The search for enhanced dielectric strength of polymer‐based dielectrics: A focused review on polymer nanocomposites
This report traces the leading scientific endeavors to enhance the dielectric strength of polymer dielectrics for energy storage and electrical insulation applications. Remarkable progress has occurred over the past 15 years through nanodielectric engineering involving inorganic nanofillers, coating...
Saved in:
Published in | Journal of applied polymer science Vol. 137; no. 33 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
05.09.2020
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This report traces the leading scientific endeavors to enhance the dielectric strength of polymer dielectrics for energy storage and electrical insulation applications. Remarkable progress has occurred over the past 15 years through nanodielectric engineering involving inorganic nanofillers, coatings, and polymer matrices. This article highlights the challenges of dielectric polymers primarily toward capacitors and cable/wire insulation. It also summarizes several major technical approaches to enhance the dielectric strength of polymers and nanocomposites, including nanoparticle incorporation in polymers, filler‐polymer interface engineering, and film surface coating. More attention is directed to interface contributions, including rational design of core‐shell structures, use of low‐dimensional fillers and thermally conducting fillers, and inorganic surface coating of polymer films. These efforts demonstrated the enhancement in dielectric strength by 40–160% when controlling the fillers below 5 wt% in polyvinylidenedifluoride (PVDF) composites. This article also discussed the possible dielectric mechanisms and the positive role of interfaces against charge transport traps for attaining higher breakdown strength. The investigation of low‐dimensional filler/coating materials of high thermal conductivity can be key scientific subjects for future research.
This review traces the leading scientific endeavors to enhance the dielectric strength of polymer dielectrics for energy storage and electrical insulation applications. (a) The relationship between the thermal conductivity of insulating and conducting fillers and the dielectric strength improvement. (b) Effect of various technical routes including core‐shell, low‐dimension, thermally conducting and surface coating) on dielectric strength improvement of polymer dielectrics. |
---|---|
AbstractList | This report traces the leading scientific endeavors to enhance the dielectric strength of polymer dielectrics for energy storage and electrical insulation applications. Remarkable progress has occurred over the past 15 years through nanodielectric engineering involving inorganic nanofillers, coatings, and polymer matrices. This article highlights the challenges of dielectric polymers primarily toward capacitors and cable/wire insulation. It also summarizes several major technical approaches to enhance the dielectric strength of polymers and nanocomposites, including nanoparticle incorporation in polymers, filler‐polymer interface engineering, and film surface coating. More attention is directed to interface contributions, including rational design of core‐shell structures, use of low‐dimensional fillers and thermally conducting fillers, and inorganic surface coating of polymer films. These efforts demonstrated the enhancement in dielectric strength by 40–160% when controlling the fillers below 5 wt% in polyvinylidenedifluoride (PVDF) composites. This article also discussed the possible dielectric mechanisms and the positive role of interfaces against charge transport traps for attaining higher breakdown strength. The investigation of low‐dimensional filler/coating materials of high thermal conductivity can be key scientific subjects for future research. This report traces the leading scientific endeavors to enhance the dielectric strength of polymer dielectrics for energy storage and electrical insulation applications. Remarkable progress has occurred over the past 15 years through nanodielectric engineering involving inorganic nanofillers, coatings, and polymer matrices. This article highlights the challenges of dielectric polymers primarily toward capacitors and cable/wire insulation. It also summarizes several major technical approaches to enhance the dielectric strength of polymers and nanocomposites, including nanoparticle incorporation in polymers, filler‐polymer interface engineering, and film surface coating. More attention is directed to interface contributions, including rational design of core‐shell structures, use of low‐dimensional fillers and thermally conducting fillers, and inorganic surface coating of polymer films. These efforts demonstrated the enhancement in dielectric strength by 40–160% when controlling the fillers below 5 wt% in polyvinylidenedifluoride (PVDF) composites. This article also discussed the possible dielectric mechanisms and the positive role of interfaces against charge transport traps for attaining higher breakdown strength. The investigation of low‐dimensional filler/coating materials of high thermal conductivity can be key scientific subjects for future research. This review traces the leading scientific endeavors to enhance the dielectric strength of polymer dielectrics for energy storage and electrical insulation applications. (a) The relationship between the thermal conductivity of insulating and conducting fillers and the dielectric strength improvement. (b) Effect of various technical routes including core‐shell, low‐dimension, thermally conducting and surface coating) on dielectric strength improvement of polymer dielectrics. |
Author | Tan, Daniel Q. |
Author_xml | – sequence: 1 givenname: Daniel Q. orcidid: 0000-0002-2282-2000 surname: Tan fullname: Tan, Daniel Q. email: daniel.tan@gtiit.edu.cn organization: Technion Israel Institute of Technology and Guangdong Technion Israel Institute of Technology |
BookMark | eNp1kMtKAzEUhoNUsK0ufIOAKxfTJplr3JXiDQp2UddDJjnjpEyTMZm2dOcj-Iw-iVNbF4ouDoGT7_sP_APUM9YAQpeUjCghbCyaZhTxMOUnqE8JT4MoYVkP9bs_GmScx2do4P2SEEpjkvTRZlEB9iCcrHBpHQZTCSNBYaWhBtk6LbFvHZiXtsK2xI2tdytwH2_vhfA_MH-DJ12EXO_XDjYattiabwEbYay0q8Z63YI_R6elqD1cHN8her67XUwfgtnT_eN0MgtkGEY8UCLkpIipSoso4iCjgmacQUZZWiSKiSiOQSgaCkFEyJRKE56VRSFL1o0osnCIrg65jbOva_BtvrRrZ7qTOYtIksY8Y2FHjQ-UdNZ7B2UudStabU3rhK5zSvJ9uXlXbv5Vbmdc_zIap1fC7f5kj-lbXcPufzCfzOcH4xN1bY88 |
CitedBy_id | crossref_primary_10_1002_pat_6110 crossref_primary_10_1002_app_51186 crossref_primary_10_1007_s10853_022_07350_1 crossref_primary_10_1016_j_jmst_2023_10_026 crossref_primary_10_1021_acs_macromol_2c00259 crossref_primary_10_1016_j_carbpol_2024_122968 crossref_primary_10_1080_09276440_2020_1833594 crossref_primary_10_1002_app_53403 crossref_primary_10_1007_s10854_023_11358_x crossref_primary_10_3390_nano13192711 crossref_primary_10_1002_advs_202206243 crossref_primary_10_1021_acsami_3c08858 crossref_primary_10_1021_acs_jpcc_0c05833 crossref_primary_10_1016_j_polymertesting_2022_107651 crossref_primary_10_1002_mame_202200561 crossref_primary_10_1007_s11664_024_11699_1 crossref_primary_10_1080_02772248_2025_2469040 crossref_primary_10_1002_adma_202207421 crossref_primary_10_1140_epjb_s10051_024_00741_0 crossref_primary_10_1016_j_heliyon_2024_e34737 crossref_primary_10_1088_2632_959X_abe518 crossref_primary_10_1039_D4TA04534C crossref_primary_10_1016_j_compositesa_2021_106800 crossref_primary_10_1016_j_compscitech_2023_110305 crossref_primary_10_1021_acsami_1c04991 crossref_primary_10_1002_marc_202200568 crossref_primary_10_1002_pat_5527 crossref_primary_10_1016_j_pmatsci_2022_100968 crossref_primary_10_1088_1361_6463_acd1fa crossref_primary_10_1016_j_compositesa_2021_106384 crossref_primary_10_1021_acs_chemrev_2c00231 crossref_primary_10_1002_smll_202205247 crossref_primary_10_1002_app_56137 crossref_primary_10_1016_j_ensm_2021_10_010 crossref_primary_10_1002_pen_26441 crossref_primary_10_1039_D4TB00231H crossref_primary_10_1088_1361_6463_ad6674 crossref_primary_10_3390_polym14030431 crossref_primary_10_3390_polym15132826 crossref_primary_10_1016_j_colsurfa_2025_136394 crossref_primary_10_1002_pc_29295 crossref_primary_10_1016_j_surfin_2023_102729 crossref_primary_10_1016_j_cej_2022_137940 crossref_primary_10_1007_s00289_022_04632_1 crossref_primary_10_1002_mame_202100843 crossref_primary_10_1016_j_surfin_2021_101686 crossref_primary_10_1007_s10965_023_03605_w crossref_primary_10_1021_acsnano_2c07404 crossref_primary_10_1080_09243046_2024_2432061 crossref_primary_10_1080_25740881_2024_2307343 crossref_primary_10_1016_j_ceramint_2022_01_114 crossref_primary_10_1039_D4MH01225A crossref_primary_10_1016_j_jeurceramsoc_2023_06_037 crossref_primary_10_1038_s41467_022_35623_5 crossref_primary_10_1007_s13726_024_01308_7 crossref_primary_10_1007_s13369_022_06806_5 crossref_primary_10_1021_acsami_3c06778 crossref_primary_10_3390_en14102758 crossref_primary_10_1016_j_polymertesting_2022_107596 crossref_primary_10_1039_D2TA02901D crossref_primary_10_1007_s13369_025_10028_w crossref_primary_10_1016_j_molstruc_2024_138262 crossref_primary_10_1016_j_mtcomm_2022_105178 crossref_primary_10_1002_pc_28072 crossref_primary_10_1002_app_52102 crossref_primary_10_1021_acsaenm_3c00439 crossref_primary_10_1016_j_progpolymsci_2022_101505 crossref_primary_10_1016_j_carbon_2021_01_158 crossref_primary_10_1002_app_55585 crossref_primary_10_1016_j_matchemphys_2023_128442 crossref_primary_10_1016_j_envres_2021_112297 crossref_primary_10_1080_25740881_2024_2365286 crossref_primary_10_1109_TPS_2023_3272695 crossref_primary_10_1088_1361_6463_ad6610 crossref_primary_10_1002_adma_202411507 crossref_primary_10_1039_D2TA02900F crossref_primary_10_1080_19475411_2023_2299411 crossref_primary_10_1063_5_0150213 crossref_primary_10_1002_pc_29232 crossref_primary_10_1002_app_51828 crossref_primary_10_1007_s42114_022_00451_0 crossref_primary_10_1039_D1EE01960K crossref_primary_10_1039_D3TC00979C crossref_primary_10_1039_D3TC04715F crossref_primary_10_1021_acsaem_2c02425 crossref_primary_10_1109_TDEI_2022_3188038 crossref_primary_10_1016_j_coco_2023_101522 crossref_primary_10_1002_app_53694 crossref_primary_10_1021_acs_chemrev_1c00793 crossref_primary_10_1007_s42114_021_00329_7 crossref_primary_10_1016_j_matchemphys_2021_125221 crossref_primary_10_1063_5_0056164 crossref_primary_10_1016_j_cej_2025_159488 crossref_primary_10_1016_j_sse_2021_108057 crossref_primary_10_1016_j_est_2024_110586 crossref_primary_10_1002_mame_202000732 crossref_primary_10_1021_acssuschemeng_1c06511 crossref_primary_10_1016_j_measurement_2023_113869 crossref_primary_10_3390_cryst14020160 crossref_primary_10_3390_polym15102257 crossref_primary_10_1016_j_matpr_2023_02_081 crossref_primary_10_1039_D2TA07214A crossref_primary_10_1007_s12034_023_03032_z crossref_primary_10_1016_j_polymertesting_2023_108315 crossref_primary_10_1002_app_54548 crossref_primary_10_1039_D4NR01612B crossref_primary_10_1002_adem_202300070 crossref_primary_10_3390_app122412592 crossref_primary_10_1016_j_eurpolymj_2024_113335 crossref_primary_10_1007_s10854_021_07104_w crossref_primary_10_1016_j_progpolymsci_2024_101870 crossref_primary_10_1080_09243046_2024_2350088 crossref_primary_10_1002_adfm_202420355 crossref_primary_10_1002_advs_202102221 crossref_primary_10_1016_j_cej_2024_150874 crossref_primary_10_1109_TCPMT_2024_3371252 crossref_primary_10_1016_j_jpowsour_2024_235255 crossref_primary_10_1016_j_cryobiol_2021_01_002 crossref_primary_10_3390_polym17060753 crossref_primary_10_1021_acsaelm_4c01882 crossref_primary_10_1049_hve2_12497 crossref_primary_10_1080_00222348_2024_2372522 crossref_primary_10_1007_s11664_022_09926_8 crossref_primary_10_1002_ente_202000905 crossref_primary_10_1007_s10854_021_07273_8 crossref_primary_10_3390_designs6030044 crossref_primary_10_1016_j_pmatsci_2023_101206 crossref_primary_10_1002_pc_29132 crossref_primary_10_1021_acsmacrolett_4c00456 crossref_primary_10_1109_TDEI_2021_009531 crossref_primary_10_1016_j_mtener_2022_101167 crossref_primary_10_1007_s10965_023_03606_9 crossref_primary_10_1002_admi_202400040 crossref_primary_10_1016_j_heliyon_2024_e39118 crossref_primary_10_1007_s10854_022_08688_7 crossref_primary_10_1007_s13233_022_0052_6 crossref_primary_10_1016_j_mtener_2022_101209 crossref_primary_10_1039_D0CS00765J crossref_primary_10_1016_j_matchemphys_2021_124276 crossref_primary_10_3390_polym12091972 crossref_primary_10_1007_s42114_022_00584_2 crossref_primary_10_3390_ma14051298 crossref_primary_10_1080_25740881_2022_2089576 crossref_primary_10_1080_15583724_2022_2129680 crossref_primary_10_1007_s10854_023_10415_9 crossref_primary_10_1016_j_cej_2022_135059 crossref_primary_10_1088_1402_4896_ad80df crossref_primary_10_1063_5_0118591 crossref_primary_10_3390_nano11081898 crossref_primary_10_1016_j_mtcomm_2022_104600 crossref_primary_10_1021_acsaelm_2c00190 crossref_primary_10_1002_pc_27345 crossref_primary_10_1039_D2TC00968D crossref_primary_10_1002_adma_202415652 crossref_primary_10_26565_2312_4334_2021_2_10 crossref_primary_10_1016_j_mattod_2024_09_008 |
Cites_doi | 10.1039/C4TA03260H 10.1002/adma.201301752 10.1590/S1516-14392009000100002 10.1039/c2jm32579a 10.3390/polym11010024 10.1039/C5RA05748E 10.1109/94.326660 10.1155/2014/578168 10.1088/0022-3727/27/3/026 10.1002/aenm.201803204 10.12989/amr.2012.1.1.093 10.3390/polym8050173 10.1002/adma.200801758 10.1016/j.porgcoat.2008.11.006 10.1002/adma.201401310 10.1021/ma011692u 10.1002/adfm.200700200 10.1063/1.4998271 10.1021/ma402220j 10.1073/pnas.1603792113 10.1002/1521-4095(200110)13:20<1541::AID-ADMA1541>3.0.CO;2-X 10.1163/156855400750244969 10.1109/TEI.1984.298747 10.1143/JJAP.10.736 10.1007/978-1-4419-1591-7_6 10.1016/j.jmps.2013.09.009 10.1109/TDEI.2010.5595554 10.1021/acsami.7b16409 10.1021/jz501831q 10.1109/MEI.2018.8246118 10.1021/acsami.5b06480 10.1126/sciadv.aax6622 10.1002/adma.201204072 10.1021/acsaelm.9b00423 10.1016/j.compscitech.2018.10.021 10.1016/j.progpolymsci.2015.08.002 10.1002/adma.201503186 10.1109/TDEI.2004.1349785 10.1063/1.4721809 10.1021/ma202267r 10.1021/ma100209d 10.1002/adma.201707269 10.1021/ma502424r 10.1002/adma.201402106 10.1109/57.44606 10.1021/acsami.6b10016 10.1109/MEI.2011.5954064 10.1111/j.1551-2916.2006.01481.x 10.1039/C9TA00616H 10.1002/anie.201710474 10.1016/j.pmatsci.2011.08.001 10.1039/C4EE02962C 10.1021/acssuschemeng.8b04943 10.1109/TEI.1980.298314 10.1038/srep38978 10.1109/TDEI.2011.5739450 10.1021/acsami.5b00555 10.1146/annurev-matsci-070909-104529 10.1002/aenm.201100543 10.1109/TDEI.2013.004043 10.1002/aenm.201800509 10.1063/1.126787 10.1088/0022-3727/23/12/007 10.1016/j.pmatsci.2018.10.003 10.1126/science.1147241 10.1109/T-DEI.2008.4446732 10.1016/S0026-2692(02)00010-1 10.1088/0957-4484/22/1/015702 10.1007/s10853-011-5916-7 10.1016/j.polymer.2013.11.042 10.1039/C9CS00043G 10.1049/hve.2016.0034 10.1016/j.mattod.2017.11.021 10.1364/JOSAB.16.001824 10.1116/1.569344 10.1021/am201650g 10.1002/adma.200602422 10.1109/TDEI.2014.003868 10.1021/acs.chemmater.6b01383 10.1002/ces2.10017 10.1103/PhysRevLett.90.217601 10.1016/S0079-6700(01)00038-7 10.3144/expresspolymlett.2013.34 10.1021/acsami.6b13900 10.1021/cm4010486 10.1021/nn9016422 10.1021/nn301940k 10.1039/C7TC04758D 10.1021/nn301675f 10.1039/C7TA03846A 10.1039/b812652f 10.1063/1.4795017 10.1002/polb.22337 10.1007/BF01152143 10.1049/iet-nde.2019.0031 10.1063/1.3293456 10.1016/j.progpolymsci.2013.02.003 10.1002/adma.201701864 10.1002/adfm.201808567 10.1021/acs.chemrev.6b00314 10.1039/C7TA01522D 10.3390/polym10121349 10.1109/TDEI.2012.6215100 10.1039/c2jm30297g 10.1002/adma.201807722 10.1109/TDEI.2004.1349782 10.1002/adma.201704380 10.1002/9783527629848.ch1 10.1039/C7CP04096B 10.1063/1.2032597 10.1109/T-DEI.2008.4446734 10.1021/cm101614p 10.1109/TDEI.2003.1207480 10.1021/cm903182n 10.1063/1.2987522 10.1109/TDEI.2005.1511089 10.1109/MEI.2009.5191413 10.1016/j.carbon.2008.12.037 10.1002/pen.24822 10.1039/c3cp52267a 10.1109/33.62516 10.1146/annurev-matsci-070214-021017 10.1109/TDEI.2011.5976079 10.1038/nature14647 10.1002/pssa.200925159 10.1016/j.polymer.2010.09.025 10.1109/TEI.1980.298272 10.1016/j.nanoen.2016.12.021 10.1016/j.porgcoat.2015.05.023 10.1103/PhysRevB.92.014106 10.1021/cm1009493 10.1039/C8CS00583D 10.2174/1573413712666161025154431 10.1063/1.3624660 10.1021/acs.macromol.7b00792 10.1021/acs.chemrev.5b00495 10.1038/nmat1873 10.1039/c3ra41296b 10.1063/1.3590162 10.1002/admi.201800096 10.1021/acsami.6b14166 10.1007/s11664-014-3440-7 10.1021/acs.macromol.6b02669 10.1109/TDEI.2018.006806 10.1109/MEI.2015.7126073 10.1016/S1359-6462(01)00892-2 10.1002/aenm.201500767 10.1016/j.polymer.2013.01.032 10.1007/978-1-4419-1591-7_9 10.1007/s10853-015-9369-2 10.1002/adma.201805672 10.4071/HITEC-TP25 10.1021/cm9030254 10.1002/polb.21165 10.5545/sv-jme.2015.2632 10.1155/2014/735070 10.1002/adma.200602097 10.1063/1.2147714 10.1002/polb.23296 10.1116/1.1470510 10.1109/TDEI.2006.1624276 10.1038/s41598-017-04196-5 10.1080/20550324.2016.1223913 10.1109/TDEI.2008.4712681 10.4313/TEEM.2016.17.5.239 10.1002/adma.201600377 10.1002/app.23221 10.1088/0957-4484/15/5/032 10.1021/acsami.9b01359 10.2494/photopolymer.28.169 |
ContentType | Journal Article |
Copyright | 2020 Wiley Periodicals LLC. 2020 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2020 Wiley Periodicals LLC. – notice: 2020 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1002/app.49379 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1097-4628 |
EndPage | n/a |
ExternalDocumentID | 10_1002_app_49379 APP49379 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Guangdong Science and Technology Department funderid: 2019A1515012056 – fundername: Guangdong Technion‐Israel Institute of Technology |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWB RWI RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~KM ~WT AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION 7SR 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c3349-da390b51d7b449ec4b1892e8127b6d2a455ead13aa0a32dd7698fbbcf2bcfab83 |
IEDL.DBID | DR2 |
ISSN | 0021-8995 |
IngestDate | Fri Jul 25 12:15:52 EDT 2025 Tue Jul 01 01:59:35 EDT 2025 Thu Apr 24 22:52:26 EDT 2025 Wed Jan 22 16:33:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3349-da390b51d7b449ec4b1892e8127b6d2a455ead13aa0a32dd7698fbbcf2bcfab83 |
Notes | Funding information Guangdong Science and Technology Department, Grant/Award Number: 2019A1515012056; Guangdong Technion‐Israel Institute of Technology ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2282-2000 |
PQID | 2406759823 |
PQPubID | 1006379 |
PageCount | 32 |
ParticipantIDs | proquest_journals_2406759823 crossref_citationtrail_10_1002_app_49379 crossref_primary_10_1002_app_49379 wiley_primary_10_1002_app_49379_APP49379 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 5, 2020 |
PublicationDateYYYYMMDD | 2020-09-05 |
PublicationDate_xml | – month: 09 year: 2020 text: September 5, 2020 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
PublicationTitle | Journal of applied polymer science |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2013; 3 2013; 4 2019; 11 2010; 17 2018; 168 2014; 26 2012; 19 2013; 7 2001; 44 2014; 21 2011; 110 2009; 12 2010; 22 2018; 6 1971; 10 2018; 8 2018; 5 2013; 54 2013; 51 2015; 86 2007; 6 2018; 30 2018; 34 2009; 19 2012; 22 2010; 4 2014; 12 2014; 11 2007; 17 2007; 18 2019; 7 2007; 19 1989; 5 2018; 100 2019; 9 2012; 100 2009; 65 2019; 31 2015; 523 2019; 30 2015; 51 2019; 1 1984; EI‐9 2007; 90 2014; 47 2013; 102 2005; 87 2014; 2014 2016; 17 2018; 21 2011; 6 2010; 40 2014; 43 2018; 25 2017; 50 2010; 43 2016; 6 1990; 23 2016; 1 2016; 2 2013; 76 1977; 14 2015; 61 2000; 76 2019; 48 2005; 98 2012; 47 2016; 28 2018; 10 2007; 318 2012; 45 2016; 8 2003; 21 2010; 51 2005; 12 2006; 100 2017; 5 2009; 47 2017; 7 2013; 25 1990; 13 2015; 31 2000; 7 1994; 27 2014; 63 2017; 111 2008; 2 2012; 57 2011; 18 2017; 9 2003; 10 1996; 31 2017; 117 2015; 45 2015; 48 2020; 6 2017; 30 2013; 15 2014; 5 2003; 90 2020; 3 2014; 2 1980; EI‐15 2017; 32 1999; 16 2016; 113 2011; 22 2016; 116 2009; 206 2011; 27 2001; 13 2014; 55 2002; 38 2009; 25 2015; 17 2015; 5 2009; 21 2015; 92 2006; 13 2011 2010 2002; 35 2002; 33 2008; 15 2007 2006 2005 2004 2017; 29 1999; 2 2003 2015; 8 2015; 7 2008; 93 2002; 27 2004; 11 2011; 109 2012; 2 2015; 28 2015; 27 2012; 1 2013; 38 2002; 20 2004; 15 2017; 13 2019 2018 2017; 19 2016 2009; 4 1994; 1 2012; 6 2011; 49 2012; 4 2007; 45 2010; 96 2018; 58 2018; 57 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_191_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_165_1 e_1_2_7_188_1 e_1_2_7_202_1 e_1_2_7_225_1 Soltani N. (e_1_2_7_142_1) 2014; 11 e_1_2_7_116_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_23_1 e_1_2_7_56_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_154_1 e_1_2_7_177_1 e_1_2_7_214_1 Kasap S. O. (e_1_2_7_65_1) 2018 e_1_2_7_139_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_192_1 e_1_2_7_44_1 e_1_2_7_67_1 e_1_2_7_143_1 e_1_2_7_189_1 e_1_2_7_29_1 e_1_2_7_203_1 e_1_2_7_226_1 e_1_2_7_166_1 Ahmad Z. (e_1_2_7_180_1) e_1_2_7_117_1 Baraton M.‐I. (e_1_2_7_20_1) 2003 e_1_2_7_70_1 e_1_2_7_93_1 Pitsa D. (e_1_2_7_106_1) 2011; 6 e_1_2_7_181_1 e_1_2_7_24_1 e_1_2_7_55_1 e_1_2_7_78_1 e_1_2_7_193_1 e_1_2_7_132_1 e_1_2_7_155_1 e_1_2_7_178_1 e_1_2_7_215_1 Han J. (e_1_2_7_6_1) 2008; 2 e_1_2_7_129_1 e_1_2_7_9_1 e_1_2_7_81_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_170_1 e_1_2_7_227_1 e_1_2_7_89_1 e_1_2_7_182_1 Adams S. (e_1_2_7_8_1) 2003; 21 e_1_2_7_28_1 e_1_2_7_144_1 e_1_2_7_167_1 e_1_2_7_204_1 e_1_2_7_118_1 e_1_2_7_110_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_171_1 e_1_2_7_216_1 e_1_2_7_194_1 Tan D. Q. (e_1_2_7_76_1) 2013; 4 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_156_1 e_1_2_7_179_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_122_1 Tuncer E. (e_1_2_7_84_1) 2007; 18 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_205_1 e_1_2_7_228_1 e_1_2_7_160_1 e_1_2_7_183_1 e_1_2_7_27_1 e_1_2_7_145_1 e_1_2_7_220_1 e_1_2_7_168_1 Stone G. C. (e_1_2_7_5_1) 2004 Ahmad M. H. (e_1_2_7_33_1) 2014; 12 e_1_2_7_119_1 e_1_2_7_91_1 Imanaka Y. (e_1_2_7_41_1) 2002; 38 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_99_1 e_1_2_7_172_1 e_1_2_7_195_1 e_1_2_7_217_1 e_1_2_7_38_1 e_1_2_7_134_1 Office of Basic Energy Science, US Department of Energy (e_1_2_7_3_1) 2007 e_1_2_7_157_1 e_1_2_7_108_1 e_1_2_7_7_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_161_1 e_1_2_7_184_1 e_1_2_7_206_1 e_1_2_7_26_1 e_1_2_7_229_1 e_1_2_7_49_1 e_1_2_7_146_1 e_1_2_7_169_1 e_1_2_7_221_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_75_1 e_1_2_7_150_1 e_1_2_7_196_1 e_1_2_7_37_1 e_1_2_7_173_1 e_1_2_7_218_1 e_1_2_7_135_1 e_1_2_7_158_1 e_1_2_7_210_1 Musa F. N. (e_1_2_7_32_1) 2015; 17 e_1_2_7_109_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_63_1 e_1_2_7_86_1 e_1_2_7_185_1 e_1_2_7_207_1 e_1_2_7_48_1 e_1_2_7_162_1 e_1_2_7_147_1 e_1_2_7_222_1 Marquis M. D. (e_1_2_7_121_1) 2011 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_151_1 e_1_2_7_174_1 e_1_2_7_219_1 e_1_2_7_197_1 e_1_2_7_136_1 e_1_2_7_211_1 e_1_2_7_159_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_140_1 e_1_2_7_163_1 e_1_2_7_208_1 e_1_2_7_223_1 e_1_2_7_186_1 e_1_2_7_148_1 e_1_2_7_200_1 Sarjeant W. J. (e_1_2_7_2_1) 1999 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_152_1 e_1_2_7_175_1 e_1_2_7_212_1 e_1_2_7_198_1 e_1_2_7_137_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_61_1 e_1_2_7_209_1 e_1_2_7_190_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_201_1 e_1_2_7_224_1 e_1_2_7_164_1 e_1_2_7_187_1 e_1_2_7_149_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_153_1 e_1_2_7_176_1 e_1_2_7_199_1 e_1_2_7_213_1 Murata Y. (e_1_2_7_12_1) 2013; 76 e_1_2_7_138_1 Beerman‐Curtin S. (e_1_2_7_15_1) 2009; 4 |
References_xml | – volume: 15 start-page: 1754 year: 2008 publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 14 start-page: 1122 year: 1977 publication-title: J. Vac. Sci. Technol. – volume: 19 start-page: 1001 year: 2007 publication-title: Adv. Mater. – volume: 21 start-page: 2237 issue: 5 year: 2014 publication-title: IEEE Trans. Dielectrics Electrical Insulation – volume: 45 start-page: 433 year: 2015 publication-title: Annu. Rev. Mater. Res. – volume: EI‐15 start-page: 206 issue: 3 year: 1980 publication-title: IEEE Trans. Electrical Insulation – volume: EI‐9 start-page: 200 issue: 3 year: 1984 publication-title: IEEE Trans. Electrical Insulation – volume: 25 start-page: 1734 year: 2013 publication-title: Adv. Mater. – volume: 13 start-page: 175 issue: 2 year: 2017 publication-title: Curr. Nanosci. – volume: 10 start-page: 736 year: 1971 publication-title: Jpn. J. Appl. Phys. – volume: 48 start-page: 2422 year: 2015 publication-title: Macromolecules – volume: 18 start-page: 938 year: 2011 publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 13 start-page: 319 year: 2006 publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 1 start-page: 136 year: 2019 publication-title: Int. J. Ceramic Eng. Sci. – volume: 8 start-page: 922 year: 2015 publication-title: Energy Environ. Sci. – volume: 44 start-page: 2061 year: 2001 publication-title: Scr. Mater. – volume: 25 start-page: 6334 year: 2013 publication-title: Adv. Mater. – volume: 47 start-page: 1096 year: 2009 publication-title: Carbon – volume: 5 start-page: 3677 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 98 start-page: 121301 year: 2005 publication-title: J. Appl. Phys. – volume: 27 start-page: 39 year: 2002 publication-title: Prog. Polym. Sci. – volume: 523 start-page: 576 year: 2015 publication-title: Nature – start-page: 163 year: 2010 – volume: 1 start-page: 122 issue: 3 year: 2016 publication-title: High Volt. – volume: 7 start-page: 375 issue: 4 year: 2013 publication-title: eXPRESS Polym. Lett. – year: 2019 – volume: 55 start-page: 8 year: 2014 publication-title: Polymer – volume: 65 start-page: 222 year: 2009 publication-title: Prog. Org. Coat. – volume: 21 start-page: 710 year: 2009 publication-title: Adv. Mater. – volume: 8 start-page: 173 year: 2016 publication-title: Polymers – volume: 19 start-page: 1418 year: 2007 publication-title: Adv. Mater. – volume: 5 start-page: 10849 year: 2017 publication-title: J. Mater. Chem. A – volume: 11 start-page: 24 year: 2019 publication-title: Polymers – volume: 30 start-page: 1704380 year: 2017 publication-title: Adv. Mater. – year: 2007 – volume: 7 start-page: 243 year: 2000 publication-title: Compos. Interfaces – volume: 4 start-page: 6 year: 2013 publication-title: Mater. Sci. Appl. – volume: 15 start-page: 16242 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 11 start-page: 79 issue: 2 year: 2014 publication-title: Chalcogenide Lett. – volume: 25 start-page: 120 year: 2018 publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 49 start-page: 1421 year: 2011 publication-title: J. Polym. Sci. Part B: Polym. Phys. – volume: 13 start-page: 1541 year: 2001 publication-title: Adv. Mater. – volume: 92 year: 2015 publication-title: Phys. Rev. B – volume: 90 start-page: 217601 year: 2003 publication-title: Phys. Rev. Lett. – volume: 1 start-page: 934 issue: 5 year: 1994 publication-title: IEEE Trans. Dielectrics Electrical Insulation – volume: 12 start-page: 1 year: 2009 publication-title: Mater. Res. – volume: 6 start-page: 8583 year: 2012 publication-title: ACS Nano – volume: 15 start-page: 12 year: 2008 publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 96 year: 2010 publication-title: Appl. Phys. Lett. – volume: 28 start-page: 6277 year: 2016 publication-title: Adv. Mater. – volume: 12 start-page: 629 year: 2005 publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 5 start-page: 52809 year: 2015 publication-title: RSC Adv. – volume: 2 start-page: 117 year: 2016 publication-title: Nanocomposites – volume: 2 start-page: 469 year: 2012 publication-title: Adv. Energy Mater. – volume: 28 start-page: 4646 year: 2016 publication-title: Chem. Mater. – volume: 2 start-page: 424 year: 1999 – start-page: 24 end-page: 29 – volume: 15 start-page: 586 year: 2004 publication-title: Nanotechnology – volume: 7 start-page: 7664 year: 2019 publication-title: J. Mater. Chem. A – volume: 31 start-page: 45 year: 2015 publication-title: IEEE Electr. Insul. Mag. – volume: 45 start-page: 1954 year: 2012 publication-title: Macromolecules – publication-title: InTechOpen – volume: 2 start-page: 20683 year: 2014 publication-title: J. Mater. Chem. A – start-page: 1 year: 2010 – volume: 16 start-page: 1824 year: 1999 publication-title: J. Opt. Soc. Am. B – volume: 318 start-page: 426 year: 2007 publication-title: Science – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 3 start-page: 28 issue: 1 year: 2020 publication-title: IET Nanodielectr. – volume: 9 start-page: 6369 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 100 start-page: 187 year: 2018 publication-title: Prog. Mater. Sci. – volume: 4 start-page: 1388 year: 2012 publication-title: ACS Appl. Mater. Interfaces – volume: 87 year: 2005 publication-title: Appl. Phys. Lett. – volume: 51 start-page: 5823 issue: 24 year: 2010 publication-title: Polymer – volume: 50 start-page: 2239 year: 2017 publication-title: Macromolecules – volume: 22 start-page: 5350 year: 2010 publication-title: Chem. Mater. – volume: 206 start-page: 2632 issue: 11 year: 2009 publication-title: Phys. Status Solidi A – volume: 8 start-page: 27236 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 38 start-page: 22 issue: 1 year: 2002 publication-title: FUJITSU Sci. Tech. J. – volume: 93 start-page: 113304 year: 2008 publication-title: Appl. Phys. Lett. – volume: 29 year: 2017 publication-title: Ad. Mater. – volume: 15 start-page: 33 year: 2008 publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 34 start-page: 16 issue: 1 year: 2018 publication-title: IEEE Electr. Insul. M. – volume: 113 start-page: 9995 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – year: 2003 – volume: 25 start-page: 2327 year: 2013 publication-title: Chem. Mater. – volume: 25 start-page: 19 issue: 4 year: 2009 publication-title: IEEE Electr. Insul. M. – volume: 19 year: 2017 publication-title: Phys. Chem. Chem. Phys. – volume: 28 start-page: 169 issue: 2 year: 2015 publication-title: J. Photopolymer Sci. Technol. – start-page: 160 year: 2006 – volume: 6 start-page: 257 year: 2007 publication-title: Nat. Mater. – volume: EI‐15 start-page: 437 issue: 6 year: 1980 publication-title: IEEE Trans. Electrical Insulation – volume: 1 start-page: 1752 year: 2019 publication-title: ACS Appl. Electron. Mater. – volume: 22 start-page: 8063 year: 2012 publication-title: J. Mater. Chem. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 18 start-page: 1 year: 2007 publication-title: Nanotechnology – volume: 33 start-page: 409 year: 2002 publication-title: Microelectron. J. – volume: 5 start-page: 15217 year: 2017 publication-title: J. Mater. Chem. A – volume: 102 year: 2013 publication-title: Appl. Phys. Lett. – volume: 27 start-page: 6658 year: 2015 publication-title: Adv. Mater. – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 51 start-page: 188 year: 2015 publication-title: Prog. Polym. Sci. – volume: 22 start-page: 450 year: 2010 publication-title: Chem. Mater. – year: 2011 – volume: 51 start-page: 978 year: 2013 publication-title: J. Polym. Sci. B – volume: 54 start-page: 1639 year: 2013 publication-title: Polymer – start-page: 261 year: 2011 – year: 2005 – volume: 13 start-page: 611 year: 1990 publication-title: IEEE Trans. Comp. Hybrids Manuf. Technol. – volume: 110 year: 2011 publication-title: J. Appl. Phys. – volume: 61 start-page: 601 year: 2015 publication-title: J. Mech. Eng. – volume: 58 start-page: E36 year: 2018 publication-title: Polym. Eng. Sci. – volume: 6 start-page: 271 year: 2018 publication-title: J. Mater. Chem. C – volume: 2014 year: 2014 publication-title: Scientific World Journal – volume: 10 start-page: 1349 year: 2018 publication-title: Polymers – start-page: 73 year: 2004 – volume: 3 start-page: 15543 year: 2013 publication-title: RSC Adv. – volume: 76 start-page: 3804 issue: 25 year: 2000 publication-title: Appl. Phys. Lett. – volume: 45 start-page: 1482 year: 2007 publication-title: J. Polym. Sci. Part B: Polym. Phys. – volume: 2 start-page: 727 year: 2008 publication-title: NSTI‐Nanotech – volume: 48 start-page: 1194 year: 2019 publication-title: Chem. Soc. Rev. – volume: 17 start-page: 1523 year: 2010 publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 50 start-page: 5132 year: 2017 publication-title: Macromolecules – volume: 19 start-page: 960 issue: 3 year: 2012 publication-title: IEEE Trans. Dielectrics Electrical Insulation – volume: 9 start-page: 2995 year: 2017 publication-title: ACS Appl. Mater. Interfaces – start-page: 181 end-page: 185 – volume: 21 start-page: 785 year: 2018 publication-title: Mater. Today – volume: 27 start-page: 546 year: 2015 publication-title: Adv. Mater. – volume: 11 start-page: 763 year: 2004 publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 116 start-page: 4260 year: 2016 publication-title: Chem. Rev. – volume: 7 start-page: 8061 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 43 start-page: 4569 year: 2014 publication-title: J. Electron. Mater. – volume: 76 start-page: 55 year: 2013 publication-title: SEI Tech. Rev. – volume: 17 start-page: 239 issue: 5 year: 2016 publication-title: Trans. Electrical Electronic Mater. – volume: 17 start-page: 462 issue: 3–4 year: 2015 publication-title: J. Optoelectron. Adv. M. – volume: 19 start-page: 2058 year: 2009 publication-title: J. Mater. Chem. – year: 2016 – year: 2010 – volume: 117 start-page: 1105 year: 2017 publication-title: Chem. Rev. – volume: 26 start-page: 6244 year: 2014 publication-title: Adv. Mater. – volume: 22 start-page: 1749 year: 2010 publication-title: Chem. Mater. – volume: 20 start-page: 828 issue: 3 year: 2002 publication-title: J. Vac. Sci. Technol. B – volume: 57 start-page: 660 year: 2012 publication-title: Prog. Mater. Sci. – volume: 35 start-page: 6811 year: 2002 publication-title: Macromolecules – volume: 22 start-page: 16491 year: 2012 publication-title: J. Mater. Chem. – volume: 48 start-page: 4424 year: 2019 publication-title: RSC Chem. Soc. Rev. – start-page: 497 end-page: 501 – volume: 21 start-page: 340 year: 2014 publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 31 start-page: 5941 year: 1996 publication-title: J. Mater. Sci. – volume: 86 start-page: 194 year: 2015 publication-title: Prog. Org. Coat. – volume: 27 start-page: 8 year: 2011 publication-title: IEEE Electr. Insul. Mag. – volume: 38 start-page: 1232 year: 2013 publication-title: Prog. Polym. Sci. – volume: 90 start-page: 337 issue: 2 year: 2007 publication-title: J. Am. Ceram. Soc. – volume: 6 issue: 4 year: 2020 publication-title: Sci. Adv. – volume: 47 start-page: 1378 year: 2012 publication-title: J. Mater. Sci. – volume: 168 start-page: 327 year: 2018 publication-title: Compos. Sci. Technol. – volume: 22 start-page: 015702 year: 2011 publication-title: Nanotechnology – start-page: 31 end-page: 34 – year: 2018 – volume: 12 start-page: 5827 issue: 8 year: 2014 publication-title: TELKOMNIKA Indonesian J. Electrical Eng. – volume: 11 start-page: 14329 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 797 year: 2004 publication-title: IEEE Trans. Dielect. Elect. Insulation – volume: 47 start-page: 1122 year: 2014 publication-title: Macromolecules – volume: 40 start-page: 131 year: 2010 publication-title: Annu. Rev. Mater. Res. – volume: 27 start-page: 591 year: 1994 publication-title: J. Phys. D: Appl. Phys. – volume: 30 start-page: 1805672 year: 2018 publication-title: Adv. Mater. – volume: 4 start-page: 45 year: 2009 publication-title: AMMTIAC Q. – volume: 111 start-page: 153902 year: 2017 publication-title: Appl. Phys. Lett. – volume: 109 year: 2011 publication-title: J. Appl. Phys. – volume: 10 start-page: 4077 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 1893 issue: 4 year: 2010 publication-title: ACS Nano – start-page: 259 year: 2010 – volume: 43 start-page: 4011 year: 2010 publication-title: Macromolecules – volume: 7 start-page: 4015 year: 2017 publication-title: Sci. Rep. – volume: 6 start-page: 497 issue: 6 year: 2011 publication-title: Nano Brief Rep. Rev. – volume: 7 start-page: 18017 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 2014 year: 2014 publication-title: Adv. Mater. Sci. Eng. – volume: 10 start-page: 514 year: 2003 publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 63 start-page: 201 year: 2014 publication-title: J. Mech. Phys. Solids – volume: 57 start-page: 1528 year: 2018 publication-title: Angew. Chem. Int. Ed. – volume: 51 start-page: 506 year: 2015 publication-title: J. Mater. Sci. – volume: 6 start-page: 6378 year: 2012 publication-title: ACS Nano – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 23 start-page: 1515 year: 1990 publication-title: J. Phys. D: Appl. Phys. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 22 start-page: 5154 year: 2010 publication-title: Chem. Mater. – volume: 100 start-page: 508 issue: 1 year: 2006 publication-title: J. Appl. Polym. Sci. – year: 2006 – volume: 31 start-page: 1807722 year: 2019 publication-title: Adv. Mater. – volume: 32 start-page: 73 year: 2017 publication-title: Nano Energy – volume: 18 start-page: 463 issue: 2 year: 2011 publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 30 year: 2019 publication-title: Adv. Funct. Mater. – volume: 17 start-page: 2405 year: 2007 publication-title: Adv. Funct. Mater. – volume: 21 start-page: 74 issue: 5901/6004 year: 2003 publication-title: PAPERS – AIAA – volume: 5 issue: 11 year: 2018 publication-title: Adv. Mater. Interfaces – volume: 1 start-page: 93 year: 2012 publication-title: Adv. Mater. Res. – volume: 7 start-page: 3145 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 100 start-page: 222904 year: 2012 publication-title: Appl. Phys. Lett. – volume: 5 start-page: 28 issue: 6 year: 1989 publication-title: IEEE Electr. Insul. M. – start-page: 524 end-page: 528 – volume: 11 start-page: 79 issue: 2 year: 2014 ident: e_1_2_7_142_1 publication-title: Chalcogenide Lett. – ident: e_1_2_7_73_1 – ident: e_1_2_7_48_1 doi: 10.1039/C4TA03260H – ident: e_1_2_7_61_1 doi: 10.1002/adma.201301752 – ident: e_1_2_7_16_1 doi: 10.1590/S1516-14392009000100002 – ident: e_1_2_7_90_1 – ident: e_1_2_7_158_1 doi: 10.1039/c2jm32579a – ident: e_1_2_7_87_1 doi: 10.3390/polym11010024 – ident: e_1_2_7_206_1 doi: 10.1039/C5RA05748E – ident: e_1_2_7_72_1 doi: 10.1109/94.326660 – ident: e_1_2_7_213_1 doi: 10.1155/2014/578168 – ident: e_1_2_7_39_1 – ident: e_1_2_7_71_1 doi: 10.1088/0022-3727/27/3/026 – volume: 76 start-page: 55 year: 2013 ident: e_1_2_7_12_1 publication-title: SEI Tech. Rev. – ident: e_1_2_7_144_1 doi: 10.1002/aenm.201803204 – ident: e_1_2_7_229_1 – ident: e_1_2_7_99_1 doi: 10.12989/amr.2012.1.1.093 – volume: 21 start-page: 74 issue: 5901 year: 2003 ident: e_1_2_7_8_1 publication-title: PAPERS – AIAA – ident: e_1_2_7_24_1 doi: 10.3390/polym8050173 – ident: e_1_2_7_110_1 doi: 10.1002/adma.200801758 – ident: e_1_2_7_172_1 doi: 10.1016/j.porgcoat.2008.11.006 – ident: e_1_2_7_184_1 doi: 10.1002/adma.201401310 – ident: e_1_2_7_114_1 doi: 10.1021/ma011692u – ident: e_1_2_7_104_1 doi: 10.1002/adfm.200700200 – ident: e_1_2_7_132_1 doi: 10.1063/1.4998271 – ident: e_1_2_7_51_1 doi: 10.1021/ma402220j – ident: e_1_2_7_165_1 doi: 10.1073/pnas.1603792113 – ident: e_1_2_7_151_1 doi: 10.1002/1521-4095(200110)13:20<1541::AID-ADMA1541>3.0.CO;2-X – ident: e_1_2_7_223_1 doi: 10.1163/156855400750244969 – ident: e_1_2_7_66_1 doi: 10.1109/TEI.1984.298747 – ident: e_1_2_7_133_1 doi: 10.1143/JJAP.10.736 – ident: e_1_2_7_27_1 doi: 10.1007/978-1-4419-1591-7_6 – ident: e_1_2_7_40_1 doi: 10.1016/j.jmps.2013.09.009 – ident: e_1_2_7_92_1 doi: 10.1109/TDEI.2010.5595554 – ident: e_1_2_7_157_1 doi: 10.1021/acsami.7b16409 – ident: e_1_2_7_209_1 doi: 10.1021/jz501831q – ident: e_1_2_7_138_1 doi: 10.1109/MEI.2018.8246118 – ident: e_1_2_7_123_1 doi: 10.1021/acsami.5b06480 – ident: e_1_2_7_89_1 – ident: e_1_2_7_225_1 – ident: e_1_2_7_59_1 doi: 10.1126/sciadv.aax6622 – ident: e_1_2_7_52_1 doi: 10.1002/adma.201204072 – ident: e_1_2_7_143_1 doi: 10.1021/acsaelm.9b00423 – ident: e_1_2_7_77_1 – ident: e_1_2_7_177_1 doi: 10.1016/j.compscitech.2018.10.021 – ident: e_1_2_7_35_1 doi: 10.1016/j.progpolymsci.2015.08.002 – ident: e_1_2_7_208_1 doi: 10.1002/adma.201503186 – ident: e_1_2_7_21_1 doi: 10.1109/TDEI.2004.1349785 – ident: e_1_2_7_36_1 doi: 10.1063/1.4721809 – volume: 4 start-page: 6 year: 2013 ident: e_1_2_7_76_1 publication-title: Mater. Sci. Appl. – ident: e_1_2_7_210_1 doi: 10.1021/ma202267r – ident: e_1_2_7_50_1 doi: 10.1021/ma100209d – ident: e_1_2_7_159_1 doi: 10.1002/adma.201707269 – ident: e_1_2_7_55_1 doi: 10.1021/ma502424r – ident: e_1_2_7_153_1 doi: 10.1002/adma.201402106 – ident: e_1_2_7_134_1 doi: 10.1109/57.44606 – volume-title: Basic Research Needs for Electrical Energy Storage year: 2007 ident: e_1_2_7_3_1 – ident: e_1_2_7_53_1 doi: 10.1021/acsami.6b10016 – ident: e_1_2_7_23_1 – ident: e_1_2_7_88_1 doi: 10.1109/MEI.2011.5954064 – ident: e_1_2_7_135_1 doi: 10.1111/j.1551-2916.2006.01481.x – volume: 17 start-page: 462 issue: 3 year: 2015 ident: e_1_2_7_32_1 publication-title: J. Optoelectron. Adv. M. – ident: e_1_2_7_166_1 doi: 10.1039/C9TA00616H – ident: e_1_2_7_211_1 doi: 10.1002/anie.201710474 – ident: e_1_2_7_78_1 doi: 10.1016/j.pmatsci.2011.08.001 – ident: e_1_2_7_222_1 – ident: e_1_2_7_163_1 doi: 10.1039/C4EE02962C – ident: e_1_2_7_195_1 doi: 10.1021/acssuschemeng.8b04943 – ident: e_1_2_7_197_1 – ident: e_1_2_7_69_1 doi: 10.1109/TEI.1980.298314 – ident: e_1_2_7_112_1 doi: 10.1038/srep38978 – ident: e_1_2_7_203_1 doi: 10.1109/TDEI.2011.5739450 – volume: 38 start-page: 22 issue: 1 year: 2002 ident: e_1_2_7_41_1 publication-title: FUJITSU Sci. Tech. J. – ident: e_1_2_7_185_1 doi: 10.1021/acsami.5b00555 – ident: e_1_2_7_152_1 doi: 10.1146/annurev-matsci-070909-104529 – ident: e_1_2_7_149_1 doi: 10.1002/aenm.201100543 – ident: e_1_2_7_180_1 publication-title: InTechOpen – ident: e_1_2_7_102_1 doi: 10.1109/TDEI.2013.004043 – ident: e_1_2_7_221_1 doi: 10.1002/aenm.201800509 – ident: e_1_2_7_14_1 doi: 10.1063/1.126787 – ident: e_1_2_7_70_1 doi: 10.1088/0022-3727/23/12/007 – ident: e_1_2_7_147_1 doi: 10.1016/j.pmatsci.2018.10.003 – ident: e_1_2_7_81_1 – ident: e_1_2_7_175_1 doi: 10.1126/science.1147241 – ident: e_1_2_7_100_1 doi: 10.1109/T-DEI.2008.4446732 – ident: e_1_2_7_220_1 – ident: e_1_2_7_181_1 doi: 10.1016/S0026-2692(02)00010-1 – volume: 18 start-page: 1 year: 2007 ident: e_1_2_7_84_1 publication-title: Nanotechnology – ident: e_1_2_7_150_1 doi: 10.1088/0957-4484/22/1/015702 – ident: e_1_2_7_62_1 – ident: e_1_2_7_108_1 doi: 10.1007/s10853-011-5916-7 – ident: e_1_2_7_98_1 – start-page: 261 volume-title: Nanocomposites and Polymers with Analytical Methods year: 2011 ident: e_1_2_7_121_1 – ident: e_1_2_7_212_1 doi: 10.1016/j.polymer.2013.11.042 – ident: e_1_2_7_217_1 – ident: e_1_2_7_169_1 doi: 10.1039/C9CS00043G – ident: e_1_2_7_85_1 doi: 10.1049/hve.2016.0034 – ident: e_1_2_7_57_1 doi: 10.1016/j.mattod.2017.11.021 – ident: e_1_2_7_113_1 doi: 10.1364/JOSAB.16.001824 – ident: e_1_2_7_214_1 doi: 10.1116/1.569344 – ident: e_1_2_7_7_1 – ident: e_1_2_7_63_1 – ident: e_1_2_7_97_1 – ident: e_1_2_7_155_1 doi: 10.1021/am201650g – ident: e_1_2_7_188_1 doi: 10.1002/adma.200602422 – ident: e_1_2_7_86_1 doi: 10.1109/TDEI.2014.003868 – ident: e_1_2_7_171_1 – ident: e_1_2_7_189_1 doi: 10.1021/acs.chemmater.6b01383 – ident: e_1_2_7_140_1 doi: 10.1002/ces2.10017 – start-page: 73 volume-title: Electrical Insulation for Rotating Machines—Design, Evaluation, Aging, Testing, and Repair year: 2004 ident: e_1_2_7_5_1 – ident: e_1_2_7_109_1 doi: 10.1103/PhysRevLett.90.217601 – ident: e_1_2_7_49_1 doi: 10.1016/S0079-6700(01)00038-7 – ident: e_1_2_7_129_1 doi: 10.3144/expresspolymlett.2013.34 – ident: e_1_2_7_186_1 doi: 10.1021/acsami.6b13900 – volume: 4 start-page: 45 year: 2009 ident: e_1_2_7_15_1 publication-title: AMMTIAC Q. – ident: e_1_2_7_187_1 doi: 10.1021/cm4010486 – ident: e_1_2_7_178_1 doi: 10.1021/nn9016422 – ident: e_1_2_7_201_1 doi: 10.1021/nn301940k – ident: e_1_2_7_130_1 doi: 10.1039/C7TC04758D – ident: e_1_2_7_202_1 doi: 10.1021/nn301675f – volume-title: Principles of Electronic Materials and Devices year: 2018 ident: e_1_2_7_65_1 – ident: e_1_2_7_160_1 doi: 10.1039/C7TA03846A – ident: e_1_2_7_124_1 doi: 10.1039/b812652f – ident: e_1_2_7_117_1 doi: 10.1063/1.4795017 – ident: e_1_2_7_10_1 – ident: e_1_2_7_226_1 – ident: e_1_2_7_170_1 doi: 10.1002/polb.22337 – ident: e_1_2_7_136_1 doi: 10.1007/BF01152143 – ident: e_1_2_7_228_1 doi: 10.1049/iet-nde.2019.0031 – ident: e_1_2_7_74_1 doi: 10.1063/1.3293456 – ident: e_1_2_7_38_1 – ident: e_1_2_7_167_1 doi: 10.1016/j.progpolymsci.2013.02.003 – ident: e_1_2_7_205_1 doi: 10.1002/adma.201701864 – ident: e_1_2_7_227_1 doi: 10.1002/adfm.201808567 – ident: e_1_2_7_43_1 – ident: e_1_2_7_183_1 doi: 10.1021/acs.chemrev.6b00314 – ident: e_1_2_7_207_1 doi: 10.1039/C7TA01522D – ident: e_1_2_7_218_1 doi: 10.3390/polym10121349 – ident: e_1_2_7_148_1 doi: 10.1109/TDEI.2012.6215100 – ident: e_1_2_7_176_1 doi: 10.1039/c2jm30297g – ident: e_1_2_7_111_1 doi: 10.1002/adma.201807722 – ident: e_1_2_7_83_1 doi: 10.1109/TDEI.2004.1349782 – ident: e_1_2_7_156_1 doi: 10.1002/adma.201704380 – ident: e_1_2_7_120_1 doi: 10.1002/9783527629848.ch1 – ident: e_1_2_7_118_1 doi: 10.1039/C7CP04096B – ident: e_1_2_7_127_1 doi: 10.1063/1.2032597 – ident: e_1_2_7_93_1 – ident: e_1_2_7_94_1 doi: 10.1109/T-DEI.2008.4446734 – ident: e_1_2_7_45_1 – ident: e_1_2_7_122_1 doi: 10.1021/cm101614p – ident: e_1_2_7_13_1 doi: 10.1109/TDEI.2003.1207480 – ident: e_1_2_7_193_1 doi: 10.1021/cm903182n – ident: e_1_2_7_179_1 doi: 10.1063/1.2987522 – ident: e_1_2_7_80_1 doi: 10.1109/TDEI.2005.1511089 – ident: e_1_2_7_216_1 doi: 10.1109/MEI.2009.5191413 – ident: e_1_2_7_67_1 – ident: e_1_2_7_128_1 doi: 10.1016/j.carbon.2008.12.037 – ident: e_1_2_7_34_1 doi: 10.1002/pen.24822 – ident: e_1_2_7_125_1 doi: 10.1039/c3cp52267a – ident: e_1_2_7_196_1 doi: 10.1109/33.62516 – ident: e_1_2_7_30_1 doi: 10.1146/annurev-matsci-070214-021017 – volume: 6 start-page: 497 issue: 6 year: 2011 ident: e_1_2_7_106_1 publication-title: Nano Brief Rep. Rev. – ident: e_1_2_7_137_1 – ident: e_1_2_7_82_1 doi: 10.1109/TDEI.2011.5976079 – ident: e_1_2_7_154_1 doi: 10.1038/nature14647 – ident: e_1_2_7_11_1 doi: 10.1002/pssa.200925159 – ident: e_1_2_7_58_1 doi: 10.1016/j.polymer.2010.09.025 – ident: e_1_2_7_68_1 doi: 10.1109/TEI.1980.298272 – volume: 2 start-page: 727 year: 2008 ident: e_1_2_7_6_1 publication-title: NSTI‐Nanotech – ident: e_1_2_7_198_1 – ident: e_1_2_7_47_1 doi: 10.1016/j.nanoen.2016.12.021 – ident: e_1_2_7_168_1 doi: 10.1016/j.porgcoat.2015.05.023 – ident: e_1_2_7_56_1 doi: 10.1103/PhysRevB.92.014106 – ident: e_1_2_7_119_1 doi: 10.1021/cm1009493 – volume-title: Synthesis, Functionalization and Surface Treatment of Nanoparticles year: 2003 ident: e_1_2_7_20_1 – ident: e_1_2_7_25_1 doi: 10.1039/C8CS00583D – ident: e_1_2_7_139_1 doi: 10.2174/1573413712666161025154431 – ident: e_1_2_7_4_1 – ident: e_1_2_7_116_1 doi: 10.1063/1.3624660 – ident: e_1_2_7_194_1 doi: 10.1021/acs.macromol.7b00792 – ident: e_1_2_7_29_1 doi: 10.1021/acs.chemrev.5b00495 – ident: e_1_2_7_107_1 doi: 10.1038/nmat1873 – ident: e_1_2_7_115_1 doi: 10.1039/c3ra41296b – ident: e_1_2_7_146_1 doi: 10.1063/1.3590162 – ident: e_1_2_7_161_1 doi: 10.1002/admi.201800096 – ident: e_1_2_7_190_1 doi: 10.1021/acsami.6b14166 – ident: e_1_2_7_17_1 doi: 10.1007/s11664-014-3440-7 – ident: e_1_2_7_26_1 doi: 10.1021/acs.macromol.6b02669 – ident: e_1_2_7_44_1 doi: 10.1109/TDEI.2018.006806 – ident: e_1_2_7_19_1 – ident: e_1_2_7_103_1 doi: 10.1109/MEI.2015.7126073 – ident: e_1_2_7_46_1 – ident: e_1_2_7_174_1 doi: 10.1016/S1359-6462(01)00892-2 – ident: e_1_2_7_182_1 doi: 10.1002/aenm.201500767 – ident: e_1_2_7_95_1 – ident: e_1_2_7_173_1 doi: 10.1016/j.polymer.2013.01.032 – start-page: 424 volume-title: Handbook of Low and High Dielectric Constant Materials and Their Applications year: 1999 ident: e_1_2_7_2_1 – ident: e_1_2_7_22_1 doi: 10.1007/978-1-4419-1591-7_9 – ident: e_1_2_7_42_1 doi: 10.1007/s10853-015-9369-2 – ident: e_1_2_7_204_1 doi: 10.1002/adma.201805672 – ident: e_1_2_7_9_1 doi: 10.4071/HITEC-TP25 – ident: e_1_2_7_126_1 doi: 10.1021/cm9030254 – ident: e_1_2_7_37_1 – ident: e_1_2_7_79_1 doi: 10.1002/polb.21165 – ident: e_1_2_7_164_1 – ident: e_1_2_7_162_1 doi: 10.5545/sv-jme.2015.2632 – ident: e_1_2_7_31_1 doi: 10.1155/2014/735070 – ident: e_1_2_7_105_1 doi: 10.1002/adma.200602097 – ident: e_1_2_7_215_1 doi: 10.1063/1.2147714 – ident: e_1_2_7_64_1 doi: 10.1002/polb.23296 – ident: e_1_2_7_28_1 – ident: e_1_2_7_200_1 doi: 10.1116/1.1470510 – ident: e_1_2_7_101_1 doi: 10.1109/TDEI.2006.1624276 – ident: e_1_2_7_131_1 doi: 10.1038/s41598-017-04196-5 – ident: e_1_2_7_192_1 doi: 10.1080/20550324.2016.1223913 – ident: e_1_2_7_75_1 – ident: e_1_2_7_60_1 doi: 10.1109/TDEI.2008.4712681 – ident: e_1_2_7_91_1 doi: 10.4313/TEEM.2016.17.5.239 – ident: e_1_2_7_145_1 – volume: 12 start-page: 5827 issue: 8 year: 2014 ident: e_1_2_7_33_1 publication-title: TELKOMNIKA Indonesian J. Electrical Eng. – ident: e_1_2_7_54_1 doi: 10.1002/adma.201600377 – ident: e_1_2_7_224_1 – ident: e_1_2_7_18_1 – ident: e_1_2_7_141_1 doi: 10.1002/app.23221 – ident: e_1_2_7_96_1 doi: 10.1088/0957-4484/15/5/032 – ident: e_1_2_7_191_1 doi: 10.1021/acsami.9b01359 – ident: e_1_2_7_199_1 – ident: e_1_2_7_219_1 doi: 10.2494/photopolymer.28.169 |
SSID | ssj0011506 |
Score | 2.653798 |
SecondaryResourceType | review_article |
Snippet | This report traces the leading scientific endeavors to enhance the dielectric strength of polymer dielectrics for energy storage and electrical insulation... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | 2D boron nitride Charge transport Dielectric strength Electrical insulation Electrical resistivity Energy storage Fillers interface Materials science Nanocomposites nanofiller Nanoparticles polymer film Polymer films Polymers Protective coatings Shells (structural forms) Thermal conductivity |
Title | The search for enhanced dielectric strength of polymer‐based dielectrics: A focused review on polymer nanocomposites |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.49379 https://www.proquest.com/docview/2406759823 |
Volume | 137 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz34FtcXQTx46e42TTatnhYfiKgsPmAPQsmrKmordlfQkz_B3-gvMdNs6yoK4qFQyqSPzEznSzvzDUIbvpIqFDqxGkiYRxNpPKmE8oy2wUlxIwICtcPHJ62DC3rYZd0RtF3Wwjh-iOqDG3hG8b4GBxcyb3yShkIbLGqDKxTvQa4WAKLTijoKgE7LpXf4nl1TsJJVqEka1civsegTYA7D1CLO7E-hy_IOXXrJbb3fk3X18o288Z-PMI0mB_gTt53BzKARk86iiSFWwjn0ZE0HOw_AFtJik14XaQJY37imOTcKQ4lJetW7xlmCH7K753vz-P76BiFxWCzfwm17CtWHw65IBmdpOQCnIs0gpR3yxkw-jy729853DrxBewZPBQGNPC2CqCmZr7mkNDKKSj-MiLGIgcuWJoIyZs3UD4RoWo1rzVtRmEipEmI3IcNgAY2mWWoWERY8CKVFD5RJwG88tPbDm0KLhBnCiayhzVJRsRpwl0MLjbvYsS6T2E5lXExlDa1Xog-OsOMnoZVS2_HAZ_MYsA0HPsPAXq5Q2-8niNudTrGz9HfRZTROYLEOf6PYChrtPfbNqkU0PbmGxtq7x0dna4UJfwDMiPiz |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC58HHQP62tlfTfiwUt00umeTsTLIMr4RETByxL6FUfURJyZBT35E_yN_hK70pNxFBcWD4EQqjtJV1Xq6071VwBroVY6liZzGsh4wDJlA6WlDqxxwUkLKyOKe4ePT-rNC3ZwyS-HYLvaC-P5IfoLbugZ5fcaHRwXpDffWUOxDhZz0TUZhlGs6F1OqM765FEIdeo-wSMM3KyCV7xCNbrZb_oxGr1DzEGgWkaavQn4Uz2jTzC52eh21IZ--kTf-N2XmISfPQhKGt5mpmDI5tPwY4CYcAb-Oush3gmIQ7XE5q0yU4CYa18351oT3GWSX3VapMjIfXH7eGcfXp9fMCoOirW3SMN1obt42e-TIUVeNSC5zAvMasfUMdv-BRd7u-c7zaBXoSHQUcSSwMgoqSkeGqEYS6xmKowTah1oEKpuqGScO0sNIylrTunGiHoSZ0rpjLpDqjiahZG8yO1vIFJEsXIAgnGFEE7EzoRETRqZcUsFVXOwXmkq1T36cqyicZt64mWauqFMy6Gcg9W-6L3n7PhKaLFSd9pz23aK8EYgpWHkblfq7d8dpI3T0_Jk_v9FV2CseX58lB7tnxwuwDjFuTv-nOKLMNJ56NolB3A6arm04zdoz_s6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS91AEB7sEUp98NIL3rtIH_oSTTa72aQ-HaoHq1YOpYIPhbC3VFGTw7kI-tSf4G_0l3Qne3I8lRaKD4EQZnPZmcl8m8x8A_Ah0kqn0hROAwUPWKFsoLTUgTUuOGlhZUyxdvjrSXJwyg7P-NkM7Da1MJ4fYvLBDT2jfl-jg_dMsfNIGoptsJgLrtkLmGVJmKJJ732bcEch0kl8fkcUuEUFb2iFQrozGfpnMHpEmNM4tQ40nQX40dyizy-53B4N1ba-e8Le-MxnWIT5MQAlbW8xSzBjy9cwN0VL-AZunO0Q7wLEYVpiy_M6T4CYC98150ITrDEpfw7PSVWQXnV1e237D7_uMSZOiw0-kbY7hR7hYV8lQ6qyGUBKWVaY046JY3bwFk47-98_HwTj_gyBjmOWBUbGWah4ZIRiLLOaqSjNqHWQQajEUMk4d3YaxVKGTuXGiCRLC6V0Qd0mVRq_g1ZZlXYZiBRxqhx8YFwhgBOpMyARSiMLbqmgagU-NorK9Zi8HHtoXOWedpnmbirzeipXYGsi2vOMHX8TWm-0nY-ddpAjuBFIaBi7y9Vq-_cJ8na3W--s_r_oe3jZ3evkx19OjtbgFcWFO_6Z4uvQGvZHdsOhm6HarK34N6W8-fI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+search+for+enhanced+dielectric+strength+of+polymer%E2%80%90based+dielectrics%3A+A+focused+review+on+polymer+nanocomposites&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Tan%2C+Daniel+Q&rft.date=2020-09-05&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=137&rft.issue=33&rft_id=info:doi/10.1002%2Fapp.49379&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon |