Atomically dispersed Sn modified with trace sulfur species derived from organosulfide complex for electroreduction of CO2
Electrochemical CO2 conversion into fuels is highly desirable to achieve carbon artificial cycles. Among electrocatalyst candidates, earth-abundant tin is subject to unsatisfied efficiency and selectivity. In this work, atomically-dispersed Sn nanoclusters modified with the trace of sulfur doping ar...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 304; p. 120936 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.05.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0926-3373 1873-3883 |
DOI | 10.1016/j.apcatb.2021.120936 |
Cover
Loading…
Abstract | Electrochemical CO2 conversion into fuels is highly desirable to achieve carbon artificial cycles. Among electrocatalyst candidates, earth-abundant tin is subject to unsatisfied efficiency and selectivity. In this work, atomically-dispersed Sn nanoclusters modified with the trace of sulfur doping are proposed to efficiently electroreduce CO2 to C1 chemicals. This electrocatalyst is in situ derived from bis(benzene-1,2-dithiolato). It exhibits a high Faradaic efficiency (90%) for carbonaceous products at a moderate overpotential (0.75 V). Importantly, it is exploited for the formate formation with unprecedented partial current density (90 mA cm−2) and long-term stability (50 h) using the flow cell, better than most Sn-based catalysts. Electrochemical experiments and theoretical calculations manifest the promoting effect of trace sulfur on Sn nanoclusters, which stabilizes the *HCOOH intermediate and favors CO2 electroreduction. Hence, it emphasizes the importance of dopants and charge modulating for performance enhancement. This work unfolds a promising candidate for Sn electrocatalysts towards CO2 electroreduction.
The atomically dispersed Sn nanoclusters modified with the trace of sulfur doping are synthisized by in situ electrochemical production of organosulfide. And Sn NC:S is proposed to efficiently electroreduce CO2 to C1 chemicals, which is contributed by the promotion effect of trace sulfur species confirmed by the theoretical calculation. [Display omitted]
•Atomically dispersed Sn nanoclusters with sulfur doping are prepared by in situ deriving from organosulfide complex.•This electrocatalyst converts CO2 to C1 chemicals with high FE (90%) and formate partial current density (90 mA cm−2).•Experiments and calculations manifest the promoting effect of trace sulfur on the Sn catalyst towards CO2RR process. |
---|---|
AbstractList | Electrochemical CO2 conversion into fuels is highly desirable to achieve carbon artificial cycles. Among electrocatalyst candidates, earth-abundant tin is subject to unsatisfied efficiency and selectivity. In this work, atomically-dispersed Sn nanoclusters modified with the trace of sulfur doping are proposed to efficiently electroreduce CO2 to C1 chemicals. This electrocatalyst is in situ derived from bis(benzene-1,2-dithiolato). It exhibits a high Faradaic efficiency (90%) for carbonaceous products at a moderate overpotential (0.75 V). Importantly, it is exploited for the formate formation with unprecedented partial current density (90 mA cm−2) and long-term stability (50 h) using the flow cell, better than most Sn-based catalysts. Electrochemical experiments and theoretical calculations manifest the promoting effect of trace sulfur on Sn nanoclusters, which stabilizes the *HCOOH intermediate and favors CO2 electroreduction. Hence, it emphasizes the importance of dopants and charge modulating for performance enhancement. This work unfolds a promising candidate for Sn electrocatalysts towards CO2 electroreduction.
The atomically dispersed Sn nanoclusters modified with the trace of sulfur doping are synthisized by in situ electrochemical production of organosulfide. And Sn NC:S is proposed to efficiently electroreduce CO2 to C1 chemicals, which is contributed by the promotion effect of trace sulfur species confirmed by the theoretical calculation. [Display omitted]
•Atomically dispersed Sn nanoclusters with sulfur doping are prepared by in situ deriving from organosulfide complex.•This electrocatalyst converts CO2 to C1 chemicals with high FE (90%) and formate partial current density (90 mA cm−2).•Experiments and calculations manifest the promoting effect of trace sulfur on the Sn catalyst towards CO2RR process. Electrochemical CO2 conversion into fuels is highly desirable to achieve carbon artificial cycles. Among electrocatalyst candidates, earth-abundant tin is subject to unsatisfied efficiency and selectivity. In this work, atomically-dispersed Sn nanoclusters modified with the trace of sulfur doping are proposed to efficiently electroreduce CO2 to C1 chemicals. This electrocatalyst is in situ derived from bis(benzene-1,2-dithiolato). It exhibits a high Faradaic efficiency (90%) for carbonaceous products at a moderate overpotential (0.75 V). Importantly, it is exploited for the formate formation with unprecedented partial current density (90 mA cm−2) and long-term stability (50 h) using the flow cell, better than most Sn-based catalysts. Electrochemical experiments and theoretical calculations manifest the promoting effect of trace sulfur on Sn nanoclusters, which stabilizes the *HCOOH intermediate and favors CO2 electroreduction. Hence, it emphasizes the importance of dopants and charge modulating for performance enhancement. This work unfolds a promising candidate for Sn electrocatalysts towards CO2 electroreduction. |
ArticleNumber | 120936 |
Author | Fu, Yongzhu Yin, Wen-Jin Wang, Xin Li, Fengli Miao, Ming Si, Yubing Wang, Xiaoming |
Author_xml | – sequence: 1 givenname: Xin surname: Wang fullname: Wang, Xin email: wangxin0620@zzu.edu.cn organization: College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China – sequence: 2 givenname: Fengli surname: Li fullname: Li, Fengli organization: College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, PR China – sequence: 3 givenname: Wen-Jin surname: Yin fullname: Yin, Wen-Jin organization: School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, PR China – sequence: 4 givenname: Yubing surname: Si fullname: Si, Yubing organization: College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China – sequence: 5 givenname: Ming surname: Miao fullname: Miao, Ming organization: College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China – sequence: 6 givenname: Xiaoming surname: Wang fullname: Wang, Xiaoming organization: College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China – sequence: 7 givenname: Yongzhu surname: Fu fullname: Fu, Yongzhu email: yfu@zzu.edu.cn organization: College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China |
BookMark | eNqFkE2PFCEQholZE2dX_4EHEs89AtXDsB5MNhO_kk324N4JUxTKpLtpgV6dfy-T9uRBL0UdnrfI-1yzqylNxNhrKbZSSP32tHUzunrcKqHkVipxC_oZ20izhw6MgSu2EbdKdwB7eMGuSzkJIRQos2Hnu5rGiG4YztzHMlMu5PnXiY_JxxDb_jPW77xmh8TLMoQl80ZhpMI95fjUiJDTyFP-5qZ0IaInjmmcB_rFQ8qcBsKaUya_YI1p4inww4N6yZ4HNxR69ee9YY8fPzwePnf3D5--HO7uOwToa9dKGNLgHIYe9W7XH4NGR0LuQu_8EY-iF3JvlBTCIAmBgZRX4HZtBjBww96sZ-ecfixUqj2lJU_tR6s0aKMBjGxUv1KYUymZgp1zHF0-WynsxbE92dWxvTi2q-MWe_dXDGN1l5JNWBz-F36_hqm1f4qUbWlaJyQfczNmfYr_PvAbAVqeQg |
CitedBy_id | crossref_primary_10_1021_acsaem_4c02830 crossref_primary_10_1016_j_mtsust_2023_100384 crossref_primary_10_2139_ssrn_4105344 crossref_primary_10_1002_adfm_202424357 crossref_primary_10_1002_smll_202205168 crossref_primary_10_1149_1945_7111_ad576d crossref_primary_10_1016_j_jece_2023_110435 crossref_primary_10_1016_j_jallcom_2023_170903 crossref_primary_10_1016_j_enchem_2022_100086 crossref_primary_10_1039_D3SE00103B crossref_primary_10_1021_acs_jpcc_4c03960 crossref_primary_10_1016_j_cjsc_2024_100359 crossref_primary_10_1039_D3TA04368A crossref_primary_10_1021_acs_energyfuels_4c02594 crossref_primary_10_1016_j_apcatb_2023_123250 crossref_primary_10_1016_j_mtener_2022_101104 crossref_primary_10_1039_D2TA07198C crossref_primary_10_1002_advs_202304424 crossref_primary_10_1016_j_apcatb_2023_123650 crossref_primary_10_1021_acscatal_4c01670 crossref_primary_10_1039_D4TA01418A crossref_primary_10_1021_acssuschemeng_4c07981 crossref_primary_10_1016_j_cej_2023_143531 crossref_primary_10_26599_NRE_2024_9120112 crossref_primary_10_1016_j_fuel_2024_133415 crossref_primary_10_1016_j_cej_2023_145711 crossref_primary_10_1002_adma_202201114 crossref_primary_10_1016_j_jece_2022_109171 crossref_primary_10_1039_D2MA00775D crossref_primary_10_1016_j_seppur_2024_129147 crossref_primary_10_1016_j_apcatb_2022_121362 crossref_primary_10_1016_j_cattod_2023_114393 crossref_primary_10_1016_j_jcis_2024_09_157 crossref_primary_10_1016_j_cej_2024_154219 crossref_primary_10_1039_D4QI01120A crossref_primary_10_1016_j_jcou_2024_102735 crossref_primary_10_1002_adma_202305587 crossref_primary_10_1016_j_jcou_2023_102431 crossref_primary_10_1021_acscatal_2c02617 crossref_primary_10_1021_acsenergylett_3c00489 crossref_primary_10_1039_D3CC02531D crossref_primary_10_1021_acscatal_3c00688 |
Cites_doi | 10.1021/ja4113885 10.1002/jrs.5160 10.1016/j.cej.2016.02.084 10.1021/ja503782w 10.1038/s41467-018-07419-z 10.1021/acscatal.7b00707 10.1002/anie.201612194 10.1016/j.nanoen.2018.09.053 10.1002/aenm.201502489 10.1021/acsenergylett.1c01553 10.1038/nature13249 10.1038/s41467-018-03712-z 10.1021/cr4002758 10.1021/ja502765n 10.1021/ja2108799 10.1038/s41929-018-0108-3 10.1021/acscatal.7b03242 10.1021/acscatal.5b00402 10.1039/C5EE02879E 10.1021/jacs.6b10435 10.1002/anie.202013427 10.1038/nature16455 10.1002/aenm.201702524 10.1039/C3CS60231A 10.1002/anie.202111683 10.1002/anie.201907674 10.1002/cssc.201500694 10.1021/ja201269b 10.1021/cs5017672 10.1039/C6GC00410E 10.1021/acscatal.9b02872 10.1021/acssuschemeng.5b01336 10.1002/anie.201703720 10.1016/j.jcat.2020.03.015 10.1016/j.gee.2020.07.001 10.1021/jacs.6b13287 10.1016/j.jpowsour.2014.12.118 10.1038/ncomms5470 10.1039/D0TA07411J 10.1039/C6TC03406C 10.1016/j.cej.2019.122024 10.1021/ja312380b 10.1016/j.nanoen.2016.11.004 10.1002/anie.201806043 10.1016/j.chempr.2017.05.011 10.1038/ncomms12697 10.1021/ja309317u 10.1002/anie.201710038 10.1021/ja3010978 10.1016/j.apcatb.2021.120581 10.1002/adfm.202008146 10.1038/s41929-018-0084-7 10.1016/j.joule.2017.09.014 10.1002/anie.202100011 10.1021/ja5065284 10.1149/1.3622345 10.1002/advs.202004521 10.1021/la501245p |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright Elsevier BV May 2022 |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV May 2022 |
DBID | AAYXX CITATION 7SR 7ST 7U5 8BQ 8FD C1K FR3 JG9 KR7 L7M SOI |
DOI | 10.1016/j.apcatb.2021.120936 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
ExternalDocumentID | 10_1016_j_apcatb_2021_120936 S0926337321010614 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCE SDF SDG SES SEW SPC SPD SSG SSZ T5K VH1 WUQ XFK XPP ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH 7SR 7ST 7U5 8BQ 8FD C1K EFKBS FR3 JG9 KR7 L7M SOI |
ID | FETCH-LOGICAL-c334t-1878e63aacf4c6554bf6cae015f4adbcb04017821008ce00cfe2d23a52d2f383 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Wed Aug 13 02:44:00 EDT 2025 Thu Apr 24 23:10:57 EDT 2025 Tue Jul 01 04:35:17 EDT 2025 Sat Mar 02 15:59:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Tin CO2 electroreduction Bis(benzene-1,2-dithiolato) complex Structure-activity relationship Sulfur species dopant |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-1878e63aacf4c6554bf6cae015f4adbcb04017821008ce00cfe2d23a52d2f383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2636863381 |
PQPubID | 2045281 |
ParticipantIDs | proquest_journals_2636863381 crossref_primary_10_1016_j_apcatb_2021_120936 crossref_citationtrail_10_1016_j_apcatb_2021_120936 elsevier_sciencedirect_doi_10_1016_j_apcatb_2021_120936 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2022 2022-05-00 20220501 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Li, Chen, Zhu, Liang, Pei, Wu, Wang, Lee, Liu, Chu, Cui (bib56) 2018; 1 Li, Wang, Xie, Liang, Hong, Dai (bib33) 2011; 133 Wang, Dong, Yu, Yu (bib40) 2015; 279 Li, Wu, Liu, Liu, Yan, Zhen, Feng (bib43) 2019; 375 Dunwell, Lu, Heyes, Rosen, Chen, Yan, Jiao, Xu (bib6) 2017; 139 Chen, Li, Kanan (bib12) 2012; 134 electroreduction kinetics on atomically dispersed monovalent Zn(I) sites by rationally engineering proton-feeding centers, Angew. Chem. Int. Ed. Gao, Lin, Jiao, Sun, Luo, Zhang, Li, Yang, Xie (bib31) 2016; 529 Kumar, Atla, Brian, Kumari, Nguyen, Sunkara, Spurgeon (bib38) 2017; 56 Zhang, Kang, Meyer (bib10) 2014; 136 Lim, Shin, Goddard, Hwang, Min, Kim (bib58) 2014; 136 Kambe, Sakamoto, Hoshiko, Takada, Miyachi, Ryu, Sasaki, Kim, Nakazato, Takata, Nishihara (bib35) 2013; 135 Zheng, Wang, Shuai, Wang, He, Lei, Li, Yang, Lei, Yuan, Qiu, Hou, Feng (bib24) 2021; 31 Lee, Kanan (bib16) 2015; 5 Baruch, Pander, White, Bocarsly (bib9) 2015; 5 Zou, Lee, Wallace (bib29) 2021; 8 Li, Chen, Xue, Williams, Zhang, MacFarlane, Zhang (bib27) 2017; 31 Detweiler, White, Bernasek, Bocarsly (bib50) 2014; 30 Lei, Liu, Sun, Xu, Liu, Liang, Yao, Pan, Wei, Xie (bib15) 2016; 7 Zhang, He, Li, Chen, Kong, Li, Ju, Zhu, Zhu, Zeng (bib28) 2018; 57 J.Y. Chen, Z.J. Li, X.Y. Wang, X.H. Sang, S.X. Zheng, S.J. Liu, B. Yang, Q.H. Zhang, L.C. Lei, L.M. Dai, Y. Hou, Promoting CO . Li, Li, Liu, Chen, Tian, Dai, Zhu, Han (bib14) 2021; 298 Zheng, Luna, García de Arquer, Zhang, Becknell, Ross, Li, Banis, Li, Liu, Voznyy, Dinh, Zhuang, Stadler, Cui, Du, Yang, Sargent (bib30) 2017; 1 Choi, Jeong, Kim, Baek, Park (bib45) 2016; 4 Hu, Ma, Hung, Chen, Ou, Ren, Chen, Fu, Zheng (bib57) 2017; 3 Asadi, Kumar, Behranginia, Rosen, Baskin, Repnin, Pisasale, Phillips, Zhu, Haasch, Klie, Král, Abiade, Khojin (bib3) 2014; 5 Liu, Lu, Xiao, Wang, Lou (bib39) 2019; 58 Zhao, Liu, Dong, Zou, Yang, Yang, Zhang, Huang (bib34) 2016; 4 Aresta, Dibenedetto, Angelini (bib7) 2014; 114 Perova, Kasper, Oehme, Cherevkov, Schulze (bib54) 2017; 48 Manthiram, Beberwyck, Alivisatos (bib4) 2014; 136 Li, Zhao, Chen, Khan, MacFarlane, Zhang (bib26) 2016; 9 Wang, Chen, Hou, Ma, Tan (bib52) 2016; 18 Zhang, Qi, Liu, Cao (bib32) 2016; 6 Wang, Jia, Song, Wang, Li, Min, Qian, Wang, Li, Ma, Wu, Yuan, Antonietti, Ozin (bib53) 2017; 56 Chen, Wu, Lu, Luo, Huang, Jin, Gao, Zhang, Argyle, Liang (bib5) 2021; 6 Li, Kanan (bib13) 2012; 134 Wang, Wang, Sang, Zheng, Zhang, Shuai, Yang, Li, Chen, Lei, Adli, Leung, Qiu, Wu, Hou (bib22) 2021; 60 Zhang, Hu, Ma, Zhu, Zhao, Xue, Chen, Yang, Ma, Liu, Jin (bib49) 2018; 53 Chen, Kanan (bib11) 2012; 134 Sheberla, Sun, Forsythe, Er, Wade, Brozek, Guzik, Dincă (bib36) 2014; 136 He, Liu, Liang, Mustapha, Wang, Wu, Yang, Deng, Guo, Liu (bib46) 2020; 385 Luc, Collins, Wang, Xin, He, Kang, Jiao (bib44) 2017; 139 Wang, Qiao, Shao, Pi, Zhu, Li, Huang (bib8) 2018; 9 Koh, Won, Eom, Kim, Jung, Kim, Hwang, Min (bib47) 2017; 7 Sun, Gao, Xie (bib19) 2014; 43 Zhuang, Liang, Seifitokaldani, Li, Luna, Burdyny, Che, Meng, Min, Quintero-Bermudez, Dinh, Pang, Zhong, Zhang, Li, Chen, Zheng, Liang, Ge, Ye, Sinton, Yu, Sargent (bib55) 2018; 1 Lee, Hong, Yang, Jin, Lee, Ahn, Seo, Sung, Nam (bib48) 2018; 8 Han, Wang, Yang, Deng, Wu, Li, Li (bib17) 2018; 9 Zhao, Wang (bib41) 2016; 293 Aljabour, Coskun, Zheng, Kibria, Strobel, Hild, Kehrer, Stifter, Sargent, Stadler (bib59) 2020; 10 Won, Choi, Chung, Chung, Kim, Woo (bib23) 2015; 8 Wang, Yin, Si, Wang, Guo, Guo, Fu (bib18) 2020; 8 Zhao, Liang, Wang, Ma, Wallace (bib42) 2018; 8 Cheng, Hou, Kang (bib25) 2021; 6 Li, Xue, Li, Ma, Chen, Zhang, MacFarlane, Zhang (bib51) 2017; 56 Li, Ciston, Kanan (bib2) 2014; 508 Nakayama, Sugihara, Matsumoto, Notoya, Osakai (bib37) 2011; 158 Letcher (bib1) 2009 Wang, Sang, Dong, Yao, Shuai, Lu, Yang, Li, Lei, Qiu, Dai, Hou (bib21) 2021; 60 Sheberla (10.1016/j.apcatb.2021.120936_bib36) 2014; 136 Li (10.1016/j.apcatb.2021.120936_bib13) 2012; 134 Zhang (10.1016/j.apcatb.2021.120936_bib28) 2018; 57 Nakayama (10.1016/j.apcatb.2021.120936_bib37) 2011; 158 Aresta (10.1016/j.apcatb.2021.120936_bib7) 2014; 114 Gao (10.1016/j.apcatb.2021.120936_bib31) 2016; 529 Li (10.1016/j.apcatb.2021.120936_bib2) 2014; 508 Li (10.1016/j.apcatb.2021.120936_bib51) 2017; 56 Sun (10.1016/j.apcatb.2021.120936_bib19) 2014; 43 Wang (10.1016/j.apcatb.2021.120936_bib22) 2021; 60 Chen (10.1016/j.apcatb.2021.120936_bib5) 2021; 6 Zhao (10.1016/j.apcatb.2021.120936_bib34) 2016; 4 Kambe (10.1016/j.apcatb.2021.120936_bib35) 2013; 135 Wang (10.1016/j.apcatb.2021.120936_bib40) 2015; 279 He (10.1016/j.apcatb.2021.120936_bib46) 2020; 385 Lei (10.1016/j.apcatb.2021.120936_bib15) 2016; 7 Wang (10.1016/j.apcatb.2021.120936_bib8) 2018; 9 Liu (10.1016/j.apcatb.2021.120936_bib39) 2019; 58 Wang (10.1016/j.apcatb.2021.120936_bib53) 2017; 56 Zhang (10.1016/j.apcatb.2021.120936_bib10) 2014; 136 Cheng (10.1016/j.apcatb.2021.120936_bib25) 2021; 6 Li (10.1016/j.apcatb.2021.120936_bib43) 2019; 375 Li (10.1016/j.apcatb.2021.120936_bib27) 2017; 31 Lim (10.1016/j.apcatb.2021.120936_bib58) 2014; 136 Li (10.1016/j.apcatb.2021.120936_bib14) 2021; 298 Asadi (10.1016/j.apcatb.2021.120936_bib3) 2014; 5 Zhao (10.1016/j.apcatb.2021.120936_bib41) 2016; 293 Kumar (10.1016/j.apcatb.2021.120936_bib38) 2017; 56 Choi (10.1016/j.apcatb.2021.120936_bib45) 2016; 4 Zheng (10.1016/j.apcatb.2021.120936_bib24) 2021; 31 Baruch (10.1016/j.apcatb.2021.120936_bib9) 2015; 5 Zhang (10.1016/j.apcatb.2021.120936_bib49) 2018; 53 Detweiler (10.1016/j.apcatb.2021.120936_bib50) 2014; 30 Lee (10.1016/j.apcatb.2021.120936_bib16) 2015; 5 Zou (10.1016/j.apcatb.2021.120936_bib29) 2021; 8 Li (10.1016/j.apcatb.2021.120936_bib56) 2018; 1 10.1016/j.apcatb.2021.120936_bib20 Lee (10.1016/j.apcatb.2021.120936_bib48) 2018; 8 Won (10.1016/j.apcatb.2021.120936_bib23) 2015; 8 Hu (10.1016/j.apcatb.2021.120936_bib57) 2017; 3 Wang (10.1016/j.apcatb.2021.120936_bib52) 2016; 18 Aljabour (10.1016/j.apcatb.2021.120936_bib59) 2020; 10 Han (10.1016/j.apcatb.2021.120936_bib17) 2018; 9 Li (10.1016/j.apcatb.2021.120936_bib26) 2016; 9 Wang (10.1016/j.apcatb.2021.120936_bib18) 2020; 8 Koh (10.1016/j.apcatb.2021.120936_bib47) 2017; 7 Manthiram (10.1016/j.apcatb.2021.120936_bib4) 2014; 136 Luc (10.1016/j.apcatb.2021.120936_bib44) 2017; 139 Zhuang (10.1016/j.apcatb.2021.120936_bib55) 2018; 1 Zhang (10.1016/j.apcatb.2021.120936_bib32) 2016; 6 Zhao (10.1016/j.apcatb.2021.120936_bib42) 2018; 8 Dunwell (10.1016/j.apcatb.2021.120936_bib6) 2017; 139 Perova (10.1016/j.apcatb.2021.120936_bib54) 2017; 48 Chen (10.1016/j.apcatb.2021.120936_bib12) 2012; 134 Zheng (10.1016/j.apcatb.2021.120936_bib30) 2017; 1 Li (10.1016/j.apcatb.2021.120936_bib33) 2011; 133 Letcher (10.1016/j.apcatb.2021.120936_bib1) 2009 Wang (10.1016/j.apcatb.2021.120936_bib21) 2021; 60 Chen (10.1016/j.apcatb.2021.120936_bib11) 2012; 134 |
References_xml | – volume: 1 start-page: 592 year: 2018 end-page: 600 ident: bib56 article-title: Efficient electrocatalytic CO publication-title: Nat. Catal. – volume: 31 start-page: 2008146 year: 2021 ident: bib24 article-title: Highly boosted reaction kinetics in carbon dioxide electroreduction by surface introduced electronegative dopants publication-title: Adv. Funct. Mater. – volume: 1 start-page: 794 year: 2017 end-page: 805 ident: bib30 article-title: Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO publication-title: Joule – volume: 9 start-page: 4933 year: 2018 ident: bib8 article-title: Phase and structure engineering of copper tin heterostructures for efficient electrochemical carbon dioxide reduction publication-title: Nat. Commun. – volume: 6 start-page: 938 year: 2021 end-page: 951 ident: bib5 article-title: Photoreduction of CO publication-title: Green Energy Environ. – volume: 114 start-page: 1709 year: 2014 end-page: 1742 ident: bib7 article-title: Catalysis for the valorization of exhaust carbon: from CO publication-title: Chem. Rev. – volume: 8 start-page: 19938 year: 2020 end-page: 19945 ident: bib18 article-title: Conversion of CO publication-title: J. Mater. Chem. A – volume: 8 start-page: 931 year: 2018 end-page: 937 ident: bib48 article-title: Selective electrochemical production of formate from carbon dioxide with bismuth-based catalysts in an aqueous electrolyte publication-title: ACS Catal. – volume: 10 start-page: 66 year: 2020 end-page: 72 ident: bib59 article-title: Active sulfur sites in semimetallic titanium disulfide enable CO publication-title: ACS Catal. – volume: 134 start-page: 19969 year: 2012 end-page: 19972 ident: bib12 article-title: Aqueous CO publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 1885 year: 2017 end-page: 1893 ident: bib44 article-title: Ag–Sn bimetallic catalyst with a core–shell structure for CO publication-title: J. Am. Chem. Soc. – volume: 293 start-page: 161 year: 2016 end-page: 170 ident: bib41 article-title: Electrochemical reduction of CO publication-title: Chem. Eng. J. – volume: 529 start-page: 68 year: 2016 end-page: 71 ident: bib31 article-title: Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel publication-title: Nature – volume: 7 start-page: 5071 year: 2017 end-page: 5077 ident: bib47 article-title: Facile CO publication-title: ACS Catal. – volume: 5 start-page: 3148 year: 2015 end-page: 3156 ident: bib9 article-title: Mechanistic insights into the reduction of CO publication-title: ACS Catal. – volume: 375 year: 2019 ident: bib43 article-title: Tuning the pore structure of porous tin foam electrodes for enhanced electrochemical reduction of carbon dioxide to formate publication-title: Chem. Eng. J. – volume: 30 start-page: 7593 year: 2014 end-page: 7600 ident: bib50 article-title: Anodized indium metal electrodes for enhanced carbon dioxide reduction in aqueous electrolyte publication-title: Langmuir – reference: 〉. – volume: 5 start-page: 4470 year: 2014 ident: bib3 article-title: Robust carbon dioxide reduction on molybdenum disulphide edges publication-title: Nat. Commun. – volume: 5 start-page: 465 year: 2015 end-page: 469 ident: bib16 article-title: Controlling H publication-title: ACS Catal. – volume: 56 start-page: 14718 year: 2017 end-page: 14722 ident: bib51 article-title: Unlocking the electrocatalytic activity of antimony for CO publication-title: Angew. Chem. Int. Ed. Engl. – volume: 18 start-page: 3250 year: 2016 end-page: 3256 ident: bib52 article-title: Nitrogen-doped graphenes as efficient electrocatalysts for the selective reduction of carbon dioxide to formate in aqueous solution publication-title: Green Chem. – volume: 60 start-page: 4192 year: 2021 end-page: 4198 ident: bib22 article-title: Dynamic activation of adsorbed intermediates via axial traction for the promoted electrochemical CO publication-title: Angew. Chem. Int. Ed. – volume: 134 start-page: 7231 year: 2012 end-page: 7234 ident: bib13 article-title: CO publication-title: J. Am. Chem. Soc. – volume: 385 start-page: 246 year: 2020 end-page: 254 ident: bib46 article-title: Boosting carbon dioxide electroreduction to C publication-title: J. Catal. – volume: 60 start-page: 11959 year: 2021 end-page: 11965 ident: bib21 article-title: Proton capture strategy for enhancing electrochemical CO publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 3092 year: 2015 ident: bib23 article-title: Rational design of a hierarchical tin dendrite electrode for efficient electrochemical reduction of CO publication-title: ChemSusChem – volume: 6 start-page: 3352 year: 2021 end-page: 3358 ident: bib25 article-title: Integrated capture and electroreduction of flue gas CO publication-title: ACS Energy Lett. – year: 2009 ident: bib1 article-title: Climate Change: Observed Impacts on Planet Earth – volume: 279 start-page: 1 year: 2015 end-page: 5 ident: bib40 article-title: Enhanced performance of gas diffusion electrode for electrochemical reduction of carbon dioxide to formate by adding polytetrafluoroethylene into catalyst layer publication-title: J. Power Sources – volume: 136 start-page: 1734 year: 2014 end-page: 1737 ident: bib10 article-title: Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 13319 year: 2014 end-page: 13325 ident: bib4 article-title: Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 3774 year: 2017 end-page: 3783 ident: bib6 article-title: The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 993 year: 2017 end-page: 1001 ident: bib54 article-title: Features of polarized Raman spectra for homogeneous and non-homogeneous compressively strained Ge publication-title: J. Raman Spectrosc. – volume: 508 start-page: 504 year: 2014 end-page: 507 ident: bib2 article-title: Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper publication-title: Nature – volume: 8 start-page: 2004521 year: 2021 ident: bib29 article-title: Boosting formate production from CO publication-title: Adv. Sci. – volume: 43 start-page: 530 year: 2014 end-page: 546 ident: bib19 article-title: Atomically-thick two-dimensional crystals: Electronic structure regulation and energy device construction publication-title: Chem. Soc. Rev. – volume: 56 start-page: 3645 year: 2017 end-page: 3649 ident: bib38 article-title: Reduced SnO publication-title: Angew. Chem. Int. Ed. Engl. – volume: 8 start-page: 1702524 year: 2018 ident: bib42 article-title: Tunable and efficient tin modified nitrogen-doped carbon nanofibers for electrochemical reduction of aqueous carbon dioxide publication-title: Adv. Energy Mater. – volume: 9 start-page: 1320 year: 2018 ident: bib17 article-title: Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO publication-title: Nat. Commun. – volume: 298 year: 2021 ident: bib14 article-title: Probing the role of surface hydroxyls for Bi, Sn and In catalysts during CO publication-title: Appl. Catal. B Environ. – volume: 158 start-page: 341 year: 2011 end-page: 345 ident: bib37 article-title: Chemical state analysis of tin oxide films by voltammetric reduction publication-title: J. Electrochem. Soc. – volume: 57 start-page: 10954 year: 2018 end-page: 10958 ident: bib28 article-title: Nickel doping in atomically thin tin disulfide nanosheets enables highly efficient CO publication-title: Angew. Chem. Int. Ed. – volume: 53 start-page: 808 year: 2018 end-page: 816 ident: bib49 article-title: Liquid-phase exfoliated ultrathin Bi nanosheets: Uncovering the origins of enhanced electrocatalytic CO publication-title: Nano Energy – volume: 135 start-page: 2462 year: 2013 end-page: 2465 ident: bib35 article-title: π-conjugated nickel bis(dithiolene) complex nanosheet publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 421 year: 2018 end-page: 428 ident: bib55 article-title: Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols publication-title: Nat. Catal. – reference: J.Y. Chen, Z.J. Li, X.Y. Wang, X.H. Sang, S.X. Zheng, S.J. Liu, B. Yang, Q.H. Zhang, L.C. Lei, L.M. Dai, Y. Hou, Promoting CO – volume: 3 start-page: 122 year: 2017 end-page: 133 ident: bib57 article-title: In situ electrochemical production of ultrathin nickel nanosheets for hydrogen evolution electrocatalysis publication-title: Chem – volume: 56 start-page: 7847 year: 2017 end-page: 7852 ident: bib53 article-title: Efficient electrocatalytic reduction of CO publication-title: Angew. Chem. Int. Ed. Engl. – volume: 9 start-page: 216 year: 2016 end-page: 223 ident: bib26 article-title: Polyethylenimine promoted electrocatalytic reduction of CO publication-title: Energy Environ. Sci. – volume: 136 start-page: 11355 year: 2014 end-page: 11361 ident: bib58 article-title: Embedding covalency into metal catalysts for efficient electrochemical conversion of CO publication-title: J. Am. Chem. Soc. – volume: 133 start-page: 7296 year: 2011 end-page: 7299 ident: bib33 article-title: MoS publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 8859 year: 2014 end-page: 8862 ident: bib36 article-title: High electrical conductivity in Ni publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 10215 year: 2016 end-page: 10222 ident: bib34 article-title: Epitaxial growth of two-dimensional SnSe publication-title: J. Mater. Chem. C – volume: 134 start-page: 1986 year: 2012 end-page: 1989 ident: bib11 article-title: Tin oxide dependence of the CO publication-title: J. Am. Chem. Soc. – volume: 31 start-page: 270 year: 2017 end-page: 277 ident: bib27 article-title: Towards a better Sn: efficient electrocatalytic reduction of CO publication-title: Nano Energy – reference: electroreduction kinetics on atomically dispersed monovalent Zn(I) sites by rationally engineering proton-feeding centers, Angew. Chem. Int. Ed. 〈 – volume: 6 start-page: 1502489 year: 2016 ident: bib32 article-title: A nickel-based integrated electrode from an autologous growth strategy for highly efficient water oxidation publication-title: Adv. Energy Mater. – volume: 4 start-page: 1311 year: 2016 end-page: 1318 ident: bib45 article-title: Electrochemical reduction of carbon dioxide to formate on tin-lead alloys publication-title: ACS Sustain. Chem. Eng. – volume: 7 start-page: 12697 year: 2016 ident: bib15 article-title: Metallic tin quantum sheets confined in graphene toward high efficiency carbon dioxide electroreduction publication-title: Nat. Commun. – volume: 58 start-page: 13828 year: 2019 end-page: 13833 ident: bib39 article-title: Bi publication-title: Angew. Chem. Int. Ed. Engl. – volume: 136 start-page: 1734 year: 2014 ident: 10.1016/j.apcatb.2021.120936_bib10 article-title: Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4113885 – volume: 48 start-page: 993 year: 2017 ident: 10.1016/j.apcatb.2021.120936_bib54 article-title: Features of polarized Raman spectra for homogeneous and non-homogeneous compressively strained Ge1−ySny alloys publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.5160 – volume: 293 start-page: 161 year: 2016 ident: 10.1016/j.apcatb.2021.120936_bib41 article-title: Electrochemical reduction of CO2 to formate in aqueous solution using electro-deposited Sn catalysts publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.02.084 – volume: 136 start-page: 11355 year: 2014 ident: 10.1016/j.apcatb.2021.120936_bib58 article-title: Embedding covalency into metal catalysts for efficient electrochemical conversion of CO2 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja503782w – volume: 9 start-page: 4933 year: 2018 ident: 10.1016/j.apcatb.2021.120936_bib8 article-title: Phase and structure engineering of copper tin heterostructures for efficient electrochemical carbon dioxide reduction publication-title: Nat. Commun. doi: 10.1038/s41467-018-07419-z – volume: 7 start-page: 5071 year: 2017 ident: 10.1016/j.apcatb.2021.120936_bib47 article-title: Facile CO2 electro-reduction to formate via oxygen bidentate intermediate stabilized by high-index planes of Bi dendrite catalyst. publication-title: ACS Catal. doi: 10.1021/acscatal.7b00707 – volume: 56 start-page: 3645 year: 2017 ident: 10.1016/j.apcatb.2021.120936_bib38 article-title: Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2-into-HCOOH conversion publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201612194 – volume: 53 start-page: 808 year: 2018 ident: 10.1016/j.apcatb.2021.120936_bib49 article-title: Liquid-phase exfoliated ultrathin Bi nanosheets: Uncovering the origins of enhanced electrocatalytic CO2 reduction on two-dimensional metal nanostructure publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.09.053 – volume: 6 start-page: 1502489 year: 2016 ident: 10.1016/j.apcatb.2021.120936_bib32 article-title: A nickel-based integrated electrode from an autologous growth strategy for highly efficient water oxidation publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201502489 – volume: 6 start-page: 3352 year: 2021 ident: 10.1016/j.apcatb.2021.120936_bib25 article-title: Integrated capture and electroreduction of flue gas CO2 to formate using amine functionalized SnOx nanoparticles publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c01553 – volume: 508 start-page: 504 year: 2014 ident: 10.1016/j.apcatb.2021.120936_bib2 article-title: Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper publication-title: Nature doi: 10.1038/nature13249 – volume: 9 start-page: 1320 year: 2018 ident: 10.1016/j.apcatb.2021.120936_bib17 article-title: Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate publication-title: Nat. Commun. doi: 10.1038/s41467-018-03712-z – volume: 114 start-page: 1709 year: 2014 ident: 10.1016/j.apcatb.2021.120936_bib7 article-title: Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2 publication-title: Chem. Rev. doi: 10.1021/cr4002758 – volume: 136 start-page: 8859 year: 2014 ident: 10.1016/j.apcatb.2021.120936_bib36 article-title: High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal-organic graphene analogue. publication-title: J. Am. Chem. Soc. doi: 10.1021/ja502765n – volume: 134 start-page: 1986 year: 2012 ident: 10.1016/j.apcatb.2021.120936_bib11 article-title: Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2108799 – volume: 1 start-page: 592 year: 2018 ident: 10.1016/j.apcatb.2021.120936_bib56 article-title: Efficient electrocatalytic CO2 reduction on a three-phase interface. publication-title: Nat. Catal. doi: 10.1038/s41929-018-0108-3 – volume: 8 start-page: 931 year: 2018 ident: 10.1016/j.apcatb.2021.120936_bib48 article-title: Selective electrochemical production of formate from carbon dioxide with bismuth-based catalysts in an aqueous electrolyte publication-title: ACS Catal. doi: 10.1021/acscatal.7b03242 – volume: 5 start-page: 3148 year: 2015 ident: 10.1016/j.apcatb.2021.120936_bib9 article-title: Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy publication-title: ACS Catal. doi: 10.1021/acscatal.5b00402 – volume: 9 start-page: 216 year: 2016 ident: 10.1016/j.apcatb.2021.120936_bib26 article-title: Polyethylenimine promoted electrocatalytic reduction of CO2 to CO in aqueous medium by graphene-supported amorphous molybdenum sulphide publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02879E – volume: 139 start-page: 1885 year: 2017 ident: 10.1016/j.apcatb.2021.120936_bib44 article-title: Ag–Sn bimetallic catalyst with a core–shell structure for CO2 reduction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b10435 – volume: 60 start-page: 4192 year: 2021 ident: 10.1016/j.apcatb.2021.120936_bib22 article-title: Dynamic activation of adsorbed intermediates via axial traction for the promoted electrochemical CO2 reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202013427 – volume: 529 start-page: 68 year: 2016 ident: 10.1016/j.apcatb.2021.120936_bib31 article-title: Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel publication-title: Nature doi: 10.1038/nature16455 – volume: 8 start-page: 1702524 year: 2018 ident: 10.1016/j.apcatb.2021.120936_bib42 article-title: Tunable and efficient tin modified nitrogen-doped carbon nanofibers for electrochemical reduction of aqueous carbon dioxide publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702524 – volume: 43 start-page: 530 year: 2014 ident: 10.1016/j.apcatb.2021.120936_bib19 article-title: Atomically-thick two-dimensional crystals: Electronic structure regulation and energy device construction publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60231A – ident: 10.1016/j.apcatb.2021.120936_bib20 doi: 10.1002/anie.202111683 – volume: 58 start-page: 13828 year: 2019 ident: 10.1016/j.apcatb.2021.120936_bib39 article-title: Bi2O3 nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201907674 – volume: 8 start-page: 3092 year: 2015 ident: 10.1016/j.apcatb.2021.120936_bib23 article-title: Rational design of a hierarchical tin dendrite electrode for efficient electrochemical reduction of CO2 publication-title: ChemSusChem doi: 10.1002/cssc.201500694 – volume: 133 start-page: 7296 year: 2011 ident: 10.1016/j.apcatb.2021.120936_bib33 article-title: MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja201269b – volume: 5 start-page: 465 year: 2015 ident: 10.1016/j.apcatb.2021.120936_bib16 article-title: Controlling H+ vs. CO2 reduction selectivity on Pb electrodes publication-title: ACS Catal. doi: 10.1021/cs5017672 – volume: 18 start-page: 3250 year: 2016 ident: 10.1016/j.apcatb.2021.120936_bib52 article-title: Nitrogen-doped graphenes as efficient electrocatalysts for the selective reduction of carbon dioxide to formate in aqueous solution publication-title: Green Chem. doi: 10.1039/C6GC00410E – volume: 10 start-page: 66 year: 2020 ident: 10.1016/j.apcatb.2021.120936_bib59 article-title: Active sulfur sites in semimetallic titanium disulfide enable CO2 electroreduction publication-title: ACS Catal. doi: 10.1021/acscatal.9b02872 – volume: 4 start-page: 1311 year: 2016 ident: 10.1016/j.apcatb.2021.120936_bib45 article-title: Electrochemical reduction of carbon dioxide to formate on tin-lead alloys publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.5b01336 – year: 2009 ident: 10.1016/j.apcatb.2021.120936_bib1 – volume: 56 start-page: 7847 year: 2017 ident: 10.1016/j.apcatb.2021.120936_bib53 article-title: Efficient electrocatalytic reduction of CO2 by nitrogen-doped nanoporous carbon/carbon nanotube membranes: A step towards the electrochemical CO2 refinery publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201703720 – volume: 385 start-page: 246 year: 2020 ident: 10.1016/j.apcatb.2021.120936_bib46 article-title: Boosting carbon dioxide electroreduction to C1 feedstocks via theory-guided tailoring oxygen defects in porous tin-oxide nanocubes publication-title: J. Catal. doi: 10.1016/j.jcat.2020.03.015 – volume: 6 start-page: 938 year: 2021 ident: 10.1016/j.apcatb.2021.120936_bib5 article-title: Photoreduction of CO2 in the presence of CH4 over g-C3N4 modified with TiO2 nanoparticles at room temperature publication-title: Green Energy Environ. doi: 10.1016/j.gee.2020.07.001 – volume: 139 start-page: 3774 year: 2017 ident: 10.1016/j.apcatb.2021.120936_bib6 article-title: The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b13287 – volume: 279 start-page: 1 year: 2015 ident: 10.1016/j.apcatb.2021.120936_bib40 article-title: Enhanced performance of gas diffusion electrode for electrochemical reduction of carbon dioxide to formate by adding polytetrafluoroethylene into catalyst layer publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.12.118 – volume: 5 start-page: 4470 year: 2014 ident: 10.1016/j.apcatb.2021.120936_bib3 article-title: Robust carbon dioxide reduction on molybdenum disulphide edges publication-title: Nat. Commun. doi: 10.1038/ncomms5470 – volume: 8 start-page: 19938 year: 2020 ident: 10.1016/j.apcatb.2021.120936_bib18 article-title: Conversion of CO2 to chemical feedstocks over bismuth nanosheets in situ grown on nitrogen-doped carbon publication-title: J. Mater. Chem. A doi: 10.1039/D0TA07411J – volume: 4 start-page: 10215 year: 2016 ident: 10.1016/j.apcatb.2021.120936_bib34 article-title: Epitaxial growth of two-dimensional SnSe2/MoS2 misfit heterostructures. publication-title: J. Mater. Chem. C doi: 10.1039/C6TC03406C – volume: 375 year: 2019 ident: 10.1016/j.apcatb.2021.120936_bib43 article-title: Tuning the pore structure of porous tin foam electrodes for enhanced electrochemical reduction of carbon dioxide to formate publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122024 – volume: 135 start-page: 2462 year: 2013 ident: 10.1016/j.apcatb.2021.120936_bib35 article-title: π-conjugated nickel bis(dithiolene) complex nanosheet publication-title: J. Am. Chem. Soc. doi: 10.1021/ja312380b – volume: 31 start-page: 270 year: 2017 ident: 10.1016/j.apcatb.2021.120936_bib27 article-title: Towards a better Sn: efficient electrocatalytic reduction of CO2 to formate by Sn/SnS2 derived from SnS2 nanosheets publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.11.004 – volume: 57 start-page: 10954 year: 2018 ident: 10.1016/j.apcatb.2021.120936_bib28 article-title: Nickel doping in atomically thin tin disulfide nanosheets enables highly efficient CO2 reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201806043 – volume: 3 start-page: 122 year: 2017 ident: 10.1016/j.apcatb.2021.120936_bib57 article-title: In situ electrochemical production of ultrathin nickel nanosheets for hydrogen evolution electrocatalysis publication-title: Chem doi: 10.1016/j.chempr.2017.05.011 – volume: 7 start-page: 12697 year: 2016 ident: 10.1016/j.apcatb.2021.120936_bib15 article-title: Metallic tin quantum sheets confined in graphene toward high efficiency carbon dioxide electroreduction publication-title: Nat. Commun. doi: 10.1038/ncomms12697 – volume: 134 start-page: 19969 year: 2012 ident: 10.1016/j.apcatb.2021.120936_bib12 article-title: Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja309317u – volume: 56 start-page: 14718 year: 2017 ident: 10.1016/j.apcatb.2021.120936_bib51 article-title: Unlocking the electrocatalytic activity of antimony for CO2 reduction by two-dimensional engineering of the bulk material publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201710038 – volume: 134 start-page: 7231 year: 2012 ident: 10.1016/j.apcatb.2021.120936_bib13 article-title: CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3010978 – volume: 298 year: 2021 ident: 10.1016/j.apcatb.2021.120936_bib14 article-title: Probing the role of surface hydroxyls for Bi, Sn and In catalysts during CO2 reduction publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.120581 – volume: 31 start-page: 2008146 year: 2021 ident: 10.1016/j.apcatb.2021.120936_bib24 article-title: Highly boosted reaction kinetics in carbon dioxide electroreduction by surface introduced electronegative dopants publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202008146 – volume: 1 start-page: 421 year: 2018 ident: 10.1016/j.apcatb.2021.120936_bib55 article-title: Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols publication-title: Nat. Catal. doi: 10.1038/s41929-018-0084-7 – volume: 1 start-page: 794 year: 2017 ident: 10.1016/j.apcatb.2021.120936_bib30 article-title: Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate publication-title: Joule doi: 10.1016/j.joule.2017.09.014 – volume: 60 start-page: 11959 year: 2021 ident: 10.1016/j.apcatb.2021.120936_bib21 article-title: Proton capture strategy for enhancing electrochemical CO2 reduction on atomically dispersed metal–nitrogen active sites publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202100011 – volume: 136 start-page: 13319 issue: 38 year: 2014 ident: 10.1016/j.apcatb.2021.120936_bib4 article-title: Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5065284 – volume: 158 start-page: 341 year: 2011 ident: 10.1016/j.apcatb.2021.120936_bib37 article-title: Chemical state analysis of tin oxide films by voltammetric reduction publication-title: J. Electrochem. Soc. doi: 10.1149/1.3622345 – volume: 8 start-page: 2004521 year: 2021 ident: 10.1016/j.apcatb.2021.120936_bib29 article-title: Boosting formate production from CO2 at high current densities over a wide electrochemical potential window on a SnS catalyst publication-title: Adv. Sci. doi: 10.1002/advs.202004521 – volume: 30 start-page: 7593 year: 2014 ident: 10.1016/j.apcatb.2021.120936_bib50 article-title: Anodized indium metal electrodes for enhanced carbon dioxide reduction in aqueous electrolyte publication-title: Langmuir doi: 10.1021/la501245p |
SSID | ssj0002328 |
Score | 2.54947 |
Snippet | Electrochemical CO2 conversion into fuels is highly desirable to achieve carbon artificial cycles. Among electrocatalyst candidates, earth-abundant tin is... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 120936 |
SubjectTerms | Benzene Bis(benzene-1,2-dithiolato) complex Carbon cycle Carbon dioxide Catalysts CO2 electroreduction Dispersion Electrocatalysts Electrochemistry Electrowinning Flow stability Nanoclusters Selectivity Structure-activity relationship Sulfur Sulfur species dopant Tin |
Title | Atomically dispersed Sn modified with trace sulfur species derived from organosulfide complex for electroreduction of CO2 |
URI | https://dx.doi.org/10.1016/j.apcatb.2021.120936 https://www.proquest.com/docview/2636863381 |
Volume | 304 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQPdAeKroFlUKRD1zDJrZxkuNqBVpaFQ6AxM3yU0q13ax2s1W59Ld3xnFKi5CQeskhGkeR5-FvkvlmCDmxphJVbnhWBFFmwgaZ1R78MbBcWMYt5wzZyF-v5OxOfL4_u98i04ELg2WVKfb3MT1G63RnnHZzvGya8U1eM8l5iSSUmNcgg12UWNZ3-uuxzAMQQ4zGIJyh9ECfizVeeml1ZyBLZMUpkkhjo-Znj6cngTqePhe75G2CjXTSv9k7suUXI7IzHaa1jcibvxoLjsj--SN_DZYlB16_Jw-Tro0NAuYP1DXYJXztHb1Z0O-tawLAUYofZmm30tbT9WYeNiuKZEzIp6mDh_8ACWSk0DgNqkWJxnkaC9P9TwoImKbBOivsCYtap22g02u2R24vzm-nsyxNX8hAQaLLiqqsvORa2yCsBNRhgrTaA3wIQjtjDbh_AfgCuwNZn-c2eOYY12dwDZD37pPtRbvwHwgtjC6dqQtbu1rgj0YeathxKbEQC_DaAeHDniubOpPjgIy5GkrQvqleUwo1pXpNHZDsz6pl35njBflyUKf6x8IUHB4vrDwatK-Sh68V2J6swP6q4uN_P_iQvGbIpoj1k0dku1tt_CfAOJ05jkZ8TF5NLr_Mrn4Dahn9Fg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3R5UA5VO22qFBofeg13SQ2-TiuVqClwPbAVuJm2Y4tpdpuVrtZBP--M45DW1QJqZcconEUeezxm2TeG4DPRheiiDWPEifySBiXRaXF_ejSWJiUG85TYiNfz7Lpd_H19vR2ByY9F4bKKkPs72K6j9bhzijM5mhV16ObuEwzznMiofi85gXskjqVGMDu-OJyOnsMyAgafEBG-4gG9Aw6X-alVka1GhPFNPlCPFKv1fzPE-pJrPYH0PlreBWQIxt3L_cGduxyCHuTvmHbEPb_0BYcwsHZbwobDgt7ePMWHsZt4zUCFg-sqkkofGMrdrNkP5uqdohIGX2bZe1aGcs224XbrhnxMTGlZhU-_A4tiJTCfEOohizqyjJfm27vGYJgFnrrrEkWlhzPGscm39J3MD8_m0-mUWjAEKGPRBslRV7YjCtlnDAZAg_tMqMsIggnVKWNxgiQIMQggSBj49g4m1YpV6d4dZj6HsBg2Szte2CJVnmly8SUVSnoXyN3Jc54llEtFkK2Q-D9nEsTxMmpR8ZC9lVoP2TnKUmekp2nDiF6HLXqxDmesc97d8q_FpnE8-OZkce992XY5BuJyy8rcAkWydF_P_gT7E3n11fy6mJ2-QFepkSu8OWUxzBo11t7gpCn1R_Dkv4FDjv_xw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomically+dispersed+Sn+modified+with+trace+sulfur+species+derived+from+organosulfide+complex+for+electroreduction+of+CO2&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Wang%2C+Xin&rft.au=Li%2C+Fengli&rft.au=Yin%2C+Wen-Jin&rft.au=Si%2C+Yubing&rft.date=2022-05-01&rft.pub=Elsevier+BV&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=304&rft.spage=1&rft_id=info:doi/10.1016%2Fj.apcatb.2021.120936&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |