Atomically dispersed Sn modified with trace sulfur species derived from organosulfide complex for electroreduction of CO2

Electrochemical CO2 conversion into fuels is highly desirable to achieve carbon artificial cycles. Among electrocatalyst candidates, earth-abundant tin is subject to unsatisfied efficiency and selectivity. In this work, atomically-dispersed Sn nanoclusters modified with the trace of sulfur doping ar...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 304; p. 120936
Main Authors Wang, Xin, Li, Fengli, Yin, Wen-Jin, Si, Yubing, Miao, Ming, Wang, Xiaoming, Fu, Yongzhu
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.05.2022
Elsevier BV
Subjects
Online AccessGet full text
ISSN0926-3373
1873-3883
DOI10.1016/j.apcatb.2021.120936

Cover

Loading…
Abstract Electrochemical CO2 conversion into fuels is highly desirable to achieve carbon artificial cycles. Among electrocatalyst candidates, earth-abundant tin is subject to unsatisfied efficiency and selectivity. In this work, atomically-dispersed Sn nanoclusters modified with the trace of sulfur doping are proposed to efficiently electroreduce CO2 to C1 chemicals. This electrocatalyst is in situ derived from bis(benzene-1,2-dithiolato). It exhibits a high Faradaic efficiency (90%) for carbonaceous products at a moderate overpotential (0.75 V). Importantly, it is exploited for the formate formation with unprecedented partial current density (90 mA cm−2) and long-term stability (50 h) using the flow cell, better than most Sn-based catalysts. Electrochemical experiments and theoretical calculations manifest the promoting effect of trace sulfur on Sn nanoclusters, which stabilizes the *HCOOH intermediate and favors CO2 electroreduction. Hence, it emphasizes the importance of dopants and charge modulating for performance enhancement. This work unfolds a promising candidate for Sn electrocatalysts towards CO2 electroreduction. The atomically dispersed Sn nanoclusters modified with the trace of sulfur doping are synthisized by in situ electrochemical production of organosulfide. And Sn NC:S is proposed to efficiently electroreduce CO2 to C1 chemicals, which is contributed by the promotion effect of trace sulfur species confirmed by the theoretical calculation. [Display omitted] •Atomically dispersed Sn nanoclusters with sulfur doping are prepared by in situ deriving from organosulfide complex.•This electrocatalyst converts CO2 to C1 chemicals with high FE (90%) and formate partial current density (90 mA cm−2).•Experiments and calculations manifest the promoting effect of trace sulfur on the Sn catalyst towards CO2RR process.
AbstractList Electrochemical CO2 conversion into fuels is highly desirable to achieve carbon artificial cycles. Among electrocatalyst candidates, earth-abundant tin is subject to unsatisfied efficiency and selectivity. In this work, atomically-dispersed Sn nanoclusters modified with the trace of sulfur doping are proposed to efficiently electroreduce CO2 to C1 chemicals. This electrocatalyst is in situ derived from bis(benzene-1,2-dithiolato). It exhibits a high Faradaic efficiency (90%) for carbonaceous products at a moderate overpotential (0.75 V). Importantly, it is exploited for the formate formation with unprecedented partial current density (90 mA cm−2) and long-term stability (50 h) using the flow cell, better than most Sn-based catalysts. Electrochemical experiments and theoretical calculations manifest the promoting effect of trace sulfur on Sn nanoclusters, which stabilizes the *HCOOH intermediate and favors CO2 electroreduction. Hence, it emphasizes the importance of dopants and charge modulating for performance enhancement. This work unfolds a promising candidate for Sn electrocatalysts towards CO2 electroreduction. The atomically dispersed Sn nanoclusters modified with the trace of sulfur doping are synthisized by in situ electrochemical production of organosulfide. And Sn NC:S is proposed to efficiently electroreduce CO2 to C1 chemicals, which is contributed by the promotion effect of trace sulfur species confirmed by the theoretical calculation. [Display omitted] •Atomically dispersed Sn nanoclusters with sulfur doping are prepared by in situ deriving from organosulfide complex.•This electrocatalyst converts CO2 to C1 chemicals with high FE (90%) and formate partial current density (90 mA cm−2).•Experiments and calculations manifest the promoting effect of trace sulfur on the Sn catalyst towards CO2RR process.
Electrochemical CO2 conversion into fuels is highly desirable to achieve carbon artificial cycles. Among electrocatalyst candidates, earth-abundant tin is subject to unsatisfied efficiency and selectivity. In this work, atomically-dispersed Sn nanoclusters modified with the trace of sulfur doping are proposed to efficiently electroreduce CO2 to C1 chemicals. This electrocatalyst is in situ derived from bis(benzene-1,2-dithiolato). It exhibits a high Faradaic efficiency (90%) for carbonaceous products at a moderate overpotential (0.75 V). Importantly, it is exploited for the formate formation with unprecedented partial current density (90 mA cm−2) and long-term stability (50 h) using the flow cell, better than most Sn-based catalysts. Electrochemical experiments and theoretical calculations manifest the promoting effect of trace sulfur on Sn nanoclusters, which stabilizes the *HCOOH intermediate and favors CO2 electroreduction. Hence, it emphasizes the importance of dopants and charge modulating for performance enhancement. This work unfolds a promising candidate for Sn electrocatalysts towards CO2 electroreduction.
ArticleNumber 120936
Author Fu, Yongzhu
Yin, Wen-Jin
Wang, Xin
Li, Fengli
Miao, Ming
Si, Yubing
Wang, Xiaoming
Author_xml – sequence: 1
  givenname: Xin
  surname: Wang
  fullname: Wang, Xin
  email: wangxin0620@zzu.edu.cn
  organization: College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
– sequence: 2
  givenname: Fengli
  surname: Li
  fullname: Li, Fengli
  organization: College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, PR China
– sequence: 3
  givenname: Wen-Jin
  surname: Yin
  fullname: Yin, Wen-Jin
  organization: School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, PR China
– sequence: 4
  givenname: Yubing
  surname: Si
  fullname: Si, Yubing
  organization: College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
– sequence: 5
  givenname: Ming
  surname: Miao
  fullname: Miao, Ming
  organization: College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
– sequence: 6
  givenname: Xiaoming
  surname: Wang
  fullname: Wang, Xiaoming
  organization: College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
– sequence: 7
  givenname: Yongzhu
  surname: Fu
  fullname: Fu, Yongzhu
  email: yfu@zzu.edu.cn
  organization: College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
BookMark eNqFkE2PFCEQholZE2dX_4EHEs89AtXDsB5MNhO_kk324N4JUxTKpLtpgV6dfy-T9uRBL0UdnrfI-1yzqylNxNhrKbZSSP32tHUzunrcKqHkVipxC_oZ20izhw6MgSu2EbdKdwB7eMGuSzkJIRQos2Hnu5rGiG4YztzHMlMu5PnXiY_JxxDb_jPW77xmh8TLMoQl80ZhpMI95fjUiJDTyFP-5qZ0IaInjmmcB_rFQ8qcBsKaUya_YI1p4inww4N6yZ4HNxR69ee9YY8fPzwePnf3D5--HO7uOwToa9dKGNLgHIYe9W7XH4NGR0LuQu_8EY-iF3JvlBTCIAmBgZRX4HZtBjBww96sZ-ecfixUqj2lJU_tR6s0aKMBjGxUv1KYUymZgp1zHF0-WynsxbE92dWxvTi2q-MWe_dXDGN1l5JNWBz-F36_hqm1f4qUbWlaJyQfczNmfYr_PvAbAVqeQg
CitedBy_id crossref_primary_10_1021_acsaem_4c02830
crossref_primary_10_1016_j_mtsust_2023_100384
crossref_primary_10_2139_ssrn_4105344
crossref_primary_10_1002_adfm_202424357
crossref_primary_10_1002_smll_202205168
crossref_primary_10_1149_1945_7111_ad576d
crossref_primary_10_1016_j_jece_2023_110435
crossref_primary_10_1016_j_jallcom_2023_170903
crossref_primary_10_1016_j_enchem_2022_100086
crossref_primary_10_1039_D3SE00103B
crossref_primary_10_1021_acs_jpcc_4c03960
crossref_primary_10_1016_j_cjsc_2024_100359
crossref_primary_10_1039_D3TA04368A
crossref_primary_10_1021_acs_energyfuels_4c02594
crossref_primary_10_1016_j_apcatb_2023_123250
crossref_primary_10_1016_j_mtener_2022_101104
crossref_primary_10_1039_D2TA07198C
crossref_primary_10_1002_advs_202304424
crossref_primary_10_1016_j_apcatb_2023_123650
crossref_primary_10_1021_acscatal_4c01670
crossref_primary_10_1039_D4TA01418A
crossref_primary_10_1021_acssuschemeng_4c07981
crossref_primary_10_1016_j_cej_2023_143531
crossref_primary_10_26599_NRE_2024_9120112
crossref_primary_10_1016_j_fuel_2024_133415
crossref_primary_10_1016_j_cej_2023_145711
crossref_primary_10_1002_adma_202201114
crossref_primary_10_1016_j_jece_2022_109171
crossref_primary_10_1039_D2MA00775D
crossref_primary_10_1016_j_seppur_2024_129147
crossref_primary_10_1016_j_apcatb_2022_121362
crossref_primary_10_1016_j_cattod_2023_114393
crossref_primary_10_1016_j_jcis_2024_09_157
crossref_primary_10_1016_j_cej_2024_154219
crossref_primary_10_1039_D4QI01120A
crossref_primary_10_1016_j_jcou_2024_102735
crossref_primary_10_1002_adma_202305587
crossref_primary_10_1016_j_jcou_2023_102431
crossref_primary_10_1021_acscatal_2c02617
crossref_primary_10_1021_acsenergylett_3c00489
crossref_primary_10_1039_D3CC02531D
crossref_primary_10_1021_acscatal_3c00688
Cites_doi 10.1021/ja4113885
10.1002/jrs.5160
10.1016/j.cej.2016.02.084
10.1021/ja503782w
10.1038/s41467-018-07419-z
10.1021/acscatal.7b00707
10.1002/anie.201612194
10.1016/j.nanoen.2018.09.053
10.1002/aenm.201502489
10.1021/acsenergylett.1c01553
10.1038/nature13249
10.1038/s41467-018-03712-z
10.1021/cr4002758
10.1021/ja502765n
10.1021/ja2108799
10.1038/s41929-018-0108-3
10.1021/acscatal.7b03242
10.1021/acscatal.5b00402
10.1039/C5EE02879E
10.1021/jacs.6b10435
10.1002/anie.202013427
10.1038/nature16455
10.1002/aenm.201702524
10.1039/C3CS60231A
10.1002/anie.202111683
10.1002/anie.201907674
10.1002/cssc.201500694
10.1021/ja201269b
10.1021/cs5017672
10.1039/C6GC00410E
10.1021/acscatal.9b02872
10.1021/acssuschemeng.5b01336
10.1002/anie.201703720
10.1016/j.jcat.2020.03.015
10.1016/j.gee.2020.07.001
10.1021/jacs.6b13287
10.1016/j.jpowsour.2014.12.118
10.1038/ncomms5470
10.1039/D0TA07411J
10.1039/C6TC03406C
10.1016/j.cej.2019.122024
10.1021/ja312380b
10.1016/j.nanoen.2016.11.004
10.1002/anie.201806043
10.1016/j.chempr.2017.05.011
10.1038/ncomms12697
10.1021/ja309317u
10.1002/anie.201710038
10.1021/ja3010978
10.1016/j.apcatb.2021.120581
10.1002/adfm.202008146
10.1038/s41929-018-0084-7
10.1016/j.joule.2017.09.014
10.1002/anie.202100011
10.1021/ja5065284
10.1149/1.3622345
10.1002/advs.202004521
10.1021/la501245p
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV May 2022
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV May 2022
DBID AAYXX
CITATION
7SR
7ST
7U5
8BQ
8FD
C1K
FR3
JG9
KR7
L7M
SOI
DOI 10.1016/j.apcatb.2021.120936
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
ExternalDocumentID 10_1016_j_apcatb_2021_120936
S0926337321010614
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCE
SDF
SDG
SES
SEW
SPC
SPD
SSG
SSZ
T5K
VH1
WUQ
XFK
XPP
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
7SR
7ST
7U5
8BQ
8FD
C1K
EFKBS
FR3
JG9
KR7
L7M
SOI
ID FETCH-LOGICAL-c334t-1878e63aacf4c6554bf6cae015f4adbcb04017821008ce00cfe2d23a52d2f383
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Wed Aug 13 02:44:00 EDT 2025
Thu Apr 24 23:10:57 EDT 2025
Tue Jul 01 04:35:17 EDT 2025
Sat Mar 02 15:59:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Tin
CO2 electroreduction
Bis(benzene-1,2-dithiolato) complex
Structure-activity relationship
Sulfur species dopant
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-1878e63aacf4c6554bf6cae015f4adbcb04017821008ce00cfe2d23a52d2f383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2636863381
PQPubID 2045281
ParticipantIDs proquest_journals_2636863381
crossref_primary_10_1016_j_apcatb_2021_120936
crossref_citationtrail_10_1016_j_apcatb_2021_120936
elsevier_sciencedirect_doi_10_1016_j_apcatb_2021_120936
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Li, Chen, Zhu, Liang, Pei, Wu, Wang, Lee, Liu, Chu, Cui (bib56) 2018; 1
Li, Wang, Xie, Liang, Hong, Dai (bib33) 2011; 133
Wang, Dong, Yu, Yu (bib40) 2015; 279
Li, Wu, Liu, Liu, Yan, Zhen, Feng (bib43) 2019; 375
Dunwell, Lu, Heyes, Rosen, Chen, Yan, Jiao, Xu (bib6) 2017; 139
Chen, Li, Kanan (bib12) 2012; 134
electroreduction kinetics on atomically dispersed monovalent Zn(I) sites by rationally engineering proton-feeding centers, Angew. Chem. Int. Ed.
Gao, Lin, Jiao, Sun, Luo, Zhang, Li, Yang, Xie (bib31) 2016; 529
Kumar, Atla, Brian, Kumari, Nguyen, Sunkara, Spurgeon (bib38) 2017; 56
Zhang, Kang, Meyer (bib10) 2014; 136
Lim, Shin, Goddard, Hwang, Min, Kim (bib58) 2014; 136
Kambe, Sakamoto, Hoshiko, Takada, Miyachi, Ryu, Sasaki, Kim, Nakazato, Takata, Nishihara (bib35) 2013; 135
Zheng, Wang, Shuai, Wang, He, Lei, Li, Yang, Lei, Yuan, Qiu, Hou, Feng (bib24) 2021; 31
Lee, Kanan (bib16) 2015; 5
Baruch, Pander, White, Bocarsly (bib9) 2015; 5
Zou, Lee, Wallace (bib29) 2021; 8
Li, Chen, Xue, Williams, Zhang, MacFarlane, Zhang (bib27) 2017; 31
Detweiler, White, Bernasek, Bocarsly (bib50) 2014; 30
Lei, Liu, Sun, Xu, Liu, Liang, Yao, Pan, Wei, Xie (bib15) 2016; 7
Zhang, He, Li, Chen, Kong, Li, Ju, Zhu, Zhu, Zeng (bib28) 2018; 57
J.Y. Chen, Z.J. Li, X.Y. Wang, X.H. Sang, S.X. Zheng, S.J. Liu, B. Yang, Q.H. Zhang, L.C. Lei, L.M. Dai, Y. Hou, Promoting CO
.
Li, Li, Liu, Chen, Tian, Dai, Zhu, Han (bib14) 2021; 298
Zheng, Luna, García de Arquer, Zhang, Becknell, Ross, Li, Banis, Li, Liu, Voznyy, Dinh, Zhuang, Stadler, Cui, Du, Yang, Sargent (bib30) 2017; 1
Choi, Jeong, Kim, Baek, Park (bib45) 2016; 4
Hu, Ma, Hung, Chen, Ou, Ren, Chen, Fu, Zheng (bib57) 2017; 3
Asadi, Kumar, Behranginia, Rosen, Baskin, Repnin, Pisasale, Phillips, Zhu, Haasch, Klie, Král, Abiade, Khojin (bib3) 2014; 5
Liu, Lu, Xiao, Wang, Lou (bib39) 2019; 58
Zhao, Liu, Dong, Zou, Yang, Yang, Zhang, Huang (bib34) 2016; 4
Aresta, Dibenedetto, Angelini (bib7) 2014; 114
Perova, Kasper, Oehme, Cherevkov, Schulze (bib54) 2017; 48
Manthiram, Beberwyck, Alivisatos (bib4) 2014; 136
Li, Zhao, Chen, Khan, MacFarlane, Zhang (bib26) 2016; 9
Wang, Chen, Hou, Ma, Tan (bib52) 2016; 18
Zhang, Qi, Liu, Cao (bib32) 2016; 6
Wang, Jia, Song, Wang, Li, Min, Qian, Wang, Li, Ma, Wu, Yuan, Antonietti, Ozin (bib53) 2017; 56
Chen, Wu, Lu, Luo, Huang, Jin, Gao, Zhang, Argyle, Liang (bib5) 2021; 6
Li, Kanan (bib13) 2012; 134
Wang, Wang, Sang, Zheng, Zhang, Shuai, Yang, Li, Chen, Lei, Adli, Leung, Qiu, Wu, Hou (bib22) 2021; 60
Zhang, Hu, Ma, Zhu, Zhao, Xue, Chen, Yang, Ma, Liu, Jin (bib49) 2018; 53
Chen, Kanan (bib11) 2012; 134
Sheberla, Sun, Forsythe, Er, Wade, Brozek, Guzik, Dincă (bib36) 2014; 136
He, Liu, Liang, Mustapha, Wang, Wu, Yang, Deng, Guo, Liu (bib46) 2020; 385
Luc, Collins, Wang, Xin, He, Kang, Jiao (bib44) 2017; 139
Wang, Qiao, Shao, Pi, Zhu, Li, Huang (bib8) 2018; 9
Koh, Won, Eom, Kim, Jung, Kim, Hwang, Min (bib47) 2017; 7
Sun, Gao, Xie (bib19) 2014; 43
Zhuang, Liang, Seifitokaldani, Li, Luna, Burdyny, Che, Meng, Min, Quintero-Bermudez, Dinh, Pang, Zhong, Zhang, Li, Chen, Zheng, Liang, Ge, Ye, Sinton, Yu, Sargent (bib55) 2018; 1
Lee, Hong, Yang, Jin, Lee, Ahn, Seo, Sung, Nam (bib48) 2018; 8
Han, Wang, Yang, Deng, Wu, Li, Li (bib17) 2018; 9
Zhao, Wang (bib41) 2016; 293
Aljabour, Coskun, Zheng, Kibria, Strobel, Hild, Kehrer, Stifter, Sargent, Stadler (bib59) 2020; 10
Won, Choi, Chung, Chung, Kim, Woo (bib23) 2015; 8
Wang, Yin, Si, Wang, Guo, Guo, Fu (bib18) 2020; 8
Zhao, Liang, Wang, Ma, Wallace (bib42) 2018; 8
Cheng, Hou, Kang (bib25) 2021; 6
Li, Xue, Li, Ma, Chen, Zhang, MacFarlane, Zhang (bib51) 2017; 56
Li, Ciston, Kanan (bib2) 2014; 508
Nakayama, Sugihara, Matsumoto, Notoya, Osakai (bib37) 2011; 158
Letcher (bib1) 2009
Wang, Sang, Dong, Yao, Shuai, Lu, Yang, Li, Lei, Qiu, Dai, Hou (bib21) 2021; 60
Sheberla (10.1016/j.apcatb.2021.120936_bib36) 2014; 136
Li (10.1016/j.apcatb.2021.120936_bib13) 2012; 134
Zhang (10.1016/j.apcatb.2021.120936_bib28) 2018; 57
Nakayama (10.1016/j.apcatb.2021.120936_bib37) 2011; 158
Aresta (10.1016/j.apcatb.2021.120936_bib7) 2014; 114
Gao (10.1016/j.apcatb.2021.120936_bib31) 2016; 529
Li (10.1016/j.apcatb.2021.120936_bib2) 2014; 508
Li (10.1016/j.apcatb.2021.120936_bib51) 2017; 56
Sun (10.1016/j.apcatb.2021.120936_bib19) 2014; 43
Wang (10.1016/j.apcatb.2021.120936_bib22) 2021; 60
Chen (10.1016/j.apcatb.2021.120936_bib5) 2021; 6
Zhao (10.1016/j.apcatb.2021.120936_bib34) 2016; 4
Kambe (10.1016/j.apcatb.2021.120936_bib35) 2013; 135
Wang (10.1016/j.apcatb.2021.120936_bib40) 2015; 279
He (10.1016/j.apcatb.2021.120936_bib46) 2020; 385
Lei (10.1016/j.apcatb.2021.120936_bib15) 2016; 7
Wang (10.1016/j.apcatb.2021.120936_bib8) 2018; 9
Liu (10.1016/j.apcatb.2021.120936_bib39) 2019; 58
Wang (10.1016/j.apcatb.2021.120936_bib53) 2017; 56
Zhang (10.1016/j.apcatb.2021.120936_bib10) 2014; 136
Cheng (10.1016/j.apcatb.2021.120936_bib25) 2021; 6
Li (10.1016/j.apcatb.2021.120936_bib43) 2019; 375
Li (10.1016/j.apcatb.2021.120936_bib27) 2017; 31
Lim (10.1016/j.apcatb.2021.120936_bib58) 2014; 136
Li (10.1016/j.apcatb.2021.120936_bib14) 2021; 298
Asadi (10.1016/j.apcatb.2021.120936_bib3) 2014; 5
Zhao (10.1016/j.apcatb.2021.120936_bib41) 2016; 293
Kumar (10.1016/j.apcatb.2021.120936_bib38) 2017; 56
Choi (10.1016/j.apcatb.2021.120936_bib45) 2016; 4
Zheng (10.1016/j.apcatb.2021.120936_bib24) 2021; 31
Baruch (10.1016/j.apcatb.2021.120936_bib9) 2015; 5
Zhang (10.1016/j.apcatb.2021.120936_bib49) 2018; 53
Detweiler (10.1016/j.apcatb.2021.120936_bib50) 2014; 30
Lee (10.1016/j.apcatb.2021.120936_bib16) 2015; 5
Zou (10.1016/j.apcatb.2021.120936_bib29) 2021; 8
Li (10.1016/j.apcatb.2021.120936_bib56) 2018; 1
10.1016/j.apcatb.2021.120936_bib20
Lee (10.1016/j.apcatb.2021.120936_bib48) 2018; 8
Won (10.1016/j.apcatb.2021.120936_bib23) 2015; 8
Hu (10.1016/j.apcatb.2021.120936_bib57) 2017; 3
Wang (10.1016/j.apcatb.2021.120936_bib52) 2016; 18
Aljabour (10.1016/j.apcatb.2021.120936_bib59) 2020; 10
Han (10.1016/j.apcatb.2021.120936_bib17) 2018; 9
Li (10.1016/j.apcatb.2021.120936_bib26) 2016; 9
Wang (10.1016/j.apcatb.2021.120936_bib18) 2020; 8
Koh (10.1016/j.apcatb.2021.120936_bib47) 2017; 7
Manthiram (10.1016/j.apcatb.2021.120936_bib4) 2014; 136
Luc (10.1016/j.apcatb.2021.120936_bib44) 2017; 139
Zhuang (10.1016/j.apcatb.2021.120936_bib55) 2018; 1
Zhang (10.1016/j.apcatb.2021.120936_bib32) 2016; 6
Zhao (10.1016/j.apcatb.2021.120936_bib42) 2018; 8
Dunwell (10.1016/j.apcatb.2021.120936_bib6) 2017; 139
Perova (10.1016/j.apcatb.2021.120936_bib54) 2017; 48
Chen (10.1016/j.apcatb.2021.120936_bib12) 2012; 134
Zheng (10.1016/j.apcatb.2021.120936_bib30) 2017; 1
Li (10.1016/j.apcatb.2021.120936_bib33) 2011; 133
Letcher (10.1016/j.apcatb.2021.120936_bib1) 2009
Wang (10.1016/j.apcatb.2021.120936_bib21) 2021; 60
Chen (10.1016/j.apcatb.2021.120936_bib11) 2012; 134
References_xml – volume: 1
  start-page: 592
  year: 2018
  end-page: 600
  ident: bib56
  article-title: Efficient electrocatalytic CO
  publication-title: Nat. Catal.
– volume: 31
  start-page: 2008146
  year: 2021
  ident: bib24
  article-title: Highly boosted reaction kinetics in carbon dioxide electroreduction by surface introduced electronegative dopants
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 794
  year: 2017
  end-page: 805
  ident: bib30
  article-title: Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO
  publication-title: Joule
– volume: 9
  start-page: 4933
  year: 2018
  ident: bib8
  article-title: Phase and structure engineering of copper tin heterostructures for efficient electrochemical carbon dioxide reduction
  publication-title: Nat. Commun.
– volume: 6
  start-page: 938
  year: 2021
  end-page: 951
  ident: bib5
  article-title: Photoreduction of CO
  publication-title: Green Energy Environ.
– volume: 114
  start-page: 1709
  year: 2014
  end-page: 1742
  ident: bib7
  article-title: Catalysis for the valorization of exhaust carbon: from CO
  publication-title: Chem. Rev.
– volume: 8
  start-page: 19938
  year: 2020
  end-page: 19945
  ident: bib18
  article-title: Conversion of CO
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 931
  year: 2018
  end-page: 937
  ident: bib48
  article-title: Selective electrochemical production of formate from carbon dioxide with bismuth-based catalysts in an aqueous electrolyte
  publication-title: ACS Catal.
– volume: 10
  start-page: 66
  year: 2020
  end-page: 72
  ident: bib59
  article-title: Active sulfur sites in semimetallic titanium disulfide enable CO
  publication-title: ACS Catal.
– volume: 134
  start-page: 19969
  year: 2012
  end-page: 19972
  ident: bib12
  article-title: Aqueous CO
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 1885
  year: 2017
  end-page: 1893
  ident: bib44
  article-title: Ag–Sn bimetallic catalyst with a core–shell structure for CO
  publication-title: J. Am. Chem. Soc.
– volume: 293
  start-page: 161
  year: 2016
  end-page: 170
  ident: bib41
  article-title: Electrochemical reduction of CO
  publication-title: Chem. Eng. J.
– volume: 529
  start-page: 68
  year: 2016
  end-page: 71
  ident: bib31
  article-title: Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel
  publication-title: Nature
– volume: 7
  start-page: 5071
  year: 2017
  end-page: 5077
  ident: bib47
  article-title: Facile CO
  publication-title: ACS Catal.
– volume: 5
  start-page: 3148
  year: 2015
  end-page: 3156
  ident: bib9
  article-title: Mechanistic insights into the reduction of CO
  publication-title: ACS Catal.
– volume: 375
  year: 2019
  ident: bib43
  article-title: Tuning the pore structure of porous tin foam electrodes for enhanced electrochemical reduction of carbon dioxide to formate
  publication-title: Chem. Eng. J.
– volume: 30
  start-page: 7593
  year: 2014
  end-page: 7600
  ident: bib50
  article-title: Anodized indium metal electrodes for enhanced carbon dioxide reduction in aqueous electrolyte
  publication-title: Langmuir
– reference: 〉.
– volume: 5
  start-page: 4470
  year: 2014
  ident: bib3
  article-title: Robust carbon dioxide reduction on molybdenum disulphide edges
  publication-title: Nat. Commun.
– volume: 5
  start-page: 465
  year: 2015
  end-page: 469
  ident: bib16
  article-title: Controlling H
  publication-title: ACS Catal.
– volume: 56
  start-page: 14718
  year: 2017
  end-page: 14722
  ident: bib51
  article-title: Unlocking the electrocatalytic activity of antimony for CO
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 18
  start-page: 3250
  year: 2016
  end-page: 3256
  ident: bib52
  article-title: Nitrogen-doped graphenes as efficient electrocatalysts for the selective reduction of carbon dioxide to formate in aqueous solution
  publication-title: Green Chem.
– volume: 60
  start-page: 4192
  year: 2021
  end-page: 4198
  ident: bib22
  article-title: Dynamic activation of adsorbed intermediates via axial traction for the promoted electrochemical CO
  publication-title: Angew. Chem. Int. Ed.
– volume: 134
  start-page: 7231
  year: 2012
  end-page: 7234
  ident: bib13
  article-title: CO
  publication-title: J. Am. Chem. Soc.
– volume: 385
  start-page: 246
  year: 2020
  end-page: 254
  ident: bib46
  article-title: Boosting carbon dioxide electroreduction to C
  publication-title: J. Catal.
– volume: 60
  start-page: 11959
  year: 2021
  end-page: 11965
  ident: bib21
  article-title: Proton capture strategy for enhancing electrochemical CO
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 3092
  year: 2015
  ident: bib23
  article-title: Rational design of a hierarchical tin dendrite electrode for efficient electrochemical reduction of CO
  publication-title: ChemSusChem
– volume: 6
  start-page: 3352
  year: 2021
  end-page: 3358
  ident: bib25
  article-title: Integrated capture and electroreduction of flue gas CO
  publication-title: ACS Energy Lett.
– year: 2009
  ident: bib1
  article-title: Climate Change: Observed Impacts on Planet Earth
– volume: 279
  start-page: 1
  year: 2015
  end-page: 5
  ident: bib40
  article-title: Enhanced performance of gas diffusion electrode for electrochemical reduction of carbon dioxide to formate by adding polytetrafluoroethylene into catalyst layer
  publication-title: J. Power Sources
– volume: 136
  start-page: 1734
  year: 2014
  end-page: 1737
  ident: bib10
  article-title: Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 13319
  year: 2014
  end-page: 13325
  ident: bib4
  article-title: Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 3774
  year: 2017
  end-page: 3783
  ident: bib6
  article-title: The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 993
  year: 2017
  end-page: 1001
  ident: bib54
  article-title: Features of polarized Raman spectra for homogeneous and non-homogeneous compressively strained Ge
  publication-title: J. Raman Spectrosc.
– volume: 508
  start-page: 504
  year: 2014
  end-page: 507
  ident: bib2
  article-title: Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper
  publication-title: Nature
– volume: 8
  start-page: 2004521
  year: 2021
  ident: bib29
  article-title: Boosting formate production from CO
  publication-title: Adv. Sci.
– volume: 43
  start-page: 530
  year: 2014
  end-page: 546
  ident: bib19
  article-title: Atomically-thick two-dimensional crystals: Electronic structure regulation and energy device construction
  publication-title: Chem. Soc. Rev.
– volume: 56
  start-page: 3645
  year: 2017
  end-page: 3649
  ident: bib38
  article-title: Reduced SnO
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 8
  start-page: 1702524
  year: 2018
  ident: bib42
  article-title: Tunable and efficient tin modified nitrogen-doped carbon nanofibers for electrochemical reduction of aqueous carbon dioxide
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 1320
  year: 2018
  ident: bib17
  article-title: Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO
  publication-title: Nat. Commun.
– volume: 298
  year: 2021
  ident: bib14
  article-title: Probing the role of surface hydroxyls for Bi, Sn and In catalysts during CO
  publication-title: Appl. Catal. B Environ.
– volume: 158
  start-page: 341
  year: 2011
  end-page: 345
  ident: bib37
  article-title: Chemical state analysis of tin oxide films by voltammetric reduction
  publication-title: J. Electrochem. Soc.
– volume: 57
  start-page: 10954
  year: 2018
  end-page: 10958
  ident: bib28
  article-title: Nickel doping in atomically thin tin disulfide nanosheets enables highly efficient CO
  publication-title: Angew. Chem. Int. Ed.
– volume: 53
  start-page: 808
  year: 2018
  end-page: 816
  ident: bib49
  article-title: Liquid-phase exfoliated ultrathin Bi nanosheets: Uncovering the origins of enhanced electrocatalytic CO
  publication-title: Nano Energy
– volume: 135
  start-page: 2462
  year: 2013
  end-page: 2465
  ident: bib35
  article-title: π-conjugated nickel bis(dithiolene) complex nanosheet
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 421
  year: 2018
  end-page: 428
  ident: bib55
  article-title: Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols
  publication-title: Nat. Catal.
– reference: J.Y. Chen, Z.J. Li, X.Y. Wang, X.H. Sang, S.X. Zheng, S.J. Liu, B. Yang, Q.H. Zhang, L.C. Lei, L.M. Dai, Y. Hou, Promoting CO
– volume: 3
  start-page: 122
  year: 2017
  end-page: 133
  ident: bib57
  article-title: In situ electrochemical production of ultrathin nickel nanosheets for hydrogen evolution electrocatalysis
  publication-title: Chem
– volume: 56
  start-page: 7847
  year: 2017
  end-page: 7852
  ident: bib53
  article-title: Efficient electrocatalytic reduction of CO
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 9
  start-page: 216
  year: 2016
  end-page: 223
  ident: bib26
  article-title: Polyethylenimine promoted electrocatalytic reduction of CO
  publication-title: Energy Environ. Sci.
– volume: 136
  start-page: 11355
  year: 2014
  end-page: 11361
  ident: bib58
  article-title: Embedding covalency into metal catalysts for efficient electrochemical conversion of CO
  publication-title: J. Am. Chem. Soc.
– volume: 133
  start-page: 7296
  year: 2011
  end-page: 7299
  ident: bib33
  article-title: MoS
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 8859
  year: 2014
  end-page: 8862
  ident: bib36
  article-title: High electrical conductivity in Ni
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 10215
  year: 2016
  end-page: 10222
  ident: bib34
  article-title: Epitaxial growth of two-dimensional SnSe
  publication-title: J. Mater. Chem. C
– volume: 134
  start-page: 1986
  year: 2012
  end-page: 1989
  ident: bib11
  article-title: Tin oxide dependence of the CO
  publication-title: J. Am. Chem. Soc.
– volume: 31
  start-page: 270
  year: 2017
  end-page: 277
  ident: bib27
  article-title: Towards a better Sn: efficient electrocatalytic reduction of CO
  publication-title: Nano Energy
– reference: electroreduction kinetics on atomically dispersed monovalent Zn(I) sites by rationally engineering proton-feeding centers, Angew. Chem. Int. Ed. 〈
– volume: 6
  start-page: 1502489
  year: 2016
  ident: bib32
  article-title: A nickel-based integrated electrode from an autologous growth strategy for highly efficient water oxidation
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 1311
  year: 2016
  end-page: 1318
  ident: bib45
  article-title: Electrochemical reduction of carbon dioxide to formate on tin-lead alloys
  publication-title: ACS Sustain. Chem. Eng.
– volume: 7
  start-page: 12697
  year: 2016
  ident: bib15
  article-title: Metallic tin quantum sheets confined in graphene toward high efficiency carbon dioxide electroreduction
  publication-title: Nat. Commun.
– volume: 58
  start-page: 13828
  year: 2019
  end-page: 13833
  ident: bib39
  article-title: Bi
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 136
  start-page: 1734
  year: 2014
  ident: 10.1016/j.apcatb.2021.120936_bib10
  article-title: Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4113885
– volume: 48
  start-page: 993
  year: 2017
  ident: 10.1016/j.apcatb.2021.120936_bib54
  article-title: Features of polarized Raman spectra for homogeneous and non-homogeneous compressively strained Ge1−ySny alloys
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.5160
– volume: 293
  start-page: 161
  year: 2016
  ident: 10.1016/j.apcatb.2021.120936_bib41
  article-title: Electrochemical reduction of CO2 to formate in aqueous solution using electro-deposited Sn catalysts
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.02.084
– volume: 136
  start-page: 11355
  year: 2014
  ident: 10.1016/j.apcatb.2021.120936_bib58
  article-title: Embedding covalency into metal catalysts for efficient electrochemical conversion of CO2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja503782w
– volume: 9
  start-page: 4933
  year: 2018
  ident: 10.1016/j.apcatb.2021.120936_bib8
  article-title: Phase and structure engineering of copper tin heterostructures for efficient electrochemical carbon dioxide reduction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07419-z
– volume: 7
  start-page: 5071
  year: 2017
  ident: 10.1016/j.apcatb.2021.120936_bib47
  article-title: Facile CO2 electro-reduction to formate via oxygen bidentate intermediate stabilized by high-index planes of Bi dendrite catalyst.
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b00707
– volume: 56
  start-page: 3645
  year: 2017
  ident: 10.1016/j.apcatb.2021.120936_bib38
  article-title: Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2-into-HCOOH conversion
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201612194
– volume: 53
  start-page: 808
  year: 2018
  ident: 10.1016/j.apcatb.2021.120936_bib49
  article-title: Liquid-phase exfoliated ultrathin Bi nanosheets: Uncovering the origins of enhanced electrocatalytic CO2 reduction on two-dimensional metal nanostructure
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.09.053
– volume: 6
  start-page: 1502489
  year: 2016
  ident: 10.1016/j.apcatb.2021.120936_bib32
  article-title: A nickel-based integrated electrode from an autologous growth strategy for highly efficient water oxidation
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201502489
– volume: 6
  start-page: 3352
  year: 2021
  ident: 10.1016/j.apcatb.2021.120936_bib25
  article-title: Integrated capture and electroreduction of flue gas CO2 to formate using amine functionalized SnOx nanoparticles
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c01553
– volume: 508
  start-page: 504
  year: 2014
  ident: 10.1016/j.apcatb.2021.120936_bib2
  article-title: Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper
  publication-title: Nature
  doi: 10.1038/nature13249
– volume: 9
  start-page: 1320
  year: 2018
  ident: 10.1016/j.apcatb.2021.120936_bib17
  article-title: Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03712-z
– volume: 114
  start-page: 1709
  year: 2014
  ident: 10.1016/j.apcatb.2021.120936_bib7
  article-title: Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2
  publication-title: Chem. Rev.
  doi: 10.1021/cr4002758
– volume: 136
  start-page: 8859
  year: 2014
  ident: 10.1016/j.apcatb.2021.120936_bib36
  article-title: High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal-organic graphene analogue.
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja502765n
– volume: 134
  start-page: 1986
  year: 2012
  ident: 10.1016/j.apcatb.2021.120936_bib11
  article-title: Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts.
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2108799
– volume: 1
  start-page: 592
  year: 2018
  ident: 10.1016/j.apcatb.2021.120936_bib56
  article-title: Efficient electrocatalytic CO2 reduction on a three-phase interface.
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0108-3
– volume: 8
  start-page: 931
  year: 2018
  ident: 10.1016/j.apcatb.2021.120936_bib48
  article-title: Selective electrochemical production of formate from carbon dioxide with bismuth-based catalysts in an aqueous electrolyte
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03242
– volume: 5
  start-page: 3148
  year: 2015
  ident: 10.1016/j.apcatb.2021.120936_bib9
  article-title: Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b00402
– volume: 9
  start-page: 216
  year: 2016
  ident: 10.1016/j.apcatb.2021.120936_bib26
  article-title: Polyethylenimine promoted electrocatalytic reduction of CO2 to CO in aqueous medium by graphene-supported amorphous molybdenum sulphide
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02879E
– volume: 139
  start-page: 1885
  year: 2017
  ident: 10.1016/j.apcatb.2021.120936_bib44
  article-title: Ag–Sn bimetallic catalyst with a core–shell structure for CO2 reduction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b10435
– volume: 60
  start-page: 4192
  year: 2021
  ident: 10.1016/j.apcatb.2021.120936_bib22
  article-title: Dynamic activation of adsorbed intermediates via axial traction for the promoted electrochemical CO2 reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202013427
– volume: 529
  start-page: 68
  year: 2016
  ident: 10.1016/j.apcatb.2021.120936_bib31
  article-title: Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel
  publication-title: Nature
  doi: 10.1038/nature16455
– volume: 8
  start-page: 1702524
  year: 2018
  ident: 10.1016/j.apcatb.2021.120936_bib42
  article-title: Tunable and efficient tin modified nitrogen-doped carbon nanofibers for electrochemical reduction of aqueous carbon dioxide
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702524
– volume: 43
  start-page: 530
  year: 2014
  ident: 10.1016/j.apcatb.2021.120936_bib19
  article-title: Atomically-thick two-dimensional crystals: Electronic structure regulation and energy device construction
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60231A
– ident: 10.1016/j.apcatb.2021.120936_bib20
  doi: 10.1002/anie.202111683
– volume: 58
  start-page: 13828
  year: 2019
  ident: 10.1016/j.apcatb.2021.120936_bib39
  article-title: Bi2O3 nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201907674
– volume: 8
  start-page: 3092
  year: 2015
  ident: 10.1016/j.apcatb.2021.120936_bib23
  article-title: Rational design of a hierarchical tin dendrite electrode for efficient electrochemical reduction of CO2
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201500694
– volume: 133
  start-page: 7296
  year: 2011
  ident: 10.1016/j.apcatb.2021.120936_bib33
  article-title: MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja201269b
– volume: 5
  start-page: 465
  year: 2015
  ident: 10.1016/j.apcatb.2021.120936_bib16
  article-title: Controlling H+ vs. CO2 reduction selectivity on Pb electrodes
  publication-title: ACS Catal.
  doi: 10.1021/cs5017672
– volume: 18
  start-page: 3250
  year: 2016
  ident: 10.1016/j.apcatb.2021.120936_bib52
  article-title: Nitrogen-doped graphenes as efficient electrocatalysts for the selective reduction of carbon dioxide to formate in aqueous solution
  publication-title: Green Chem.
  doi: 10.1039/C6GC00410E
– volume: 10
  start-page: 66
  year: 2020
  ident: 10.1016/j.apcatb.2021.120936_bib59
  article-title: Active sulfur sites in semimetallic titanium disulfide enable CO2 electroreduction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b02872
– volume: 4
  start-page: 1311
  year: 2016
  ident: 10.1016/j.apcatb.2021.120936_bib45
  article-title: Electrochemical reduction of carbon dioxide to formate on tin-lead alloys
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.5b01336
– year: 2009
  ident: 10.1016/j.apcatb.2021.120936_bib1
– volume: 56
  start-page: 7847
  year: 2017
  ident: 10.1016/j.apcatb.2021.120936_bib53
  article-title: Efficient electrocatalytic reduction of CO2 by nitrogen-doped nanoporous carbon/carbon nanotube membranes: A step towards the electrochemical CO2 refinery
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201703720
– volume: 385
  start-page: 246
  year: 2020
  ident: 10.1016/j.apcatb.2021.120936_bib46
  article-title: Boosting carbon dioxide electroreduction to C1 feedstocks via theory-guided tailoring oxygen defects in porous tin-oxide nanocubes
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2020.03.015
– volume: 6
  start-page: 938
  year: 2021
  ident: 10.1016/j.apcatb.2021.120936_bib5
  article-title: Photoreduction of CO2 in the presence of CH4 over g-C3N4 modified with TiO2 nanoparticles at room temperature
  publication-title: Green Energy Environ.
  doi: 10.1016/j.gee.2020.07.001
– volume: 139
  start-page: 3774
  year: 2017
  ident: 10.1016/j.apcatb.2021.120936_bib6
  article-title: The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b13287
– volume: 279
  start-page: 1
  year: 2015
  ident: 10.1016/j.apcatb.2021.120936_bib40
  article-title: Enhanced performance of gas diffusion electrode for electrochemical reduction of carbon dioxide to formate by adding polytetrafluoroethylene into catalyst layer
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.12.118
– volume: 5
  start-page: 4470
  year: 2014
  ident: 10.1016/j.apcatb.2021.120936_bib3
  article-title: Robust carbon dioxide reduction on molybdenum disulphide edges
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5470
– volume: 8
  start-page: 19938
  year: 2020
  ident: 10.1016/j.apcatb.2021.120936_bib18
  article-title: Conversion of CO2 to chemical feedstocks over bismuth nanosheets in situ grown on nitrogen-doped carbon
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA07411J
– volume: 4
  start-page: 10215
  year: 2016
  ident: 10.1016/j.apcatb.2021.120936_bib34
  article-title: Epitaxial growth of two-dimensional SnSe2/MoS2 misfit heterostructures.
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC03406C
– volume: 375
  year: 2019
  ident: 10.1016/j.apcatb.2021.120936_bib43
  article-title: Tuning the pore structure of porous tin foam electrodes for enhanced electrochemical reduction of carbon dioxide to formate
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122024
– volume: 135
  start-page: 2462
  year: 2013
  ident: 10.1016/j.apcatb.2021.120936_bib35
  article-title: π-conjugated nickel bis(dithiolene) complex nanosheet
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja312380b
– volume: 31
  start-page: 270
  year: 2017
  ident: 10.1016/j.apcatb.2021.120936_bib27
  article-title: Towards a better Sn: efficient electrocatalytic reduction of CO2 to formate by Sn/SnS2 derived from SnS2 nanosheets
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.11.004
– volume: 57
  start-page: 10954
  year: 2018
  ident: 10.1016/j.apcatb.2021.120936_bib28
  article-title: Nickel doping in atomically thin tin disulfide nanosheets enables highly efficient CO2 reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201806043
– volume: 3
  start-page: 122
  year: 2017
  ident: 10.1016/j.apcatb.2021.120936_bib57
  article-title: In situ electrochemical production of ultrathin nickel nanosheets for hydrogen evolution electrocatalysis
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.05.011
– volume: 7
  start-page: 12697
  year: 2016
  ident: 10.1016/j.apcatb.2021.120936_bib15
  article-title: Metallic tin quantum sheets confined in graphene toward high efficiency carbon dioxide electroreduction
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12697
– volume: 134
  start-page: 19969
  year: 2012
  ident: 10.1016/j.apcatb.2021.120936_bib12
  article-title: Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja309317u
– volume: 56
  start-page: 14718
  year: 2017
  ident: 10.1016/j.apcatb.2021.120936_bib51
  article-title: Unlocking the electrocatalytic activity of antimony for CO2 reduction by two-dimensional engineering of the bulk material
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201710038
– volume: 134
  start-page: 7231
  year: 2012
  ident: 10.1016/j.apcatb.2021.120936_bib13
  article-title: CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3010978
– volume: 298
  year: 2021
  ident: 10.1016/j.apcatb.2021.120936_bib14
  article-title: Probing the role of surface hydroxyls for Bi, Sn and In catalysts during CO2 reduction
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2021.120581
– volume: 31
  start-page: 2008146
  year: 2021
  ident: 10.1016/j.apcatb.2021.120936_bib24
  article-title: Highly boosted reaction kinetics in carbon dioxide electroreduction by surface introduced electronegative dopants
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202008146
– volume: 1
  start-page: 421
  year: 2018
  ident: 10.1016/j.apcatb.2021.120936_bib55
  article-title: Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0084-7
– volume: 1
  start-page: 794
  year: 2017
  ident: 10.1016/j.apcatb.2021.120936_bib30
  article-title: Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate
  publication-title: Joule
  doi: 10.1016/j.joule.2017.09.014
– volume: 60
  start-page: 11959
  year: 2021
  ident: 10.1016/j.apcatb.2021.120936_bib21
  article-title: Proton capture strategy for enhancing electrochemical CO2 reduction on atomically dispersed metal–nitrogen active sites
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202100011
– volume: 136
  start-page: 13319
  issue: 38
  year: 2014
  ident: 10.1016/j.apcatb.2021.120936_bib4
  article-title: Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5065284
– volume: 158
  start-page: 341
  year: 2011
  ident: 10.1016/j.apcatb.2021.120936_bib37
  article-title: Chemical state analysis of tin oxide films by voltammetric reduction
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3622345
– volume: 8
  start-page: 2004521
  year: 2021
  ident: 10.1016/j.apcatb.2021.120936_bib29
  article-title: Boosting formate production from CO2 at high current densities over a wide electrochemical potential window on a SnS catalyst
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202004521
– volume: 30
  start-page: 7593
  year: 2014
  ident: 10.1016/j.apcatb.2021.120936_bib50
  article-title: Anodized indium metal electrodes for enhanced carbon dioxide reduction in aqueous electrolyte
  publication-title: Langmuir
  doi: 10.1021/la501245p
SSID ssj0002328
Score 2.54947
Snippet Electrochemical CO2 conversion into fuels is highly desirable to achieve carbon artificial cycles. Among electrocatalyst candidates, earth-abundant tin is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 120936
SubjectTerms Benzene
Bis(benzene-1,2-dithiolato) complex
Carbon cycle
Carbon dioxide
Catalysts
CO2 electroreduction
Dispersion
Electrocatalysts
Electrochemistry
Electrowinning
Flow stability
Nanoclusters
Selectivity
Structure-activity relationship
Sulfur
Sulfur species dopant
Tin
Title Atomically dispersed Sn modified with trace sulfur species derived from organosulfide complex for electroreduction of CO2
URI https://dx.doi.org/10.1016/j.apcatb.2021.120936
https://www.proquest.com/docview/2636863381
Volume 304
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQPdAeKroFlUKRD1zDJrZxkuNqBVpaFQ6AxM3yU0q13ax2s1W59Ld3xnFKi5CQeskhGkeR5-FvkvlmCDmxphJVbnhWBFFmwgaZ1R78MbBcWMYt5wzZyF-v5OxOfL4_u98i04ELg2WVKfb3MT1G63RnnHZzvGya8U1eM8l5iSSUmNcgg12UWNZ3-uuxzAMQQ4zGIJyh9ECfizVeeml1ZyBLZMUpkkhjo-Znj6cngTqePhe75G2CjXTSv9k7suUXI7IzHaa1jcibvxoLjsj--SN_DZYlB16_Jw-Tro0NAuYP1DXYJXztHb1Z0O-tawLAUYofZmm30tbT9WYeNiuKZEzIp6mDh_8ACWSk0DgNqkWJxnkaC9P9TwoImKbBOivsCYtap22g02u2R24vzm-nsyxNX8hAQaLLiqqsvORa2yCsBNRhgrTaA3wIQjtjDbh_AfgCuwNZn-c2eOYY12dwDZD37pPtRbvwHwgtjC6dqQtbu1rgj0YeathxKbEQC_DaAeHDniubOpPjgIy5GkrQvqleUwo1pXpNHZDsz6pl35njBflyUKf6x8IUHB4vrDwatK-Sh68V2J6swP6q4uN_P_iQvGbIpoj1k0dku1tt_CfAOJ05jkZ8TF5NLr_Mrn4Dahn9Fg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3R5UA5VO22qFBofeg13SQ2-TiuVqClwPbAVuJm2Y4tpdpuVrtZBP--M45DW1QJqZcconEUeezxm2TeG4DPRheiiDWPEifySBiXRaXF_ejSWJiUG85TYiNfz7Lpd_H19vR2ByY9F4bKKkPs72K6j9bhzijM5mhV16ObuEwzznMiofi85gXskjqVGMDu-OJyOnsMyAgafEBG-4gG9Aw6X-alVka1GhPFNPlCPFKv1fzPE-pJrPYH0PlreBWQIxt3L_cGduxyCHuTvmHbEPb_0BYcwsHZbwobDgt7ePMWHsZt4zUCFg-sqkkofGMrdrNkP5uqdohIGX2bZe1aGcs224XbrhnxMTGlZhU-_A4tiJTCfEOohizqyjJfm27vGYJgFnrrrEkWlhzPGscm39J3MD8_m0-mUWjAEKGPRBslRV7YjCtlnDAZAg_tMqMsIggnVKWNxgiQIMQggSBj49g4m1YpV6d4dZj6HsBg2Szte2CJVnmly8SUVSnoXyN3Jc54llEtFkK2Q-D9nEsTxMmpR8ZC9lVoP2TnKUmekp2nDiF6HLXqxDmesc97d8q_FpnE8-OZkce992XY5BuJyy8rcAkWydF_P_gT7E3n11fy6mJ2-QFepkSu8OWUxzBo11t7gpCn1R_Dkv4FDjv_xw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomically+dispersed+Sn+modified+with+trace+sulfur+species+derived+from+organosulfide+complex+for+electroreduction+of+CO2&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Wang%2C+Xin&rft.au=Li%2C+Fengli&rft.au=Yin%2C+Wen-Jin&rft.au=Si%2C+Yubing&rft.date=2022-05-01&rft.pub=Elsevier+BV&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=304&rft.spage=1&rft_id=info:doi/10.1016%2Fj.apcatb.2021.120936&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon