MöbiusE: Knowledge Graph Embedding on Möbius Ring
In this work, we propose a novel Knowledge Graph Embedding (KGE) strategy, called MöbiusE, in which the entities and relations are embedded to the surface of a Möbius ring. The proposition of such a strategy is inspired by the classic TorusE, in which the addition of two arbitrary elements is subjec...
Saved in:
Published in | Knowledge-based systems Vol. 227; p. 107181 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
05.09.2021
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0950-7051 1872-7409 |
DOI | 10.1016/j.knosys.2021.107181 |
Cover
Loading…
Abstract | In this work, we propose a novel Knowledge Graph Embedding (KGE) strategy, called MöbiusE, in which the entities and relations are embedded to the surface of a Möbius ring. The proposition of such a strategy is inspired by the classic TorusE, in which the addition of two arbitrary elements is subject to a modulus operation. In this sense, TorusE naturally guarantees the critical boundedness of embedding vectors in KGE. However, the nonlinear property of addition operation on Torus ring is uniquely derived by the modulus operation, which in some extent restricts the expressiveness of TorusE. As a further generalization of TorusE, MöbiusE also uses modulus operation to preserve the closeness of addition on it, but the coordinates on Möbius ring interacts with each other in the following way: any vector attaches to the surface of a Mobius ring becomes its opposite one if it moves along its parametric trace by a cycle. Hence, MöbiusE assumes much more nonlinear representativeness than that of TorusE, and in turn it generates much more precise embedding results. In our experiments, MöbiusE outperforms TorusE and other classic embedding strategies in several key indicators. |
---|---|
AbstractList | In this work, we propose a novel Knowledge Graph Embedding (KGE) strategy, called MöbiusE, in which the entities and relations are embedded to the surface of a Möbius ring. The proposition of such a strategy is inspired by the classic TorusE, in which the addition of two arbitrary elements is subject to a modulus operation. In this sense, TorusE naturally guarantees the critical boundedness of embedding vectors in KGE. However, the nonlinear property of addition operation on Torus ring is uniquely derived by the modulus operation, which in some extent restricts the expressiveness of TorusE. As a further generalization of TorusE, MöbiusE also uses modulus operation to preserve the closeness of addition on it, but the coordinates on Möbius ring interacts with each other in the following way: any vector attaches to the surface of a Mobius ring becomes its opposite one if it moves along its parametric trace by a cycle. Hence, MöbiusE assumes much more nonlinear representativeness than that of TorusE, and in turn it generates much more precise embedding results. In our experiments, MöbiusE outperforms TorusE and other classic embedding strategies in several key indicators. |
ArticleNumber | 107181 |
Author | Wen, Shiping Zhang, Zhe Liu, Jiangang Chen, Yao Xiong, Wenjun |
Author_xml | – sequence: 1 givenname: Yao orcidid: 0000-0002-6505-4670 surname: Chen fullname: Chen, Yao email: chenyao@swufe.edu.cn organization: Department of Computer Science, Southwestern University of Finance and Economics, China – sequence: 2 givenname: Jiangang orcidid: 0000-0003-4121-5991 surname: Liu fullname: Liu, Jiangang organization: Department of Computer Science, Southwestern University of Finance and Economics, China – sequence: 3 givenname: Zhe orcidid: 0000-0002-9589-9084 surname: Zhang fullname: Zhang, Zhe organization: Department of Computer Science, Southwestern University of Finance and Economics, China – sequence: 4 givenname: Shiping surname: Wen fullname: Wen, Shiping organization: Centre for Artificial Intelligence, University of Technology Sydney, Sydney, Australia – sequence: 5 givenname: Wenjun surname: Xiong fullname: Xiong, Wenjun organization: Department of Computer Science, Southwestern University of Finance and Economics, China |
BookMark | eNqFkM1KAzEUhYNUsK2-gYsB11OTTH4mXQhSahUrgug6ZCaZmtomNZkqfTFfwBczZbpyoavLvTnn3NxvAHrOOwPAOYIjBBG7XI7enI-7OMIQozTiqERHoI9KjnNOoOiBPhQU5hxSdAIGMS4hhBijsg-Kh--vym7jdJzdO_-5MnphsllQm9dsuq6M1tYtMu-ygyx7Sv0pOG7UKpqzQx2Cl5vp8-Q2nz_O7ibX87wuCtLmiJQaEiZ4pbTBNYSqaCpGRVMaQtIbYekXnDNNIaFGCFboMglwo4SoCRXFEFx0uZvg37cmtnLpt8GllRJTxijmKTypxp2qDj7GYBpZ21a11rs2KLuSCMo9JLmUHSS5hyQ7SMlMfpk3wa5V2P1nu-psJp3_YU2QsbbG1UbbYOpWam__DvgB5OeEOQ |
CitedBy_id | crossref_primary_10_2478_amns_2023_2_01530 crossref_primary_10_3390_sym13030485 crossref_primary_10_1016_j_eswa_2023_120953 crossref_primary_10_1145_3643806 crossref_primary_10_1142_S0218194022500760 crossref_primary_10_1145_3545573 crossref_primary_10_1016_j_eswa_2022_119122 crossref_primary_10_1016_j_knosys_2025_113040 crossref_primary_10_1108_IJWIS_03_2023_0042 crossref_primary_10_1111_exsy_13234 |
Cites_doi | 10.1609/aaai.v29i1.9491 10.1609/aaai.v32i1.11538 10.1007/978-3-540-76298-0_52 10.1609/aaai.v32i1.11573 10.3115/v1/P15-1067 10.1145/1242572.1242667 10.1016/j.patcog.2017.11.004 10.1145/3132733 10.1145/1376616.1376746 10.1609/aaai.v28i1.8870 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright Elsevier Science Ltd. Sep 5, 2021 |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Sep 5, 2021 |
DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
DOI | 10.1016/j.knosys.2021.107181 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-7409 |
ExternalDocumentID | 10_1016_j_knosys_2021_107181 S0950705121004445 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61773319 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Fundamental Research Funds for Chinese Central Universities grantid: JBK190502 funderid: http://dx.doi.org/10.13039/501100012226 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH UHS WUQ 7SC 8FD E3H EFKBS F2A JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c334t-148d04697bade2c00a3fb659f8e4448d46000776d5045e9963d8fb62fa99c4593 |
IEDL.DBID | .~1 |
ISSN | 0950-7051 |
IngestDate | Fri Jul 25 04:39:31 EDT 2025 Tue Jul 01 04:38:02 EDT 2025 Thu Apr 24 23:10:47 EDT 2025 Fri Feb 23 02:47:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Embedding Torus ring Möbius ring Knowledge graph |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-148d04697bade2c00a3fb659f8e4448d46000776d5045e9963d8fb62fa99c4593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4121-5991 0000-0002-9589-9084 0000-0002-6505-4670 |
PQID | 2566527697 |
PQPubID | 2035257 |
ParticipantIDs | proquest_journals_2566527697 crossref_citationtrail_10_1016_j_knosys_2021_107181 crossref_primary_10_1016_j_knosys_2021_107181 elsevier_sciencedirect_doi_10_1016_j_knosys_2021_107181 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-05 |
PublicationDateYYYYMMDD | 2021-09-05 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Knowledge-based systems |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | J. Feng, M. Huang, M. Wang, M. Zhou, Y. Hao, X. Zhu, Knowlege Graph Embedding by Flexible Translation, in: Proceedings of the 15th International Conference on Principles of Knowledge Representation and Reasoning, 2016, pp. 557–560. Bordes, Usunier, García-Durán, Weston, Yakhnenko (b5) 2013 T. Trouillon, J. Welbl, S. Riedel, E. Gaussier, G. Bouchard, Complex Embeddings for Simple Link Prediction, in: Proceedings of the 29th International Conference on Machine Learning, 2012, pp. 2071–2080. T. Dettmers, P. Minervini, P. Stenetorp, S. Riedel, Convolutional 2D Knowledge Graph Embeddings, in: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018, pp. 1811–1818. Zhang, Tay, Yao, Liu (b13) 2019 K. Bollacker, C. Evans, P. Paritosh, T. Sturge, J. Taylor, Freebase: a collaboratively created graph database for structuring human knowledge, Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, 2008, pp. 1247–1250. M. Fan, Q. Zhou, E. Chang, T.F. Zheng, Transition-based Knowledge Graph Embedding with Relational Mapping Properties, in: Proceedings of the 28th Pacific Asia Conference on Language, Information and Computation, 2014, pp. 328–337. M. Nickel, V. Tresp, H.P. Kriegel, A Three-Way Model for Collective Learning on Multi-Relational Data, in: Proceedings of the 28th International Conference on Machine Learning, 2011, pp. 809–816. Lu, Xuan, Zhang, Luo (b1) 2018; 76 B. Yang, W.T. Yih, X. He, J. Gao, L. Deng, Embedding Entities and Relations for Learning and Inference in Knowledge Bases, in: Proceedings of the 4th International Conference of Learning Representations, 2015, pp. 1412–1423. G. Ji, S. He, L. Xu, K. Liu, J. Zhao, Knowledge Graph Embedding via Dynamic Mapping Matrix, in: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, 2015, pp. 687–696. S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, Z. Ives, DBpedia: a nucleus for a web of open data, in: Proceedings of the 6th International Semantic Web Conference and the 2nd Asian Semantic Web Conference, 2007, pp. 722–735. Y. Lin, Z. Liu, M. Sun, Y. Liu, X. Zhu, Learning Entity and Relation Embeddings for Knowledge Graph Completion, in: Proceedings of the 29th AAAI Conference on Artificial Intelligence, 2015, pp. 2181–2187. Jia, Wang, Jin, Lin, Cheng (b11) 2018; 12 T. Ebisu, R. Ichise, TorusE: Knowledge Graph Embedding on a Lie Group, in: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018, pp. 1819–1826. M.F. Suchanek, G. Kasneci, G. Weikum, Yago: a core of semantic knowledge, in: Proceedings of the 16th International Conference on World Wide Web, 2007, pp. 697–706. Z. Wang, J. Zhang, J. Feng, Z. Chen, Knowledge Graph Embedding by Translating on Hyperplanes, in: Proceedings of the 28th AAAI Conference on Artificial Intelligence, 2014, pp. 1112–1119. 10.1016/j.knosys.2021.107181_b16 10.1016/j.knosys.2021.107181_b17 10.1016/j.knosys.2021.107181_b9 10.1016/j.knosys.2021.107181_b14 10.1016/j.knosys.2021.107181_b15 10.1016/j.knosys.2021.107181_b12 10.1016/j.knosys.2021.107181_b10 Jia (10.1016/j.knosys.2021.107181_b11) 2018; 12 Zhang (10.1016/j.knosys.2021.107181_b13) 2019 Lu (10.1016/j.knosys.2021.107181_b1) 2018; 76 10.1016/j.knosys.2021.107181_b3 10.1016/j.knosys.2021.107181_b4 10.1016/j.knosys.2021.107181_b2 10.1016/j.knosys.2021.107181_b7 10.1016/j.knosys.2021.107181_b8 Bordes (10.1016/j.knosys.2021.107181_b5) 2013 10.1016/j.knosys.2021.107181_b6 |
References_xml | – reference: S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, Z. Ives, DBpedia: a nucleus for a web of open data, in: Proceedings of the 6th International Semantic Web Conference and the 2nd Asian Semantic Web Conference, 2007, pp. 722–735. – reference: T. Ebisu, R. Ichise, TorusE: Knowledge Graph Embedding on a Lie Group, in: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018, pp. 1819–1826. – reference: Z. Wang, J. Zhang, J. Feng, Z. Chen, Knowledge Graph Embedding by Translating on Hyperplanes, in: Proceedings of the 28th AAAI Conference on Artificial Intelligence, 2014, pp. 1112–1119. – volume: 12 start-page: 1 year: 2018 end-page: 33 ident: b11 article-title: Knowledge graph embedding: A locally and temporally adaptive translation-based approach publication-title: ACM Trans. Web – reference: M. Fan, Q. Zhou, E. Chang, T.F. Zheng, Transition-based Knowledge Graph Embedding with Relational Mapping Properties, in: Proceedings of the 28th Pacific Asia Conference on Language, Information and Computation, 2014, pp. 328–337. – reference: T. Trouillon, J. Welbl, S. Riedel, E. Gaussier, G. Bouchard, Complex Embeddings for Simple Link Prediction, in: Proceedings of the 29th International Conference on Machine Learning, 2012, pp. 2071–2080. – reference: M.F. Suchanek, G. Kasneci, G. Weikum, Yago: a core of semantic knowledge, in: Proceedings of the 16th International Conference on World Wide Web, 2007, pp. 697–706. – reference: B. Yang, W.T. Yih, X. He, J. Gao, L. Deng, Embedding Entities and Relations for Learning and Inference in Knowledge Bases, in: Proceedings of the 4th International Conference of Learning Representations, 2015, pp. 1412–1423. – reference: G. Ji, S. He, L. Xu, K. Liu, J. Zhao, Knowledge Graph Embedding via Dynamic Mapping Matrix, in: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, 2015, pp. 687–696. – volume: 76 start-page: 228 year: 2018 end-page: 241 ident: b1 article-title: Structural property-aware multilayer network embedding for latent factor analysis publication-title: Pattern Recognit. – reference: Y. Lin, Z. Liu, M. Sun, Y. Liu, X. Zhu, Learning Entity and Relation Embeddings for Knowledge Graph Completion, in: Proceedings of the 29th AAAI Conference on Artificial Intelligence, 2015, pp. 2181–2187. – reference: M. Nickel, V. Tresp, H.P. Kriegel, A Three-Way Model for Collective Learning on Multi-Relational Data, in: Proceedings of the 28th International Conference on Machine Learning, 2011, pp. 809–816. – reference: J. Feng, M. Huang, M. Wang, M. Zhou, Y. Hao, X. Zhu, Knowlege Graph Embedding by Flexible Translation, in: Proceedings of the 15th International Conference on Principles of Knowledge Representation and Reasoning, 2016, pp. 557–560. – reference: K. Bollacker, C. Evans, P. Paritosh, T. Sturge, J. Taylor, Freebase: a collaboratively created graph database for structuring human knowledge, Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, 2008, pp. 1247–1250. – start-page: 2731 year: 2019 end-page: 2741 ident: b13 article-title: Quaternion knowledge graph embeddings publication-title: Advances in Neural Information Processing Systems – start-page: 2787 year: 2013 end-page: 2795 ident: b5 article-title: Translating embeddings for modeling multi-relational data publication-title: Advances in Neural Information Processing Systems – reference: T. Dettmers, P. Minervini, P. Stenetorp, S. Riedel, Convolutional 2D Knowledge Graph Embeddings, in: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018, pp. 1811–1818. – start-page: 2731 year: 2019 ident: 10.1016/j.knosys.2021.107181_b13 article-title: Quaternion knowledge graph embeddings – ident: 10.1016/j.knosys.2021.107181_b6 doi: 10.1609/aaai.v29i1.9491 – ident: 10.1016/j.knosys.2021.107181_b10 doi: 10.1609/aaai.v32i1.11538 – ident: 10.1016/j.knosys.2021.107181_b2 doi: 10.1007/978-3-540-76298-0_52 – ident: 10.1016/j.knosys.2021.107181_b12 doi: 10.1609/aaai.v32i1.11573 – ident: 10.1016/j.knosys.2021.107181_b14 – ident: 10.1016/j.knosys.2021.107181_b15 doi: 10.3115/v1/P15-1067 – ident: 10.1016/j.knosys.2021.107181_b3 doi: 10.1145/1242572.1242667 – start-page: 2787 year: 2013 ident: 10.1016/j.knosys.2021.107181_b5 article-title: Translating embeddings for modeling multi-relational data – volume: 76 start-page: 228 year: 2018 ident: 10.1016/j.knosys.2021.107181_b1 article-title: Structural property-aware multilayer network embedding for latent factor analysis publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.11.004 – ident: 10.1016/j.knosys.2021.107181_b8 – ident: 10.1016/j.knosys.2021.107181_b9 – volume: 12 start-page: 1 issue: 2 year: 2018 ident: 10.1016/j.knosys.2021.107181_b11 article-title: Knowledge graph embedding: A locally and temporally adaptive translation-based approach publication-title: ACM Trans. Web doi: 10.1145/3132733 – ident: 10.1016/j.knosys.2021.107181_b17 – ident: 10.1016/j.knosys.2021.107181_b16 – ident: 10.1016/j.knosys.2021.107181_b4 doi: 10.1145/1376616.1376746 – ident: 10.1016/j.knosys.2021.107181_b7 doi: 10.1609/aaai.v28i1.8870 |
SSID | ssj0002218 |
Score | 2.3936028 |
Snippet | In this work, we propose a novel Knowledge Graph Embedding (KGE) strategy, called MöbiusE, in which the entities and relations are embedded to the surface of a... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107181 |
SubjectTerms | Embedding Knowledge graph Knowledge representation Möbius ring Torus ring Toruses |
Title | MöbiusE: Knowledge Graph Embedding on Möbius Ring |
URI | https://dx.doi.org/10.1016/j.knosys.2021.107181 https://www.proquest.com/docview/2566527697 |
Volume | 227 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IXrz4NqJoevC6Att2H94IAVECB5WEW7Pd7Sb4WIjAwYs_yz_gH3Om22o0MSReNml3utl8befRzHwl5JypvAlWNvHA_iQQoMSBp1Ku4aGFYXvhHAuFh6OgP-Y3EzGpkI6rhcG0Sqv7S51utLXtaVg0G_PptHEHzgGsV4EMWEh6hoXmnIe4yi_evtM8fN-c8aGwh9KufM7keD0Ws8Urknb7LegCNd36yzz9UtTG-vR2yJZ1G2m7_LNdUtHFHtl2VzJQu0P3CRt-vKvpatG9pAN3WkavkJSadp-VztBS0VlBrRi9hfYBGfe6952-Z-9F8FLG-NKDCCbDsDZUSab9tNlMWK4CEeeRBhyijAdNw9KTCfDXNAQ0LItAwM-TOE65iNkhqRazQh8RqlWIfPkiinXMEx1Gac5AP2qRZ0zngV8jzMEhU0sajndXPEmXHfYgSxAlgihLEGvE-xo1L0kz1siHDmn5Y_Il6PU1I-tuYqTdfPAeXFThhwDQ8b8_fEI2sWWyyUSdVJcvK30K7sdSnZn1dUY22teD_ugTYS_YsQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2V9gAXdkShgA9co7axnYVbVbWkdDlAK_VmxYkjlSWtaHvgx_gBfoxx4lQCCVXiEileoujZfjNjjZ8BbqlMGmhlQwvtT4gBiu9YMmIKH4pnai-M6YPCw5ETTNjDlE9L0C7Owui0SsP9OadnbG1K6gbN-mI2qz-hc4DzlWsFLC16xnegotWpeBkqrV4_GG0I2bazbT7d3tIdihN0WZrXSzpffmjdbruJRcjUzb8s1C-uzgxQ9xD2jedIWvnPHUFJpcdwUNzKQMwiPQE6_PqUs_Wyc0f6xYYZude61KTzJlWsjRWZp8Q0I4_4fgqTbmfcDixzNYIVUcpWFgYxsY5sXRnGyo4ajZAm0uF-4imEwouZ08iEemKOLpvCmIbGHjawk9D3I8Z9egbldJ6qcyBKuloyn3u-8lmoXC9KKFKk4klMVeLYVaAFHCIyuuH6-opXUSSIPYscRKFBFDmIVbA2vRa5bsaW9m6BtPgx_gKpfUvPWjEwwqw_rEcvldsuAnTx7w_fwG4wHg7EoDfqX8KersmSy3gNyqv3tbpCb2Qlr81s-wbckdti |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=M%C3%B6biusE%3A+Knowledge+Graph+Embedding+on+M%C3%B6bius+Ring&rft.jtitle=Knowledge-based+systems&rft.au=Chen%2C+Yao&rft.au=Liu%2C+Jiangang&rft.au=Zhang%2C+Zhe&rft.au=Wen%2C+Shiping&rft.date=2021-09-05&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=227&rft_id=info:doi/10.1016%2Fj.knosys.2021.107181&rft.externalDocID=S0950705121004445 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |