Persulfate activation induced by ascorbic acid for efficient organic pollutants oxidation

[Display omitted] •Ascorbic acid exhibited extremely high activity on persulfate activation to produce SO4− and OH.•Atrazine degradation rate constant during PS activation in presence of AA was 29 times that in absence of AA.•Atrazine, pentachlorophenol, alachlor, tetracycline, and chloramphenicol w...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 382; p. 122355
Main Authors Hou, Xiaojing, Zhan, Guangming, Huang, Xiaopeng, Wang, Nan, Ai, Zhihui, Zhang, Lizhi
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Ascorbic acid exhibited extremely high activity on persulfate activation to produce SO4− and OH.•Atrazine degradation rate constant during PS activation in presence of AA was 29 times that in absence of AA.•Atrazine, pentachlorophenol, alachlor, tetracycline, and chloramphenicol were effectively degraded by AA/PS.•Persulfate activation by ascorbic acid was attributed to the electron transfer from AA to PS.•Atrazine in the real aquifer sediment system could be totally oxidized by AA/PS process. In this study, we demonstrate that ascorbic acid (AA) exhibited extremely high activity on persulfate (PS) activation (AA/PS) to produce SO4− and OH for the degradation of various organic pollutants, including atrazine, pentachlorophenol, alachlor, tetracycline, and chloramphenicol. Taken atrazine as a model natural organic micropollutants, we surprisingly found that the degradation rate constant of atrazine during PS activation in presence of AA was about 29 times larger than that in the absence of AA. The underlying mechanism of persulfate activation induced by AA was then systematically investigated by electron spin resonance (ESR) analysis, theoretical density functional theory (DFT) calculations, and kinetic experiments. The combination of ESR and DFT results confirmed that the persulfate activation induced by ascorbic acid was attributed to the electron transfer from AA to PS. In this process, AA undergoes a two-step oxidation by PS to generate SO4− and dehydroascorbic acid with the formation of an intermediate ascorbate free radical. More interestingly, atrazine in the real aquifer sediment system could be totally oxidized in the presence of PS and AA. These findings offer a new economically feasible persulfate activation strategy for the in situ chemical oxidation of organic compounds in contaminated water and sediment systems.
AbstractList [Display omitted] •Ascorbic acid exhibited extremely high activity on persulfate activation to produce SO4− and OH.•Atrazine degradation rate constant during PS activation in presence of AA was 29 times that in absence of AA.•Atrazine, pentachlorophenol, alachlor, tetracycline, and chloramphenicol were effectively degraded by AA/PS.•Persulfate activation by ascorbic acid was attributed to the electron transfer from AA to PS.•Atrazine in the real aquifer sediment system could be totally oxidized by AA/PS process. In this study, we demonstrate that ascorbic acid (AA) exhibited extremely high activity on persulfate (PS) activation (AA/PS) to produce SO4− and OH for the degradation of various organic pollutants, including atrazine, pentachlorophenol, alachlor, tetracycline, and chloramphenicol. Taken atrazine as a model natural organic micropollutants, we surprisingly found that the degradation rate constant of atrazine during PS activation in presence of AA was about 29 times larger than that in the absence of AA. The underlying mechanism of persulfate activation induced by AA was then systematically investigated by electron spin resonance (ESR) analysis, theoretical density functional theory (DFT) calculations, and kinetic experiments. The combination of ESR and DFT results confirmed that the persulfate activation induced by ascorbic acid was attributed to the electron transfer from AA to PS. In this process, AA undergoes a two-step oxidation by PS to generate SO4− and dehydroascorbic acid with the formation of an intermediate ascorbate free radical. More interestingly, atrazine in the real aquifer sediment system could be totally oxidized in the presence of PS and AA. These findings offer a new economically feasible persulfate activation strategy for the in situ chemical oxidation of organic compounds in contaminated water and sediment systems.
ArticleNumber 122355
Author Zhang, Lizhi
Zhan, Guangming
Hou, Xiaojing
Wang, Nan
Ai, Zhihui
Huang, Xiaopeng
Author_xml – sequence: 1
  givenname: Xiaojing
  surname: Hou
  fullname: Hou, Xiaojing
– sequence: 2
  givenname: Guangming
  surname: Zhan
  fullname: Zhan, Guangming
– sequence: 3
  givenname: Xiaopeng
  orcidid: 0000-0001-6606-7468
  surname: Huang
  fullname: Huang, Xiaopeng
– sequence: 4
  givenname: Nan
