during... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 122355 |
SubjectTerms | Ascorbic acid In situ chemical oxidation Organic pollutants Persulfate activation |
Title | Persulfate activation induced by ascorbic acid for efficient organic pollutants oxidation |
URI | https://dx.doi.org/10.1016/j.cej.2019.122355 |
Volume | 382 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14ErbNbjbZ5FiKpVrsQS3WU8gmu5BS2mJb0Iu_3Zk8tIJ68BRIZiFMJjPf7M7MR8ilBdCgtY2ZCrXDZCwdpj0eMBdCNcBT4bsWN_Tvhn5_JG_H3rhGulUvDJZVlr6_8Om5ty7vtEttthdZ1n7geKYVgnMNMQYG2MQnpUIrb71_lXn4YU7ugcIMpauTzbzGKzETrO4KWxyiJHb7_RSbNuJNb4_slkCRdop32Sc1MzsgOxvjAw_JM5avr6cW4CLF_oRid5VClg3fK6X6jcZLSC51lsDjLKWAT6nJR0ZApKEFn1NCF0h2jFzCSzp_zQqKpSMy6l0_dvuspEpgievKFeOpUIEj4sCCfqURgNKEUDw2XgqARQlfWM6t5qmGP1alIoash9tUOkHIY-EH7jGpz-Yzc0JoIkHIxfYOq6SjA21VqhIjhQ1inFffIE6lpCgp54gjncU0qgrGJhHoNUK9RoVeG-Tqc8miGKLxl7CsNB99s4QInPzvy07_t-yMbAvMoJHixTsn9dXL2lwAzFjpZm5HTbLVuRn0h3gd3D8NPgDgQNFs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BGYAB8RRvPMCCFBo7bh4DA-KhlgILIMEU4tiWUlWlokXAwp_iD3KXBw8JGJC6JnbknE_33dl39wFsW3QalLKJE0TKdWQiXUc1eOh4CNXongrfs3Sgf37hN6_l6U3jZgzeqloYSqssbX9h03NrXT6pl9Ks97OsfsnpTitC4xoRBoZRmVnZNi9PGLcN9ltHuMk7QpwcXx02nZJawEk9Tw4drkUQuiIJLa5HGoFejRABT0xDI8AHwheWc6u4VqjhgRYJRgncaumGEU-EH3r43XGYkGguiDZh7_Uzr8SPcjYRWp1Dy6uuUvOkstR0KJ0s2uMIy1Re-BMYfgG4k1mYKT1TdlD8_ByMmd48TH_pV7gAt5Qv_9i16J8yKogojnMZhvWoIJqpF5YMMJpVWYqvM83QIWYm71GB0MYKAqmU9YldmciLB-z-OSs4nRbheiQCXIJa775nloGlEgd5VE9iA-mqUNlAB6mRwoYJNchfAbcSUpyWjcuJP6MbVxlqnRjlGpNc40KuK7D7MaVfdO34a7CsJB9_U70YUeX3aav_m7YFk82r87P4rHXRXoMpQeE78cs01qE2fHg0G-jjDNVmrlMM7katxO-aCwiI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Persulfate+activation+induced+by+ascorbic+acid+for+efficient+organic+pollutants+oxidation&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Hou%2C+Xiaojing&rft.au=Zhan%2C+Guangming&rft.au=Huang%2C+Xiaopeng&rft.au=Wang%2C+Nan&rft.date=2020-02-15&rft.issn=1385-8947&rft.volume=382&rft.spage=122355&rft_id=info:doi/10.1016%2Fj.cej.2019.122355&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2019_122355 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |