A Timestep-Adaptive-Diffusion-Model-Oriented Unsupervised Detection Method for Fabric Surface Defects
Defect detection is crucial in quality control for fabric production. Deep-learning-based unsupervised reconstruction methods have been recognized universally to address the scarcity of fabric defect samples, high costs of labeling, and insufficient prior knowledge. However, these methods are subjec...
Saved in:
Published in | Processes Vol. 11; no. 9; p. 2615 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2227-9717 2227-9717 |
DOI | 10.3390/pr11092615 |
Cover
Loading…
Abstract | Defect detection is crucial in quality control for fabric production. Deep-learning-based unsupervised reconstruction methods have been recognized universally to address the scarcity of fabric defect samples, high costs of labeling, and insufficient prior knowledge. However, these methods are subject to several weaknesses in reconstructing defect images into defect-free images with high quality, like image blurring, defect residue, and texture inconsistency, resulting in false detection and missed detection. Therefore, this article proposes an unsupervised detection method for fabric surface defects oriented to the timestep adaptive diffusion model. Firstly, the Simplex Noise–Denoising Diffusion Probabilistic Model (SN-DDPM) is constructed to recursively optimize the distribution of the posterior latent vector, thus gradually approaching the probability distribution of surface features of the defect-free samples through multiple iterative diffusions. Meanwhile, the timestep adaptive module is utilized to dynamically adjust the optimal timestep, enabling the model to flexibly adapt to different data distributions. During the detection, the SN-DDPM is employed to reconstruct the defect images into defect-free images, and image differentiation, frequency-tuned salient detection (FTSD), and threshold binarization are utilized to segment the defects. The results reveal that compared with the other seven unsupervised detection methods, the proposed method exhibits higher F1 and IoU values, which are increased by at least 5.42% and 7.61%, respectively, demonstrating that the proposed method is effective and accurate. |
---|---|
AbstractList | Defect detection is crucial in quality control for fabric production. Deep-learning-based unsupervised reconstruction methods have been recognized universally to address the scarcity of fabric defect samples, high costs of labeling, and insufficient prior knowledge. However, these methods are subject to several weaknesses in reconstructing defect images into defect-free images with high quality, like image blurring, defect residue, and texture inconsistency, resulting in false detection and missed detection. Therefore, this article proposes an unsupervised detection method for fabric surface defects oriented to the timestep adaptive diffusion model. Firstly, the Simplex Noise–Denoising Diffusion Probabilistic Model (SN-DDPM) is constructed to recursively optimize the distribution of the posterior latent vector, thus gradually approaching the probability distribution of surface features of the defect-free samples through multiple iterative diffusions. Meanwhile, the timestep adaptive module is utilized to dynamically adjust the optimal timestep, enabling the model to flexibly adapt to different data distributions. During the detection, the SN-DDPM is employed to reconstruct the defect images into defect-free images, and image differentiation, frequency-tuned salient detection (FTSD), and threshold binarization are utilized to segment the defects. The results reveal that compared with the other seven unsupervised detection methods, the proposed method exhibits higher F1 and IoU values, which are increased by at least 5.42% and 7.61%, respectively, demonstrating that the proposed method is effective and accurate. |
Audience | Academic |
Author | Jin, Zicheng Lu, Jianhui Zhang, Ying Yang, Jiqing Li, Heng Tang, Shancheng |
Author_xml | – sequence: 1 givenname: Shancheng surname: Tang fullname: Tang, Shancheng – sequence: 2 givenname: Zicheng orcidid: 0000-0002-6757-0310 surname: Jin fullname: Jin, Zicheng – sequence: 3 givenname: Ying surname: Zhang fullname: Zhang, Ying – sequence: 4 givenname: Jianhui surname: Lu fullname: Lu, Jianhui – sequence: 5 givenname: Heng surname: Li fullname: Li, Heng – sequence: 6 givenname: Jiqing surname: Yang fullname: Yang, Jiqing |
BookMark | eNptkE1LAzEQhoNU8PPiL1jwJmzNRzfZHIu1KlR6sJ6XbDLRyHazJtmC_95IBUWcHGYy87wZ8p6gSe97QOiC4CljEl8PgRAsKSfVATqmlIpSCiImv-ojdB7jG84hCasrfoxgXmzcFmKCoZwbNSS3g3LhrB2j83356A105To46BOY4rmP4wBh52K-LCCBTpkqHiG9elNYH4qlaoPTxdMYrNKQGZuZeIYOreoinH_nU_S8vN3c3Jer9d3DzXxVasZmqSSa1obVoCnH1LSVBs65oW3VKgNEmDydcVlpzMlMKctF3XKBSQvaCiply07R5f7dIfj3Mf-qefNj6PPKhtZZWdWyJpma7qkX1UHjeutTUDofA1uns6fW5f5cCFJjhpnMgqu9QAcfYwDbDMFtVfhoCG6-rG9-rM8w_gNrl9SXT3mL6_6TfAL2xIgJ |
CitedBy_id | crossref_primary_10_1080_10589759_2024_2355334 crossref_primary_10_1038_s41598_025_86323_1 crossref_primary_10_3390_app14156774 crossref_primary_10_1111_cote_12744 crossref_primary_10_3390_math12203164 |
Cites_doi | 10.1007/s40684-021-00343-6 10.1109/WACV48630.2021.00257 10.1016/j.imavis.2011.02.002 10.1145/3592116 10.1145/3422622 10.3390/s22145141 10.1049/el:20080522 10.1111/cote.12642 10.1177/00405175221130773 10.3390/s22134718 10.1016/j.autcon.2022.104472 10.1007/s00371-022-02754-1 10.1109/TASE.2016.2520955 10.1007/s11554-020-01023-5 10.1177/00405175221129654 10.1109/CVPR52688.2022.01117 10.1109/TIP.2003.819861 10.1007/978-3-030-01228-1_8 10.1109/CVPRW59228.2023.00296 10.1016/j.optlaseng.2022.107470 10.1111/cote.12609 10.1109/SMC.2018.00080 10.1109/CVPR.2009.5206596 10.1016/j.compind.2021.103551 10.1109/DDCLS.2019.8908944 10.1016/j.neucom.2022.01.029 10.1155/2020/8189403 10.1145/566570.566636 10.1111/cote.12644 10.1007/s10845-022-01964-7 10.1109/TPAMI.2023.3261988 10.1177/0040517519862880 10.1109/TIM.2018.2795178 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SR 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ JG9 KB. LK8 M7P PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.3390/pr11092615 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central ProQuest Central Student SciTech Premium Collection Materials Research Database Materials Science Database Biological Sciences Biological Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2227-9717 |
ExternalDocumentID | A771803039 10_3390_pr11092615 |
GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ACIWK ACPRK ADBBV ADMLS AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I HCIFZ IAO IGS ITC KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PROAC RNS PMFND 7SR 8FD ABUWG AZQEC DWQXO GNUQQ JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c334t-1c28d38ec2602db5ce666d2b5bade17d28d4695c0614aaf678b6701becf7299b3 |
IEDL.DBID | BENPR |
ISSN | 2227-9717 |
IngestDate | Fri Jul 25 10:15:00 EDT 2025 Tue Jun 10 21:20:01 EDT 2025 Tue Jul 01 02:38:36 EDT 2025 Thu Apr 24 23:09:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-1c28d38ec2602db5ce666d2b5bade17d28d4695c0614aaf678b6701becf7299b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6757-0310 |
OpenAccessLink | https://www.proquest.com/docview/2869558981?pq-origsite=%requestingapplication% |
PQID | 2869558981 |
PQPubID | 2032344 |
ParticipantIDs | proquest_journals_2869558981 gale_infotracacademiconefile_A771803039 crossref_primary_10_3390_pr11092615 crossref_citationtrail_10_3390_pr11092615 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Processes |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Ren (ref_7) 2021; 9 Zhang (ref_39) 2021; 48 Ngan (ref_1) 2011; 29 Zhang (ref_11) 2023; 139 Zhang (ref_22) 2022; 138 Croitoru (ref_28) 2023; 45 Jing (ref_6) 2020; 15 Chen (ref_5) 2022; 134 Wang (ref_9) 2022; 142 ref_14 Li (ref_31) 2022; 479 ref_35 ref_34 ref_33 ref_32 Zhang (ref_24) 2023; 139 Ho (ref_16) 2020; 33 ref_30 ref_18 Li (ref_21) 2017; 14 ref_17 ref_37 ref_25 ref_23 Rasheed (ref_3) 2020; 2020 Wei (ref_40) 2020; 18 Ghanbari (ref_41) 2008; 44 ref_43 ref_20 ref_42 Goodfellow (ref_13) 2020; 63 Wang (ref_19) 2004; 13 ref_2 Szarski (ref_8) 2022; 33 ref_29 ref_27 ref_26 Zhang (ref_10) 2023; 163 Kahraman (ref_15) 2023; 93 Mei (ref_38) 2018; 67 Hu (ref_36) 2019; 90 ref_4 Zhang (ref_12) 2022; 93 |
References_xml | – volume: 9 start-page: 661 year: 2021 ident: ref_7 article-title: State of the Art in Defect Detection Based on Machine Vision publication-title: Int. J. Precis. Eng. Manuf.-Green Technol. doi: 10.1007/s40684-021-00343-6 – ident: ref_32 – ident: ref_26 doi: 10.1109/WACV48630.2021.00257 – ident: ref_34 – volume: 29 start-page: 442 year: 2011 ident: ref_1 article-title: Automated fabric defect detection—A review publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2011.02.002 – ident: ref_43 doi: 10.1145/3592116 – volume: 63 start-page: 139 year: 2020 ident: ref_13 article-title: Generative adversarial networks publication-title: Commun. ACM doi: 10.1145/3422622 – ident: ref_23 doi: 10.3390/s22145141 – volume: 44 start-page: 800 year: 2008 ident: ref_41 article-title: Scope of validity of PSNR in image/video quality assessment publication-title: Electron. Lett. doi: 10.1049/el:20080522 – volume: 139 start-page: 248 year: 2023 ident: ref_11 article-title: A contrastive learning-based attention generative adversarial network for defect detection in colour-patterned fabric publication-title: Color. Technol. doi: 10.1111/cote.12642 – volume: 93 start-page: 1485 year: 2023 ident: ref_15 article-title: Deep learning-based fabric defect detection: A review publication-title: Text. Res. J. doi: 10.1177/00405175221130773 – ident: ref_4 doi: 10.3390/s22134718 – volume: 142 start-page: 104472 year: 2022 ident: ref_9 article-title: Unsupervised defect detection with patch-aware mutual reasoning network in image data publication-title: Automat. Constr. doi: 10.1016/j.autcon.2022.104472 – ident: ref_42 – ident: ref_25 doi: 10.1007/s00371-022-02754-1 – volume: 14 start-page: 1256 year: 2017 ident: ref_21 article-title: Deformable Patterned Fabric Defect Detection with Fisher Criterion-Based Deep Learning publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2016.2520955 – volume: 18 start-page: 807 year: 2020 ident: ref_40 article-title: Real-time implementation of fabric defect detection based on variational automatic encoder with structure similarity publication-title: J. Real-Time Image Process. doi: 10.1007/s11554-020-01023-5 – volume: 93 start-page: 1178 year: 2022 ident: ref_12 article-title: Attention-based Feature Fusion Generative Adversarial Network for yarn-dyed fabric defect detection publication-title: Text. Res. J. doi: 10.1177/00405175221129654 – volume: 33 start-page: 6840 year: 2020 ident: ref_16 article-title: Denoising diffusion probabilistic models publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_30 doi: 10.1109/CVPR52688.2022.01117 – volume: 13 start-page: 600 year: 2004 ident: ref_19 article-title: Image quality assessment: From error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – ident: ref_37 doi: 10.1007/978-3-030-01228-1_8 – ident: ref_33 doi: 10.1109/CVPRW59228.2023.00296 – ident: ref_29 – volume: 163 start-page: 107470 year: 2023 ident: ref_10 article-title: Rethinking unsupervised texture defect detection using PCA publication-title: Opt. Laser. Eng. doi: 10.1016/j.optlaseng.2022.107470 – ident: ref_27 – ident: ref_2 – volume: 138 start-page: 522 year: 2022 ident: ref_22 article-title: Colour-patterned fabric defect detection based on an unsupervised multi-scale U-shaped denoising convolutional autoencoder model publication-title: Color. Technol. doi: 10.1111/cote.12609 – ident: ref_14 doi: 10.1109/SMC.2018.00080 – ident: ref_20 doi: 10.1109/CVPR.2009.5206596 – volume: 15 start-page: 1558925020908268 year: 2020 ident: ref_6 article-title: Fabric defect detection using the improved YOLOv3 model publication-title: J. Eng. Fiber. Fabr. – volume: 48 start-page: 123 year: 2021 ident: ref_39 article-title: Yarn-dyed shirt piece defect detection based on an unsupervised reconstruction model of the U-shaped denoising convolutional auto-encoder publication-title: J. Xidian Univ. – volume: 134 start-page: 103551 year: 2022 ident: ref_5 article-title: Improved faster R-CNN for fabric defect detection based on Gabor filter with Genetic Algorithm optimization publication-title: Comput. Ind. doi: 10.1016/j.compind.2021.103551 – ident: ref_35 doi: 10.1109/DDCLS.2019.8908944 – volume: 479 start-page: 47 year: 2022 ident: ref_31 article-title: SRDiff: Single image super-resolution with diffusion probabilistic models publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.01.029 – volume: 2020 start-page: 8189403 year: 2020 ident: ref_3 article-title: Fabric Defect Detection Using Computer Vision Techniques: A Comprehensive Review publication-title: Math. Probl. Eng. doi: 10.1155/2020/8189403 – ident: ref_18 doi: 10.1145/566570.566636 – ident: ref_17 – volume: 139 start-page: 223 year: 2023 ident: ref_24 article-title: Attention-based vector quantisation variational autoencoder for colour-patterned fabrics defect detection publication-title: Color. Technol. doi: 10.1111/cote.12644 – volume: 33 start-page: 2075 year: 2022 ident: ref_8 article-title: An unsupervised defect detection model for a dry carbon fiber textile publication-title: J. Intell. Manuf. doi: 10.1007/s10845-022-01964-7 – volume: 45 start-page: 10850 year: 2023 ident: ref_28 article-title: Diffusion Models in Vision: A Survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2023.3261988 – volume: 90 start-page: 247 year: 2019 ident: ref_36 article-title: Unsupervised fabric defect detection based on a deep convolutional generative adversarial network publication-title: Text. Res. J. doi: 10.1177/0040517519862880 – volume: 67 start-page: 1266 year: 2018 ident: ref_38 article-title: An Unsupervised-Learning-Based Approach for Automated Defect Inspection on Textured Surfaces publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2018.2795178 |
SSID | ssj0000913856 |
Score | 2.2717187 |
Snippet | Defect detection is crucial in quality control for fabric production. Deep-learning-based unsupervised reconstruction methods have been recognized universally... |
SourceID | proquest gale crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 2615 |
SubjectTerms | Accuracy Blurring Defects Diffusion Image quality Image reconstruction Iterative methods Labor costs Methods Optimization Probabilistic models Production methods Quality control Statistical analysis Surface defects Vision systems |
Title | A Timestep-Adaptive-Diffusion-Model-Oriented Unsupervised Detection Method for Fabric Surface Defects |
URI | https://www.proquest.com/docview/2869558981 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9tAEB7yuCSH0jxKnLphoYUmhyW2ViutTsVt7JqAk5DUkJtY7QMCRlYs-Zrfnhl57bQQehS7CLGz-818o9lvAL4lGumajT031jiOgJfyLNOO215iE5_KxHnKd0xukvE0vn6UjyHhVoeyyjUmtkBt54Zy5JeRSjIpVab6P6pnTl2j6O9qaKGxDbsIwQrJ1-7P4c3d_SbLQqqXSiYrXVKB_P6yWpDGJvIG-Y8neh-PWycz-ggfQnTIBitzHsCWKw9h_y_NwEM4CKexZudBMvriCNyAtXc5GlfxgdUVYRi_evJ-SckwTg3PZvyWJI0xwGTTsl5WhBE1Ply5pq3GKtmkbSbNMIplI10gPrKH5cJr43BOW_RxDNPR8M-vMQ8NFLgRIm5430TKCuUMkpbIFtI4JCs2KmShreunFkeRHUtDrFBrj36rSNJeH83qMebOCvEJdsp56U6AKe21FJH3Nkan7kWmyZro_eJe7EXR68DFejFzE9TFqcnFLEeWQQufvy18B75u5lYrTY13Z30nm-R00PBNRof7Avg9JFmVD1J0qwhRIutAd222PJzAOn_bL6f_H_4Me9RCflU31oWdZrF0XzDQaIoz2Faj32dhT-HT5GX4Ckrk1uY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BPQAHxFNdHq2ltqIcLLJxnMehqlbdbpfCwqGsxC04fkiVUAibrBB_it_YmTyglVBvHCNbVjKe-WbGGX8D8DFUmK6ZwHFttOUIeBFPEmW58UITukiG1tF5x-Q8HE-Dn1fyagEeu7swVFbZYWIN1OZW0xn5sR-HiZRxEve_FnecukbR39WuhUajFqf24R5TtvLLyRD395Pvj75ffhvztqsA10IEFe9rPzYithojed9kUluM4I2fyUwZ248MjmLKKDWlSko5BPMsjLw-fqvDQDTJBK67CG8CIRKyqHj04-lMhzg2Yxk2LKg47h0XM2L0xCxF_uP3Xkb_2qWN1mGtjUXZoFGeDViw-Sas_sVQuAkbre2X7HNLUH20BXbA6psjlS34wKiCEJMPfzs3p6M3Tu3VbvgFEShjOMumeTkvCJFKfBjaqq79ytmkbl3NMGZmI5UhGrNf85lT2uKcusRkG6avItgdWMpvc_sWWKycksJ3zgQYQjiRKNId9LWBFziReT046oSZ6pbLnFpq3KSY05Dg02fB9-DD09yiYfB4cdYh7UlKZo0radXeTsD3IYKsdBChE0dAFEkP9rttS1t7L9Nn7dz9__B7WB5fTs7Ss5Pz0z1Yoeb1TcXaPixVs7k9wBCnyt7VesXg-rUV-Q8OYBDk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFcQ-iK2KV6suqGgflstls_l4EDm9Hq21Z1EP-hY3-wGFkqaXHKX_mn-dM8mmVSi-9THssiSzs7_5yOxvAN7ECsM1EzmujbYcAS_hWaYsN0FsYpfI2DrKdxzN4_1F9OVEnqzB7_4uDJVV9pjYArU515QjH4VpnEmZZul45HxZxPF09rG64NRBiv609u00OhU5tFeXGL7VHw6muNdvw3C29_PzPvcdBrgWImr4WIepEanV6NWHppDaojdvwkIWythxYnAUw0epKWxSyiGwF3ESjPG7HTqlWSFw3XuwnmBUFAxg_dPe_Pj7dYaHGDdTGXecqEJkwahaEr8nxizyHyt4uy1oDdzsETz0nimbdKq0CWu23IKNv_gKt2DTI0HN3nu66t3HYCesvUfS2IpPjKoIP_n01LkVJeI4NVs749-IThmdW7Yo61VF-FTjw9Q2bSVYyY7aRtYMPWg2UwViM_uxWjqlLc5pC06ewOJORPsUBuV5aZ8BS5VTUoTOmQgdCicyRZqEljcKIieKYAi7vTBz7ZnNqcHGWY4RDgk-vxH8EF5fz606Po9bZ72jPcnpkONKWvm7Cvg-RJeVTxI06QiPIhvCTr9tuT_9dX6jq9v_H34F91GJ868H88Pn8IA62XflazswaJYr-wL9naZ46RWLwa-71uU_ENYWdg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Timestep-Adaptive-Diffusion-Model-Oriented+Unsupervised+Detection+Method+for+Fabric+Surface+Defects&rft.jtitle=Processes&rft.au=Tang%2C+Shancheng&rft.au=Jin%2C+Zicheng&rft.au=Zhang%2C+Ying&rft.au=Lu%2C+Jianhui&rft.date=2023-09-01&rft.pub=MDPI+AG&rft.issn=2227-9717&rft.eissn=2227-9717&rft.volume=11&rft.issue=9&rft_id=info:doi/10.3390%2Fpr11092615&rft.externalDocID=A771803039 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon |