MöbiusE: Knowledge Graph Embedding on Möbius Ring

In this work, we propose a novel Knowledge Graph Embedding (KGE) strategy, called MöbiusE, in which the entities and relations are embedded to the surface of a Möbius ring. The proposition of such a strategy is inspired by the classic TorusE, in which the addition of two arbitrary elements is subjec...

Full description

Saved in:
Bibliographic Details
Published inKnowledge-based systems Vol. 227; p. 107181
Main Authors Chen, Yao, Liu, Jiangang, Zhang, Zhe, Wen, Shiping, Xiong, Wenjun
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 05.09.2021
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0950-7051
1872-7409
DOI10.1016/j.knosys.2021.107181

Cover

Loading…
Abstract In this work, we propose a novel Knowledge Graph Embedding (KGE) strategy, called MöbiusE, in which the entities and relations are embedded to the surface of a Möbius ring. The proposition of such a strategy is inspired by the classic TorusE, in which the addition of two arbitrary elements is subject to a modulus operation. In this sense, TorusE naturally guarantees the critical boundedness of embedding vectors in KGE. However, the nonlinear property of addition operation on Torus ring is uniquely derived by the modulus operation, which in some extent restricts the expressiveness of TorusE. As a further generalization of TorusE, MöbiusE also uses modulus operation to preserve the closeness of addition on it, but the coordinates on Möbius ring interacts with each other in the following way: any vector attaches to the surface of a Mobius ring becomes its opposite one if it moves along its parametric trace by a cycle. Hence, MöbiusE assumes much more nonlinear representativeness than that of TorusE, and in turn it generates much more precise embedding results. In our experiments, MöbiusE outperforms TorusE and other classic embedding strategies in several key indicators.
AbstractList In this work, we propose a novel Knowledge Graph Embedding (KGE) strategy, called MöbiusE, in which the entities and relations are embedded to the surface of a Möbius ring. The proposition of such a strategy is inspired by the classic TorusE, in which the addition of two arbitrary elements is subject to a modulus operation. In this sense, TorusE naturally guarantees the critical boundedness of embedding vectors in KGE. However, the nonlinear property of addition operation on Torus ring is uniquely derived by the modulus operation, which in some extent restricts the expressiveness of TorusE. As a further generalization of TorusE, MöbiusE also uses modulus operation to preserve the closeness of addition on it, but the coordinates on Möbius ring interacts with each other in the following way: any vector attaches to the surface of a Mobius ring becomes its opposite one if it moves along its parametric trace by a cycle. Hence, MöbiusE assumes much more nonlinear representativeness than that of TorusE, and in turn it generates much more precise embedding results. In our experiments, MöbiusE outperforms TorusE and other classic embedding strategies in several key indicators.
ArticleNumber 107181
Author Wen, Shiping
Zhang, Zhe
Liu, Jiangang
Chen, Yao
Xiong, Wenjun
Author_xml – sequence: 1
  givenname: Yao
  orcidid: 0000-0002-6505-4670
  surname: Chen
  fullname: Chen, Yao
  email: chenyao@swufe.edu.cn
  organization: Department of Computer Science, Southwestern University of Finance and Economics, China
– sequence: 2
  givenname: Jiangang
  orcidid: 0000-0003-4121-5991
  surname: Liu
  fullname: Liu, Jiangang
  organization: Department of Computer Science, Southwestern University of Finance and Economics, China
– sequence: 3
  givenname: Zhe
  orcidid: 0000-0002-9589-9084
  surname: Zhang
  fullname: Zhang, Zhe
  organization: Department of Computer Science, Southwestern University of Finance and Economics, China
– sequence: 4
  givenname: Shiping
  surname: Wen
  fullname: Wen, Shiping
  organization: Centre for Artificial Intelligence, University of Technology Sydney, Sydney, Australia
– sequence: 5
  givenname: Wenjun
  surname: Xiong
  fullname: Xiong, Wenjun
  organization: Department of Computer Science, Southwestern University of Finance and Economics, China
BookMark eNqFkM1KAzEUhYNUsK2-gYsB11OTTH4mXQhSahUrgug6ZCaZmtomNZkqfTFfwBczZbpyoavLvTnn3NxvAHrOOwPAOYIjBBG7XI7enI-7OMIQozTiqERHoI9KjnNOoOiBPhQU5hxSdAIGMS4hhBijsg-Kh--vym7jdJzdO_-5MnphsllQm9dsuq6M1tYtMu-ygyx7Sv0pOG7UKpqzQx2Cl5vp8-Q2nz_O7ibX87wuCtLmiJQaEiZ4pbTBNYSqaCpGRVMaQtIbYekXnDNNIaFGCFboMglwo4SoCRXFEFx0uZvg37cmtnLpt8GllRJTxijmKTypxp2qDj7GYBpZ21a11rs2KLuSCMo9JLmUHSS5hyQ7SMlMfpk3wa5V2P1nu-psJp3_YU2QsbbG1UbbYOpWam__DvgB5OeEOQ
CitedBy_id crossref_primary_10_2478_amns_2023_2_01530
crossref_primary_10_3390_sym13030485
crossref_primary_10_1016_j_eswa_2023_120953
crossref_primary_10_1145_3643806
crossref_primary_10_1142_S0218194022500760
crossref_primary_10_1145_3545573
crossref_primary_10_1016_j_eswa_2022_119122
crossref_primary_10_1016_j_knosys_2025_113040
crossref_primary_10_1108_IJWIS_03_2023_0042
crossref_primary_10_1111_exsy_13234
Cites_doi 10.1609/aaai.v29i1.9491
10.1609/aaai.v32i1.11538
10.1007/978-3-540-76298-0_52
10.1609/aaai.v32i1.11573
10.3115/v1/P15-1067
10.1145/1242572.1242667
10.1016/j.patcog.2017.11.004
10.1145/3132733
10.1145/1376616.1376746
10.1609/aaai.v28i1.8870
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier Science Ltd. Sep 5, 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Sep 5, 2021
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2021.107181
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2021_107181
S0950705121004445
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61773319
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Fundamental Research Funds for Chinese Central Universities
  grantid: JBK190502
  funderid: http://dx.doi.org/10.13039/501100012226
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
UHS
WUQ
7SC
8FD
E3H
EFKBS
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-148d04697bade2c00a3fb659f8e4448d46000776d5045e9963d8fb62fa99c4593
IEDL.DBID .~1
ISSN 0950-7051
IngestDate Fri Jul 25 04:39:31 EDT 2025
Tue Jul 01 04:38:02 EDT 2025
Thu Apr 24 23:10:47 EDT 2025
Fri Feb 23 02:47:14 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Embedding
Torus ring
Möbius ring
Knowledge graph
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-148d04697bade2c00a3fb659f8e4448d46000776d5045e9963d8fb62fa99c4593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4121-5991
0000-0002-9589-9084
0000-0002-6505-4670
PQID 2566527697
PQPubID 2035257
ParticipantIDs proquest_journals_2566527697
crossref_citationtrail_10_1016_j_knosys_2021_107181
crossref_primary_10_1016_j_knosys_2021_107181
elsevier_sciencedirect_doi_10_1016_j_knosys_2021_107181
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-05
PublicationDateYYYYMMDD 2021-09-05
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-05
  day: 05
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References J. Feng, M. Huang, M. Wang, M. Zhou, Y. Hao, X. Zhu, Knowlege Graph Embedding by Flexible Translation, in: Proceedings of the 15th International Conference on Principles of Knowledge Representation and Reasoning, 2016, pp. 557–560.
Bordes, Usunier, García-Durán, Weston, Yakhnenko (b5) 2013
T. Trouillon, J. Welbl, S. Riedel, E. Gaussier, G. Bouchard, Complex Embeddings for Simple Link Prediction, in: Proceedings of the 29th International Conference on Machine Learning, 2012, pp. 2071–2080.
T. Dettmers, P. Minervini, P. Stenetorp, S. Riedel, Convolutional 2D Knowledge Graph Embeddings, in: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018, pp. 1811–1818.
Zhang, Tay, Yao, Liu (b13) 2019
K. Bollacker, C. Evans, P. Paritosh, T. Sturge, J. Taylor, Freebase: a collaboratively created graph database for structuring human knowledge, Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, 2008, pp. 1247–1250.
M. Fan, Q. Zhou, E. Chang, T.F. Zheng, Transition-based Knowledge Graph Embedding with Relational Mapping Properties, in: Proceedings of the 28th Pacific Asia Conference on Language, Information and Computation, 2014, pp. 328–337.
M. Nickel, V. Tresp, H.P. Kriegel, A Three-Way Model for Collective Learning on Multi-Relational Data, in: Proceedings of the 28th International Conference on Machine Learning, 2011, pp. 809–816.
Lu, Xuan, Zhang, Luo (b1) 2018; 76
B. Yang, W.T. Yih, X. He, J. Gao, L. Deng, Embedding Entities and Relations for Learning and Inference in Knowledge Bases, in: Proceedings of the 4th International Conference of Learning Representations, 2015, pp. 1412–1423.
G. Ji, S. He, L. Xu, K. Liu, J. Zhao, Knowledge Graph Embedding via Dynamic Mapping Matrix, in: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, 2015, pp. 687–696.
S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, Z. Ives, DBpedia: a nucleus for a web of open data, in: Proceedings of the 6th International Semantic Web Conference and the 2nd Asian Semantic Web Conference, 2007, pp. 722–735.
Y. Lin, Z. Liu, M. Sun, Y. Liu, X. Zhu, Learning Entity and Relation Embeddings for Knowledge Graph Completion, in: Proceedings of the 29th AAAI Conference on Artificial Intelligence, 2015, pp. 2181–2187.
Jia, Wang, Jin, Lin, Cheng (b11) 2018; 12
T. Ebisu, R. Ichise, TorusE: Knowledge Graph Embedding on a Lie Group, in: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018, pp. 1819–1826.
M.F. Suchanek, G. Kasneci, G. Weikum, Yago: a core of semantic knowledge, in: Proceedings of the 16th International Conference on World Wide Web, 2007, pp. 697–706.
Z. Wang, J. Zhang, J. Feng, Z. Chen, Knowledge Graph Embedding by Translating on Hyperplanes, in: Proceedings of the 28th AAAI Conference on Artificial Intelligence, 2014, pp. 1112–1119.
10.1016/j.knosys.2021.107181_b16
10.1016/j.knosys.2021.107181_b17
10.1016/j.knosys.2021.107181_b9
10.1016/j.knosys.2021.107181_b14
10.1016/j.knosys.2021.107181_b15
10.1016/j.knosys.2021.107181_b12
10.1016/j.knosys.2021.107181_b10
Jia (10.1016/j.knosys.2021.107181_b11) 2018; 12
Zhang (10.1016/j.knosys.2021.107181_b13) 2019
Lu (10.1016/j.knosys.2021.107181_b1) 2018; 76
10.1016/j.knosys.2021.107181_b3
10.1016/j.knosys.2021.107181_b4
10.1016/j.knosys.2021.107181_b2
10.1016/j.knosys.2021.107181_b7
10.1016/j.knosys.2021.107181_b8
Bordes (10.1016/j.knosys.2021.107181_b5) 2013
10.1016/j.knosys.2021.107181_b6
References_xml – reference: S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, Z. Ives, DBpedia: a nucleus for a web of open data, in: Proceedings of the 6th International Semantic Web Conference and the 2nd Asian Semantic Web Conference, 2007, pp. 722–735.
– reference: T. Ebisu, R. Ichise, TorusE: Knowledge Graph Embedding on a Lie Group, in: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018, pp. 1819–1826.
– reference: Z. Wang, J. Zhang, J. Feng, Z. Chen, Knowledge Graph Embedding by Translating on Hyperplanes, in: Proceedings of the 28th AAAI Conference on Artificial Intelligence, 2014, pp. 1112–1119.
– volume: 12
  start-page: 1
  year: 2018
  end-page: 33
  ident: b11
  article-title: Knowledge graph embedding: A locally and temporally adaptive translation-based approach
  publication-title: ACM Trans. Web
– reference: M. Fan, Q. Zhou, E. Chang, T.F. Zheng, Transition-based Knowledge Graph Embedding with Relational Mapping Properties, in: Proceedings of the 28th Pacific Asia Conference on Language, Information and Computation, 2014, pp. 328–337.
– reference: T. Trouillon, J. Welbl, S. Riedel, E. Gaussier, G. Bouchard, Complex Embeddings for Simple Link Prediction, in: Proceedings of the 29th International Conference on Machine Learning, 2012, pp. 2071–2080.
– reference: M.F. Suchanek, G. Kasneci, G. Weikum, Yago: a core of semantic knowledge, in: Proceedings of the 16th International Conference on World Wide Web, 2007, pp. 697–706.
– reference: B. Yang, W.T. Yih, X. He, J. Gao, L. Deng, Embedding Entities and Relations for Learning and Inference in Knowledge Bases, in: Proceedings of the 4th International Conference of Learning Representations, 2015, pp. 1412–1423.
– reference: G. Ji, S. He, L. Xu, K. Liu, J. Zhao, Knowledge Graph Embedding via Dynamic Mapping Matrix, in: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, 2015, pp. 687–696.
– volume: 76
  start-page: 228
  year: 2018
  end-page: 241
  ident: b1
  article-title: Structural property-aware multilayer network embedding for latent factor analysis
  publication-title: Pattern Recognit.
– reference: Y. Lin, Z. Liu, M. Sun, Y. Liu, X. Zhu, Learning Entity and Relation Embeddings for Knowledge Graph Completion, in: Proceedings of the 29th AAAI Conference on Artificial Intelligence, 2015, pp. 2181–2187.
– reference: M. Nickel, V. Tresp, H.P. Kriegel, A Three-Way Model for Collective Learning on Multi-Relational Data, in: Proceedings of the 28th International Conference on Machine Learning, 2011, pp. 809–816.
– reference: J. Feng, M. Huang, M. Wang, M. Zhou, Y. Hao, X. Zhu, Knowlege Graph Embedding by Flexible Translation, in: Proceedings of the 15th International Conference on Principles of Knowledge Representation and Reasoning, 2016, pp. 557–560.
– reference: K. Bollacker, C. Evans, P. Paritosh, T. Sturge, J. Taylor, Freebase: a collaboratively created graph database for structuring human knowledge, Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, 2008, pp. 1247–1250.
– start-page: 2731
  year: 2019
  end-page: 2741
  ident: b13
  article-title: Quaternion knowledge graph embeddings
  publication-title: Advances in Neural Information Processing Systems
– start-page: 2787
  year: 2013
  end-page: 2795
  ident: b5
  article-title: Translating embeddings for modeling multi-relational data
  publication-title: Advances in Neural Information Processing Systems
– reference: T. Dettmers, P. Minervini, P. Stenetorp, S. Riedel, Convolutional 2D Knowledge Graph Embeddings, in: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018, pp. 1811–1818.
– start-page: 2731
  year: 2019
  ident: 10.1016/j.knosys.2021.107181_b13
  article-title: Quaternion knowledge graph embeddings
– ident: 10.1016/j.knosys.2021.107181_b6
  doi: 10.1609/aaai.v29i1.9491
– ident: 10.1016/j.knosys.2021.107181_b10
  doi: 10.1609/aaai.v32i1.11538
– ident: 10.1016/j.knosys.2021.107181_b2
  doi: 10.1007/978-3-540-76298-0_52
– ident: 10.1016/j.knosys.2021.107181_b12
  doi: 10.1609/aaai.v32i1.11573
– ident: 10.1016/j.knosys.2021.107181_b14
– ident: 10.1016/j.knosys.2021.107181_b15
  doi: 10.3115/v1/P15-1067
– ident: 10.1016/j.knosys.2021.107181_b3
  doi: 10.1145/1242572.1242667
– start-page: 2787
  year: 2013
  ident: 10.1016/j.knosys.2021.107181_b5
  article-title: Translating embeddings for modeling multi-relational data
– volume: 76
  start-page: 228
  year: 2018
  ident: 10.1016/j.knosys.2021.107181_b1
  article-title: Structural property-aware multilayer network embedding for latent factor analysis
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.11.004
– ident: 10.1016/j.knosys.2021.107181_b8
– ident: 10.1016/j.knosys.2021.107181_b9
– volume: 12
  start-page: 1
  issue: 2
  year: 2018
  ident: 10.1016/j.knosys.2021.107181_b11
  article-title: Knowledge graph embedding: A locally and temporally adaptive translation-based approach
  publication-title: ACM Trans. Web
  doi: 10.1145/3132733
– ident: 10.1016/j.knosys.2021.107181_b17
– ident: 10.1016/j.knosys.2021.107181_b16
– ident: 10.1016/j.knosys.2021.107181_b4
  doi: 10.1145/1376616.1376746
– ident: 10.1016/j.knosys.2021.107181_b7
  doi: 10.1609/aaai.v28i1.8870
SSID ssj0002218
Score 2.3936028
Snippet In this work, we propose a novel Knowledge Graph Embedding (KGE) strategy, called MöbiusE, in which the entities and relations are embedded to the surface of a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107181
SubjectTerms Embedding
Knowledge graph
Knowledge representation
Möbius ring
Torus ring
Toruses
Title MöbiusE: Knowledge Graph Embedding on Möbius Ring
URI https://dx.doi.org/10.1016/j.knosys.2021.107181
https://www.proquest.com/docview/2566527697
Volume 227
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IXrz4NqJoevC6Att2H94IAVECB5WEW7Pd7Sb4WIjAwYs_yz_gH3Om22o0MSReNml3utl8befRzHwl5JypvAlWNvHA_iQQoMSBp1Ku4aGFYXvhHAuFh6OgP-Y3EzGpkI6rhcG0Sqv7S51utLXtaVg0G_PptHEHzgGsV4EMWEh6hoXmnIe4yi_evtM8fN-c8aGwh9KufM7keD0Ws8Urknb7LegCNd36yzz9UtTG-vR2yJZ1G2m7_LNdUtHFHtl2VzJQu0P3CRt-vKvpatG9pAN3WkavkJSadp-VztBS0VlBrRi9hfYBGfe6952-Z-9F8FLG-NKDCCbDsDZUSab9tNlMWK4CEeeRBhyijAdNw9KTCfDXNAQ0LItAwM-TOE65iNkhqRazQh8RqlWIfPkiinXMEx1Gac5AP2qRZ0zngV8jzMEhU0sajndXPEmXHfYgSxAlgihLEGvE-xo1L0kz1siHDmn5Y_Il6PU1I-tuYqTdfPAeXFThhwDQ8b8_fEI2sWWyyUSdVJcvK30K7sdSnZn1dUY22teD_ugTYS_YsQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2V9gAXdkShgA9co7axnYVbVbWkdDlAK_VmxYkjlSWtaHvgx_gBfoxx4lQCCVXiEileoujZfjNjjZ8BbqlMGmhlQwvtT4gBiu9YMmIKH4pnai-M6YPCw5ETTNjDlE9L0C7Owui0SsP9OadnbG1K6gbN-mI2qz-hc4DzlWsFLC16xnegotWpeBkqrV4_GG0I2bazbT7d3tIdihN0WZrXSzpffmjdbruJRcjUzb8s1C-uzgxQ9xD2jedIWvnPHUFJpcdwUNzKQMwiPQE6_PqUs_Wyc0f6xYYZude61KTzJlWsjRWZp8Q0I4_4fgqTbmfcDixzNYIVUcpWFgYxsY5sXRnGyo4ajZAm0uF-4imEwouZ08iEemKOLpvCmIbGHjawk9D3I8Z9egbldJ6qcyBKuloyn3u-8lmoXC9KKFKk4klMVeLYVaAFHCIyuuH6-opXUSSIPYscRKFBFDmIVbA2vRa5bsaW9m6BtPgx_gKpfUvPWjEwwqw_rEcvldsuAnTx7w_fwG4wHg7EoDfqX8KersmSy3gNyqv3tbpCb2Qlr81s-wbckdti
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=M%C3%B6biusE%3A+Knowledge+Graph+Embedding+on+M%C3%B6bius+Ring&rft.jtitle=Knowledge-based+systems&rft.au=Chen%2C+Yao&rft.au=Liu%2C+Jiangang&rft.au=Zhang%2C+Zhe&rft.au=Wen%2C+Shiping&rft.date=2021-09-05&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=227&rft_id=info:doi/10.1016%2Fj.knosys.2021.107181&rft.externalDocID=S0950705121004445
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon