A Timestep-Adaptive-Diffusion-Model-Oriented Unsupervised Detection Method for Fabric Surface Defects

Defect detection is crucial in quality control for fabric production. Deep-learning-based unsupervised reconstruction methods have been recognized universally to address the scarcity of fabric defect samples, high costs of labeling, and insufficient prior knowledge. However, these methods are subjec...

Full description

Saved in:
Bibliographic Details
Published inProcesses Vol. 11; no. 9; p. 2615
Main Authors Tang, Shancheng, Jin, Zicheng, Zhang, Ying, Lu, Jianhui, Li, Heng, Yang, Jiqing
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2023
Subjects
Online AccessGet full text
ISSN2227-9717
2227-9717
DOI10.3390/pr11092615

Cover

Loading…
Abstract Defect detection is crucial in quality control for fabric production. Deep-learning-based unsupervised reconstruction methods have been recognized universally to address the scarcity of fabric defect samples, high costs of labeling, and insufficient prior knowledge. However, these methods are subject to several weaknesses in reconstructing defect images into defect-free images with high quality, like image blurring, defect residue, and texture inconsistency, resulting in false detection and missed detection. Therefore, this article proposes an unsupervised detection method for fabric surface defects oriented to the timestep adaptive diffusion model. Firstly, the Simplex Noise–Denoising Diffusion Probabilistic Model (SN-DDPM) is constructed to recursively optimize the distribution of the posterior latent vector, thus gradually approaching the probability distribution of surface features of the defect-free samples through multiple iterative diffusions. Meanwhile, the timestep adaptive module is utilized to dynamically adjust the optimal timestep, enabling the model to flexibly adapt to different data distributions. During the detection, the SN-DDPM is employed to reconstruct the defect images into defect-free images, and image differentiation, frequency-tuned salient detection (FTSD), and threshold binarization are utilized to segment the defects. The results reveal that compared with the other seven unsupervised detection methods, the proposed method exhibits higher F1 and IoU values, which are increased by at least 5.42% and 7.61%, respectively, demonstrating that the proposed method is effective and accurate.
AbstractList Defect detection is crucial in quality control for fabric production. Deep-learning-based unsupervised reconstruction methods have been recognized universally to address the scarcity of fabric defect samples, high costs of labeling, and insufficient prior knowledge. However, these methods are subject to several weaknesses in reconstructing defect images into defect-free images with high quality, like image blurring, defect residue, and texture inconsistency, resulting in false detection and missed detection. Therefore, this article proposes an unsupervised detection method for fabric surface defects oriented to the timestep adaptive diffusion model. Firstly, the Simplex Noise–Denoising Diffusion Probabilistic Model (SN-DDPM) is constructed to recursively optimize the distribution of the posterior latent vector, thus gradually approaching the probability distribution of surface features of the defect-free samples through multiple iterative diffusions. Meanwhile, the timestep adaptive module is utilized to dynamically adjust the optimal timestep, enabling the model to flexibly adapt to different data distributions. During the detection, the SN-DDPM is employed to reconstruct the defect images into defect-free images, and image differentiation, frequency-tuned salient detection (FTSD), and threshold binarization are utilized to segment the defects. The results reveal that compared with the other seven unsupervised detection methods, the proposed method exhibits higher F1 and IoU values, which are increased by at least 5.42% and 7.61%, respectively, demonstrating that the proposed method is effective and accurate.
Audience Academic
Author Jin, Zicheng
Lu, Jianhui
Zhang, Ying
Yang, Jiqing
Li, Heng
Tang, Shancheng
Author_xml – sequence: 1
  givenname: Shancheng
  surname: Tang
  fullname: Tang, Shancheng
– sequence: 2
  givenname: Zicheng
  orcidid: 0000-0002-6757-0310
  surname: Jin
  fullname: Jin, Zicheng
– sequence: 3
  givenname: Ying
  surname: Zhang
  fullname: Zhang, Ying
– sequence: 4
  givenname: Jianhui
  surname: Lu
  fullname: Lu, Jianhui
– sequence: 5
  givenname: Heng
  surname: Li
  fullname: Li, Heng
– sequence: 6
  givenname: Jiqing
  surname: Yang
  fullname: Yang, Jiqing
BookMark eNptkE1LAzEQhoNU8PPiL1jwJmzNRzfZHIu1KlR6sJ6XbDLRyHazJtmC_95IBUWcHGYy87wZ8p6gSe97QOiC4CljEl8PgRAsKSfVATqmlIpSCiImv-ojdB7jG84hCasrfoxgXmzcFmKCoZwbNSS3g3LhrB2j83356A105To46BOY4rmP4wBh52K-LCCBTpkqHiG9elNYH4qlaoPTxdMYrNKQGZuZeIYOreoinH_nU_S8vN3c3Jer9d3DzXxVasZmqSSa1obVoCnH1LSVBs65oW3VKgNEmDydcVlpzMlMKctF3XKBSQvaCiply07R5f7dIfj3Mf-qefNj6PPKhtZZWdWyJpma7qkX1UHjeutTUDofA1uns6fW5f5cCFJjhpnMgqu9QAcfYwDbDMFtVfhoCG6-rG9-rM8w_gNrl9SXT3mL6_6TfAL2xIgJ
CitedBy_id crossref_primary_10_1080_10589759_2024_2355334
crossref_primary_10_1038_s41598_025_86323_1
crossref_primary_10_3390_app14156774
crossref_primary_10_1111_cote_12744
crossref_primary_10_3390_math12203164
Cites_doi 10.1007/s40684-021-00343-6
10.1109/WACV48630.2021.00257
10.1016/j.imavis.2011.02.002
10.1145/3592116
10.1145/3422622
10.3390/s22145141
10.1049/el:20080522
10.1111/cote.12642
10.1177/00405175221130773
10.3390/s22134718
10.1016/j.autcon.2022.104472
10.1007/s00371-022-02754-1
10.1109/TASE.2016.2520955
10.1007/s11554-020-01023-5
10.1177/00405175221129654
10.1109/CVPR52688.2022.01117
10.1109/TIP.2003.819861
10.1007/978-3-030-01228-1_8
10.1109/CVPRW59228.2023.00296
10.1016/j.optlaseng.2022.107470
10.1111/cote.12609
10.1109/SMC.2018.00080
10.1109/CVPR.2009.5206596
10.1016/j.compind.2021.103551
10.1109/DDCLS.2019.8908944
10.1016/j.neucom.2022.01.029
10.1155/2020/8189403
10.1145/566570.566636
10.1111/cote.12644
10.1007/s10845-022-01964-7
10.1109/TPAMI.2023.3261988
10.1177/0040517519862880
10.1109/TIM.2018.2795178
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
JG9
KB.
LK8
M7P
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/pr11092615
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
Materials Science Database
Biological Sciences
Biological Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2227-9717
ExternalDocumentID A771803039
10_3390_pr11092615
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ACIWK
ACPRK
ADBBV
ADMLS
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
HCIFZ
IAO
IGS
ITC
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PROAC
RNS
PMFND
7SR
8FD
ABUWG
AZQEC
DWQXO
GNUQQ
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c334t-1c28d38ec2602db5ce666d2b5bade17d28d4695c0614aaf678b6701becf7299b3
IEDL.DBID BENPR
ISSN 2227-9717
IngestDate Fri Jul 25 10:15:00 EDT 2025
Tue Jun 10 21:20:01 EDT 2025
Tue Jul 01 02:38:36 EDT 2025
Thu Apr 24 23:09:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-1c28d38ec2602db5ce666d2b5bade17d28d4695c0614aaf678b6701becf7299b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6757-0310
OpenAccessLink https://www.proquest.com/docview/2869558981?pq-origsite=%requestingapplication%
PQID 2869558981
PQPubID 2032344
ParticipantIDs proquest_journals_2869558981
gale_infotracacademiconefile_A771803039
crossref_primary_10_3390_pr11092615
crossref_citationtrail_10_3390_pr11092615
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Processes
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ren (ref_7) 2021; 9
Zhang (ref_39) 2021; 48
Ngan (ref_1) 2011; 29
Zhang (ref_11) 2023; 139
Zhang (ref_22) 2022; 138
Croitoru (ref_28) 2023; 45
Jing (ref_6) 2020; 15
Chen (ref_5) 2022; 134
Wang (ref_9) 2022; 142
ref_14
Li (ref_31) 2022; 479
ref_35
ref_34
ref_33
ref_32
Zhang (ref_24) 2023; 139
Ho (ref_16) 2020; 33
ref_30
ref_18
Li (ref_21) 2017; 14
ref_17
ref_37
ref_25
ref_23
Rasheed (ref_3) 2020; 2020
Wei (ref_40) 2020; 18
Ghanbari (ref_41) 2008; 44
ref_43
ref_20
ref_42
Goodfellow (ref_13) 2020; 63
Wang (ref_19) 2004; 13
ref_2
Szarski (ref_8) 2022; 33
ref_29
ref_27
ref_26
Zhang (ref_10) 2023; 163
Kahraman (ref_15) 2023; 93
Mei (ref_38) 2018; 67
Hu (ref_36) 2019; 90
ref_4
Zhang (ref_12) 2022; 93
References_xml – volume: 9
  start-page: 661
  year: 2021
  ident: ref_7
  article-title: State of the Art in Defect Detection Based on Machine Vision
  publication-title: Int. J. Precis. Eng. Manuf.-Green Technol.
  doi: 10.1007/s40684-021-00343-6
– ident: ref_32
– ident: ref_26
  doi: 10.1109/WACV48630.2021.00257
– ident: ref_34
– volume: 29
  start-page: 442
  year: 2011
  ident: ref_1
  article-title: Automated fabric defect detection—A review
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2011.02.002
– ident: ref_43
  doi: 10.1145/3592116
– volume: 63
  start-page: 139
  year: 2020
  ident: ref_13
  article-title: Generative adversarial networks
  publication-title: Commun. ACM
  doi: 10.1145/3422622
– ident: ref_23
  doi: 10.3390/s22145141
– volume: 44
  start-page: 800
  year: 2008
  ident: ref_41
  article-title: Scope of validity of PSNR in image/video quality assessment
  publication-title: Electron. Lett.
  doi: 10.1049/el:20080522
– volume: 139
  start-page: 248
  year: 2023
  ident: ref_11
  article-title: A contrastive learning-based attention generative adversarial network for defect detection in colour-patterned fabric
  publication-title: Color. Technol.
  doi: 10.1111/cote.12642
– volume: 93
  start-page: 1485
  year: 2023
  ident: ref_15
  article-title: Deep learning-based fabric defect detection: A review
  publication-title: Text. Res. J.
  doi: 10.1177/00405175221130773
– ident: ref_4
  doi: 10.3390/s22134718
– volume: 142
  start-page: 104472
  year: 2022
  ident: ref_9
  article-title: Unsupervised defect detection with patch-aware mutual reasoning network in image data
  publication-title: Automat. Constr.
  doi: 10.1016/j.autcon.2022.104472
– ident: ref_42
– ident: ref_25
  doi: 10.1007/s00371-022-02754-1
– volume: 14
  start-page: 1256
  year: 2017
  ident: ref_21
  article-title: Deformable Patterned Fabric Defect Detection with Fisher Criterion-Based Deep Learning
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2016.2520955
– volume: 18
  start-page: 807
  year: 2020
  ident: ref_40
  article-title: Real-time implementation of fabric defect detection based on variational automatic encoder with structure similarity
  publication-title: J. Real-Time Image Process.
  doi: 10.1007/s11554-020-01023-5
– volume: 93
  start-page: 1178
  year: 2022
  ident: ref_12
  article-title: Attention-based Feature Fusion Generative Adversarial Network for yarn-dyed fabric defect detection
  publication-title: Text. Res. J.
  doi: 10.1177/00405175221129654
– volume: 33
  start-page: 6840
  year: 2020
  ident: ref_16
  article-title: Denoising diffusion probabilistic models
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_30
  doi: 10.1109/CVPR52688.2022.01117
– volume: 13
  start-page: 600
  year: 2004
  ident: ref_19
  article-title: Image quality assessment: From error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– ident: ref_37
  doi: 10.1007/978-3-030-01228-1_8
– ident: ref_33
  doi: 10.1109/CVPRW59228.2023.00296
– ident: ref_29
– volume: 163
  start-page: 107470
  year: 2023
  ident: ref_10
  article-title: Rethinking unsupervised texture defect detection using PCA
  publication-title: Opt. Laser. Eng.
  doi: 10.1016/j.optlaseng.2022.107470
– ident: ref_27
– ident: ref_2
– volume: 138
  start-page: 522
  year: 2022
  ident: ref_22
  article-title: Colour-patterned fabric defect detection based on an unsupervised multi-scale U-shaped denoising convolutional autoencoder model
  publication-title: Color. Technol.
  doi: 10.1111/cote.12609
– ident: ref_14
  doi: 10.1109/SMC.2018.00080
– ident: ref_20
  doi: 10.1109/CVPR.2009.5206596
– volume: 15
  start-page: 1558925020908268
  year: 2020
  ident: ref_6
  article-title: Fabric defect detection using the improved YOLOv3 model
  publication-title: J. Eng. Fiber. Fabr.
– volume: 48
  start-page: 123
  year: 2021
  ident: ref_39
  article-title: Yarn-dyed shirt piece defect detection based on an unsupervised reconstruction model of the U-shaped denoising convolutional auto-encoder
  publication-title: J. Xidian Univ.
– volume: 134
  start-page: 103551
  year: 2022
  ident: ref_5
  article-title: Improved faster R-CNN for fabric defect detection based on Gabor filter with Genetic Algorithm optimization
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2021.103551
– ident: ref_35
  doi: 10.1109/DDCLS.2019.8908944
– volume: 479
  start-page: 47
  year: 2022
  ident: ref_31
  article-title: SRDiff: Single image super-resolution with diffusion probabilistic models
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.01.029
– volume: 2020
  start-page: 8189403
  year: 2020
  ident: ref_3
  article-title: Fabric Defect Detection Using Computer Vision Techniques: A Comprehensive Review
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2020/8189403
– ident: ref_18
  doi: 10.1145/566570.566636
– ident: ref_17
– volume: 139
  start-page: 223
  year: 2023
  ident: ref_24
  article-title: Attention-based vector quantisation variational autoencoder for colour-patterned fabrics defect detection
  publication-title: Color. Technol.
  doi: 10.1111/cote.12644
– volume: 33
  start-page: 2075
  year: 2022
  ident: ref_8
  article-title: An unsupervised defect detection model for a dry carbon fiber textile
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-022-01964-7
– volume: 45
  start-page: 10850
  year: 2023
  ident: ref_28
  article-title: Diffusion Models in Vision: A Survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2023.3261988
– volume: 90
  start-page: 247
  year: 2019
  ident: ref_36
  article-title: Unsupervised fabric defect detection based on a deep convolutional generative adversarial network
  publication-title: Text. Res. J.
  doi: 10.1177/0040517519862880
– volume: 67
  start-page: 1266
  year: 2018
  ident: ref_38
  article-title: An Unsupervised-Learning-Based Approach for Automated Defect Inspection on Textured Surfaces
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2018.2795178
SSID ssj0000913856
Score 2.2717187
Snippet Defect detection is crucial in quality control for fabric production. Deep-learning-based unsupervised reconstruction methods have been recognized universally...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2615
SubjectTerms Accuracy
Blurring
Defects
Diffusion
Image quality
Image reconstruction
Iterative methods
Labor costs
Methods
Optimization
Probabilistic models
Production methods
Quality control
Statistical analysis
Surface defects
Vision systems
Title A Timestep-Adaptive-Diffusion-Model-Oriented Unsupervised Detection Method for Fabric Surface Defects
URI https://www.proquest.com/docview/2869558981
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9tAEB7yuCSH0jxKnLphoYUmhyW2ViutTsVt7JqAk5DUkJtY7QMCRlYs-Zrfnhl57bQQehS7CLGz-818o9lvAL4lGumajT031jiOgJfyLNOO215iE5_KxHnKd0xukvE0vn6UjyHhVoeyyjUmtkBt54Zy5JeRSjIpVab6P6pnTl2j6O9qaKGxDbsIwQrJ1-7P4c3d_SbLQqqXSiYrXVKB_P6yWpDGJvIG-Y8neh-PWycz-ggfQnTIBitzHsCWKw9h_y_NwEM4CKexZudBMvriCNyAtXc5GlfxgdUVYRi_evJ-SckwTg3PZvyWJI0xwGTTsl5WhBE1Ply5pq3GKtmkbSbNMIplI10gPrKH5cJr43BOW_RxDNPR8M-vMQ8NFLgRIm5430TKCuUMkpbIFtI4JCs2KmShreunFkeRHUtDrFBrj36rSNJeH83qMebOCvEJdsp56U6AKe21FJH3Nkan7kWmyZro_eJe7EXR68DFejFzE9TFqcnFLEeWQQufvy18B75u5lYrTY13Z30nm-R00PBNRof7Avg9JFmVD1J0qwhRIutAd222PJzAOn_bL6f_H_4Me9RCflU31oWdZrF0XzDQaIoz2Faj32dhT-HT5GX4Ckrk1uY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BPQAHxFNdHq2ltqIcLLJxnMehqlbdbpfCwqGsxC04fkiVUAibrBB_it_YmTyglVBvHCNbVjKe-WbGGX8D8DFUmK6ZwHFttOUIeBFPEmW58UITukiG1tF5x-Q8HE-Dn1fyagEeu7swVFbZYWIN1OZW0xn5sR-HiZRxEve_FnecukbR39WuhUajFqf24R5TtvLLyRD395Pvj75ffhvztqsA10IEFe9rPzYithojed9kUluM4I2fyUwZ248MjmLKKDWlSko5BPMsjLw-fqvDQDTJBK67CG8CIRKyqHj04-lMhzg2Yxk2LKg47h0XM2L0xCxF_uP3Xkb_2qWN1mGtjUXZoFGeDViw-Sas_sVQuAkbre2X7HNLUH20BXbA6psjlS34wKiCEJMPfzs3p6M3Tu3VbvgFEShjOMumeTkvCJFKfBjaqq79ytmkbl3NMGZmI5UhGrNf85lT2uKcusRkG6avItgdWMpvc_sWWKycksJ3zgQYQjiRKNId9LWBFziReT046oSZ6pbLnFpq3KSY05Dg02fB9-DD09yiYfB4cdYh7UlKZo0radXeTsD3IYKsdBChE0dAFEkP9rttS1t7L9Nn7dz9__B7WB5fTs7Ss5Pz0z1Yoeb1TcXaPixVs7k9wBCnyt7VesXg-rUV-Q8OYBDk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFcQ-iK2KV6suqGgflstls_l4EDm9Hq21Z1EP-hY3-wGFkqaXHKX_mn-dM8mmVSi-9THssiSzs7_5yOxvAN7ECsM1EzmujbYcAS_hWaYsN0FsYpfI2DrKdxzN4_1F9OVEnqzB7_4uDJVV9pjYArU515QjH4VpnEmZZul45HxZxPF09rG64NRBiv609u00OhU5tFeXGL7VHw6muNdvw3C29_PzPvcdBrgWImr4WIepEanV6NWHppDaojdvwkIWythxYnAUw0epKWxSyiGwF3ESjPG7HTqlWSFw3XuwnmBUFAxg_dPe_Pj7dYaHGDdTGXecqEJkwahaEr8nxizyHyt4uy1oDdzsETz0nimbdKq0CWu23IKNv_gKt2DTI0HN3nu66t3HYCesvUfS2IpPjKoIP_n01LkVJeI4NVs749-IThmdW7Yo61VF-FTjw9Q2bSVYyY7aRtYMPWg2UwViM_uxWjqlLc5pC06ewOJORPsUBuV5aZ8BS5VTUoTOmQgdCicyRZqEljcKIieKYAi7vTBz7ZnNqcHGWY4RDgk-vxH8EF5fz606Po9bZ72jPcnpkONKWvm7Cvg-RJeVTxI06QiPIhvCTr9tuT_9dX6jq9v_H34F91GJ868H88Pn8IA62XflazswaJYr-wL9naZ46RWLwa-71uU_ENYWdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Timestep-Adaptive-Diffusion-Model-Oriented+Unsupervised+Detection+Method+for+Fabric+Surface+Defects&rft.jtitle=Processes&rft.au=Tang%2C+Shancheng&rft.au=Jin%2C+Zicheng&rft.au=Zhang%2C+Ying&rft.au=Lu%2C+Jianhui&rft.date=2023-09-01&rft.pub=MDPI+AG&rft.issn=2227-9717&rft.eissn=2227-9717&rft.volume=11&rft.issue=9&rft_id=info:doi/10.3390%2Fpr11092615&rft.externalDocID=A771803039
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon