Entropy and multiphysics analysis in a viscous dissipative non-Darcian porous enclosure
The present article assessed the mathematical model for the entropy generation in free convective heat and mass transfer phenomenon in the thermal and species stratified fluid-saturated non-Darcy porous domain. In this model, the viscous dissipation forces are assumed significant. Moreover, the phys...
Saved in:
Published in | European physical journal plus Vol. 136; no. 7; p. 773 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The present article assessed the mathematical model for the entropy generation in free convective heat and mass transfer phenomenon in the thermal and species stratified fluid-saturated non-Darcy porous domain. In this model, the viscous dissipation forces are assumed significant. Moreover, the physical model is exposed to the magnetic forces to accommodate the control over the stratification forces. For a better understanding of the temperature and concentration field, the heat function (
H
) and mass function (
M
) models for the multi-force effect on porous media flow, are proposed in this study by which the directional flow accompanying magnitudes of heat flux and mass flux can be visually manifested. To solve the mathematical model numerically, the finite element method is implemented on the dimensionless form of the governing nonlinear partial differential equations. The obtained results are portrayed by of the streamline, isotherm, isoconcentration contours, and cumulative Nusselt and Sherwood number plots for the parameters associated with the problem with additional heatline and massline contour visuals. Moreover, the thermodynamical attributes of fluid flow are illustrated by the contour plots of the entropy production due to fluid friction, heat transfer, mass transfer, and total entropy. Besides, the other characteristics are delineated by the Bejan number plots for the study of thermodynamic irreversibilities. Here, it is observed that the intensification of thermal buoyancy forces raises the stratification levels in the fluid flow. The high intensity of stratification forces introduces the contra-rotating pair of fluid flow movements. On the other hand, horizontally applied magnetic forces significantly restrict the convective flow of heat and mass fluxes, resulting in a massive drop of entropy generation by viscous dissipation. |
---|---|
AbstractList | The present article assessed the mathematical model for the entropy generation in free convective heat and mass transfer phenomenon in the thermal and species stratified fluid-saturated non-Darcy porous domain. In this model, the viscous dissipation forces are assumed significant. Moreover, the physical model is exposed to the magnetic forces to accommodate the control over the stratification forces. For a better understanding of the temperature and concentration field, the heat function (H) and mass function (M) models for the multi-force effect on porous media flow, are proposed in this study by which the directional flow accompanying magnitudes of heat flux and mass flux can be visually manifested. To solve the mathematical model numerically, the finite element method is implemented on the dimensionless form of the governing nonlinear partial differential equations. The obtained results are portrayed by of the streamline, isotherm, isoconcentration contours, and cumulative Nusselt and Sherwood number plots for the parameters associated with the problem with additional heatline and massline contour visuals. Moreover, the thermodynamical attributes of fluid flow are illustrated by the contour plots of the entropy production due to fluid friction, heat transfer, mass transfer, and total entropy. Besides, the other characteristics are delineated by the Bejan number plots for the study of thermodynamic irreversibilities. Here, it is observed that the intensification of thermal buoyancy forces raises the stratification levels in the fluid flow. The high intensity of stratification forces introduces the contra-rotating pair of fluid flow movements. On the other hand, horizontally applied magnetic forces significantly restrict the convective flow of heat and mass fluxes, resulting in a massive drop of entropy generation by viscous dissipation. The present article assessed the mathematical model for the entropy generation in free convective heat and mass transfer phenomenon in the thermal and species stratified fluid-saturated non-Darcy porous domain. In this model, the viscous dissipation forces are assumed significant. Moreover, the physical model is exposed to the magnetic forces to accommodate the control over the stratification forces. For a better understanding of the temperature and concentration field, the heat function ( H ) and mass function ( M ) models for the multi-force effect on porous media flow, are proposed in this study by which the directional flow accompanying magnitudes of heat flux and mass flux can be visually manifested. To solve the mathematical model numerically, the finite element method is implemented on the dimensionless form of the governing nonlinear partial differential equations. The obtained results are portrayed by of the streamline, isotherm, isoconcentration contours, and cumulative Nusselt and Sherwood number plots for the parameters associated with the problem with additional heatline and massline contour visuals. Moreover, the thermodynamical attributes of fluid flow are illustrated by the contour plots of the entropy production due to fluid friction, heat transfer, mass transfer, and total entropy. Besides, the other characteristics are delineated by the Bejan number plots for the study of thermodynamic irreversibilities. Here, it is observed that the intensification of thermal buoyancy forces raises the stratification levels in the fluid flow. The high intensity of stratification forces introduces the contra-rotating pair of fluid flow movements. On the other hand, horizontally applied magnetic forces significantly restrict the convective flow of heat and mass fluxes, resulting in a massive drop of entropy generation by viscous dissipation. |
ArticleNumber | 773 |
Author | Kumar, B. V. Rathish Krishna Murthy, Somanchi V. S. S. N. V. G. Kumar, Vinay |
Author_xml | – sequence: 1 givenname: Vinay surname: Kumar fullname: Kumar, Vinay organization: Department of Applied Mathematics, Defence Institute of Advanced Technology(DU), Department of Mathematics and Statistics, Indian Institute of Technology Kanpur – sequence: 2 givenname: Somanchi V. S. S. N. V. G. surname: Krishna Murthy fullname: Krishna Murthy, Somanchi V. S. S. N. V. G. email: sgkmurthy@gmail.com, skmurthy@diat.ac.in organization: Department of Applied Mathematics, Defence Institute of Advanced Technology(DU) – sequence: 3 givenname: B. V. Rathish surname: Kumar fullname: Kumar, B. V. Rathish organization: Department of Mathematics and Statistics, Indian Institute of Technology Kanpur |
BookMark | eNqFkE1LAzEQhoMoWGt_gwHPa_O1u81Rav2AghfFY0izWU1pk5jZbem_N3UFvTmXGWbed3h5LtCpD94idEXJDaWCTG1cxylQzitSEEYLQmtRFvsTNGJUkqIUQpz-mc_RBGBNcglJhRQj9LbwXQrxgLVv8LbfdC5-HMAZyAu9yRNg57HGOwcm9IAbB-Ci7tzO4pyluNPJOO1xDOl4tt5sAvTJXqKzVm_ATn76GL3eL17mj8Xy-eFpfrssDOeiK-isrNrWrMpVy1grGkoJJW1lmtIYw43MmSVndsVEMzOCSiOziFjCtK15RRkfo-vhb0zhs7fQqXXoU44OikkqJRE151lVDyqTAkCyrYrJbXU6KErUEaQ6glQDSJVBqm-Qap-ds8EJ2eHfbfr9_5_1CzL9faU |
CitedBy_id | crossref_primary_10_1007_s12648_023_02739_3 |
Cites_doi | 10.1016/j.anucene.2019.107222 10.1023/A:1006636605498 10.1023/A:1006542410627 10.1016/j.fusengdes.2015.01.018 10.1016/j.ijheatmasstransfer.2004.02.005 10.1017/S0022112062001196 10.1016/j.petrol.2011.11.008 10.1109/TMAG.2017.2659703 10.1016/S0017-9310(02)00089-3 10.1002/9781119245964 10.1016/j.icheatmasstransfer.2021.105190 10.1023/A:1023557332542 10.1016/j.cmpb.2019.105171 10.1002/9781118671627 10.1016/j.ijheatmasstransfer.2003.11.006 10.1016/j.ijheatmasstransfer.2019.02.028 10.1115/1.3564760 10.1017/S0022112095001662 10.1007/s00253-006-0344-3 10.1002/pen.21077 10.1007/978-1-4020-8178-1 10.1115/1.2177684 10.1016/j.jngse.2020.103473 10.1016/j.ijheatmasstransfer.2014.02.057 10.1007/s11242-007-9181-9 10.1016/j.pnmrs.2011.12.001 10.1080/01495728308963084 10.1017/S0022112078001718 10.1016/j.ijheatmasstransfer.2017.06.021 10.1016/j.ijheatmasstransfer.2012.07.063 10.1016/j.icheatmasstransfer.2019.05.011 10.1109/ACCESS.2018.2836348 10.1016/j.ijmecsci.2018.07.026 10.1007/s11242-011-9770-5 10.1023/A:1006558926606 10.1029/94GL00028 10.1016/j.ijheatmasstransfer.2017.10.054 10.1115/1.3248027 10.1017/S0022112002001404 10.1115/1.3451063 10.1002/aic.12659 10.1016/j.pecs.2017.08.003 10.1109/ACCESS.2018.2876599 10.1007/s11242-005-2720-3 10.1016/j.ijheatmasstransfer.2005.09.018 10.1016/S0009-2509(99)00018-4 10.13182/FST98-A63 10.1007/s11242-011-9769-y 10.1016/j.ijheatmasstransfer.2011.01.020 10.1016/j.rser.2017.04.070 10.1007/s00231-006-0132-8 10.1016/j.cma.2018.09.044 10.1016/j.ijheatmasstransfer.2008.04.023 10.1016/j.fluiddyn.2004.10.004 10.1080/10407788608913535 10.1016/j.rser.2014.11.104 10.1016/0009-2509(81)80047-4 10.1016/S0017-9310(99)00291-4 10.1201/b18614 10.1007/978-3-642-27910-2 10.1016/j.nucengdes.2019.110357 10.1029/1999JB900090 10.1080/10407782.2019.1647734 10.1016/0017-9310(85)90261-3 10.1007/978-3-642-30532-0 10.1016/0360-5442(80)90091-2 10.1016/0022-3115(85)90425-8 10.1016/j.jclepro.2021.126119 10.1115/1.3245684 10.1016/j.rser.2011.09.012 10.1016/0142-727X(94)90029-9 10.1140/epjp/s13360-020-00812-y 10.1007/BF01073173 10.1016/S0730-725X(01)00246-6 10.1016/j.icheatmasstransfer.2020.104499 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021 The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO HCIFZ P5Z P62 PCBAR PQEST PQQKQ PQUKI |
DOI | 10.1140/epjp/s13360-021-01745-w |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection Earth, Atmospheric & Aquatic Science Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest One Academic |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2190-5444 |
ExternalDocumentID | 10_1140_epjp_s13360_021_01745_w |
GroupedDBID | -5F -5G -BR -EM -~C 06D 0R~ 203 29~ 2JN 2KG 30V 4.4 406 408 8UJ 95. 96X AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZMS ABDZT ABECU ABFGW ABFTV ABHLI ABJNI ABJOX ABKAS ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACBMV ACBRV ACBYP ACGFS ACHSB ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACREN ACTTH ACVWB ACWMK ADHHG ADINQ ADKNI ADKPE ADMDM ADOXG ADURQ ADYFF ADZKW AEFTE AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AESTI AETCA AEVLU AEVTX AEXYK AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGMZJ AGQMX AGWZB AGYKE AHAVH AHBYD AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJDOV AJRNO AJZVZ AKQUC ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARMRJ AXYYD AYJHY BGNMA CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI ESBYG FERAY FFXSO FIGPU FNLPD FRRFC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O93 O9J P9T PT4 RID RLLFE RSV S27 S3B SHX SISQX SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TSG U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z7R Z7S Z7X Z7Y Z7Z Z83 ZMTXR ~A9 2VQ AAAVM AACDK AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ ADQRH AEBTG AEFQL AEKMD AEMSY AFBBN AFKRA AGJBK AGQEE AGRTI AHSBF AIGIU AJBLW ARAPS BENPR BGLVJ BHPHI BKSAR CCPQU CITATION EJD FINBP FSGXE HCIFZ O9- PCBAR ROL S1Z SJYHP 8FE 8FG AAYZH DWQXO P62 PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c334t-1856ffcb5bf22f4d11010f6cd5ccc3c9444932eb24d8c419c9f4d0e02ae736123 |
IEDL.DBID | 8FG |
ISSN | 2190-5444 |
IngestDate | Thu Nov 07 07:20:16 EST 2024 Thu Sep 12 17:15:57 EDT 2024 Sat Dec 16 12:09:33 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-1856ffcb5bf22f4d11010f6cd5ccc3c9444932eb24d8c419c9f4d0e02ae736123 |
PQID | 2919904733 |
PQPubID | 2044220 |
ParticipantIDs | proquest_journals_2919904733 crossref_primary_10_1140_epjp_s13360_021_01745_w springer_journals_10_1140_epjp_s13360_021_01745_w |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | European physical journal plus |
PublicationTitleAbbrev | Eur. Phys. J. Plus |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | F.A. Coutelieris, J.M. Delgado, Transport Processes in Porous Media, vol. 20 (Springer, 2012) WangMChenJZhangDZhangJTianWSuGQiuSNumerical study on the thermal stratification characteristics in the upper plenum of sodium-cooled fast reactor (SFR)Ann. Nucl. Energy202013810722210.1016/j.anucene.2019.107222 ZengZGriggRA criterion for non-Darcy flow in porous mediaTransp. Porous Media2006631576910.1007/s11242-005-2720-3 LeonardiMPizzarelliMNasutiFAnalysis of thermal stratification impact on the design of cooling channels for liquid rocket enginesInt. J. Heat Mass Transf.201913581182110.1016/j.ijheatmasstransfer.2019.02.028 KoptyugIVMRI of mass transport in porous media: drying and sorption processesProgr. Nucl. Magnet. Resonan. Spectrosc.20126516510.1016/j.pnmrs.2011.12.001 GebhartBEffects of viscous dissipation in natural convectionJ. Fluid Mech.19621422252321445570106.3990310.1017/S0022112062001196 CostaVAFSousaACMVasseurPNatural convection in square enclosures filled with fluid-saturated porous media under the influence of the magnetic field induced by two parallel vertical electric currentsInt. J. Heat Mass Transf.201255237321732910.1016/j.ijheatmasstransfer.2012.07.063 DingJYangXLongZDangNThree-dimensional numerical analysis and optimization of electromagnetic suspension system for 200 km/h maglev train considering eddy current effectIEEE Access20186615476155510.1109/ACCESS.2018.2876599 ThauvinFMohantyKNetwork modeling of non-darcy flow through porous mediaTransp. Porous Media1998311193710.1023/A:1006558926606 RevnicCGrosanTPopIInghamDMagnetic field effect on the unsteady free convection flow in a square cavity filled with a porous medium with a constant heat generationInt. J. Heat Mass Transf.2011549173417421217.8008410.1016/j.ijheatmasstransfer.2011.01.020 TorabiMKarimiNPetersonGYeeSChallenges and progress on the modelling of entropy generation in porous media: a reviewInt. J. Heat Mass Transf.2017114314610.1016/j.ijheatmasstransfer.2017.06.021 SheikholeslamiMFarshadSASaidZAnalyzing entropy and thermal behavior of nanomaterial through solar collector involving new tapesInt. Commun. Heat Mass Transf.202112310519010.1016/j.icheatmasstransfer.2021.105190 HassanHRegnierNPujosCDefayeGEffect of viscous dissipation on the temperature of the polymer during injection molding fillingPolym. Eng. Sci.20084861199120610.1002/pen.21077 OztopHFAl-SalemKA review on entropy generation in natural and mixed convection heat transfer for energy systemsRenew. Sustain. Energy Rev.201216191192010.1016/j.rser.2011.09.012 OkawaRFuruyaMTrace code demonstration of thermal stratification in BWR suppression poolNucl. Eng. Des.201935511035710.1016/j.nucengdes.2019.110357 D. Ingham, A. Bejan, E. Mamut, I. Pop, Emerging Technologies and Techniques in Porous Media, vol. 134 (Springer, 2012) HossainMReesDASNon-Darcy free convection along a horizontal heated surfaceTransp. Porous Media199729330932110.1023/A:1006542410627 BiswalPBasakTEntropy generation vs energy efficiency for natural convection based energy flow in enclosures and various applications: a reviewRenew. Sustain. Energy Rev.2017801412145710.1016/j.rser.2017.04.070 RakeshVDattaAKWaltonJHMcCarthyKLMcCarthyMJMicrowave combination heating: coupled electromagnetics-multiphase porous media modeling and MRI experimentationAIChE J.20125841262127810.1002/aic.12659 H. Schwaeger, L. Cathles III., Streaming potential in porous media 2. Theory and application to geothermal systems. J. Geophys. Res. 104(B9), 20–033 (1999) TrevisanOVBejanACombined heat and mass transfer by natural convection in a vertical enclosureJ. Heat Transf.1987109110411210.1115/1.3248027 LiBMaXZhangGGuoWXuTYuanYSunYEnhancement of gas production from natural gas hydrate reservoir by reservoir stimulation with the stratification split grouting foam mortar methodJ. Nat. Gas Sci. Eng.20208110347310.1016/j.jngse.2020.103473 JeongJ-HHaC-WLimJChoiJ-YAnalysis and control of electromagnetic coupling effect of levitation and guidance systems for semi-high-speed maglev train considering current directionIEEE Trans. Magn.20175361410.1109/TMAG.2017.2659703 BasakTDasDBiswalPHeatlines: modeling, visualization, mixing and thermal managementProgr. Energy Combust. Sci.20186415721810.1016/j.pecs.2017.08.003 FranzrebMSiemann-HerzbergMHobleyTJThomasORProtein purification using magnetic adsorbent particlesAppl. Microbiol. Biotechnol.200670550551610.1007/s00253-006-0344-3 BeckermannCViskantaRRamadhyaniSA numerical study of non-Darcian natural convection in a vertical enclosure filled with a porous mediumNumer. Heat Transf.198610655757010.1080/10407788608913535 JooSMarangoni instabilities in liquid mixtures with Soret effectsJ. Fluid Mech.19952931271450843.7602610.1017/S0022112095001662 WalkerKLHomsyGMConvection in a porous cavityJ. Fluid Mech.197887034494740383.7606310.1017/S0022112078001718 M. Sheikholeslami, S.A. Farshad, Z. Ebrahimpour, Z. Said, Recent progress on flat plate solar collectors and photovoltaic systems in the presence of nanofluid: a review. J. Clean. Prod. 126119 (2021) V. Kumar, S.V.S.S.N.V.G.K. Murthy, B.V.R. Kumar, Influence of MHD forces on Bejan’s heatlines and masslines in a doubly stratified fluid saturated Darcy porous enclosure in the presence of Soret and Dufour effects-a numerical study. Int. J. Heat Mass Transf. 117, 1041–1062 (2018) InghamDBPopITransport Phenomena in Porous Media2005OxfordElsevier0918.76002 A. Bejan, Advanced Engineering Thermodynamics (Wiley, 2016) SedermanAJGladdenLFMagnetic resonance visualisation of single-and two-phase flow in porous mediaMagn. Resonan. Imaging2001193–433934310.1016/S0730-725X(01)00246-6 M. Turkyilmazoglu, MHD natural convection in saturated porous media with heat generation/absorption and thermal radiation: closed-form solutions. Arch. Mech. 71(1) (2019) BejanAA study of entropy generation in fundamental convective heat transferJ. Heat Transf.1979101471872510.1115/1.3451063 VarolYOztopHFMobediMPopIVisualization of natural convection heat transport using heatline method in porous non-isothermally heated triangular cavityInt. J. Heat Mass Transf.20085121504050511154.8035210.1016/j.ijheatmasstransfer.2008.04.023 LinH-JHorváthSViscous dissipation in packed bedsChem. Eng. Sci.1981361475510.1016/0009-2509(81)80047-4 LonghurstGRThe Soret effect and its implications for fusion reactorsJ. Nucl. Mater.19851311616910.1016/0022-3115(85)90425-8 Al-HadhramiAElliottLInghamDA new model for viscous dissipation in porous media across a range of permeability valuesTransp. Porous Media2003531117122198269110.1023/A:1023557332542 TurkyilmazogluMNanoliquid film flow due to a moving substrate and heat transferEur. Phys. J. Plus20201351011310.1140/epjp/s13360-020-00812-y KumarBRNon-Darcy free convection induced by a vertical wavy surface in a thermally stratified porous mediumInt. J. Heat Mass Transf.20044710–11235323631045.7656610.1016/j.ijheatmasstransfer.2003.11.006 K.-J. Dunn, D.J. Bergman, G.A. LaTorraca, Nuclear Magnetic Resonance: Petrophysical and Logging Applications, vol. 32 (Elsevier, 2002) SaeidNHPopINon-Darcy natural convection in a square cavity filled with a porous mediumFluid Dyn. Res.2005361354321156871153.7641910.1016/j.fluiddyn.2004.10.004 KimuraSBejanA’The “heatline” visualization of convective heat transferJ. Heat Transf.1983105491691910.1115/1.3245684 GeindreauCAuriaultJLMagnetohydrodynamic flows in porous mediaJ. Fluid Mech.200246634319254781023.7604910.1017/S0022112002001404 NieldDAA comment on “on magneto convection in a mushy layer” by DN RiahiTransp. Porous Media2011892287288385887010.1007/s11242-011-9770-5 SiddiquiAATurkyilmazogluMNatural convection in the ferrofluid enclosed in a porous and permeable cavityInt. Commun. Heat Mass Transf.202011310449910.1016/j.icheatmasstransfer.2020.104499 BasakTRoySPaulTPopINatural convection in a square cavity filled with a porous medium: effects of various thermal boundary conditionsInt. J. Heat Mass Transf.2006497143014411189.7651110.1016/j.ijheatmasstransfer.2005.09.018 XuJSunYGaoDMaWLuoSQianQDynamic modeling and adaptive sliding mode control for a maglev train system based on a magnetic flux observerIEEE Access20186315713157910.1109/ACCESS.2018.2836348 SheikholeslamiMNew computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous mediaComput. Methods Appl. Mech. Eng.201934431933338728791440.7615010.1016/j.cma.2018.09.044 RyooSRahmaniARYoonKYProdanovićMKotsmarCMilnerTEJohnstonKPBryantSLHuhCTheoretical and experimental investigation of the motion of multiphase fluids containing paramagnetic nanoparticles in porous mediaJ. Pet. Sci. Eng.20128112914410.1016/j.petrol.2011.11.008 V. Kumar, S.V.S.S.N.V.G.K. Murthy, B.V.R. Kumar, Bejan’s heatline and massline visualization of multi-force effect on convection in a porous enclosure. Int. J. Mech. Sci. 146, 249–271 (2018) RahmanMSaghirMThermodiffusion or Soret effect: historical reviewInt. J. Heat Mass Transf.20147369370510.1016/j.ijheatmasstransfer.2014.02.057 LukoseLBasakTHeatlines vs energy flux vectors: tools for heat flow visualizationInt. Commun. Heat Mass Transf.201910810426510.1016/j.icheatmasstransfer.2019.05.011 RiahiDNOn magneto convection in a mushy layerTransp. Porous Media201189228528610.1007/s11242-011-9769-y O.G. Martynenko, P.P. Khramtsov, Free-Convective Heat Transfer: With Many Photographs of Flows and Heat Exchange (Springer, 2005) BühlerLMistrangeloCNajuchTMagnetohydrodynamic flows in model porous structuresFusion Eng. Des.2015981239124310.1016/j.fusengdes.2015.01.018 SciacovelliAVerdaVSciubbaEEntropy generation analysis as a design tool: a reviewRenew. Sustain. Energy Rev.2015431167118110.1016/j.rser.2014.11.104 CostaVAFBejan’s heatlines and masslines for convection visualization and analysisAppl. Mech. Rev.2006593126145241465010.1115/1.2177684 ReesDASPopINon-Darcy natural convection from a vertical wavy surface in a porous mediumTransp. Porous Media199520322323410.1007/BF01073173 BeaversGSSparrowEMNon-Darcy flow through fibrous porous mediaJ. Appl. Mech.19693671171410.1115 HF Oztop (1745_CR20) 2012; 16 A Postelnicu (1745_CR31) 2007; 43 S Ryoo (1745_CR45) 2012; 81 DAS Rees (1745_CR73) 1995; 20 T Basak (1745_CR58) 2006; 49 DA Nield (1745_CR53) 2011; 89 1745_CR64 A Bejan (1745_CR18) 1980; 5 DA Nield (1745_CR50) 2008; 73 AM Morega (1745_CR56) 1994; 15 1745_CR63 M Franzreb (1745_CR35) 2006; 70 OV Trevisan (1745_CR78) 1985; 28 L Bühler (1745_CR42) 2015; 98 OV Trevisan (1745_CR55) 1987; 109 Y Varol (1745_CR57) 2008; 51 Z Zeng (1745_CR15) 2006; 63 J Xu (1745_CR65) 2018; 6 A Bejan (1745_CR17) 1979; 101 AJ Sederman (1745_CR44) 2001; 19 M Rahman (1745_CR32) 2014; 73 IV Koptyug (1745_CR33) 2012; 65 DN Riahi (1745_CR51) 2011; 89 S Joo (1745_CR29) 1995; 293 S Kimura (1745_CR54) 1983; 105 GR Longhurst (1745_CR28) 1985; 131 1745_CR36 G Shiralkar (1745_CR77) 1983; 6 1745_CR39 A Al-Hadhrami (1745_CR69) 2003; 53 MI Bergman (1745_CR52) 1994; 21 M Leonardi (1745_CR24) 2019; 135 BR Kumar (1745_CR72) 2004; 47 F Thauvin (1745_CR12) 1998; 31 J-H Jeong (1745_CR66) 2017; 53 M Hossain (1745_CR74) 1997; 29 S Mahmud (1745_CR43) 2004; 47 AA Siddiqui (1745_CR46) 2020; 113 VAF Costa (1745_CR59) 2006; 59 1745_CR48 D Nield (1745_CR68) 2000; 41 M Sheikholeslami (1745_CR37) 2019; 344 X Wang (1745_CR16) 1999; 54 V Rakesh (1745_CR34) 2012; 58 1745_CR41 W Koehler (1745_CR30) 2016; 41 M Turkyilmazoglu (1745_CR47) 2020; 187 NH Saeid (1745_CR80) 2005; 36 C Revnic (1745_CR76) 2011; 54 C Geindreau (1745_CR40) 2002; 466 VAF Costa (1745_CR81) 2012; 55 A Sciacovelli (1745_CR21) 2015; 43 R Anandalakshmi (1745_CR62) 2019; 76 R Okawa (1745_CR26) 2019; 355 L Lukose (1745_CR61) 2019; 108 H Hassan (1745_CR82) 2008; 48 GS Beavers (1745_CR14) 1969; 36 H-J Lin (1745_CR70) 1981; 36 M Phanikumar (1745_CR13) 2002; 45 1745_CR19 M Wang (1745_CR27) 2020; 138 AC Baytaş (1745_CR83) 2000; 43 1745_CR1 P Biswal (1745_CR22) 2017; 80 1745_CR6 1745_CR5 1745_CR4 1745_CR11 M Turkyilmazoglu (1745_CR49) 2020; 135 1745_CR3 1745_CR10 1745_CR9 M Sheikholeslami (1745_CR38) 2021; 123 1745_CR8 1745_CR7 B Li (1745_CR25) 2020; 81 T Basak (1745_CR60) 2018; 64 B Gebhart (1745_CR71) 1962; 14 J Ding (1745_CR67) 2018; 6 DB Ingham (1745_CR2) 2005 M Torabi (1745_CR23) 2017; 114 KL Walker (1745_CR79) 1978; 87 C Beckermann (1745_CR75) 1986; 10 |
References_xml | – ident: 1745_CR6 – volume: 138 start-page: 107222 year: 2020 ident: 1745_CR27 publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2019.107222 contributor: fullname: M Wang – volume: 41 start-page: 349 issue: 3 year: 2000 ident: 1745_CR68 publication-title: Transp. Porous Media doi: 10.1023/A:1006636605498 contributor: fullname: D Nield – volume: 29 start-page: 309 issue: 3 year: 1997 ident: 1745_CR74 publication-title: Transp. Porous Media doi: 10.1023/A:1006542410627 contributor: fullname: M Hossain – volume: 98 start-page: 1239 year: 2015 ident: 1745_CR42 publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2015.01.018 contributor: fullname: L Bühler – volume: 47 start-page: 3245 issue: 14–16 year: 2004 ident: 1745_CR43 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2004.02.005 contributor: fullname: S Mahmud – volume: 14 start-page: 225 issue: 2 year: 1962 ident: 1745_CR71 publication-title: J. Fluid Mech. doi: 10.1017/S0022112062001196 contributor: fullname: B Gebhart – volume: 81 start-page: 129 year: 2012 ident: 1745_CR45 publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2011.11.008 contributor: fullname: S Ryoo – ident: 1745_CR10 – volume: 53 start-page: 1 issue: 6 year: 2017 ident: 1745_CR66 publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2017.2659703 contributor: fullname: J-H Jeong – volume: 45 start-page: 3781 issue: 18 year: 2002 ident: 1745_CR13 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(02)00089-3 contributor: fullname: M Phanikumar – ident: 1745_CR19 doi: 10.1002/9781119245964 – volume: 123 start-page: 105190 year: 2021 ident: 1745_CR38 publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2021.105190 contributor: fullname: M Sheikholeslami – volume: 53 start-page: 117 issue: 1 year: 2003 ident: 1745_CR69 publication-title: Transp. Porous Media doi: 10.1023/A:1023557332542 contributor: fullname: A Al-Hadhrami – volume: 187 start-page: 105171 year: 2020 ident: 1745_CR47 publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2019.105171 contributor: fullname: M Turkyilmazoglu – ident: 1745_CR8 doi: 10.1002/9781118671627 – volume: 47 start-page: 2353 issue: 10–11 year: 2004 ident: 1745_CR72 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2003.11.006 contributor: fullname: BR Kumar – volume: 135 start-page: 811 year: 2019 ident: 1745_CR24 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.02.028 contributor: fullname: M Leonardi – volume: 36 start-page: 711 year: 1969 ident: 1745_CR14 publication-title: J. Appl. Mech. doi: 10.1115/1.3564760 contributor: fullname: GS Beavers – volume: 293 start-page: 127 year: 1995 ident: 1745_CR29 publication-title: J. Fluid Mech. doi: 10.1017/S0022112095001662 contributor: fullname: S Joo – volume: 70 start-page: 505 issue: 5 year: 2006 ident: 1745_CR35 publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-006-0344-3 contributor: fullname: M Franzreb – volume: 48 start-page: 1199 issue: 6 year: 2008 ident: 1745_CR82 publication-title: Polym. Eng. Sci. doi: 10.1002/pen.21077 contributor: fullname: H Hassan – ident: 1745_CR9 doi: 10.1007/978-1-4020-8178-1 – volume: 59 start-page: 126 issue: 3 year: 2006 ident: 1745_CR59 publication-title: Appl. Mech. Rev. doi: 10.1115/1.2177684 contributor: fullname: VAF Costa – volume: 81 start-page: 103473 year: 2020 ident: 1745_CR25 publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2020.103473 contributor: fullname: B Li – volume: 73 start-page: 693 year: 2014 ident: 1745_CR32 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.02.057 contributor: fullname: M Rahman – volume: 73 start-page: 379 issue: 3 year: 2008 ident: 1745_CR50 publication-title: Transp. Porous Media doi: 10.1007/s11242-007-9181-9 contributor: fullname: DA Nield – volume: 65 start-page: 1 year: 2012 ident: 1745_CR33 publication-title: Progr. Nucl. Magnet. Resonan. Spectrosc. doi: 10.1016/j.pnmrs.2011.12.001 contributor: fullname: IV Koptyug – volume: 6 start-page: 223 issue: 2 year: 1983 ident: 1745_CR77 publication-title: Numer. Heat Transf. doi: 10.1080/01495728308963084 contributor: fullname: G Shiralkar – volume: 87 start-page: 449 issue: 03 year: 1978 ident: 1745_CR79 publication-title: J. Fluid Mech. doi: 10.1017/S0022112078001718 contributor: fullname: KL Walker – volume: 114 start-page: 31 year: 2017 ident: 1745_CR23 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.06.021 contributor: fullname: M Torabi – volume: 55 start-page: 7321 issue: 23 year: 2012 ident: 1745_CR81 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2012.07.063 contributor: fullname: VAF Costa – volume: 108 start-page: 104265 year: 2019 ident: 1745_CR61 publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2019.05.011 contributor: fullname: L Lukose – volume: 6 start-page: 31571 year: 2018 ident: 1745_CR65 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2836348 contributor: fullname: J Xu – volume-title: Transport Phenomena in Porous Media year: 2005 ident: 1745_CR2 contributor: fullname: DB Ingham – ident: 1745_CR63 doi: 10.1016/j.ijmecsci.2018.07.026 – ident: 1745_CR48 – volume: 89 start-page: 287 issue: 2 year: 2011 ident: 1745_CR53 publication-title: Transp. Porous Media doi: 10.1007/s11242-011-9770-5 contributor: fullname: DA Nield – ident: 1745_CR4 – volume: 31 start-page: 19 issue: 1 year: 1998 ident: 1745_CR12 publication-title: Transp. Porous Media doi: 10.1023/A:1006558926606 contributor: fullname: F Thauvin – volume: 21 start-page: 477 issue: 6 year: 1994 ident: 1745_CR52 publication-title: Geophys. Res. Lett. doi: 10.1029/94GL00028 contributor: fullname: MI Bergman – ident: 1745_CR64 doi: 10.1016/j.ijheatmasstransfer.2017.10.054 – volume: 109 start-page: 104 issue: 1 year: 1987 ident: 1745_CR55 publication-title: J. Heat Transf. doi: 10.1115/1.3248027 contributor: fullname: OV Trevisan – volume: 466 start-page: 343 year: 2002 ident: 1745_CR40 publication-title: J. Fluid Mech. doi: 10.1017/S0022112002001404 contributor: fullname: C Geindreau – volume: 101 start-page: 718 issue: 4 year: 1979 ident: 1745_CR17 publication-title: J. Heat Transf. doi: 10.1115/1.3451063 contributor: fullname: A Bejan – volume: 58 start-page: 1262 issue: 4 year: 2012 ident: 1745_CR34 publication-title: AIChE J. doi: 10.1002/aic.12659 contributor: fullname: V Rakesh – volume: 64 start-page: 157 year: 2018 ident: 1745_CR60 publication-title: Progr. Energy Combust. Sci. doi: 10.1016/j.pecs.2017.08.003 contributor: fullname: T Basak – volume: 6 start-page: 61547 year: 2018 ident: 1745_CR67 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2876599 contributor: fullname: J Ding – volume: 63 start-page: 57 issue: 1 year: 2006 ident: 1745_CR15 publication-title: Transp. Porous Media doi: 10.1007/s11242-005-2720-3 contributor: fullname: Z Zeng – volume: 49 start-page: 1430 issue: 7 year: 2006 ident: 1745_CR58 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2005.09.018 contributor: fullname: T Basak – volume: 54 start-page: 1859 issue: 12 year: 1999 ident: 1745_CR16 publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(99)00018-4 contributor: fullname: X Wang – ident: 1745_CR41 doi: 10.13182/FST98-A63 – ident: 1745_CR1 – volume: 89 start-page: 285 issue: 2 year: 2011 ident: 1745_CR51 publication-title: Transp. Porous Media doi: 10.1007/s11242-011-9769-y contributor: fullname: DN Riahi – volume: 54 start-page: 1734 issue: 9 year: 2011 ident: 1745_CR76 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2011.01.020 contributor: fullname: C Revnic – volume: 80 start-page: 1412 year: 2017 ident: 1745_CR22 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.04.070 contributor: fullname: P Biswal – volume: 43 start-page: 595 issue: 6 year: 2007 ident: 1745_CR31 publication-title: Heat Mass Transf. doi: 10.1007/s00231-006-0132-8 contributor: fullname: A Postelnicu – volume: 344 start-page: 319 year: 2019 ident: 1745_CR37 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2018.09.044 contributor: fullname: M Sheikholeslami – volume: 51 start-page: 5040 issue: 21 year: 2008 ident: 1745_CR57 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2008.04.023 contributor: fullname: Y Varol – volume: 36 start-page: 35 issue: 1 year: 2005 ident: 1745_CR80 publication-title: Fluid Dyn. Res. doi: 10.1016/j.fluiddyn.2004.10.004 contributor: fullname: NH Saeid – volume: 10 start-page: 557 issue: 6 year: 1986 ident: 1745_CR75 publication-title: Numer. Heat Transf. doi: 10.1080/10407788608913535 contributor: fullname: C Beckermann – volume: 43 start-page: 1167 year: 2015 ident: 1745_CR21 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.11.104 contributor: fullname: A Sciacovelli – volume: 36 start-page: 47 issue: 1 year: 1981 ident: 1745_CR70 publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(81)80047-4 contributor: fullname: H-J Lin – volume: 43 start-page: 2089 issue: 12 year: 2000 ident: 1745_CR83 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(99)00291-4 contributor: fullname: AC Baytaş – ident: 1745_CR3 doi: 10.1201/b18614 – ident: 1745_CR5 doi: 10.1007/978-3-642-27910-2 – volume: 355 start-page: 110357 year: 2019 ident: 1745_CR26 publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2019.110357 contributor: fullname: R Okawa – ident: 1745_CR36 doi: 10.1029/1999JB900090 – volume: 76 start-page: 687 issue: 9 year: 2019 ident: 1745_CR62 publication-title: Numer. Heat Transf., Part A: Appl. doi: 10.1080/10407782.2019.1647734 contributor: fullname: R Anandalakshmi – ident: 1745_CR11 – volume: 28 start-page: 1597 issue: 8 year: 1985 ident: 1745_CR78 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(85)90261-3 contributor: fullname: OV Trevisan – ident: 1745_CR7 doi: 10.1007/978-3-642-30532-0 – volume: 5 start-page: 720 issue: 8–9 year: 1980 ident: 1745_CR18 publication-title: Energy doi: 10.1016/0360-5442(80)90091-2 contributor: fullname: A Bejan – volume: 131 start-page: 61 issue: 1 year: 1985 ident: 1745_CR28 publication-title: J. Nucl. Mater. doi: 10.1016/0022-3115(85)90425-8 contributor: fullname: GR Longhurst – ident: 1745_CR39 doi: 10.1016/j.jclepro.2021.126119 – volume: 105 start-page: 916 issue: 4 year: 1983 ident: 1745_CR54 publication-title: J. Heat Transf. doi: 10.1115/1.3245684 contributor: fullname: S Kimura – volume: 16 start-page: 911 issue: 1 year: 2012 ident: 1745_CR20 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2011.09.012 contributor: fullname: HF Oztop – volume: 15 start-page: 42 issue: 1 year: 1994 ident: 1745_CR56 publication-title: Int. J. Heat Fluid Flow doi: 10.1016/0142-727X(94)90029-9 contributor: fullname: AM Morega – volume: 135 start-page: 1 issue: 10 year: 2020 ident: 1745_CR49 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-020-00812-y contributor: fullname: M Turkyilmazoglu – volume: 20 start-page: 223 issue: 3 year: 1995 ident: 1745_CR73 publication-title: Transp. Porous Media doi: 10.1007/BF01073173 contributor: fullname: DAS Rees – volume: 41 start-page: 151 issue: 3 year: 2016 ident: 1745_CR30 publication-title: J. Non-Equilib. Thermodyn. contributor: fullname: W Koehler – volume: 19 start-page: 339 issue: 3–4 year: 2001 ident: 1745_CR44 publication-title: Magn. Resonan. Imaging doi: 10.1016/S0730-725X(01)00246-6 contributor: fullname: AJ Sederman – volume: 113 start-page: 104499 year: 2020 ident: 1745_CR46 publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2020.104499 contributor: fullname: AA Siddiqui |
SSID | ssj0000491494 |
Score | 2.2598348 |
Snippet | The present article assessed the mathematical model for the entropy generation in free convective heat and mass transfer phenomenon in the thermal and species... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 773 |
SubjectTerms | Applied and Technical Physics Atomic Complex Systems Condensed Matter Physics Contours Convective flow Cooling Differential equations Dimensionless numbers Dissipation Energy Entropy Finite element method Fluid flow Fluid friction Heat flux Heat transfer Magnetic fields Magnetic resonance imaging Mass transfer Mathematical and Computational Physics Mathematical models Membrane separation Molecular NMR Nonlinear differential equations Nuclear magnetic resonance Nuclear reactors Numerical models Optical and Plasma Physics Partial differential equations Physics Physics and Astronomy Porous media Proteins Regular Article Research methodology Rotating fluids Simulation Stratification Theoretical |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4CIkLb8R4KQeu2dI265bjxFMgOIGAU5SkiTRA3UQ3Jvj1OE3LBEgguNZtqtpJ_cX-7AAcMBNpdA2OijLNKHRKVZLFNLadzKVKR1r5eMflVXp2w8_v2ncz0P0IXeSPzTojWf6oQztb1rLDh2GrwB1VyqinFeBM4m06mYX5qvp0vnd6fzGNryDyRfDPK0rXDyN8dkhTlPklMVr6m5NluK-rdgLN5LE5HummefvexPHPn7ICSxUIJb0wa1ZhxuZrsFCSQU2xDrfHnr4-fCUqz0hgHAYRXggtTEg_J4q89AszGBfE5_RLZvaLJfkgp0f-fCKVE4T2Xozr4GngA5EbcHNyfH14RqsDGKhJEj6i6MtT54xua4fm5BlChYi51GRtY0xiBOcc4R_uzXnWNTwSRuBNzLJY2U7i-7pswhy-1m4BscZZrmJhEPDxSFnFtUgdE1a7VCPoagCrrSCHoc-GDDXTTHp9yaAvifqSpb7kpAG7tbVktfAKGYsI_SvvJEkDolr7U_EvQ27_45kdWIxLK3oK7y7MjZ7Hdg-BykjvV3PyHSqK480 priority: 102 providerName: Springer Nature |
Title | Entropy and multiphysics analysis in a viscous dissipative non-Darcian porous enclosure |
URI | https://link.springer.com/article/10.1140/epjp/s13360-021-01745-w https://www.proquest.com/docview/2919904733 |
Volume | 136 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bS8MwFA66IfgiXnE6Rx58DeslbZcnmdptKA4Rh_MpJGkCE-mqnRv-e096ceiDPhWSksKXNOc753zJQejcUa4E02AIK9KMTIZE-IlHPB0lJhTSlcLGO-7G4WhCb6bBtAq45ZWsst4Ti406mSsbI-96zIWNk0a-f5G9EVs1ymZXqxIam6jpelFkna_eYPgdYwH2Cw4ArWRd4Ep0dfaSdXPwy0KHWHECrEcakNVPo7Rmmr-So4XNGeyinYos4n45u3toQ6f7aKsQbar8AD3FVmaefWKRJrhUBpZd0FBeNYJnKRZ4OcsVOPjY5t4LBfVSY_D6ybWtIyRSDBTcdsN6fZ3bgOEhmgzix6sRqQolEOX7dEHA5obGKBlIA7DTBEy665hQJYFSyleMUgo0DXxomvQUdZli8JKjHU_oyLf3rxyhBnxWHyOsldFUeEwBMaOu0IJKFhqHaWlCCeSohZwaKZ6V92Hw8myzwy24vASXA7i8AJevWqhdI8qrHyTn6-lsIbdGed39z5Anfw95ira9YnatqraNGov3D30G3GEhO8UC6aBmf_h8G8PzMh7fP0DrxOt_AcJVyHY |
link.rule.ids | 315,783,787,12777,21400,27936,27937,33385,33756,41093,41535,42162,42604,43612,43817,52123,52246 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEA7aInoRn1itmoPX0OxudmtO4qOlaltEWvQWkmwCFdmubm3x3zvZh0UPet0sWfiSzXwz82UGoTOqPQWmwRKepxm5iogMYp_4ph3bSCpPSRfvGAyj3pjdPYfPZcAtK2WV1ZmYH9TxVLsYecvnHhycrB0EF-kbcV2jXHa1bKGxiuquVBU4X_WrzvDh8TvKAvwXXABWCrvAmWiZ9CVtZeCZRZQ4eQLsSBaSxU-ztOSav9KjudXpbqHNki7iy2J9t9GKSXbQWi7b1Nkueuo4oXn6iWUS40IbWAzBg6LYCJ4kWOL5JNPg4mOXfc811HODwe8nN66TkEwwkHA3DDv2depChnto3O2MrnukbJVAdBCwGQGrG1mrVagsAM9iMOoetZGOQ611oDljDIgaeNEsPtfM45rDS9RQX5p24Cqw7KMafNYcIGy0NUz6XAM1Y540kikeWcqNspECetRAtEJKpEVFDFHcbqbCgSsKcAWAK3JwxaKBmhWiovxFMrFc0AbyKpSXw_9Mefj3lKdovTca9EX_dnh_hDb8fKWdxraJarP3D3MMTGKmTsrt8gVtg8iw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEB1qRfEifmK1ag5eQ7O76dYci22pX8WDxd5Ckk2gIutia4v_3sl-WPSg4HWz2YWXhPcm8zIBuGAm0EgNjoo8zSh0TFWUhDS0ncTFSgda-f2O-1E8HPObSXtSg351FiZ3u1cpyeJMg6_SlM5bWeLK2rasZbPnrDXD8Cpm1HsMcFrxNl2uwTryUeSdfeOw-7XVgiIY4wBeurt-6f-dm1aC80eONKeewQ5sl5qRdItB3oWaTfdgI_dumtk-PPW92zz7ICpNSGEQLJrwQVFxhExToshiOjMY5xOfgs-N1AtLMPinPX-dkEoJKnHfjNP25dXvGx7AeNB_vBrS8r4EaqKIzylSb-yc0W3tEH2eILMHzMUmaRtjIiM456jWMJTmyaXhgTACX2KWhcp2Il-G5RDq-Ft7BMQaZ7kKhUF9xgNlFdcidkxY7WKNGqkBrEJKZkVZDFkccWbSgysLcCWCK3Nw5bIBzQpRWa6TmQxFgHTIO1HUgKBCedX8xyeP_9HnHDYfegN5dz26PYGtMB99b75tQn3-9m5PUWLM9Vk-gT4B0cjM1Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entropy+and+multiphysics+analysis+in+a+viscous+dissipative+non-Darcian+porous+enclosure&rft.jtitle=European+physical+journal+plus&rft.au=Kumar%2C+Vinay&rft.au=Krishna+Murthy%2C+Somanchi+V.+S.+S.+N.+V.+G&rft.au=Kumar%2C+B.+V.+Rathish&rft.date=2021-07-01&rft.pub=Springer+Nature+B.V&rft.eissn=2190-5444&rft.volume=136&rft.issue=7&rft.spage=773&rft_id=info:doi/10.1140%2Fepjp%2Fs13360-021-01745-w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-5444&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-5444&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-5444&client=summon |