Entropy and multiphysics analysis in a viscous dissipative non-Darcian porous enclosure

The present article assessed the mathematical model for the entropy generation in free convective heat and mass transfer phenomenon in the thermal and species stratified fluid-saturated non-Darcy porous domain. In this model, the viscous dissipation forces are assumed significant. Moreover, the phys...

Full description

Saved in:
Bibliographic Details
Published inEuropean physical journal plus Vol. 136; no. 7; p. 773
Main Authors Kumar, Vinay, Krishna Murthy, Somanchi V. S. S. N. V. G., Kumar, B. V. Rathish
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The present article assessed the mathematical model for the entropy generation in free convective heat and mass transfer phenomenon in the thermal and species stratified fluid-saturated non-Darcy porous domain. In this model, the viscous dissipation forces are assumed significant. Moreover, the physical model is exposed to the magnetic forces to accommodate the control over the stratification forces. For a better understanding of the temperature and concentration field, the heat function ( H ) and mass function ( M ) models for the multi-force effect on porous media flow, are proposed in this study by which the directional flow accompanying magnitudes of heat flux and mass flux can be visually manifested. To solve the mathematical model numerically, the finite element method is implemented on the dimensionless form of the governing nonlinear partial differential equations. The obtained results are portrayed by of the streamline, isotherm, isoconcentration contours, and cumulative Nusselt and Sherwood number plots for the parameters associated with the problem with additional heatline and massline contour visuals. Moreover, the thermodynamical attributes of fluid flow are illustrated by the contour plots of the entropy production due to fluid friction, heat transfer, mass transfer, and total entropy. Besides, the other characteristics are delineated by the Bejan number plots for the study of thermodynamic irreversibilities. Here, it is observed that the intensification of thermal buoyancy forces raises the stratification levels in the fluid flow. The high intensity of stratification forces introduces the contra-rotating pair of fluid flow movements. On the other hand, horizontally applied magnetic forces significantly restrict the convective flow of heat and mass fluxes, resulting in a massive drop of entropy generation by viscous dissipation.
AbstractList The present article assessed the mathematical model for the entropy generation in free convective heat and mass transfer phenomenon in the thermal and species stratified fluid-saturated non-Darcy porous domain. In this model, the viscous dissipation forces are assumed significant. Moreover, the physical model is exposed to the magnetic forces to accommodate the control over the stratification forces. For a better understanding of the temperature and concentration field, the heat function (H) and mass function (M) models for the multi-force effect on porous media flow, are proposed in this study by which the directional flow accompanying magnitudes of heat flux and mass flux can be visually manifested. To solve the mathematical model numerically, the finite element method is implemented on the dimensionless form of the governing nonlinear partial differential equations. The obtained results are portrayed by of the streamline, isotherm, isoconcentration contours, and cumulative Nusselt and Sherwood number plots for the parameters associated with the problem with additional heatline and massline contour visuals. Moreover, the thermodynamical attributes of fluid flow are illustrated by the contour plots of the entropy production due to fluid friction, heat transfer, mass transfer, and total entropy. Besides, the other characteristics are delineated by the Bejan number plots for the study of thermodynamic irreversibilities. Here, it is observed that the intensification of thermal buoyancy forces raises the stratification levels in the fluid flow. The high intensity of stratification forces introduces the contra-rotating pair of fluid flow movements. On the other hand, horizontally applied magnetic forces significantly restrict the convective flow of heat and mass fluxes, resulting in a massive drop of entropy generation by viscous dissipation.
The present article assessed the mathematical model for the entropy generation in free convective heat and mass transfer phenomenon in the thermal and species stratified fluid-saturated non-Darcy porous domain. In this model, the viscous dissipation forces are assumed significant. Moreover, the physical model is exposed to the magnetic forces to accommodate the control over the stratification forces. For a better understanding of the temperature and concentration field, the heat function ( H ) and mass function ( M ) models for the multi-force effect on porous media flow, are proposed in this study by which the directional flow accompanying magnitudes of heat flux and mass flux can be visually manifested. To solve the mathematical model numerically, the finite element method is implemented on the dimensionless form of the governing nonlinear partial differential equations. The obtained results are portrayed by of the streamline, isotherm, isoconcentration contours, and cumulative Nusselt and Sherwood number plots for the parameters associated with the problem with additional heatline and massline contour visuals. Moreover, the thermodynamical attributes of fluid flow are illustrated by the contour plots of the entropy production due to fluid friction, heat transfer, mass transfer, and total entropy. Besides, the other characteristics are delineated by the Bejan number plots for the study of thermodynamic irreversibilities. Here, it is observed that the intensification of thermal buoyancy forces raises the stratification levels in the fluid flow. The high intensity of stratification forces introduces the contra-rotating pair of fluid flow movements. On the other hand, horizontally applied magnetic forces significantly restrict the convective flow of heat and mass fluxes, resulting in a massive drop of entropy generation by viscous dissipation.
ArticleNumber 773
Author Kumar, B. V. Rathish
Krishna Murthy, Somanchi V. S. S. N. V. G.
Kumar, Vinay
Author_xml – sequence: 1
  givenname: Vinay
  surname: Kumar
  fullname: Kumar, Vinay
  organization: Department of Applied Mathematics, Defence Institute of Advanced Technology(DU), Department of Mathematics and Statistics, Indian Institute of Technology Kanpur
– sequence: 2
  givenname: Somanchi V. S. S. N. V. G.
  surname: Krishna Murthy
  fullname: Krishna Murthy, Somanchi V. S. S. N. V. G.
  email: sgkmurthy@gmail.com, skmurthy@diat.ac.in
  organization: Department of Applied Mathematics, Defence Institute of Advanced Technology(DU)
– sequence: 3
  givenname: B. V. Rathish
  surname: Kumar
  fullname: Kumar, B. V. Rathish
  organization: Department of Mathematics and Statistics, Indian Institute of Technology Kanpur
BookMark eNqFkE1LAzEQhoMoWGt_gwHPa_O1u81Rav2AghfFY0izWU1pk5jZbem_N3UFvTmXGWbed3h5LtCpD94idEXJDaWCTG1cxylQzitSEEYLQmtRFvsTNGJUkqIUQpz-mc_RBGBNcglJhRQj9LbwXQrxgLVv8LbfdC5-HMAZyAu9yRNg57HGOwcm9IAbB-Ci7tzO4pyluNPJOO1xDOl4tt5sAvTJXqKzVm_ATn76GL3eL17mj8Xy-eFpfrssDOeiK-isrNrWrMpVy1grGkoJJW1lmtIYw43MmSVndsVEMzOCSiOziFjCtK15RRkfo-vhb0zhs7fQqXXoU44OikkqJRE151lVDyqTAkCyrYrJbXU6KErUEaQ6glQDSJVBqm-Qap-ds8EJ2eHfbfr9_5_1CzL9faU
CitedBy_id crossref_primary_10_1007_s12648_023_02739_3
Cites_doi 10.1016/j.anucene.2019.107222
10.1023/A:1006636605498
10.1023/A:1006542410627
10.1016/j.fusengdes.2015.01.018
10.1016/j.ijheatmasstransfer.2004.02.005
10.1017/S0022112062001196
10.1016/j.petrol.2011.11.008
10.1109/TMAG.2017.2659703
10.1016/S0017-9310(02)00089-3
10.1002/9781119245964
10.1016/j.icheatmasstransfer.2021.105190
10.1023/A:1023557332542
10.1016/j.cmpb.2019.105171
10.1002/9781118671627
10.1016/j.ijheatmasstransfer.2003.11.006
10.1016/j.ijheatmasstransfer.2019.02.028
10.1115/1.3564760
10.1017/S0022112095001662
10.1007/s00253-006-0344-3
10.1002/pen.21077
10.1007/978-1-4020-8178-1
10.1115/1.2177684
10.1016/j.jngse.2020.103473
10.1016/j.ijheatmasstransfer.2014.02.057
10.1007/s11242-007-9181-9
10.1016/j.pnmrs.2011.12.001
10.1080/01495728308963084
10.1017/S0022112078001718
10.1016/j.ijheatmasstransfer.2017.06.021
10.1016/j.ijheatmasstransfer.2012.07.063
10.1016/j.icheatmasstransfer.2019.05.011
10.1109/ACCESS.2018.2836348
10.1016/j.ijmecsci.2018.07.026
10.1007/s11242-011-9770-5
10.1023/A:1006558926606
10.1029/94GL00028
10.1016/j.ijheatmasstransfer.2017.10.054
10.1115/1.3248027
10.1017/S0022112002001404
10.1115/1.3451063
10.1002/aic.12659
10.1016/j.pecs.2017.08.003
10.1109/ACCESS.2018.2876599
10.1007/s11242-005-2720-3
10.1016/j.ijheatmasstransfer.2005.09.018
10.1016/S0009-2509(99)00018-4
10.13182/FST98-A63
10.1007/s11242-011-9769-y
10.1016/j.ijheatmasstransfer.2011.01.020
10.1016/j.rser.2017.04.070
10.1007/s00231-006-0132-8
10.1016/j.cma.2018.09.044
10.1016/j.ijheatmasstransfer.2008.04.023
10.1016/j.fluiddyn.2004.10.004
10.1080/10407788608913535
10.1016/j.rser.2014.11.104
10.1016/0009-2509(81)80047-4
10.1016/S0017-9310(99)00291-4
10.1201/b18614
10.1007/978-3-642-27910-2
10.1016/j.nucengdes.2019.110357
10.1029/1999JB900090
10.1080/10407782.2019.1647734
10.1016/0017-9310(85)90261-3
10.1007/978-3-642-30532-0
10.1016/0360-5442(80)90091-2
10.1016/0022-3115(85)90425-8
10.1016/j.jclepro.2021.126119
10.1115/1.3245684
10.1016/j.rser.2011.09.012
10.1016/0142-727X(94)90029-9
10.1140/epjp/s13360-020-00812-y
10.1007/BF01073173
10.1016/S0730-725X(01)00246-6
10.1016/j.icheatmasstransfer.2020.104499
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021
The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
P5Z
P62
PCBAR
PQEST
PQQKQ
PQUKI
DOI 10.1140/epjp/s13360-021-01745-w
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest One Academic
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2190-5444
ExternalDocumentID 10_1140_epjp_s13360_021_01745_w
GroupedDBID -5F
-5G
-BR
-EM
-~C
06D
0R~
203
29~
2JN
2KG
30V
4.4
406
408
8UJ
95.
96X
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
AAZMS
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABJNI
ABJOX
ABKAS
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACBMV
ACBRV
ACBYP
ACGFS
ACHSB
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACREN
ACTTH
ACVWB
ACWMK
ADHHG
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADURQ
ADYFF
ADZKW
AEFTE
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETCA
AEVLU
AEVTX
AEXYK
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJDOV
AJRNO
AJZVZ
AKQUC
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARMRJ
AXYYD
AYJHY
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O93
O9J
P9T
PT4
RID
RLLFE
RSV
S27
S3B
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
ZMTXR
~A9
2VQ
AAAVM
AACDK
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
ADQRH
AEBTG
AEFQL
AEKMD
AEMSY
AFBBN
AFKRA
AGJBK
AGQEE
AGRTI
AHSBF
AIGIU
AJBLW
ARAPS
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
EJD
FINBP
FSGXE
HCIFZ
O9-
PCBAR
ROL
S1Z
SJYHP
8FE
8FG
AAYZH
DWQXO
P62
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c334t-1856ffcb5bf22f4d11010f6cd5ccc3c9444932eb24d8c419c9f4d0e02ae736123
IEDL.DBID 8FG
ISSN 2190-5444
IngestDate Thu Nov 07 07:20:16 EST 2024
Thu Sep 12 17:15:57 EDT 2024
Sat Dec 16 12:09:33 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-1856ffcb5bf22f4d11010f6cd5ccc3c9444932eb24d8c419c9f4d0e02ae736123
PQID 2919904733
PQPubID 2044220
ParticipantIDs proquest_journals_2919904733
crossref_primary_10_1140_epjp_s13360_021_01745_w
springer_journals_10_1140_epjp_s13360_021_01745_w
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle European physical journal plus
PublicationTitleAbbrev Eur. Phys. J. Plus
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References F.A. Coutelieris, J.M. Delgado, Transport Processes in Porous Media, vol. 20 (Springer, 2012)
WangMChenJZhangDZhangJTianWSuGQiuSNumerical study on the thermal stratification characteristics in the upper plenum of sodium-cooled fast reactor (SFR)Ann. Nucl. Energy202013810722210.1016/j.anucene.2019.107222
ZengZGriggRA criterion for non-Darcy flow in porous mediaTransp. Porous Media2006631576910.1007/s11242-005-2720-3
LeonardiMPizzarelliMNasutiFAnalysis of thermal stratification impact on the design of cooling channels for liquid rocket enginesInt. J. Heat Mass Transf.201913581182110.1016/j.ijheatmasstransfer.2019.02.028
KoptyugIVMRI of mass transport in porous media: drying and sorption processesProgr. Nucl. Magnet. Resonan. Spectrosc.20126516510.1016/j.pnmrs.2011.12.001
GebhartBEffects of viscous dissipation in natural convectionJ. Fluid Mech.19621422252321445570106.3990310.1017/S0022112062001196
CostaVAFSousaACMVasseurPNatural convection in square enclosures filled with fluid-saturated porous media under the influence of the magnetic field induced by two parallel vertical electric currentsInt. J. Heat Mass Transf.201255237321732910.1016/j.ijheatmasstransfer.2012.07.063
DingJYangXLongZDangNThree-dimensional numerical analysis and optimization of electromagnetic suspension system for 200 km/h maglev train considering eddy current effectIEEE Access20186615476155510.1109/ACCESS.2018.2876599
ThauvinFMohantyKNetwork modeling of non-darcy flow through porous mediaTransp. Porous Media1998311193710.1023/A:1006558926606
RevnicCGrosanTPopIInghamDMagnetic field effect on the unsteady free convection flow in a square cavity filled with a porous medium with a constant heat generationInt. J. Heat Mass Transf.2011549173417421217.8008410.1016/j.ijheatmasstransfer.2011.01.020
TorabiMKarimiNPetersonGYeeSChallenges and progress on the modelling of entropy generation in porous media: a reviewInt. J. Heat Mass Transf.2017114314610.1016/j.ijheatmasstransfer.2017.06.021
SheikholeslamiMFarshadSASaidZAnalyzing entropy and thermal behavior of nanomaterial through solar collector involving new tapesInt. Commun. Heat Mass Transf.202112310519010.1016/j.icheatmasstransfer.2021.105190
HassanHRegnierNPujosCDefayeGEffect of viscous dissipation on the temperature of the polymer during injection molding fillingPolym. Eng. Sci.20084861199120610.1002/pen.21077
OztopHFAl-SalemKA review on entropy generation in natural and mixed convection heat transfer for energy systemsRenew. Sustain. Energy Rev.201216191192010.1016/j.rser.2011.09.012
OkawaRFuruyaMTrace code demonstration of thermal stratification in BWR suppression poolNucl. Eng. Des.201935511035710.1016/j.nucengdes.2019.110357
D. Ingham, A. Bejan, E. Mamut, I. Pop, Emerging Technologies and Techniques in Porous Media, vol. 134 (Springer, 2012)
HossainMReesDASNon-Darcy free convection along a horizontal heated surfaceTransp. Porous Media199729330932110.1023/A:1006542410627
BiswalPBasakTEntropy generation vs energy efficiency for natural convection based energy flow in enclosures and various applications: a reviewRenew. Sustain. Energy Rev.2017801412145710.1016/j.rser.2017.04.070
RakeshVDattaAKWaltonJHMcCarthyKLMcCarthyMJMicrowave combination heating: coupled electromagnetics-multiphase porous media modeling and MRI experimentationAIChE J.20125841262127810.1002/aic.12659
H. Schwaeger, L. Cathles III., Streaming potential in porous media 2. Theory and application to geothermal systems. J. Geophys. Res. 104(B9), 20–033 (1999)
TrevisanOVBejanACombined heat and mass transfer by natural convection in a vertical enclosureJ. Heat Transf.1987109110411210.1115/1.3248027
LiBMaXZhangGGuoWXuTYuanYSunYEnhancement of gas production from natural gas hydrate reservoir by reservoir stimulation with the stratification split grouting foam mortar methodJ. Nat. Gas Sci. Eng.20208110347310.1016/j.jngse.2020.103473
JeongJ-HHaC-WLimJChoiJ-YAnalysis and control of electromagnetic coupling effect of levitation and guidance systems for semi-high-speed maglev train considering current directionIEEE Trans. Magn.20175361410.1109/TMAG.2017.2659703
BasakTDasDBiswalPHeatlines: modeling, visualization, mixing and thermal managementProgr. Energy Combust. Sci.20186415721810.1016/j.pecs.2017.08.003
FranzrebMSiemann-HerzbergMHobleyTJThomasORProtein purification using magnetic adsorbent particlesAppl. Microbiol. Biotechnol.200670550551610.1007/s00253-006-0344-3
BeckermannCViskantaRRamadhyaniSA numerical study of non-Darcian natural convection in a vertical enclosure filled with a porous mediumNumer. Heat Transf.198610655757010.1080/10407788608913535
JooSMarangoni instabilities in liquid mixtures with Soret effectsJ. Fluid Mech.19952931271450843.7602610.1017/S0022112095001662
WalkerKLHomsyGMConvection in a porous cavityJ. Fluid Mech.197887034494740383.7606310.1017/S0022112078001718
M. Sheikholeslami, S.A. Farshad, Z. Ebrahimpour, Z. Said, Recent progress on flat plate solar collectors and photovoltaic systems in the presence of nanofluid: a review. J. Clean. Prod. 126119 (2021)
V. Kumar, S.V.S.S.N.V.G.K. Murthy, B.V.R. Kumar, Influence of MHD forces on Bejan’s heatlines and masslines in a doubly stratified fluid saturated Darcy porous enclosure in the presence of Soret and Dufour effects-a numerical study. Int. J. Heat Mass Transf. 117, 1041–1062 (2018)
InghamDBPopITransport Phenomena in Porous Media2005OxfordElsevier0918.76002
A. Bejan, Advanced Engineering Thermodynamics (Wiley, 2016)
SedermanAJGladdenLFMagnetic resonance visualisation of single-and two-phase flow in porous mediaMagn. Resonan. Imaging2001193–433934310.1016/S0730-725X(01)00246-6
M. Turkyilmazoglu, MHD natural convection in saturated porous media with heat generation/absorption and thermal radiation: closed-form solutions. Arch. Mech. 71(1) (2019)
BejanAA study of entropy generation in fundamental convective heat transferJ. Heat Transf.1979101471872510.1115/1.3451063
VarolYOztopHFMobediMPopIVisualization of natural convection heat transport using heatline method in porous non-isothermally heated triangular cavityInt. J. Heat Mass Transf.20085121504050511154.8035210.1016/j.ijheatmasstransfer.2008.04.023
LinH-JHorváthSViscous dissipation in packed bedsChem. Eng. Sci.1981361475510.1016/0009-2509(81)80047-4
LonghurstGRThe Soret effect and its implications for fusion reactorsJ. Nucl. Mater.19851311616910.1016/0022-3115(85)90425-8
Al-HadhramiAElliottLInghamDA new model for viscous dissipation in porous media across a range of permeability valuesTransp. Porous Media2003531117122198269110.1023/A:1023557332542
TurkyilmazogluMNanoliquid film flow due to a moving substrate and heat transferEur. Phys. J. Plus20201351011310.1140/epjp/s13360-020-00812-y
KumarBRNon-Darcy free convection induced by a vertical wavy surface in a thermally stratified porous mediumInt. J. Heat Mass Transf.20044710–11235323631045.7656610.1016/j.ijheatmasstransfer.2003.11.006
K.-J. Dunn, D.J. Bergman, G.A. LaTorraca, Nuclear Magnetic Resonance: Petrophysical and Logging Applications, vol. 32 (Elsevier, 2002)
SaeidNHPopINon-Darcy natural convection in a square cavity filled with a porous mediumFluid Dyn. Res.2005361354321156871153.7641910.1016/j.fluiddyn.2004.10.004
KimuraSBejanA’The “heatline” visualization of convective heat transferJ. Heat Transf.1983105491691910.1115/1.3245684
GeindreauCAuriaultJLMagnetohydrodynamic flows in porous mediaJ. Fluid Mech.200246634319254781023.7604910.1017/S0022112002001404
NieldDAA comment on “on magneto convection in a mushy layer” by DN RiahiTransp. Porous Media2011892287288385887010.1007/s11242-011-9770-5
SiddiquiAATurkyilmazogluMNatural convection in the ferrofluid enclosed in a porous and permeable cavityInt. Commun. Heat Mass Transf.202011310449910.1016/j.icheatmasstransfer.2020.104499
BasakTRoySPaulTPopINatural convection in a square cavity filled with a porous medium: effects of various thermal boundary conditionsInt. J. Heat Mass Transf.2006497143014411189.7651110.1016/j.ijheatmasstransfer.2005.09.018
XuJSunYGaoDMaWLuoSQianQDynamic modeling and adaptive sliding mode control for a maglev train system based on a magnetic flux observerIEEE Access20186315713157910.1109/ACCESS.2018.2836348
SheikholeslamiMNew computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous mediaComput. Methods Appl. Mech. Eng.201934431933338728791440.7615010.1016/j.cma.2018.09.044
RyooSRahmaniARYoonKYProdanovićMKotsmarCMilnerTEJohnstonKPBryantSLHuhCTheoretical and experimental investigation of the motion of multiphase fluids containing paramagnetic nanoparticles in porous mediaJ. Pet. Sci. Eng.20128112914410.1016/j.petrol.2011.11.008
V. Kumar, S.V.S.S.N.V.G.K. Murthy, B.V.R. Kumar, Bejan’s heatline and massline visualization of multi-force effect on convection in a porous enclosure. Int. J. Mech. Sci. 146, 249–271 (2018)
RahmanMSaghirMThermodiffusion or Soret effect: historical reviewInt. J. Heat Mass Transf.20147369370510.1016/j.ijheatmasstransfer.2014.02.057
LukoseLBasakTHeatlines vs energy flux vectors: tools for heat flow visualizationInt. Commun. Heat Mass Transf.201910810426510.1016/j.icheatmasstransfer.2019.05.011
RiahiDNOn magneto convection in a mushy layerTransp. Porous Media201189228528610.1007/s11242-011-9769-y
O.G. Martynenko, P.P. Khramtsov, Free-Convective Heat Transfer: With Many Photographs of Flows and Heat Exchange (Springer, 2005)
BühlerLMistrangeloCNajuchTMagnetohydrodynamic flows in model porous structuresFusion Eng. Des.2015981239124310.1016/j.fusengdes.2015.01.018
SciacovelliAVerdaVSciubbaEEntropy generation analysis as a design tool: a reviewRenew. Sustain. Energy Rev.2015431167118110.1016/j.rser.2014.11.104
CostaVAFBejan’s heatlines and masslines for convection visualization and analysisAppl. Mech. Rev.2006593126145241465010.1115/1.2177684
ReesDASPopINon-Darcy natural convection from a vertical wavy surface in a porous mediumTransp. Porous Media199520322323410.1007/BF01073173
BeaversGSSparrowEMNon-Darcy flow through fibrous porous mediaJ. Appl. Mech.19693671171410.1115
HF Oztop (1745_CR20) 2012; 16
A Postelnicu (1745_CR31) 2007; 43
S Ryoo (1745_CR45) 2012; 81
DAS Rees (1745_CR73) 1995; 20
T Basak (1745_CR58) 2006; 49
DA Nield (1745_CR53) 2011; 89
1745_CR64
A Bejan (1745_CR18) 1980; 5
DA Nield (1745_CR50) 2008; 73
AM Morega (1745_CR56) 1994; 15
1745_CR63
M Franzreb (1745_CR35) 2006; 70
OV Trevisan (1745_CR78) 1985; 28
L Bühler (1745_CR42) 2015; 98
OV Trevisan (1745_CR55) 1987; 109
Y Varol (1745_CR57) 2008; 51
Z Zeng (1745_CR15) 2006; 63
J Xu (1745_CR65) 2018; 6
A Bejan (1745_CR17) 1979; 101
AJ Sederman (1745_CR44) 2001; 19
M Rahman (1745_CR32) 2014; 73
IV Koptyug (1745_CR33) 2012; 65
DN Riahi (1745_CR51) 2011; 89
S Joo (1745_CR29) 1995; 293
S Kimura (1745_CR54) 1983; 105
GR Longhurst (1745_CR28) 1985; 131
1745_CR36
G Shiralkar (1745_CR77) 1983; 6
1745_CR39
A Al-Hadhrami (1745_CR69) 2003; 53
MI Bergman (1745_CR52) 1994; 21
M Leonardi (1745_CR24) 2019; 135
BR Kumar (1745_CR72) 2004; 47
F Thauvin (1745_CR12) 1998; 31
J-H Jeong (1745_CR66) 2017; 53
M Hossain (1745_CR74) 1997; 29
S Mahmud (1745_CR43) 2004; 47
AA Siddiqui (1745_CR46) 2020; 113
VAF Costa (1745_CR59) 2006; 59
1745_CR48
D Nield (1745_CR68) 2000; 41
M Sheikholeslami (1745_CR37) 2019; 344
X Wang (1745_CR16) 1999; 54
V Rakesh (1745_CR34) 2012; 58
1745_CR41
W Koehler (1745_CR30) 2016; 41
M Turkyilmazoglu (1745_CR47) 2020; 187
NH Saeid (1745_CR80) 2005; 36
C Revnic (1745_CR76) 2011; 54
C Geindreau (1745_CR40) 2002; 466
VAF Costa (1745_CR81) 2012; 55
A Sciacovelli (1745_CR21) 2015; 43
R Anandalakshmi (1745_CR62) 2019; 76
R Okawa (1745_CR26) 2019; 355
L Lukose (1745_CR61) 2019; 108
H Hassan (1745_CR82) 2008; 48
GS Beavers (1745_CR14) 1969; 36
H-J Lin (1745_CR70) 1981; 36
M Phanikumar (1745_CR13) 2002; 45
1745_CR19
M Wang (1745_CR27) 2020; 138
AC Baytaş (1745_CR83) 2000; 43
1745_CR1
P Biswal (1745_CR22) 2017; 80
1745_CR6
1745_CR5
1745_CR4
1745_CR11
M Turkyilmazoglu (1745_CR49) 2020; 135
1745_CR3
1745_CR10
1745_CR9
M Sheikholeslami (1745_CR38) 2021; 123
1745_CR8
1745_CR7
B Li (1745_CR25) 2020; 81
T Basak (1745_CR60) 2018; 64
B Gebhart (1745_CR71) 1962; 14
J Ding (1745_CR67) 2018; 6
DB Ingham (1745_CR2) 2005
M Torabi (1745_CR23) 2017; 114
KL Walker (1745_CR79) 1978; 87
C Beckermann (1745_CR75) 1986; 10
References_xml – ident: 1745_CR6
– volume: 138
  start-page: 107222
  year: 2020
  ident: 1745_CR27
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2019.107222
  contributor:
    fullname: M Wang
– volume: 41
  start-page: 349
  issue: 3
  year: 2000
  ident: 1745_CR68
  publication-title: Transp. Porous Media
  doi: 10.1023/A:1006636605498
  contributor:
    fullname: D Nield
– volume: 29
  start-page: 309
  issue: 3
  year: 1997
  ident: 1745_CR74
  publication-title: Transp. Porous Media
  doi: 10.1023/A:1006542410627
  contributor:
    fullname: M Hossain
– volume: 98
  start-page: 1239
  year: 2015
  ident: 1745_CR42
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2015.01.018
  contributor:
    fullname: L Bühler
– volume: 47
  start-page: 3245
  issue: 14–16
  year: 2004
  ident: 1745_CR43
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2004.02.005
  contributor:
    fullname: S Mahmud
– volume: 14
  start-page: 225
  issue: 2
  year: 1962
  ident: 1745_CR71
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112062001196
  contributor:
    fullname: B Gebhart
– volume: 81
  start-page: 129
  year: 2012
  ident: 1745_CR45
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2011.11.008
  contributor:
    fullname: S Ryoo
– ident: 1745_CR10
– volume: 53
  start-page: 1
  issue: 6
  year: 2017
  ident: 1745_CR66
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2017.2659703
  contributor:
    fullname: J-H Jeong
– volume: 45
  start-page: 3781
  issue: 18
  year: 2002
  ident: 1745_CR13
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(02)00089-3
  contributor:
    fullname: M Phanikumar
– ident: 1745_CR19
  doi: 10.1002/9781119245964
– volume: 123
  start-page: 105190
  year: 2021
  ident: 1745_CR38
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2021.105190
  contributor:
    fullname: M Sheikholeslami
– volume: 53
  start-page: 117
  issue: 1
  year: 2003
  ident: 1745_CR69
  publication-title: Transp. Porous Media
  doi: 10.1023/A:1023557332542
  contributor:
    fullname: A Al-Hadhrami
– volume: 187
  start-page: 105171
  year: 2020
  ident: 1745_CR47
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2019.105171
  contributor:
    fullname: M Turkyilmazoglu
– ident: 1745_CR8
  doi: 10.1002/9781118671627
– volume: 47
  start-page: 2353
  issue: 10–11
  year: 2004
  ident: 1745_CR72
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2003.11.006
  contributor:
    fullname: BR Kumar
– volume: 135
  start-page: 811
  year: 2019
  ident: 1745_CR24
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.02.028
  contributor:
    fullname: M Leonardi
– volume: 36
  start-page: 711
  year: 1969
  ident: 1745_CR14
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3564760
  contributor:
    fullname: GS Beavers
– volume: 293
  start-page: 127
  year: 1995
  ident: 1745_CR29
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112095001662
  contributor:
    fullname: S Joo
– volume: 70
  start-page: 505
  issue: 5
  year: 2006
  ident: 1745_CR35
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-006-0344-3
  contributor:
    fullname: M Franzreb
– volume: 48
  start-page: 1199
  issue: 6
  year: 2008
  ident: 1745_CR82
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.21077
  contributor:
    fullname: H Hassan
– ident: 1745_CR9
  doi: 10.1007/978-1-4020-8178-1
– volume: 59
  start-page: 126
  issue: 3
  year: 2006
  ident: 1745_CR59
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.2177684
  contributor:
    fullname: VAF Costa
– volume: 81
  start-page: 103473
  year: 2020
  ident: 1745_CR25
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2020.103473
  contributor:
    fullname: B Li
– volume: 73
  start-page: 693
  year: 2014
  ident: 1745_CR32
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.02.057
  contributor:
    fullname: M Rahman
– volume: 73
  start-page: 379
  issue: 3
  year: 2008
  ident: 1745_CR50
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-007-9181-9
  contributor:
    fullname: DA Nield
– volume: 65
  start-page: 1
  year: 2012
  ident: 1745_CR33
  publication-title: Progr. Nucl. Magnet. Resonan. Spectrosc.
  doi: 10.1016/j.pnmrs.2011.12.001
  contributor:
    fullname: IV Koptyug
– volume: 6
  start-page: 223
  issue: 2
  year: 1983
  ident: 1745_CR77
  publication-title: Numer. Heat Transf.
  doi: 10.1080/01495728308963084
  contributor:
    fullname: G Shiralkar
– volume: 87
  start-page: 449
  issue: 03
  year: 1978
  ident: 1745_CR79
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112078001718
  contributor:
    fullname: KL Walker
– volume: 114
  start-page: 31
  year: 2017
  ident: 1745_CR23
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.06.021
  contributor:
    fullname: M Torabi
– volume: 55
  start-page: 7321
  issue: 23
  year: 2012
  ident: 1745_CR81
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2012.07.063
  contributor:
    fullname: VAF Costa
– volume: 108
  start-page: 104265
  year: 2019
  ident: 1745_CR61
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2019.05.011
  contributor:
    fullname: L Lukose
– volume: 6
  start-page: 31571
  year: 2018
  ident: 1745_CR65
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2836348
  contributor:
    fullname: J Xu
– volume-title: Transport Phenomena in Porous Media
  year: 2005
  ident: 1745_CR2
  contributor:
    fullname: DB Ingham
– ident: 1745_CR63
  doi: 10.1016/j.ijmecsci.2018.07.026
– ident: 1745_CR48
– volume: 89
  start-page: 287
  issue: 2
  year: 2011
  ident: 1745_CR53
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-011-9770-5
  contributor:
    fullname: DA Nield
– ident: 1745_CR4
– volume: 31
  start-page: 19
  issue: 1
  year: 1998
  ident: 1745_CR12
  publication-title: Transp. Porous Media
  doi: 10.1023/A:1006558926606
  contributor:
    fullname: F Thauvin
– volume: 21
  start-page: 477
  issue: 6
  year: 1994
  ident: 1745_CR52
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/94GL00028
  contributor:
    fullname: MI Bergman
– ident: 1745_CR64
  doi: 10.1016/j.ijheatmasstransfer.2017.10.054
– volume: 109
  start-page: 104
  issue: 1
  year: 1987
  ident: 1745_CR55
  publication-title: J. Heat Transf.
  doi: 10.1115/1.3248027
  contributor:
    fullname: OV Trevisan
– volume: 466
  start-page: 343
  year: 2002
  ident: 1745_CR40
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112002001404
  contributor:
    fullname: C Geindreau
– volume: 101
  start-page: 718
  issue: 4
  year: 1979
  ident: 1745_CR17
  publication-title: J. Heat Transf.
  doi: 10.1115/1.3451063
  contributor:
    fullname: A Bejan
– volume: 58
  start-page: 1262
  issue: 4
  year: 2012
  ident: 1745_CR34
  publication-title: AIChE J.
  doi: 10.1002/aic.12659
  contributor:
    fullname: V Rakesh
– volume: 64
  start-page: 157
  year: 2018
  ident: 1745_CR60
  publication-title: Progr. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2017.08.003
  contributor:
    fullname: T Basak
– volume: 6
  start-page: 61547
  year: 2018
  ident: 1745_CR67
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2876599
  contributor:
    fullname: J Ding
– volume: 63
  start-page: 57
  issue: 1
  year: 2006
  ident: 1745_CR15
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-005-2720-3
  contributor:
    fullname: Z Zeng
– volume: 49
  start-page: 1430
  issue: 7
  year: 2006
  ident: 1745_CR58
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2005.09.018
  contributor:
    fullname: T Basak
– volume: 54
  start-page: 1859
  issue: 12
  year: 1999
  ident: 1745_CR16
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(99)00018-4
  contributor:
    fullname: X Wang
– ident: 1745_CR41
  doi: 10.13182/FST98-A63
– ident: 1745_CR1
– volume: 89
  start-page: 285
  issue: 2
  year: 2011
  ident: 1745_CR51
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-011-9769-y
  contributor:
    fullname: DN Riahi
– volume: 54
  start-page: 1734
  issue: 9
  year: 2011
  ident: 1745_CR76
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2011.01.020
  contributor:
    fullname: C Revnic
– volume: 80
  start-page: 1412
  year: 2017
  ident: 1745_CR22
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.04.070
  contributor:
    fullname: P Biswal
– volume: 43
  start-page: 595
  issue: 6
  year: 2007
  ident: 1745_CR31
  publication-title: Heat Mass Transf.
  doi: 10.1007/s00231-006-0132-8
  contributor:
    fullname: A Postelnicu
– volume: 344
  start-page: 319
  year: 2019
  ident: 1745_CR37
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.09.044
  contributor:
    fullname: M Sheikholeslami
– volume: 51
  start-page: 5040
  issue: 21
  year: 2008
  ident: 1745_CR57
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2008.04.023
  contributor:
    fullname: Y Varol
– volume: 36
  start-page: 35
  issue: 1
  year: 2005
  ident: 1745_CR80
  publication-title: Fluid Dyn. Res.
  doi: 10.1016/j.fluiddyn.2004.10.004
  contributor:
    fullname: NH Saeid
– volume: 10
  start-page: 557
  issue: 6
  year: 1986
  ident: 1745_CR75
  publication-title: Numer. Heat Transf.
  doi: 10.1080/10407788608913535
  contributor:
    fullname: C Beckermann
– volume: 43
  start-page: 1167
  year: 2015
  ident: 1745_CR21
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.11.104
  contributor:
    fullname: A Sciacovelli
– volume: 36
  start-page: 47
  issue: 1
  year: 1981
  ident: 1745_CR70
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(81)80047-4
  contributor:
    fullname: H-J Lin
– volume: 43
  start-page: 2089
  issue: 12
  year: 2000
  ident: 1745_CR83
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(99)00291-4
  contributor:
    fullname: AC Baytaş
– ident: 1745_CR3
  doi: 10.1201/b18614
– ident: 1745_CR5
  doi: 10.1007/978-3-642-27910-2
– volume: 355
  start-page: 110357
  year: 2019
  ident: 1745_CR26
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2019.110357
  contributor:
    fullname: R Okawa
– ident: 1745_CR36
  doi: 10.1029/1999JB900090
– volume: 76
  start-page: 687
  issue: 9
  year: 2019
  ident: 1745_CR62
  publication-title: Numer. Heat Transf., Part A: Appl.
  doi: 10.1080/10407782.2019.1647734
  contributor:
    fullname: R Anandalakshmi
– ident: 1745_CR11
– volume: 28
  start-page: 1597
  issue: 8
  year: 1985
  ident: 1745_CR78
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(85)90261-3
  contributor:
    fullname: OV Trevisan
– ident: 1745_CR7
  doi: 10.1007/978-3-642-30532-0
– volume: 5
  start-page: 720
  issue: 8–9
  year: 1980
  ident: 1745_CR18
  publication-title: Energy
  doi: 10.1016/0360-5442(80)90091-2
  contributor:
    fullname: A Bejan
– volume: 131
  start-page: 61
  issue: 1
  year: 1985
  ident: 1745_CR28
  publication-title: J. Nucl. Mater.
  doi: 10.1016/0022-3115(85)90425-8
  contributor:
    fullname: GR Longhurst
– ident: 1745_CR39
  doi: 10.1016/j.jclepro.2021.126119
– volume: 105
  start-page: 916
  issue: 4
  year: 1983
  ident: 1745_CR54
  publication-title: J. Heat Transf.
  doi: 10.1115/1.3245684
  contributor:
    fullname: S Kimura
– volume: 16
  start-page: 911
  issue: 1
  year: 2012
  ident: 1745_CR20
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2011.09.012
  contributor:
    fullname: HF Oztop
– volume: 15
  start-page: 42
  issue: 1
  year: 1994
  ident: 1745_CR56
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/0142-727X(94)90029-9
  contributor:
    fullname: AM Morega
– volume: 135
  start-page: 1
  issue: 10
  year: 2020
  ident: 1745_CR49
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-020-00812-y
  contributor:
    fullname: M Turkyilmazoglu
– volume: 20
  start-page: 223
  issue: 3
  year: 1995
  ident: 1745_CR73
  publication-title: Transp. Porous Media
  doi: 10.1007/BF01073173
  contributor:
    fullname: DAS Rees
– volume: 41
  start-page: 151
  issue: 3
  year: 2016
  ident: 1745_CR30
  publication-title: J. Non-Equilib. Thermodyn.
  contributor:
    fullname: W Koehler
– volume: 19
  start-page: 339
  issue: 3–4
  year: 2001
  ident: 1745_CR44
  publication-title: Magn. Resonan. Imaging
  doi: 10.1016/S0730-725X(01)00246-6
  contributor:
    fullname: AJ Sederman
– volume: 113
  start-page: 104499
  year: 2020
  ident: 1745_CR46
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2020.104499
  contributor:
    fullname: AA Siddiqui
SSID ssj0000491494
Score 2.2598348
Snippet The present article assessed the mathematical model for the entropy generation in free convective heat and mass transfer phenomenon in the thermal and species...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 773
SubjectTerms Applied and Technical Physics
Atomic
Complex Systems
Condensed Matter Physics
Contours
Convective flow
Cooling
Differential equations
Dimensionless numbers
Dissipation
Energy
Entropy
Finite element method
Fluid flow
Fluid friction
Heat flux
Heat transfer
Magnetic fields
Magnetic resonance imaging
Mass transfer
Mathematical and Computational Physics
Mathematical models
Membrane separation
Molecular
NMR
Nonlinear differential equations
Nuclear magnetic resonance
Nuclear reactors
Numerical models
Optical and Plasma Physics
Partial differential equations
Physics
Physics and Astronomy
Porous media
Proteins
Regular Article
Research methodology
Rotating fluids
Simulation
Stratification
Theoretical
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4CIkLb8R4KQeu2dI265bjxFMgOIGAU5SkiTRA3UQ3Jvj1OE3LBEgguNZtqtpJ_cX-7AAcMBNpdA2OijLNKHRKVZLFNLadzKVKR1r5eMflVXp2w8_v2ncz0P0IXeSPzTojWf6oQztb1rLDh2GrwB1VyqinFeBM4m06mYX5qvp0vnd6fzGNryDyRfDPK0rXDyN8dkhTlPklMVr6m5NluK-rdgLN5LE5HummefvexPHPn7ICSxUIJb0wa1ZhxuZrsFCSQU2xDrfHnr4-fCUqz0hgHAYRXggtTEg_J4q89AszGBfE5_RLZvaLJfkgp0f-fCKVE4T2Xozr4GngA5EbcHNyfH14RqsDGKhJEj6i6MtT54xua4fm5BlChYi51GRtY0xiBOcc4R_uzXnWNTwSRuBNzLJY2U7i-7pswhy-1m4BscZZrmJhEPDxSFnFtUgdE1a7VCPoagCrrSCHoc-GDDXTTHp9yaAvifqSpb7kpAG7tbVktfAKGYsI_SvvJEkDolr7U_EvQ27_45kdWIxLK3oK7y7MjZ7Hdg-BykjvV3PyHSqK480
  priority: 102
  providerName: Springer Nature
Title Entropy and multiphysics analysis in a viscous dissipative non-Darcian porous enclosure
URI https://link.springer.com/article/10.1140/epjp/s13360-021-01745-w
https://www.proquest.com/docview/2919904733
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bS8MwFA66IfgiXnE6Rx58DeslbZcnmdptKA4Rh_MpJGkCE-mqnRv-e096ceiDPhWSksKXNOc753zJQejcUa4E02AIK9KMTIZE-IlHPB0lJhTSlcLGO-7G4WhCb6bBtAq45ZWsst4Ti406mSsbI-96zIWNk0a-f5G9EVs1ymZXqxIam6jpelFkna_eYPgdYwH2Cw4ArWRd4Ep0dfaSdXPwy0KHWHECrEcakNVPo7Rmmr-So4XNGeyinYos4n45u3toQ6f7aKsQbar8AD3FVmaefWKRJrhUBpZd0FBeNYJnKRZ4OcsVOPjY5t4LBfVSY_D6ybWtIyRSDBTcdsN6fZ3bgOEhmgzix6sRqQolEOX7dEHA5obGKBlIA7DTBEy665hQJYFSyleMUgo0DXxomvQUdZli8JKjHU_oyLf3rxyhBnxWHyOsldFUeEwBMaOu0IJKFhqHaWlCCeSohZwaKZ6V92Hw8myzwy24vASXA7i8AJevWqhdI8qrHyTn6-lsIbdGed39z5Anfw95ira9YnatqraNGov3D30G3GEhO8UC6aBmf_h8G8PzMh7fP0DrxOt_AcJVyHY
link.rule.ids 315,783,787,12777,21400,27936,27937,33385,33756,41093,41535,42162,42604,43612,43817,52123,52246
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEA7aInoRn1itmoPX0OxudmtO4qOlaltEWvQWkmwCFdmubm3x3zvZh0UPet0sWfiSzXwz82UGoTOqPQWmwRKepxm5iogMYp_4ph3bSCpPSRfvGAyj3pjdPYfPZcAtK2WV1ZmYH9TxVLsYecvnHhycrB0EF-kbcV2jXHa1bKGxiuquVBU4X_WrzvDh8TvKAvwXXABWCrvAmWiZ9CVtZeCZRZQ4eQLsSBaSxU-ztOSav9KjudXpbqHNki7iy2J9t9GKSXbQWi7b1Nkueuo4oXn6iWUS40IbWAzBg6LYCJ4kWOL5JNPg4mOXfc811HODwe8nN66TkEwwkHA3DDv2depChnto3O2MrnukbJVAdBCwGQGrG1mrVagsAM9iMOoetZGOQ611oDljDIgaeNEsPtfM45rDS9RQX5p24Cqw7KMafNYcIGy0NUz6XAM1Y540kikeWcqNspECetRAtEJKpEVFDFHcbqbCgSsKcAWAK3JwxaKBmhWiovxFMrFc0AbyKpSXw_9Mefj3lKdovTca9EX_dnh_hDb8fKWdxraJarP3D3MMTGKmTsrt8gVtg8iw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEB1qRfEifmK1ag5eQ7O76dYci22pX8WDxd5Ckk2gIutia4v_3sl-WPSg4HWz2YWXhPcm8zIBuGAm0EgNjoo8zSh0TFWUhDS0ncTFSgda-f2O-1E8HPObSXtSg351FiZ3u1cpyeJMg6_SlM5bWeLK2rasZbPnrDXD8Cpm1HsMcFrxNl2uwTryUeSdfeOw-7XVgiIY4wBeurt-6f-dm1aC80eONKeewQ5sl5qRdItB3oWaTfdgI_dumtk-PPW92zz7ICpNSGEQLJrwQVFxhExToshiOjMY5xOfgs-N1AtLMPinPX-dkEoJKnHfjNP25dXvGx7AeNB_vBrS8r4EaqKIzylSb-yc0W3tEH2eILMHzMUmaRtjIiM456jWMJTmyaXhgTACX2KWhcp2Il-G5RDq-Ft7BMQaZ7kKhUF9xgNlFdcidkxY7WKNGqkBrEJKZkVZDFkccWbSgysLcCWCK3Nw5bIBzQpRWa6TmQxFgHTIO1HUgKBCedX8xyeP_9HnHDYfegN5dz26PYGtMB99b75tQn3-9m5PUWLM9Vk-gT4B0cjM1Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entropy+and+multiphysics+analysis+in+a+viscous+dissipative+non-Darcian+porous+enclosure&rft.jtitle=European+physical+journal+plus&rft.au=Kumar%2C+Vinay&rft.au=Krishna+Murthy%2C+Somanchi+V.+S.+S.+N.+V.+G&rft.au=Kumar%2C+B.+V.+Rathish&rft.date=2021-07-01&rft.pub=Springer+Nature+B.V&rft.eissn=2190-5444&rft.volume=136&rft.issue=7&rft.spage=773&rft_id=info:doi/10.1140%2Fepjp%2Fs13360-021-01745-w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-5444&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-5444&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-5444&client=summon