  surname: Wang
  fullname: Wang, Nan
– sequence: 5
  givenname: Zhihui
  orcidid: 0000-0002-8236-3643
  surname: Ai
  fullname: Ai, Zhihui
  email: jennifer.ai@mail.ccnu.edu.cn
– sequence: 6
  givenname: Lizhi
  orcidid: 0000-0002-6842-9167
  surname: Zhang
  fullname: Zhang, Lizhi
  email: zhanglz@mail.ccnu.edu.cn
BookMark eNp9kMtOwzAQRS0EEm3hA9jlBxI8kzhxxApVvKRKsIAFK8vxAzkKcWW7Ff170pYVi65mpKtzNXPm5Hz0oyHkBmgBFOrbvlCmL5BCWwBiydgZmQFvyrxEwPNpLznLeVs1l2QeY08prVtoZ-TzzYS4GaxMJpMqua1Mzo-ZG_VGGZ11u0xG5UPn1BQ7nVkfMmOtU86MKfPhS45TtPbDsElyTDHzP04fOq7IhZVDNNd_c0E-Hh_el8_56vXpZXm_ylVZVikHjQ2nKLllHCuDNasRG5CGaQaswRotgO1Ad7TijUaJrAWrK8pbkFjzckGaY68KPsZgrFAuHS5IQbpBABV7Q6IXkyGxNySOhiYS_pHr4L5l2J1k7o6MmV7aOhNE3KuYXLlgVBLauxP0L-PtgKM
CitedBy_id crossref_primary_10_1016_j_dwt_2024_100201
crossref_primary_10_1016_j_seppur_2022_121279
crossref_primary_10_1016_j_jhazmat_2022_128738
crossref_primary_10_1016_j_seppur_2022_121599
crossref_primary_10_1016_j_eurpolymj_2023_111852
crossref_primary_10_1016_j_seppur_2022_122563
crossref_primary_10_1016_j_chemosphere_2020_128000
crossref_primary_10_1021_acs_chemrev_0c01286
crossref_primary_10_1016_j_jclepro_2021_126451
crossref_primary_10_1039_D2EN00027J
crossref_primary_10_1016_j_apgeochem_2023_105605
crossref_primary_10_1016_j_hydromet_2023_106110
crossref_primary_10_1016_j_jenvman_2020_111728
crossref_primary_10_1016_j_seppur_2023_125634
crossref_primary_10_1016_j_coche_2022_100837
crossref_primary_10_1016_j_jenvman_2025_124817
crossref_primary_10_1016_j_fbio_2024_105406
crossref_primary_10_1039_D3CC03176D
crossref_primary_10_1007_s11270_022_05831_2
crossref_primary_10_1007_s11356_023_31566_6
crossref_primary_10_1016_j_jhazmat_2021_126106
crossref_primary_10_1016_j_xcrp_2020_100149
crossref_primary_10_1016_j_talanta_2024_126931
crossref_primary_10_1016_j_cej_2021_134241
crossref_primary_10_1016_j_chemosphere_2020_129520
crossref_primary_10_1007_s11356_021_13972_w
crossref_primary_10_3390_cleantechnol4040065
crossref_primary_10_1016_j_hazl_2024_100102
crossref_primary_10_1016_j_coche_2022_100841
crossref_primary_10_1016_j_seppur_2021_120239
crossref_primary_10_1016_j_eng_2023_06_010
crossref_primary_10_1039_D0EW00358A
crossref_primary_10_1016_j_cej_2020_127188
crossref_primary_10_1016_j_envres_2023_117883
crossref_primary_10_1016_j_ccr_2024_215765
crossref_primary_10_1016_j_watres_2024_122488
crossref_primary_10_1016_j_jwpe_2025_107409
crossref_primary_10_1016_j_jece_2024_113526
crossref_primary_10_1016_j_jhazmat_2021_125804
crossref_primary_10_1007_s11356_023_25191_6
crossref_primary_10_1016_j_jhazmat_2025_137793
crossref_primary_10_1002_kin_21768
crossref_primary_10_1021_acs_est_3c10898
crossref_primary_10_1016_j_chemosphere_2022_133663
crossref_primary_10_3390_w12030733
crossref_primary_10_1016_j_chemosphere_2023_139202
crossref_primary_10_1039_D4RA02340D
crossref_primary_10_1007_s11356_024_32405_y
crossref_primary_10_5322_JESI_2020_29_1_69
crossref_primary_10_1016_j_jece_2023_110380
crossref_primary_10_3390_su131910993
crossref_primary_10_3390_ijerph16245129
crossref_primary_10_1016_j_seppur_2022_122571
crossref_primary_10_1007_s00604_020_04459_5
crossref_primary_10_1016_j_jhazmat_2023_132152
crossref_primary_10_3390_molecules28104237
crossref_primary_10_1016_j_jclepro_2023_136468
crossref_primary_10_3390_su14159324
crossref_primary_10_1016_j_chemosphere_2022_135132
crossref_primary_10_1007_s11356_022_19108_y
crossref_primary_10_1016_j_cej_2020_126232
Cites_doi 10.1016/j.jhazmat.2013.07.054
10.1016/S1001-0742(08)62399-2
10.1016/j.chemosphere.2008.08.043
10.1071/CH9821133
10.1021/es1013714
10.1063/1.555808
10.1021/j100584a005
10.1021/es404535q
10.1016/j.watres.2009.01.021
10.1016/j.chemosphere.2004.01.029
10.1021/jp063552y
10.1006/abio.1997.2293
10.1021/es991132z
10.1016/j.jclepro.2019.01.323
10.1016/j.jhazmat.2009.07.050
10.1021/es0263792
10.1021/ja00756a009
10.1021/ja00389a001
10.1063/1.2436888
10.1021/es400262n
10.1007/BF01055644
10.1016/j.cej.2012.06.029
10.1016/j.chemosphere.2016.09.103
10.1016/j.jhazmat.2016.12.048
10.1016/j.jhazmat.2009.02.065
10.1080/09593339409385446
10.1016/j.chemosphere.2004.01.030
10.1016/j.jhazmat.2015.09.029
10.1016/j.cej.2012.04.084
10.1021/acs.est.5b03595
10.1002/elps.201300439
10.1021/acsami.6b16600
10.1016/j.jhazmat.2016.01.020
10.1063/1.555805
10.1021/acs.est.8b04669
10.1021/es400728c
10.1016/j.chemosphere.2015.04.007
10.1021/es0300822
10.1016/j.jhazmat.2013.03.056
10.1021/es304441e
10.1021/ja01002a046
10.1007/s00894-014-2326-1
10.1073/pnas.19.9.875
10.1016/j.cej.2015.02.014
10.1021/es990724e
10.1016/j.chemosphere.2016.02.055
10.1016/j.cej.2019.01.035
10.1021/es404741x
10.1016/S0006-2952(03)00475-1
10.1021/j100495a028
10.1002/(SICI)1521-401X(200001)28:1<15::AID-AHEH15>3.0.CO;2-2
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2019.122355
