A parallel decomposition algorithm for training multiclass kernel-based vector machines
We present a decomposition method for training Crammer and Singer's multiclass kernel-based vector machine model. A new working set selection rule is proposed. Global convergence of the algorithm based on this selection rule is established. Projected gradient method is chosen to solve the resul...
Saved in:
Published in | Optimization methods & software Vol. 26; no. 3; pp. 431 - 454 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
01.06.2011
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present a decomposition method for training Crammer and Singer's multiclass kernel-based vector machine model. A new working set selection rule is proposed. Global convergence of the algorithm based on this selection rule is established. Projected gradient method is chosen to solve the resulting quadratic subproblem at each iteration. An efficient projection algorithm is designed by exploiting the structure of the constraints. Parallel strategies are given to utilize the storage and computational resources available on the multiprocessor system. Numerical experiment on benchmark problems demonstrates that the good classification accuracy and remarkable time saving can be achieved. |
---|---|
AbstractList | We present a decomposition method for training Crammer and Singer's multiclass kernel-based vector machine model. A new working set selection rule is proposed. Global convergence of the algorithm based on this selection rule is established. Projected gradient method is chosen to solve the resulting quadratic subproblem at each iteration. An efficient projection algorithm is designed by exploiting the structure of the constraints. Parallel strategies are given to utilize the storage and computational resources available on the multiprocessor system. Numerical experiment on benchmark problems demonstrates that the good classification accuracy and remarkable time saving can be achieved. |
Author | Yuan, Ya-Xiang Niu, Lingfeng |
Author_xml | – sequence: 1 givenname: Lingfeng surname: Niu fullname: Niu, Lingfeng organization: State Key Laboratory of Scientific and Engineering Computing , Institute of Computational Mathematics and Scientific/Engineering Computing, AMSS, CAS – sequence: 2 givenname: Ya-Xiang surname: Yuan fullname: Yuan, Ya-Xiang email: yyx@lsec.cc.ac.cn organization: State Key Laboratory of Scientific and Engineering Computing , Institute of Computational Mathematics and Scientific/Engineering Computing, AMSS, CAS |
BookMark | eNqFkL1OwzAURi0EEm3hDRgi9hQ7thOXBVUVf1IllkqMluPYrYtjB9sF9e1JFFgYYLp3-M53dc8UnDrvFABXCM4RZPAGQUrLirF5ARGa93uJ8QmYIFgscrLA1emwU5oPmXMwjXEPISSIlBPwusw6EYS1ymaNkr7tfDTJeJcJu_XBpF2baR-yFIRxxm2z9mCTkVbEmL2p4JTNaxFVk30omfpcK-TOOBUvwJkWNqrL7zkDm4f7zeopX788Pq-W61xiTFKOaKPrmlWqpppgSLGSoq4YREzVsNC6WDQNhZWGEGFNNCH9h3WphWINUpjhGbgea7vg3w8qJr73h-D6i5wxXGBGEepDZAzJ4GMMSvMumFaEI0eQDwL5j0A-COSjwB67_YVJk8TgZpBh_4PvRti4Xl8rPn2wDU_iaH3QQThpIsd_NnwBUCuMSQ |
CitedBy_id | crossref_primary_10_1016_j_neucom_2018_03_069 crossref_primary_10_1016_j_neunet_2012_05_011 |
Cites_doi | 10.1109/TNN.2002.1000139 10.1109/ICPR.1994.576879 10.1145/1961189.1961199 10.1145/130385.130401 10.1613/jair.105 10.1007/s10107-005-0595-2 10.1007/978-3-642-76153-9_5 10.1007/BF01585748 10.1007/978-1-4757-2440-0 10.1145/1281192.1281270 10.1162/153244302320884605 10.1017/CBO9780511809682 10.1023/A:1008663629662 10.1162/15324430260185628 10.1016/S0167-8191(03)00021-8 10.1137/S1052623497330963 10.1162/15324430152733142 10.1162/15324430152733133 10.7551/mitpress/1130.003.0015 10.1080/10556789908805759 10.1098/rsta.1909.0016 10.1145/641876.641880 10.1145/1401890.1401942 10.1023/A:1013637720281 10.1007/0-387-30065-1_4 |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2011 Copyright Taylor & Francis Ltd. Jun 2011 |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2011 – notice: Copyright Taylor & Francis Ltd. Jun 2011 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1080/10556788.2011.556633 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1029-4937 |
EndPage | 454 |
ExternalDocumentID | 2424104771 10_1080_10556788_2011_556633 556633 |
GroupedDBID | .4S .7F .DC .QJ 0BK 0R~ 123 29N 30N 4.4 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ACUHS ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGCQS AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH ARCSS AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CS3 DGEBU DKSSO DU5 EAP EBS EDO EMK EPL EST ESX E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P I-F IPNFZ J.P KYCEM M4Z NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TTHFI TUROJ TUS TWF UT5 UU3 ZGOLN ~S~ 07G 1TA AAGDL AAHIA AAIKQ AAKBW AAYXX ACAGQ ACGEE ADYSH AEUMN AFRVT AGLEN AGROQ AHMOU AIYEW ALCKM AMEWO AMPGV AMVHM AMXXU BCCOT BPLKW C06 CITATION CRFIH DMQIW DWIFK EJD IVXBP LJTGL NUSFT QCRFL TAQ TFMCV TOXWX UB9 UU8 V3K V4Q 7SC 8FD ACTCW JQ2 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c334t-15dfbb87eb5f43053ecab78018eb02ff29dd507f0013f4f44201b6fae8d1e383 |
ISSN | 1055-6788 |
IngestDate | Wed Aug 13 11:11:27 EDT 2025 Thu Apr 24 23:07:18 EDT 2025 Tue Jul 01 05:30:31 EDT 2025 Wed Dec 25 09:03:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c334t-15dfbb87eb5f43053ecab78018eb02ff29dd507f0013f4f44201b6fae8d1e383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 883238511 |
PQPubID | 186278 |
PageCount | 24 |
ParticipantIDs | crossref_primary_10_1080_10556788_2011_556633 informaworld_taylorfrancis_310_1080_10556788_2011_556633 crossref_citationtrail_10_1080_10556788_2011_556633 proquest_journals_883238511 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-06-00 |
PublicationDateYYYYMMDD | 2011-06-01 |
PublicationDate_xml | – month: 06 year: 2011 text: 2011-06-00 |
PublicationDecade | 2010 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Optimization methods & software |
PublicationYear | 2011 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0030 CIT0032 CIT0031 CIT0033 Kreßl U. (CIT0028) 1999 Sun W. (CIT0041) 2006 CIT0036 CIT0035 Chang C.-C. (CIT0008) CIT0037 CIT0040 CIT0042 CIT0001 CIT0044 CIT0003 CIT0047 CIT0002 CIT0005 CIT0004 CIT0048 CIT0007 CIT0006 Tsochantaridis I. (CIT0043) 2005; 6 CIT0010 Vapnik V. N. (CIT0046) 1998 CIT0012 CIT0011 Rifkin R. (CIT0039) 2004; 5 Zanni L. (CIT0049) 2006; 7 CIT0014 CIT0013 CIT0016 CIT0015 CIT0018 CIT0019 Dietterich T. G. (CIT0017) 1995; 2 CIT0021 CIT0020 CIT0023 CIT0022 Murtagh B. A. (CIT0034) 1998 CIT0025 Platt J. C. (CIT0038) 2000; 12 CIT0024 CIT0027 Collins M. (CIT0009) 2008; 9 CIT0026 CIT0029 Vapnik V. N. (CIT0045) 1995 |
References_xml | – volume: 9 start-page: 1775 year: 2008 ident: CIT0009 publication-title: J. Mach. Learn. Res. – ident: CIT0023 doi: 10.1109/TNN.2002.1000139 – volume-title: Minos 5.5. User's guide year: 1998 ident: CIT0034 – ident: CIT0005 doi: 10.1109/ICPR.1994.576879 – ident: CIT0011 – volume-title: Libsvm ident: CIT0008 doi: 10.1145/1961189.1961199 – ident: CIT0029 – volume-title: Optimization Theory and Methods: Nonlinear Programming year: 2006 ident: CIT0041 – ident: CIT0031 – ident: CIT0025 – ident: CIT0002 – ident: CIT0035 – ident: CIT0004 doi: 10.1145/130385.130401 – ident: CIT0037 – ident: CIT0012 – ident: CIT0047 – volume: 2 start-page: 263 year: 1995 ident: CIT0017 publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.105 – ident: CIT0032 – ident: CIT0022 – ident: CIT0016 doi: 10.1007/s10107-005-0595-2 – ident: CIT0027 doi: 10.1007/978-3-642-76153-9_5 – ident: CIT0036 doi: 10.1007/BF01585748 – ident: CIT0019 – volume-title: The Nature of Statistical Learning Theory year: 1995 ident: CIT0045 doi: 10.1007/978-1-4757-2440-0 – ident: CIT0042 doi: 10.1145/1281192.1281270 – ident: CIT0020 doi: 10.1162/153244302320884605 – ident: CIT0040 doi: 10.1017/CBO9780511809682 – ident: CIT0006 doi: 10.1023/A:1008663629662 – ident: CIT0013 – ident: CIT0014 doi: 10.1162/15324430260185628 – volume: 5 start-page: 101 year: 2004 ident: CIT0039 publication-title: J. Mach. Learn. Res. – ident: CIT0048 doi: 10.1016/S0167-8191(03)00021-8 – ident: CIT0003 doi: 10.1137/S1052623497330963 – ident: CIT0010 doi: 10.1162/15324430152733142 – volume: 12 start-page: 547 volume-title: Advances in Neural Information Processing Systems year: 2000 ident: CIT0038 – start-page: 255 volume-title: Advances in Kernel Methods – Support Vector Learning year: 1999 ident: CIT0028 – ident: CIT0018 – ident: CIT0001 doi: 10.1162/15324430152733133 – ident: CIT0024 doi: 10.7551/mitpress/1130.003.0015 – ident: CIT0044 doi: 10.1080/10556789908805759 – ident: CIT0033 doi: 10.1098/rsta.1909.0016 – volume: 7 start-page: 1467 year: 2006 ident: CIT0049 publication-title: J. Mach. Learn. Res. – ident: CIT0021 doi: 10.1145/641876.641880 – volume: 6 start-page: 1453 year: 2005 ident: CIT0043 publication-title: J. Mach. Learn. Res. – volume-title: Statistical Learning Theory year: 1998 ident: CIT0046 – ident: CIT0030 – ident: CIT0026 doi: 10.1145/1401890.1401942 – ident: CIT0015 doi: 10.1023/A:1013637720281 – ident: CIT0007 doi: 10.1007/0-387-30065-1_4 |
SSID | ssj0004146 |
Score | 1.8994557 |
Snippet | We present a decomposition method for training Crammer and Singer's multiclass kernel-based vector machine model. A new working set selection rule is proposed.... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 431 |
SubjectTerms | Algorithms decomposition method Kernel-based vector machines parallel algorithm projected gradient Studies |
Title | A parallel decomposition algorithm for training multiclass kernel-based vector machines |
URI | https://www.tandfonline.com/doi/abs/10.1080/10556788.2011.556633 https://www.proquest.com/docview/883238511 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage4ED4imWBeQDt8hLGtuJe6x4qEJiuRRt4RLZiV3Qtl20zYLEr2dsj9uUrnjsJYrcJG48X-ZhzXxDyIvcFFzqSrJSyIqBvS6Z0VKw3FlTSaNGTSB7fn9STj6KdzM561Vc--qSzhw3P6-sK7mOVGEM5OqrZP9DspuHwgCcg3zhCBKG4z_JeJx55m6I_BdZa31yOGZgZXoxP4eo_8syZhFiG4iYPdh4fzk7sxcru2DeiLXZ97B1ny1DYiUmFaLD-gFUyhJrNbHd9DrAZQ36-4feps6efL3EGH_uLJrD0PAr7rB-0mwGSJz3dxmGvWyogIvpXsOPns7Mpa9fiN35ji2OFb55XeRzSYo2lsYjoHhPawo0BNEAi8gqvafbYzJkaOgJk0X2VTgvI5HGb6zZ8Yeb5KCA8KEYkIPx5PXn023FLNadpb-eiipV_vKqCXaclh1K2z0THvyS6V1yBwMKOo7ouEdu2NV9crtHM_mAnI5pwgndwQnd4ITCXDThhG5xQvs4oREnNOHkIZm-fTN9NWHYUIM1nIuODWXrjFGVNdJ5qjduG20q8FGUNXnhXDFqW4gPnI8LnHBCwBKY0mmr2qHlij8ig9X5yj4mtG2FceVIl1oZwbnzUTOYg1JXQrpK2kPC04LVDZLN-5dY1EPkpE3LXPtlruMyHxK2uetbJFv5y_WqL4u6Cyh1EaA1__OtR0luNX7R61qBeeM-BHly_QcfkVvb7-cpGXQXl_YZ-K2deY4g_AXw0ZO7 |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLagDMDAjSjl8MDqktZHkrFCVAXaTkWwWXFiA2qaojZl4NdjOw60IECCLUOelWc77_Ln7wFw5okmppFPESPUR9pfMyQiSpCnpPCpCMLYkj33-qxzS67vaYkmnDpYpcmhVUEUYW21-blNMbqExJ3bpo46dysYOPUzw3gZrNCQ-aaJAfb6H1cj3QUjLYGMSHl77ptRFrzTAnfpF1ttHVB7E4jy0wvcybA-y0U9fv3E6vgv3bbAhgtPYavYT9tgSWY7YH2OtHAX3LWg4QtPU5nCRBpIusN9wSh9GE-e8scR1ArBsvkEtJjF2ETpcCgnmUyRcZ0JfLEHBnBk4ZxyugcG7cvBRQe59gwoxpjkqEETJUTgS0GVIQ7DMo6Erz1eIIXXVKoZJomONpWJMhVRhGiNBFORDJKG1InxPqhk40weAJgkRCgWRiwKBMFYmRxMGxcW-YQqn8oqwOWq8NhRlxslUt5wDKflrHEza7yYtSpA71LPBXXHL-8H8wvOc1syUUV_E45_Fq2Vm4M7GzDlgTaW2AS0h38f-BSsdga9Lu9e9W9qYK0oaJsS0BGo5JOZPNYRUS5O7J5_Azfn_Tc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagSAgG3ojy9MBqaOtH0rECqvKqGIpgs-zYBtRQUEkZ-PX4nAQKCJBgy5CzcrZzD_u77xDarekG5SriRDAeEe-vBdGKM1JzVkdcx80kkD2fd0Xnkp1c8-uxKn6AVUIO7XKiiGCr4ed-NK5ExO2Hno4-dcsJOP2zoHQSTQngDocijlr3vTKyqC_yEgREyuK5b0b54Jw-UJd-MdXB_7TnkSq_PIed9PdGmd5LXj6ROv5HtQU0VwSnuJXvpkU0YQdLaHaMsnAZXbUwsIWnqU2xsQBIL1BfWKU3D8O77PYee31w2XoCB8RiAjE67tvhwKYEHKfBz-G6AN8HMKd9WkG99lHvoEOK5gwkoZRlpM6N0zqOrOYOaMOoTZSOvL-Lra41nGs0jfGxpoMY0zHHmNdIC6dsbOrWp8WrqDJ4GNg1hI1h2ommEirWjFIHGZg3LUJFjLuI2yqi5aLIpCAuByVSWS_4TctZkzBrMp-1KiJvUo85cccv78fj6y2zcGDi8u4mkv4sulHuDVlYgCcZe1NJIZxd__vAO2j64rAtz467pxtoJj_NhvOfTVTJhiO75cOhTG-HHf8KFEv72w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+parallel+decomposition+algorithm+for+training+multiclass+kernel-based+vector+machines&rft.jtitle=Optimization+methods+%26+software&rft.au=Niu%2C+Lingfeng&rft.au=Yuan%2C+Ya-Xiang&rft.date=2011-06-01&rft.pub=Taylor+%26+Francis&rft.issn=1055-6788&rft.eissn=1029-4937&rft.volume=26&rft.issue=3&rft.spage=431&rft.epage=454&rft_id=info:doi/10.1080%2F10556788.2011.556633&rft.externalDocID=556633 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-6788&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-6788&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-6788&client=summon |