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
ExternalDocumentID 10_1016_j_cej_2019_122355
S1385894719317589
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
BNPGV
CITATION
FEDTE
FGOYB
HVGLF
HZ~
R2-
RIG
SEW
SSH
ZY4
ID FETCH-LOGICAL-c334t-1d27802a8f5824e26562271ae5d5157262f11fb1db0487d2a2591fd40891a2683
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Thu Apr 24 23:09:02 EDT 2025
Tue Jul 01 03:52:23 EDT 2025
Fri Feb 23 02:49:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Organic pollutants
Ascorbic acid
Persulfate activation
In situ chemical oxidation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-1d27802a8f5824e26562271ae5d5157262f11fb1db0487d2a2591fd40891a2683
ORCID 0000-0001-6606-7468
0000-0002-8236-3643
0000-0002-6842-9167
ParticipantIDs crossref_citationtrail_10_1016_j_cej_2019_122355
crossref_primary_10_1016_j_cej_2019_122355
elsevier_sciencedirect_doi_10_1016_j_cej_2019_122355
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-15
PublicationDateYYYYMMDD 2020-02-15
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-15
  day: 15
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhou, Jiang, Gao, Ma, Pang, Li, Lu, Yuan (b0020) 2015; 49
Huang, Hou, Jia, Song, Zhao, Zhang (b0130) 2017; 9
Lee, Lo, Kuo, Huang (b0035) 2013; 261
Liang, Bruell, Marley, Sperry (b0010) 2004; 55
Anipsitakis, Dionysiou (b0015) 2003; 37
Chen, Shi, Xia, Lei, Wang, Gong (b0175) 2014; 20
Hou, Huang, Ai, Zhao, Zhang (b0125) 2016; 310
Zhao, Liao, Yan, Huling, Chai, Tao (b0070) 2013; 254
Yang, Wang, Yang, Wei, Zhang, Shan (b0080) 2009; 21
Matzek, Carter (b0060) 2016; 151
Bslci, Oturan, Cherrier, Oturan (b0255) 2009; 43
Wang, Cao, Ai, Zhang (b0155) 2014; 48
Williams, Yandell (b0225) 1982; 35
Stratton (b0260) 1984; 13
Lin, Liang (b0105) 2015; 136
Burman, Shertzer, Senft, Dalton, Genter (b0150) 2003; 66
Cuypers, Grotenhuis, Joziasse, Rulkens (b0030) 2000; 34
Kelly, Cramer, Truhlar (b0180) 2006; 110
Fang, Gao, Dionysiou, Liu, Zhou (b0025) 2013; 47
De Laat, Chramosta, Dore, Suty, Pouillot (b0230) 1994; 15
Kang, Zhang, Duan, Sun, Tan, Liu, Wang (b0050) 2019; 362
Lei, Zhang, Wang, Ai (b0135) 2015; 270
Neta, Huie, Ross (b0200) 1988; 17
Liang, Huang, Mohanty, Kurakalva (b0145) 2008; 73
Ahmad, Teel, Watts (b0090) 2013; 47
Lin, Liang (b0100) 2013; 47
Kang, Zhang, Duan, Sun, Tan, Wang (b0055) 2019; 218
Eibenberger, Steenken, O’Neill, Schulte-Frohlinde (b0205) 1978; 82
Borsook, Keighley (b0190) 1933; 19
Curtiss, Redfern, Raghavachari (b0170) 2007; 126
Hou, Huang, Ai, Zhao, Zhang (b0120) 2017; 327
Furman, Teel, Watts (b0075) 2010; 44
Liang, Lin, Shiu (b0110) 2016; 302
Yuan, Liao, Alshawabkeh (b0045) 2014; 48
Davies, Partridge, Austin (b0095) 1991
Xu, Zeng, Peng, Zeng (b0245) 2012; 200
Ciou, Liang (b0115) 2017; 166
White, Bard (b0185) 1982; 104
Zhu, Li, Kang, Duan, Wang (b0040) 2018; 53
Chen, Yang, Guo, Sun, Gu, Xu (b0250) 2009; 172
Hayon, Treinin, Wilf (b0210) 1972; 94
Gao, Gao, Deng, Yang, Ma (b0065) 2012; 195
Silva, Fialho, Sá-Correia, Burns, Shaw (b0140) 2004; 38
Acero, Stemmler, von Gunten (b0240) 2000; 34
Klein, Bhatia, Madhavan, Schuler (b0215) 1975; 79
Khan, Martell (b0220) 1967; 89
Liang, Bruell, Marley, Sperry (b0005) 2004; 55
Buxton, Greenstock, Helman, Ross (b0195) 1988; 17
Oh, Kim, Park, Park, Yoon (b0085) 2009; 168
Tauber, von Sonntag (b0235) 2000; 28
Deutsch (b0160) 1998; 255
Szultka, Buszewska-Forajta, Kaliszan, Buszewski (b0165) 2014; 35
Acero (10.1016/j.cej.2019.122355_b0240) 2000; 34
Kang (10.1016/j.cej.2019.122355_b0050) 2019; 362
Yang (10.1016/j.cej.2019.122355_b0080) 2009; 21
Anipsitakis (10.1016/j.cej.2019.122355_b0015) 2003; 37
Chen (10.1016/j.cej.2019.122355_b0175) 2014; 20
Liang (10.1016/j.cej.2019.122355_b0005) 2004; 55
Hou (10.1016/j.cej.2019.122355_b0120) 2017; 327
Lin (10.1016/j.cej.2019.122355_b0100) 2013; 47
Borsook (10.1016/j.cej.2019.122355_b0190) 1933; 19
Williams (10.1016/j.cej.2019.122355_b0225) 1982; 35
Xu (10.1016/j.cej.2019.122355_b0245) 2012; 200
White (10.1016/j.cej.2019.122355_b0185) 1982; 104
Buxton (10.1016/j.cej.2019.122355_b0195) 1988; 17
Fang (10.1016/j.cej.2019.122355_b0025) 2013; 47
Huang (10.1016/j.cej.2019.122355_b0130) 2017; 9
Bslci (10.1016/j.cej.2019.122355_b0255) 2009; 43
Kelly (10.1016/j.cej.2019.122355_b0180) 2006; 110
Burman (10.1016/j.cej.2019.122355_b0150) 2003; 66
Wang (10.1016/j.cej.2019.122355_b0155) 2014; 48
Yuan (10.1016/j.cej.2019.122355_b0045) 2014; 48
Szultka (10.1016/j.cej.2019.122355_b0165) 2014; 35
Oh (10.1016/j.cej.2019.122355_b0085) 2009; 168
Matzek (10.1016/j.cej.2019.122355_b0060) 2016; 151
Furman (10.1016/j.cej.2019.122355_b0075) 2010; 44
Tauber (10.1016/j.cej.2019.122355_b0235) 2000; 28
Lee (10.1016/j.cej.2019.122355_b0035) 2013; 261
Kang (10.1016/j.cej.2019.122355_b0055) 2019; 218
Hayon (10.1016/j.cej.2019.122355_b0210) 1972; 94
Ahmad (10.1016/j.cej.2019.122355_b0090) 2013; 47
Lin (10.1016/j.cej.2019.122355_b0105) 2015; 136
Curtiss (10.1016/j.cej.2019.122355_b0170) 2007; 126
Liang (10.1016/j.cej.2019.122355_b0145) 2008; 73
Eibenberger (10.1016/j.cej.2019.122355_b0205) 1978; 82
Davies (10.1016/j.cej.2019.122355_b0095) 1991
Zhao (10.1016/j.cej.2019.122355_b0070) 2013; 254
Gao (10.1016/j.cej.2019.122355_b0065) 2012; 195
Hou (10.1016/j.cej.2019.122355_b0125) 2016; 310
Chen (10.1016/j.cej.2019.122355_b0250) 2009; 172
Ciou (10.1016/j.cej.2019.122355_b0115) 2017; 166
Stratton (10.1016/j.cej.2019.122355_b0260) 1984; 13
Liang (10.1016/j.cej.2019.122355_b0010) 2004; 55
Neta (10.1016/j.cej.2019.122355_b0200) 1988; 17
De Laat (10.1016/j.cej.2019.122355_b0230) 1994; 15
Khan (10.1016/j.cej.2019.122355_b0220) 1967; 89
Klein (10.1016/j.cej.2019.122355_b0215) 1975; 79
Lei (10.1016/j.cej.2019.122355_b0135) 2015; 270
Zhu (10.1016/j.cej.2019.122355_b0040) 2018; 53
Zhou (10.1016/j.cej.2019.122355_b0020) 2015; 49
Deutsch (10.1016/j.cej.2019.122355_b0160) 1998; 255
Cuypers (10.1016/j.cej.2019.122355_b0030) 2000; 34
Silva (10.1016/j.cej.2019.122355_b0140) 2004; 38
Liang (10.1016/j.cej.2019.122355_b0110) 2016; 302
References_xml – volume: 55
  start-page: 1213
  year: 2004
  end-page: 1223
  ident: b0005
  article-title: Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate–thiosulfate redox couple
  publication-title: Chemosphere
– volume: 136
  start-page: 27
  year: 2015
  end-page: 31
  ident: b0105
  article-title: Reductive dechlorination of carbon tetrachloride using buffered alkaline ascorbic acid
  publication-title: Chemosphere
– volume: 89
  start-page: 7104
  year: 1967
  end-page: 7111
  ident: b0220
  article-title: Metal ion and metal chelate catalyzed oxidation of ascorbic acid by molecular oxygen. II. Cupric and ferric chelate catalyzed oxidation
  publication-title: J. Am. Chem. Soc.
– volume: 110
  start-page: 16066
  year: 2006
  end-page: 16081
  ident: b0180
  article-title: Aqueous solvation free energies of ions and ion−water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton
  publication-title: J. Phys. Chem. B
– volume: 34
  start-page: 2057
  year: 2000
  end-page: 2063
  ident: b0030
  article-title: Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments
  publication-title: Environ. Sci. Technol.
– volume: 13
  start-page: 35
  year: 1984
  end-page: 42
  ident: b0260
  article-title: Effects of the herbicide atrazine and its degradation productsalone and in combination, on phototrophic microorganisms
  publication-title: Arch. Environ. Contam. Toxicol.
– volume: 302
  start-page: 137
  year: 2016
  end-page: 143
  ident: b0110
  article-title: Reduction of nitrobenzene with alkaline ascorbic acid: Kinetics and pathways
  publication-title: J. Hazard. Mater.
– volume: 19
  start-page: 875
  year: 1933
  end-page: 879
  ident: b0190
  article-title: Oxidation-reduction potential of ascorbic acid (Vitamin C)
  publication-title: Proc. Natl. Acad. Sci.
– volume: 66
  start-page: 1707
  year: 2003
  end-page: 1715
  ident: b0150
  article-title: Antioxidant perturbations in the olfactory mucosa of alachlor-treated rats
  publication-title: Biochem. Pharmacol.
– volume: 37
  start-page: 4790
  year: 2003
  end-page: 4797
  ident: b0015
  article-title: Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt
  publication-title: Environ. Sci. Technol.
– volume: 21
  start-page: 1175
  year: 2009
  end-page: 1180
  ident: b0080
  article-title: A novel advanced oxidation process to degrade organic pollutants in wastewater: Microwave-activated persulfate oxidation
  publication-title: J. Environ. Sci.
– volume: 195
  start-page: 248
  year: 2012
  end-page: 253
  ident: b0065
  article-title: Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water
  publication-title: Chem. Eng. J.
– volume: 166
  start-page: 482
  year: 2017
  end-page: 488
  ident: b0115
  article-title: 1,3–Dinitrobenzene reductive degradation by alkaline ascorbic acid – reaction mechanisms, degradation pathways and reagent optimization
  publication-title: Chemosphere
– volume: 20
  start-page: 2326
  year: 2014
  end-page: 2335
  ident: b0175
  article-title: Theoretical study of solvent effects on RDX crystal quality and sensitivity using an implicit solvation model
  publication-title: J. Mol. Model.
– volume: 47
  start-page: 3299
  year: 2013
  end-page: 3307
  ident: b0100
  article-title: Carbon tetrachloride degradation by alkaline ascorbic acid solution
  publication-title: Environ. Sci. Technol.
– volume: 270
  start-page: 73
  year: 2015
  end-page: 79
  ident: b0135
  article-title: Rapid and continuous oxidation of organic contaminants with ascorbic acid and a modified ferric/persulfate system
  publication-title: Chem. Eng. J.
– volume: 35
  start-page: 1133
  year: 1982
  end-page: 1144
  ident: b0225
  article-title: Outer-sphere electron-transfer reactions of ascorbate anions
  publication-title: Aust. J. Chem.
– volume: 94
  start-page: 47
  year: 1972
  end-page: 57
  ident: b0210
  article-title: Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. SO
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 8751
  year: 2017
  end-page: 8758
  ident: b0130
  article-title: Ascorbate-promoted surface iron cycle for efficient heterogeneous Fenton alachlor degradation with hematite nanocrystals
  publication-title: ACS Appl. Mater. Interfaces
– volume: 43
  start-page: 1924
  year: 2009
  end-page: 1934
  ident: b0255
  article-title: Degradation of atrazine inaqueous medium by electrocatalytically generated hydroxyl radicalselectrocatalytically generated hydroxyl radicals, a kinetic and mechanisticstudy
  publication-title: Water Res.
– volume: 49
  start-page: 12941
  year: 2015
  end-page: 12950
  ident: b0020
  article-title: Activation of peroxymonosulfate by benzoquinone: a novel nonradical oxidation process
  publication-title: Environ. Sci. Technol.
– volume: 34
  start-page: 591
  year: 2000
  end-page: 597
  ident: b0240
  article-title: Degradation kinetics of atrazine and its degradation products with ozone and •OH radicals: a predictive tool for drinking water treatment
  publication-title: Environ. Sci. Technol.
– volume: 48
  start-page: 656
  year: 2014
  end-page: 663
  ident: b0045
  article-title: Electrolytic Manipulation of persulfate reactivity by iron electrodes for trichloroethylene degradation in groundwater
  publication-title: Environ. Sci. Technol.
– volume: 28
  start-page: 15
  year: 2000
  end-page: 23
  ident: b0235
  article-title: Products and kinetics of the •OH radical-induced dealkylation of atrazine
  publication-title: Acta Hydrochim. Hydrobiol.
– volume: 168
  start-page: 346
  year: 2009
  end-page: 351
  ident: b0085
  article-title: Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe
  publication-title: J. Hazard. Mater
– volume: 255
  start-page: 1
  year: 1998
  end-page: 7
  ident: b0160
  article-title: Ascorbic acid oxidation by hydrogen peroxide
  publication-title: Anal. Biochem.
– volume: 53
  start-page: 307
  year: 2018
  end-page: 315
  ident: b0040
  article-title: Persulfate activation on crystallographic manganese oxides: mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants
  publication-title: Environ. Sci. Technol.
– volume: 151
  start-page: 178
  year: 2016
  end-page: 188
  ident: b0060
  article-title: Activated persulfate for organic chemical degradation: a review
  publication-title: Chemosphere
– volume: 48
  start-page: 3354
  year: 2014
  end-page: 3362
  ident: b0155
  article-title: Dramatically enhanced aerobic atrazine degradation with Fe@Fe
  publication-title: Environ. Sci. Technol.
– volume: 82
  start-page: 749
  year: 1978
  end-page: 750
  ident: b0205
  article-title: Pulse radiolysis and electron spin resonance studies concerning the reaction of SO
  publication-title: J. Phys. Chem.
– volume: 254
  start-page: 228
  year: 2013
  end-page: 235
  ident: b0070
  article-title: Effect and mechanism of persulfate activated by different methods for PAHs removal in soil
  publication-title: J. Hazard. Mater.
– volume: 47
  start-page: 5864
  year: 2013
  end-page: 5871
  ident: b0090
  article-title: Mechanism of persulfate activation by phenols
  publication-title: Environ. Sci. Technol.
– volume: 35
  start-page: 585
  year: 2014
  end-page: 592
  ident: b0165
  article-title: Determination of ascorbic acid and its degradation products by high-performance liquid chromatography-triple quadrupole mass spectrometry
  publication-title: Electrophoresis
– volume: 73
  start-page: 1540
  year: 2008
  end-page: 1543
  ident: b0145
  article-title: A rapid spectrophotometric determination of persulfate anion in ISCO
  publication-title: Chemosphere
– year: 1991
  ident: b0095
  article-title: Vitamin C: Its Chemistry and Biochemistry
– volume: 200
  start-page: 25
  year: 2012
  end-page: 31
  ident: b0245
  article-title: Potassium persulfate promoted catalytic wet oxidation of fulvic acid as a model organic compound in landfill leachate with activated carbon
  publication-title: Chem. Eng. J.
– volume: 15
  start-page: 419
  year: 1994
  end-page: 428
  ident: b0230
  article-title: Rate constants for reaction of hydroxyl radicals with some degradation byproducts of atrazine by O
  publication-title: Environ. Technol.
– volume: 172
  start-page: 675
  year: 2009
  end-page: 684
  ident: b0250
  article-title: Photolytic destruction ofendocrine disruptor atrazine in aqueous solution under UV irradiation: products and pathways
  publication-title: J. Hazard. Mater.
– volume: 310
  start-page: 170
  year: 2016
  end-page: 178
  ident: b0125
  article-title: Ascorbic acid/Fe@Fe
  publication-title: J. Hazard. Mater.
– volume: 38
  start-page: 632
  year: 2004
  end-page: 637
  ident: b0140
  article-title: Combined bioaugmentation and biostimulation to cleanup soil contaminated with high concentrations of atrazine
  publication-title: Environ. Sci. Technol.
– volume: 17
  start-page: 1027
  year: 1988
  end-page: 1284
  ident: b0200
  article-title: Rate constants for reactions of inorganic radicals in aqueous solution
  publication-title: J. Phys. Chem. Ref. Data
– volume: 17
  start-page: 513
  year: 1988
  end-page: 886
  ident: b0195
  article-title: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O
  publication-title: J. Phys. Chem. Ref. Data
– volume: 44
  start-page: 6423
  year: 2010
  end-page: 6428
  ident: b0075
  article-title: Mechanism of base activation of persulfate
  publication-title: Environ. Sci. Technol.
– volume: 362
  start-page: 251
  year: 2019
  end-page: 261
  ident: b0050
  article-title: Magnetic Ni-Co alloy encapsulated N-doped carbon nanotubes for catalytic membrane degradation of emerging contaminants
  publication-title: Chem. Eng. J.
– volume: 79
  start-page: 1767
  year: 1975
  end-page: 1774
  ident: b0215
  article-title: Reaction of •OH with benzoic acid: Isomer distribution in the radical intermediates
  publication-title: J. Phys. Chem.
– volume: 261
  start-page: 463
  year: 2013
  end-page: 469
  ident: b0035
  article-title: Promoted degradation of perfluorooctanic acid by persulfate when adding activated carbon
  publication-title: J. Hazard. Mater.
– volume: 104
  start-page: 6891
  year: 1982
  end-page: 6895
  ident: b0185
  article-title: Electrogenerated chemiluminescence. 41. Electrogenerated chemiluminescence and chemiluminescence of the Ru(2,2’-bpy)
  publication-title: J. Am. Chem. Soc.
– volume: 126
  year: 2007
  ident: b0170
  article-title: Gaussian-4 theory
  publication-title: J. Chem. Phys.
– volume: 327
  start-page: 71
  year: 2017
  end-page: 78
  ident: b0120
  article-title: Ascorbic acid induced atrazine degradation
  publication-title: J. Hazard. Mater.
– volume: 218
  start-page: 202
  year: 2019
  end-page: 211
  ident: b0055
  article-title: Nickel in hierarchically structured nitrogen-doped graphene for robust and promoted degradation of antibiotics
  publication-title: J. Clean. Prod
– volume: 55
  start-page: 1225
  year: 2004
  end-page: 1233
  ident: b0010
  article-title: Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion
  publication-title: Chemosphere
– volume: 47
  start-page: 4605
  year: 2013
  end-page: 4611
  ident: b0025
  article-title: Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs
  publication-title: Environ. Sci. Technol.
– volume: 261
  start-page: 463
  year: 2013
  ident: 10.1016/j.cej.2019.122355_b0035
  article-title: Promoted degradation of perfluorooctanic acid by persulfate when adding activated carbon
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2013.07.054
– volume: 21
  start-page: 1175
  year: 2009
  ident: 10.1016/j.cej.2019.122355_b0080
  article-title: A novel advanced oxidation process to degrade organic pollutants in wastewater: Microwave-activated persulfate oxidation
  publication-title: J. Environ. Sci.
  doi: 10.1016/S1001-0742(08)62399-2
– volume: 73
  start-page: 1540
  year: 2008
  ident: 10.1016/j.cej.2019.122355_b0145
  article-title: A rapid spectrophotometric determination of persulfate anion in ISCO
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2008.08.043
– volume: 35
  start-page: 1133
  year: 1982
  ident: 10.1016/j.cej.2019.122355_b0225
  article-title: Outer-sphere electron-transfer reactions of ascorbate anions
  publication-title: Aust. J. Chem.
  doi: 10.1071/CH9821133
– volume: 44
  start-page: 6423
  year: 2010
  ident: 10.1016/j.cej.2019.122355_b0075
  article-title: Mechanism of base activation of persulfate
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1013714
– volume: 17
  start-page: 1027
  year: 1988
  ident: 10.1016/j.cej.2019.122355_b0200
  article-title: Rate constants for reactions of inorganic radicals in aqueous solution
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.555808
– volume: 79
  start-page: 1767
  year: 1975
  ident: 10.1016/j.cej.2019.122355_b0215
  article-title: Reaction of •OH with benzoic acid: Isomer distribution in the radical intermediates
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100584a005
– volume: 48
  start-page: 656
  year: 2014
  ident: 10.1016/j.cej.2019.122355_b0045
  article-title: Electrolytic Manipulation of persulfate reactivity by iron electrodes for trichloroethylene degradation in groundwater
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es404535q
– volume: 43
  start-page: 1924
  year: 2009
  ident: 10.1016/j.cej.2019.122355_b0255
  article-title: Degradation of atrazine inaqueous medium by electrocatalytically generated hydroxyl radicalselectrocatalytically generated hydroxyl radicals, a kinetic and mechanisticstudy
  publication-title: Water Res.
  doi: 10.1016/j.watres.2009.01.021
– volume: 55
  start-page: 1213
  year: 2004
  ident: 10.1016/j.cej.2019.122355_b0005
  article-title: Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate–thiosulfate redox couple
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2004.01.029
– volume: 110
  start-page: 16066
  year: 2006
  ident: 10.1016/j.cej.2019.122355_b0180
  article-title: Aqueous solvation free energies of ions and ion−water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp063552y
– volume: 255
  start-page: 1
  year: 1998
  ident: 10.1016/j.cej.2019.122355_b0160
  article-title: Ascorbic acid oxidation by hydrogen peroxide
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.1997.2293
– volume: 34
  start-page: 2057
  year: 2000
  ident: 10.1016/j.cej.2019.122355_b0030
  article-title: Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es991132z
– volume: 218
  start-page: 202
  year: 2019
  ident: 10.1016/j.cej.2019.122355_b0055
  article-title: Nickel in hierarchically structured nitrogen-doped graphene for robust and promoted degradation of antibiotics
  publication-title: J. Clean. Prod
  doi: 10.1016/j.jclepro.2019.01.323
– volume: 172
  start-page: 675
  year: 2009
  ident: 10.1016/j.cej.2019.122355_b0250
  article-title: Photolytic destruction ofendocrine disruptor atrazine in aqueous solution under UV irradiation: products and pathways
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.07.050
– volume: 37
  start-page: 4790
  year: 2003
  ident: 10.1016/j.cej.2019.122355_b0015
  article-title: Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0263792
– volume: 94
  start-page: 47
  year: 1972
  ident: 10.1016/j.cej.2019.122355_b0210
  article-title: Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. SO2-, SO3-, SO4-, and SO5- radicals
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00756a009
– volume: 104
  start-page: 6891
  year: 1982
  ident: 10.1016/j.cej.2019.122355_b0185
  article-title: Electrogenerated chemiluminescence. 41. Electrogenerated chemiluminescence and chemiluminescence of the Ru(2,2’-bpy)32+–S2O82− system in acetonitrile–water solutions
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00389a001
– volume: 126
  year: 2007
  ident: 10.1016/j.cej.2019.122355_b0170
  article-title: Gaussian-4 theory
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2436888
– volume: 47
  start-page: 4605
  year: 2013
  ident: 10.1016/j.cej.2019.122355_b0025
  article-title: Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es400262n
– volume: 13
  start-page: 35
  year: 1984
  ident: 10.1016/j.cej.2019.122355_b0260
  article-title: Effects of the herbicide atrazine and its degradation productsalone and in combination, on phototrophic microorganisms
  publication-title: Arch. Environ. Contam. Toxicol.
  doi: 10.1007/BF01055644
– volume: 200
  start-page: 25
  year: 2012
  ident: 10.1016/j.cej.2019.122355_b0245
  article-title: Potassium persulfate promoted catalytic wet oxidation of fulvic acid as a model organic compound in landfill leachate with activated carbon
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.06.029
– volume: 166
  start-page: 482
  year: 2017
  ident: 10.1016/j.cej.2019.122355_b0115
  article-title: 1,3–Dinitrobenzene reductive degradation by alkaline ascorbic acid – reaction mechanisms, degradation pathways and reagent optimization
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.09.103
– volume: 327
  start-page: 71
  year: 2017
  ident: 10.1016/j.cej.2019.122355_b0120
  article-title: Ascorbic acid induced atrazine degradation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.12.048
– volume: 168
  start-page: 346
  year: 2009
  ident: 10.1016/j.cej.2019.122355_b0085
  article-title: Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero-valent iron
  publication-title: J. Hazard. Mater
  doi: 10.1016/j.jhazmat.2009.02.065
– volume: 15
  start-page: 419
  year: 1994
  ident: 10.1016/j.cej.2019.122355_b0230
  article-title: Rate constants for reaction of hydroxyl radicals with some degradation byproducts of atrazine by O3 or O3/H2O2
  publication-title: Environ. Technol.
  doi: 10.1080/09593339409385446
– volume: 55
  start-page: 1225
  year: 2004
  ident: 10.1016/j.cej.2019.122355_b0010
  article-title: Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2004.01.030
– volume: 302
  start-page: 137
  year: 2016
  ident: 10.1016/j.cej.2019.122355_b0110
  article-title: Reduction of nitrobenzene with alkaline ascorbic acid: Kinetics and pathways
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.09.029
– volume: 195
  start-page: 248
  year: 2012
  ident: 10.1016/j.cej.2019.122355_b0065
  article-title: Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.04.084
– volume: 49
  start-page: 12941
  year: 2015
  ident: 10.1016/j.cej.2019.122355_b0020
  article-title: Activation of peroxymonosulfate by benzoquinone: a novel nonradical oxidation process
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b03595
– volume: 35
  start-page: 585
  year: 2014
  ident: 10.1016/j.cej.2019.122355_b0165
  article-title: Determination of ascorbic acid and its degradation products by high-performance liquid chromatography-triple quadrupole mass spectrometry
  publication-title: Electrophoresis
  doi: 10.1002/elps.201300439
– volume: 9
  start-page: 8751
  year: 2017
  ident: 10.1016/j.cej.2019.122355_b0130
  article-title: Ascorbate-promoted surface iron cycle for efficient heterogeneous Fenton alachlor degradation with hematite nanocrystals
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b16600
– volume: 310
  start-page: 170
  year: 2016
  ident: 10.1016/j.cej.2019.122355_b0125
  article-title: Ascorbic acid/Fe@Fe2O3: a highly efficient combined Fenton reagent to remove organic contaminants
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.01.020
– volume: 17
  start-page: 513
  year: 1988
  ident: 10.1016/j.cej.2019.122355_b0195
  article-title: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O-) in aqueous solution
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.555805
– volume: 53
  start-page: 307
  year: 2018
  ident: 10.1016/j.cej.2019.122355_b0040
  article-title: Persulfate activation on crystallographic manganese oxides: mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b04669
– volume: 47
  start-page: 5864
  year: 2013
  ident: 10.1016/j.cej.2019.122355_b0090
  article-title: Mechanism of persulfate activation by phenols
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es400728c
– volume: 136
  start-page: 27
  year: 2015
  ident: 10.1016/j.cej.2019.122355_b0105
  article-title: Reductive dechlorination of carbon tetrachloride using buffered alkaline ascorbic acid
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.04.007
– volume: 38
  start-page: 632
  year: 2004
  ident: 10.1016/j.cej.2019.122355_b0140
  article-title: Combined bioaugmentation and biostimulation to cleanup soil contaminated with high concentrations of atrazine
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0300822
– year: 1991
  ident: 10.1016/j.cej.2019.122355_b0095
– volume: 254
  start-page: 228
  year: 2013
  ident: 10.1016/j.cej.2019.122355_b0070
  article-title: Effect and mechanism of persulfate activated by different methods for PAHs removal in soil
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2013.03.056
– volume: 47
  start-page: 3299
  year: 2013
  ident: 10.1016/j.cej.2019.122355_b0100
  article-title: Carbon tetrachloride degradation by alkaline ascorbic acid solution
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es304441e
– volume: 89
  start-page: 7104
  year: 1967
  ident: 10.1016/j.cej.2019.122355_b0220
  article-title: Metal ion and metal chelate catalyzed oxidation of ascorbic acid by molecular oxygen. II. Cupric and ferric chelate catalyzed oxidation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01002a046
– volume: 20
  start-page: 2326
  year: 2014
  ident: 10.1016/j.cej.2019.122355_b0175
  article-title: Theoretical study of solvent effects on RDX crystal quality and sensitivity using an implicit solvation model
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-014-2326-1
– volume: 19
  start-page: 875
  year: 1933
  ident: 10.1016/j.cej.2019.122355_b0190
  article-title: Oxidation-reduction potential of ascorbic acid (Vitamin C)
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.19.9.875
– volume: 270
  start-page: 73
  year: 2015
  ident: 10.1016/j.cej.2019.122355_b0135
  article-title: Rapid and continuous oxidation of organic contaminants with ascorbic acid and a modified ferric/persulfate system
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.02.014
– volume: 34
  start-page: 591
  year: 2000
  ident: 10.1016/j.cej.2019.122355_b0240
  article-title: Degradation kinetics of atrazine and its degradation products with ozone and •OH radicals: a predictive tool for drinking water treatment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es990724e
– volume: 151
  start-page: 178
  year: 2016
  ident: 10.1016/j.cej.2019.122355_b0060
  article-title: Activated persulfate for organic chemical degradation: a review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.02.055
– volume: 362
  start-page: 251
  year: 2019
  ident: 10.1016/j.cej.2019.122355_b0050
  article-title: Magnetic Ni-Co alloy encapsulated N-doped carbon nanotubes for catalytic membrane degradation of emerging contaminants
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.01.035
– volume: 48
  start-page: 3354
  year: 2014
  ident: 10.1016/j.cej.2019.122355_b0155
  article-title: Dramatically enhanced aerobic atrazine degradation with Fe@Fe2O3 core–shell nanowires by tetrapolyphosphate
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es404741x
– volume: 66
  start-page: 1707
  year: 2003
  ident: 10.1016/j.cej.2019.122355_b0150
  article-title: Antioxidant perturbations in the olfactory mucosa of alachlor-treated rats
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/S0006-2952(03)00475-1
– volume: 82
  start-page: 749
  year: 1978
  ident: 10.1016/j.cej.2019.122355_b0205
  article-title: Pulse radiolysis and electron spin resonance studies concerning the reaction of SO4•- with alcohols and ethers in aqueous solution
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100495a028
– volume: 28
  start-page: 15
  year: 2000
  ident: 10.1016/j.cej.2019.122355_b0235
  article-title: Products and kinetics of the •OH radical-induced dealkylation of atrazine
  publication-title: Acta Hydrochim. Hydrobiol.
  doi: 10.1002/(SICI)1521-401X(200001)28:1<15::AID-AHEH15>3.0.CO;2-2
SSID ssj0006919
Score 2.5604072
Snippet [Display omitted] •Ascorbic acid exhibited extremely high activity on persulfate activation to produce SO4− and OH.•Atrazine degradation rate constant during...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 122355
SubjectTerms Ascorbic acid
In situ chemical oxidation
Organic pollutants
Persulfate activation
Title Persulfate activation induced by ascorbic acid for efficient organic pollutants oxidation
URI https://dx.doi.org/10.1016/j.cej.2019.122355
Volume 382
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14ErbNbjbZ5FiKpVrsQS3WU8gmu5BS2mJb0Iu_3Zk8tIJ68BRIZiFMJjPf7M7MR8ilBdCgtY2ZCrXDZCwdpj0eMBdCNcBT4bsWN_Tvhn5_JG_H3rhGulUvDJZVlr6_8Om5ty7vtEttthdZ1n7geKYVgnMNMQYG2MQnpUIrb71_lXn4YU7ugcIMpauTzbzGKzETrO4KWxyiJHb7_RSbNuJNb4_slkCRdop32Sc1MzsgOxvjAw_JM5avr6cW4CLF_oRid5VClg3fK6X6jcZLSC51lsDjLKWAT6nJR0ZApKEFn1NCF0h2jFzCSzp_zQqKpSMy6l0_dvuspEpgievKFeOpUIEj4sCCfqURgNKEUDw2XgqARQlfWM6t5qmGP1alIoash9tUOkHIY-EH7jGpz-Yzc0JoIkHIxfYOq6SjA21VqhIjhQ1inFffIE6lpCgp54gjncU0qgrGJhHoNUK9RoVeG-Tqc8miGKLxl7CsNB99s4QInPzvy07_t-yMbAvMoJHixTsn9dXL2lwAzFjpZm5HTbLVuRn0h3gd3D8NPgDgQNFs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BGYAB8RRvPMCCFBo7bh4DA-KhlgILIMEU4tiWUlWlokXAwp_iD3KXBw8JGJC6JnbknE_33dl39wFsW3QalLKJE0TKdWQiXUc1eOh4CNXongrfs3Sgf37hN6_l6U3jZgzeqloYSqssbX9h03NrXT6pl9Ks97OsfsnpTitC4xoRBoZRmVnZNi9PGLcN9ltHuMk7QpwcXx02nZJawEk9Tw4drkUQuiIJLa5HGoFejRABT0xDI8AHwheWc6u4VqjhgRYJRgncaumGEU-EH3r43XGYkGguiDZh7_Uzr8SPcjYRWp1Dy6uuUvOkstR0KJ0s2uMIy1Re-BMYfgG4k1mYKT1TdlD8_ByMmd48TH_pV7gAt5Qv_9i16J8yKogojnMZhvWoIJqpF5YMMJpVWYqvM83QIWYm71GB0MYKAqmU9YldmciLB-z-OSs4nRbheiQCXIJa775nloGlEgd5VE9iA-mqUNlAB6mRwoYJNchfAbcSUpyWjcuJP6MbVxlqnRjlGpNc40KuK7D7MaVfdO34a7CsJB9_U70YUeX3aav_m7YFk82r87P4rHXRXoMpQeE78cs01qE2fHg0G-jjDNVmrlMM7katxO-aCwiI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Persulfate+activation+induced+by+ascorbic+acid+for+efficient+organic+pollutants+oxidation&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Hou%2C+Xiaojing&rft.au=Zhan%2C+Guangming&rft.au=Huang%2C+Xiaopeng&rft.au=Wang%2C+Nan&rft.date=2020-02-15&rft.issn=1385-8947&rft.volume=382&rft.spage=122355&rft_id=info:doi/10.1016%2Fj.cej.2019.122355&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2019_122355
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon