Robust event-triggered distributed min–max model predictive control of continuous-time non-linear systems

Due to the features of event-triggered control in exploiting and saving system resources, they have been widely applied in sensor networks, multi-agent systems, networked control systems and so on. In this study, the authors focused on robust event-triggered distributed model predictive control (RET...

Full description

Saved in:
Bibliographic Details
Published inIET control theory & applications Vol. 14; no. 19; pp. 3320 - 3329
Main Authors Li, Anni, Sun, Jitao
Format Journal Article
LanguageEnglish
Published The Institution of Engineering and Technology 21.12.2020
Subjects
Online AccessGet full text
ISSN1751-8644
1751-8652
DOI10.1049/iet-cta.2020.0518

Cover

Loading…
Abstract Due to the features of event-triggered control in exploiting and saving system resources, they have been widely applied in sensor networks, multi-agent systems, networked control systems and so on. In this study, the authors focused on robust event-triggered distributed model predictive control (RETDMPC). Subject to disturbances and parametric uncertainties, they first applied the min–max model to RETDMPC. The min–max RETDMPC methodology is used to guarantee the robustness of the system state by taking the worst possible case of unknown uncertainties into consideration. Furthermore, in this framework, a new cost function is developed in which unknown uncertainties are considered. Next, sufficient conditions are provided to ensure the feasibility and stability of their developed min–max RETDMPC. Finally, a practical example is given to illustrate the advantages of their algorithm by comparing to the conventional model predictive control.
AbstractList Due to the features of event-triggered control in exploiting and saving system resources, they have been widely applied in sensor networks, multi-agent systems, networked control systems and so on. In this study, the authors focused on robust event-triggered distributed model predictive control (RETDMPC). Subject to disturbances and parametric uncertainties, they first applied the min–max model to RETDMPC. The min–max RETDMPC methodology is used to guarantee the robustness of the system state by taking the worst possible case of unknown uncertainties into consideration. Furthermore, in this framework, a new cost function is developed in which unknown uncertainties are considered. Next, sufficient conditions are provided to ensure the feasibility and stability of their developed min–max RETDMPC. Finally, a practical example is given to illustrate the advantages of their algorithm by comparing to the conventional model predictive control.
Author Li, Anni
Sun, Jitao
Author_xml – sequence: 1
  givenname: Anni
  surname: Li
  fullname: Li, Anni
  organization: 1School of Mathematical Sciences, Tongji University, Shanghai 200092, People's Republic of China
– sequence: 2
  givenname: Jitao
  surname: Sun
  fullname: Sun, Jitao
  email: sunjt@tongji.edu.cn
  organization: 2Institute for Intelligent Systems, Faculty of Engineering and the Built Environment, University of Johannesburg, South Africa
BookMark eNqFkE1OwzAQRi1UJNrCAdj5Ai62YzuFHVSUIlVCQmUdOc6kckniynYK3XEHbshJSChiwQJW_izNm583QoPGNYDQOaMTRsXlhYVITNQTTjmdUMmmR2jIUsnIVEk--MlCnKBRCBtKpVRCDtHzo8vbEDHsoIkkerteg4cCFzZ0n7yNXa5t8_H2XutXXLsCKrztCqyJdgfYuCZ6V2FXfkXbtK4NJNoacLcgqWwD2uOwDxHqcIqOS10FOPt-x-hpfruaLcjy4e5-dr0kJknElGgFlGuRKNAFN6oUuZIsTUEmuszTPE1ylYDgicmVkaZkQsqiVApUysEII5MxYoe-xrsQPJTZ1tta-33GaNbbyjpbWWcr621lva2OSX8xxkYdbX-fttWf5NWBfLEV7P8flc1WC34zpzxVPUwOcF-2ca1vOjF_DPsEyv6Yyg
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3108495
crossref_primary_10_1016_j_nahs_2022_101273
crossref_primary_10_1016_j_ifacol_2022_11_322
Cites_doi 10.1016/j.trc.2015.01.020
10.1016/j.automatica.2014.10.128
10.1109/TCSI.2015.2468997
10.1016/0167-6911(94)00050-6
10.1016/j.sysconle.2019.104546
10.1016/j.automatica.2014.07.014
10.1016/j.automatica.2019.01.001
10.1016/j.automatica.2018.02.017
10.1002/rnc.3969
10.1109/9.262032
10.1016/j.automatica.2014.03.015
10.1137/18M1176671
10.1109/TAC.2013.2294618
10.1109/TCYB.2017.2695499
10.1049/iet-cta.2017.0886
10.1016/j.automatica.2017.12.034
10.1016/S0005-1098(98)00073-9
10.1016/j.automatica.2005.12.008
10.1049/iet-cta.2019.0168
10.1109/TNNLS.2019.2921020
10.1016/j.isatra.2019.10.004
10.1016/j.automatica.2017.03.028
10.1109/TAC.2007.900828
10.1016/j.automatica.2018.12.037
10.1016/S0005-1098(99)00214-9
10.1049/iet-cta.2019.0273
10.1049/iet-cta.2018.5412
10.1109/TAC.2017.2702646
10.1016/j.automatica.2006.07.008
10.1109/TBME.2017.2707344
10.1109/ACC.2010.5531089
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Authors. IET Control Theory & Applications published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Authors. IET Control Theory & Applications published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/iet-cta.2020.0518
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8652
EndPage 3329
ExternalDocumentID 10_1049_iet_cta_2020_0518
CTH2BF02768
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61673296
– fundername: National Natural Science Foundation of China
  funderid: 61673296
GroupedDBID 0R
24P
29I
4IJ
5GY
6IK
8VB
AAJGR
ABPTK
ACGFS
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
ESX
HZ
IFIPE
IPLJI
JAVBF
LAI
LOTEE
LXI
M43
MS
NADUK
NXXTH
O9-
OCL
QWB
RIE
RNS
RUI
U5U
UNMZH
ZL0
ZZ
.DC
0R~
0ZK
1OC
4.4
8FE
8FG
96U
AAHJG
AAMMB
ABJCF
ABQXS
ABUWG
ACCMX
ACESK
ACXQS
ADEYR
AEFGJ
AEGXH
AFAZI
AFKRA
AGXDD
AIDQK
AIDYY
ALUQN
ARAPS
AVUZU
AZQEC
BENPR
BGLVJ
BPHCQ
CCPQU
DWQXO
EBS
EJD
F8P
GNUQQ
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IDLOA
IGS
ITC
K1G
K6V
K7-
L6V
M7S
MCNEO
MS~
OK1
P62
PHGZM
PHGZT
PQQKQ
PROAC
PTHSS
ROL
~ZZ
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
ID FETCH-LOGICAL-c3348-a6e02a436ead2c6f4b65177e53afb7b73b63e423cb6c5cf1455df66e672ec4c53
IEDL.DBID 24P
ISSN 1751-8644
IngestDate Thu Apr 24 23:07:57 EDT 2025
Tue Jul 01 05:12:12 EDT 2025
Sun Jul 06 04:45:29 EDT 2025
Tue Mar 09 04:20:48 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords multi-agent systems
conventional model predictive control
distributed control
uncertain systems
min–max RETDMPC methodology
parametric uncertainties
developed min–max RETDMPC
control system synthesis
system state
unknown uncertainties
linear systems
sensor networks
minimax techniques
exploiting saving system resources
event-triggered control
continuous-time nonlinear systems
robust event-triggered
nonlinear control systems
robust control
networked control systems
min–max model predictive control
predictive control
multiagent systems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3348-a6e02a436ead2c6f4b65177e53afb7b73b63e423cb6c5cf1455df66e672ec4c53
PageCount 10
ParticipantIDs iet_journals_10_1049_iet_cta_2020_0518
crossref_citationtrail_10_1049_iet_cta_2020_0518
wiley_primary_10_1049_iet_cta_2020_0518_CTH2BF02768
crossref_primary_10_1049_iet_cta_2020_0518
ProviderPackageCode RUI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-21
PublicationDateYYYYMMDD 2020-12-21
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-21
  day: 21
PublicationDecade 2020
PublicationTitle IET control theory & applications
PublicationYear 2020
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Köhler, J.; Müller, M.A.; Allgöwer, F. (C5) 2019; 102
Liu, C.; Li, H.; Shi, Y. (C1) 2020; 58
Michalska, H.; Mayne, D.Q. (C29) 1993; 38
Mi, X.; Zou, Y.; Li, S. (C22) 2018; 28
Yu, S.; Reble, M.; Chen, H. (C17) 2014; 50
Liu, C.; Jian, G.; Li, H. (C18) 2018; 48
Yoo, J.; Johansson, K.H. (C26) 2019
Chakrabarty, A.; Zavitsanou, S.; Doyle, F.J. (C23) 2018; 65
Li, H.; Shi, Y. (C4) 2014; 59
Sontag, E.D.; Wang, Y. (C33) 1995; 24
Yang, R.; Zhang, H.; Feng, G. (C24) 2019; 102
Keviczky, T.; Borrelli, F.; Balas, G.J. (C32) 2006; 42
Zhang, S.; Dai, L.; Xia, Y. (C2) 2019; 13
Mayne, D.Q.; Rawlings, J.B.; Rao, C.V. (C13) 2000; 36
Li, A.; Sun, J. (C10) 2020; 99
Chen, Y.; Scarabottolo, N.; Bruschetta, M. (C6) 2019; 14
Sun, Q.; Chen, J.; Shi, Y. (C3) 2020
Zhang, J.; Li, A.; Lu, W.D. (C9) 2019; 31
He, N.; Shi, D. (C28) 2017; 62
Ferrara, A.; Sacone, S.; Siri, S. (C25) 2015; 58
Li, H.; Shi, Y. (C14) 2014; 50
Chen, H.; Allgöwer, F. (C16) 1997; 34
Liu, C.; Li, H.; Gao, J. (C15) 2018; 89
Dai, L.; Gao, Y.; Xie, L. (C7) 2018; 92
Zhang, J.; Sun, J. (C8) 2019; 133
Wang, M.; Sun, J.; Chen, J. (C19) 2018; 13
Brunner, F.D.; Heemels, W.; Allgöwer, F. (C21) 2017; 62
Dunbar, W.B. (C31) 2007; 52
Zhang, J.; Sun, J.; Wang, Q.G. (C11) 2018; 12
Mayne, D.Q. (C12) 2014; 50
Hashimoto, K.; Adachi, S.; Dimarogonas, D.V. (C27) 2017; 81
Dunbar, W.B.; Murray, R.M. (C30) 2006; 42
2017; 62
2018; 28
2015; 58
2017; 81
2019; 31
2010
2019; 13
2019; 14
2019; 102
2020; 58
2020; 99
2007; 52
2018; 89
2018; 65
2018; 48
2006; 42
1993; 38
2000; 36
2020
1995; 24
1997; 34
2018; 92
2014; 59
2019
2018; 12
2014; 50
2019; 133
2018; 13
e_1_2_8_28_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_24_2
e_1_2_8_25_2
e_1_2_8_26_2
e_1_2_8_9_2
e_1_2_8_2_2
Sun Q. (e_1_2_8_4_2) 2020
e_1_2_8_3_2
e_1_2_8_6_2
e_1_2_8_5_2
e_1_2_8_8_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_21_2
e_1_2_8_22_2
e_1_2_8_16_2
e_1_2_8_17_2
e_1_2_8_18_2
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_13_2
e_1_2_8_34_2
e_1_2_8_14_2
e_1_2_8_15_2
Yoo J. (e_1_2_8_27_2) 2019
e_1_2_8_31_2
e_1_2_8_30_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_11_2
e_1_2_8_32_2
References_xml – volume: 42
  start-page: 549
  issue: 4
  year: 2006
  end-page: 558
  ident: C30
  article-title: Distributed receding horizon control for multi-vehicle formation stabilization
  publication-title: Automatica
– volume: 42
  start-page: 2105
  issue: 12
  year: 2006
  end-page: 2115
  ident: C32
  article-title: Decentralized receding horizon control of large scale dynamically decoupled systems
  publication-title: Automatica
– volume: 133
  start-page: 104546
  year: 2019
  ident: C8
  article-title: A game theoretic approach to multi-channel transmission scheduling for multiple linear systems under dos attacks
  publication-title: Systems & Control Letters
– volume: 102
  start-page: 129
  year: 2019
  end-page: 136
  ident: C24
  article-title: Robust cooperative output regulation of multi-agent systems via adaptive event-triggered control
  publication-title: Automatica
– volume: 81
  start-page: 148
  year: 2017
  end-page: 155
  ident: C27
  article-title: Event-triggered intermittent sampling for nonlinear model predictive control
  publication-title: Automatica
– volume: 62
  start-page: 2555
  issue: 10
  year: 2017
  end-page: 2564
  ident: C28
  article-title: Event-based robust sampled-data model predictive control: a non-monotonic Lyapunov function approach
  publication-title: IEEE Trans. Circuits Syst. I, Regul. Pap.
– volume: 31
  start-page: 1616
  issue: 5
  year: 2019
  end-page: 1625
  ident: C9
  article-title: Stabilization of mode-dependent impulsive hybrid systems driven by dfa with mixed-mode effects
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 58
  start-page: 714
  issue: 2
  year: 2020
  end-page: 734
  ident: C1
  article-title: Distributed event-triggered model predictive control of coupled nonlinear systems
  publication-title: SIAM J. Control Optim.
– volume: 99
  start-page: 148
  year: 2020
  end-page: 153
  ident: C10
  article-title: Stability of nonlinear system under distributed lyapunov-based economic model predictive control with time-delay
  publication-title: ISA Trans.
– volume: 12
  start-page: 1644
  issue: 11
  year: 2018
  end-page: 1648
  ident: C11
  article-title: Finite-time stability of non-linear systems with impulsive effects due to logic choice
  publication-title: IET Control Theory Applic.
– volume: 34
  start-page: 1205
  issue: 10
  year: 1997
  end-page: 1217
  ident: C16
  article-title: A quasi-infinite horizon nonlinear predictive control scheme with guaranteed stability
  publication-title: Automatica
– volume: 89
  start-page: 333
  year: 2018
  end-page: 339
  ident: C15
  article-title: Robust self-triggered min-max model predictive control for discrete-time nonlinear systems
  publication-title: Automatica
– volume: 50
  start-page: 1507
  issue: 5
  year: 2014
  end-page: 1513
  ident: C14
  article-title: Event-triggered robust model predictive control of continuous-time nonlinear systems
  publication-title: Automatica
– volume: 38
  start-page: 1623
  issue: 11
  year: 1993
  end-page: 1633
  ident: C29
  article-title: Robust receding horizon control of constrained nonlinear systems
  publication-title: IEEE Trans. Autom. Control
– start-page: 1
  year: 2020
  end-page: 9
  ident: C3
  article-title: Integral-type event-triggered model predictive control of nonlinear systems with additive disturbance
  publication-title: IEEE Trans. Cybern.
– volume: 102
  start-page: 1
  year: 2019
  end-page: 9
  ident: C5
  article-title: Distributed model predictive control recursive feasibility under inexact dual optimization
  publication-title: Automatica
– volume: 52
  start-page: 1249
  issue: 7
  year: 2007
  end-page: 1263
  ident: C31
  article-title: Distributed receding horizon control of dynamically coupled nonlinear systems
  publication-title: IEEE Trans. Autom. Control
– volume: 92
  start-page: 9
  year: 2018
  end-page: 17
  ident: C7
  article-title: Stochastic self-triggered model predictive control for linear systems with probabilistic constraints
  publication-title: Automatica
– volume: 58
  start-page: 554
  year: 2015
  end-page: 567
  ident: C25
  article-title: Event-triggered model predictive schemes for freeway traffic control
  publication-title: Transp. Res. C, Emerg. Technol.
– volume: 59
  start-page: 1673
  issue: 6
  year: 2014
  end-page: 1678
  ident: C4
  article-title: Robust distributed model predictive control of constrained continuous-time nonlinear systems: a robustness constraint approach
  publication-title: IEEE Trans. Autom. Control
– start-page: 1
  year: 2019
  end-page: 11
  ident: C26
  article-title: Event-triggered model predictive control with a statistical learning
  publication-title: IEEE Trans. Syst. Man Cybern., Syst.
– volume: 50
  start-page: 2967
  issue: 12
  year: 2014
  end-page: 2986
  ident: C12
  article-title: Model predictive control: recent developments and future promise
  publication-title: Automatica
– volume: 28
  start-page: 1474
  issue: 4
  year: 2018
  end-page: 1495
  ident: C22
  article-title: Event-triggered mpc design for distributed systems toward global performance
  publication-title: Int. J. Robust Nonlinear Control
– volume: 62
  start-page: 5694
  issue: 11
  year: 2017
  end-page: 5709
  ident: C21
  article-title: Robust event-triggered MPC with guaranteed asymptotic bound and average sampling rate
  publication-title: IEEE Trans. Autom. Control
– volume: 36
  start-page: 789
  issue: 6
  year: 2000
  end-page: 814
  ident: C13
  article-title: Survey constrained model predictive control: stability and optimality
  publication-title: Automatica
– volume: 65
  start-page: 575
  issue: 3
  year: 2018
  end-page: 586
  ident: C23
  article-title: Event-triggered model predictive control for embedded artificial pancreas systems
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 50
  start-page: 2269
  issue: 9
  year: 2014
  end-page: 2280
  ident: C17
  article-title: Inherent robustness properties of quasi-infinite horizon nonlinear model predictive control
  publication-title: Automatica
– volume: 48
  start-page: 1397
  issue: 5
  year: 2018
  end-page: 1405
  ident: C18
  article-title: Aperiodic robust model predictive control for constrained continuous-time nonlinear systems: an event-triggered approach
  publication-title: IEEE Trans. Cybern.
– volume: 24
  start-page: 351
  issue: 5
  year: 1995
  end-page: 359
  ident: C33
  article-title: On characterizations of the input-to-state stability property
  publication-title: Syst. Control Lett.
– volume: 14
  start-page: 343
  issue: 2
  year: 2019
  end-page: 351
  ident: C6
  article-title: Efficient move blocking strategy for multiple shooting-based non-linear model predictive control
  publication-title: IET Control Theory Applic.
– volume: 13
  start-page: 27
  issue: 1
  year: 2018
  end-page: 35
  ident: C19
  article-title: Event-based model predictive control of discrete-time non-linear systems with external disturbances
  publication-title: IET Control Theory Applic.
– volume: 13
  start-page: 2500
  issue: 15
  year: 2019
  end-page: 2506
  ident: C2
  article-title: Adaptive MPC for constrained systems with parameter uncertainty and additive disturbance
  publication-title: IET Control Theory Applic.
– volume: 102
  start-page: 129
  year: 2019
  end-page: 136
  article-title: Robust cooperative output regulation of multi‐agent systems via adaptive event‐triggered control
  publication-title: Automatica
– volume: 58
  start-page: 714
  issue: 2
  year: 2020
  end-page: 734
  article-title: Distributed event‐triggered model predictive control of coupled nonlinear systems
  publication-title: SIAM J. Control Optim.
– start-page: 1
  year: 2019
  end-page: 11
  article-title: Event‐triggered model predictive control with a statistical learning
  publication-title: IEEE Trans. Syst. Man Cybern., Syst.
– volume: 42
  start-page: 2105
  issue: 12
  year: 2006
  end-page: 2115
  article-title: Decentralized receding horizon control of large scale dynamically decoupled systems
  publication-title: Automatica
– volume: 62
  start-page: 2555
  issue: 10
  year: 2017
  end-page: 2564
  article-title: Event‐based robust sampled‐data model predictive control: a non‐monotonic Lyapunov function approach
  publication-title: IEEE Trans. Circuits Syst. I, Regul. Pap.
– volume: 92
  start-page: 9
  year: 2018
  end-page: 17
  article-title: Stochastic self‐triggered model predictive control for linear systems with probabilistic constraints
  publication-title: Automatica
– volume: 58
  start-page: 554
  year: 2015
  end-page: 567
  article-title: Event‐triggered model predictive schemes for freeway traffic control
  publication-title: Transp. Res. C, Emerg. Technol.
– volume: 48
  start-page: 1397
  issue: 5
  year: 2018
  end-page: 1405
  article-title: Aperiodic robust model predictive control for constrained continuous‐time nonlinear systems: an event‐triggered approach
  publication-title: IEEE Trans. Cybern.
– volume: 59
  start-page: 1673
  issue: 6
  year: 2014
  end-page: 1678
  article-title: Robust distributed model predictive control of constrained continuous‐time nonlinear systems: a robustness constraint approach
  publication-title: IEEE Trans. Autom. Control
– volume: 102
  start-page: 1
  year: 2019
  end-page: 9
  article-title: Distributed model predictive control recursive feasibility under inexact dual optimization
  publication-title: Automatica
– volume: 13
  start-page: 2500
  issue: 15
  year: 2019
  end-page: 2506
  article-title: Adaptive MPC for constrained systems with parameter uncertainty and additive disturbance
  publication-title: IET Control Theory Applic.
– volume: 99
  start-page: 148
  year: 2020
  end-page: 153
  article-title: Stability of nonlinear system under distributed lyapunov‐based economic model predictive control with time‐delay
  publication-title: ISA Trans.
– volume: 133
  start-page: 104546
  year: 2019
  article-title: A game theoretic approach to multi‐channel transmission scheduling for multiple linear systems under dos attacks
  publication-title: Systems & Control Letters
– volume: 62
  start-page: 5694
  issue: 11
  year: 2017
  end-page: 5709
  article-title: Robust event‐triggered MPC with guaranteed asymptotic bound and average sampling rate
  publication-title: IEEE Trans. Autom. Control
– start-page: 4719
  year: 2010
  end-page: 4724
  article-title: Event‐triggered control for discrete‐time systems
– volume: 28
  start-page: 1474
  issue: 4
  year: 2018
  end-page: 1495
  article-title: Event‐triggered mpc design for distributed systems toward global performance
  publication-title: Int. J. Robust Nonlinear Control
– volume: 14
  start-page: 343
  issue: 2
  year: 2019
  end-page: 351
  article-title: Efficient move blocking strategy for multiple shooting‐based non‐linear model predictive control
  publication-title: IET Control Theory Applic.
– volume: 89
  start-page: 333
  year: 2018
  end-page: 339
  article-title: Robust self‐triggered min‐max model predictive control for discrete‐time nonlinear systems
  publication-title: Automatica
– volume: 12
  start-page: 1644
  issue: 11
  year: 2018
  end-page: 1648
  article-title: Finite‐time stability of non‐linear systems with impulsive effects due to logic choice
  publication-title: IET Control Theory Applic.
– volume: 34
  start-page: 1205
  issue: 10
  year: 1997
  end-page: 1217
  article-title: A quasi‐infinite horizon nonlinear predictive control scheme with guaranteed stability
  publication-title: Automatica
– volume: 42
  start-page: 549
  issue: 4
  year: 2006
  end-page: 558
  article-title: Distributed receding horizon control for multi‐vehicle formation stabilization
  publication-title: Automatica
– volume: 36
  start-page: 789
  issue: 6
  year: 2000
  end-page: 814
  article-title: Survey constrained model predictive control: stability and optimality
  publication-title: Automatica
– volume: 50
  start-page: 2967
  issue: 12
  year: 2014
  end-page: 2986
  article-title: Model predictive control: recent developments and future promise
  publication-title: Automatica
– volume: 31
  start-page: 1616
  issue: 5
  year: 2019
  end-page: 1625
  article-title: Stabilization of mode‐dependent impulsive hybrid systems driven by dfa with mixed‐mode effects
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 13
  start-page: 27
  issue: 1
  year: 2018
  end-page: 35
  article-title: Event‐based model predictive control of discrete‐time non‐linear systems with external disturbances
  publication-title: IET Control Theory Applic.
– volume: 81
  start-page: 148
  year: 2017
  end-page: 155
  article-title: Event‐triggered intermittent sampling for nonlinear model predictive control
  publication-title: Automatica
– volume: 50
  start-page: 2269
  issue: 9
  year: 2014
  end-page: 2280
  article-title: Inherent robustness properties of quasi‐infinite horizon nonlinear model predictive control
  publication-title: Automatica
– volume: 52
  start-page: 1249
  issue: 7
  year: 2007
  end-page: 1263
  article-title: Distributed receding horizon control of dynamically coupled nonlinear systems
  publication-title: IEEE Trans. Autom. Control
– volume: 50
  start-page: 1507
  issue: 5
  year: 2014
  end-page: 1513
  article-title: Event‐triggered robust model predictive control of continuous‐time nonlinear systems
  publication-title: Automatica
– volume: 65
  start-page: 575
  issue: 3
  year: 2018
  end-page: 586
  article-title: Event‐triggered model predictive control for embedded artificial pancreas systems
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 1
  year: 2020
  end-page: 9
  article-title: Integral‐type event‐triggered model predictive control of nonlinear systems with additive disturbance
  publication-title: IEEE Trans. Cybern.
– volume: 38
  start-page: 1623
  issue: 11
  year: 1993
  end-page: 1633
  article-title: Robust receding horizon control of constrained nonlinear systems
  publication-title: IEEE Trans. Autom. Control
– volume: 24
  start-page: 351
  issue: 5
  year: 1995
  end-page: 359
  article-title: On characterizations of the input‐to‐state stability property
  publication-title: Syst. Control Lett.
– ident: e_1_2_8_26_2
  doi: 10.1016/j.trc.2015.01.020
– ident: e_1_2_8_13_2
  doi: 10.1016/j.automatica.2014.10.128
– ident: e_1_2_8_29_2
  doi: 10.1109/TCSI.2015.2468997
– ident: e_1_2_8_34_2
  doi: 10.1016/0167-6911(94)00050-6
– ident: e_1_2_8_9_2
  doi: 10.1016/j.sysconle.2019.104546
– ident: e_1_2_8_18_2
  doi: 10.1016/j.automatica.2014.07.014
– ident: e_1_2_8_25_2
  doi: 10.1016/j.automatica.2019.01.001
– ident: e_1_2_8_8_2
  doi: 10.1016/j.automatica.2018.02.017
– ident: e_1_2_8_23_2
  doi: 10.1002/rnc.3969
– ident: e_1_2_8_30_2
  doi: 10.1109/9.262032
– ident: e_1_2_8_15_2
  doi: 10.1016/j.automatica.2014.03.015
– start-page: 1
  year: 2020
  ident: e_1_2_8_4_2
  article-title: Integral‐type event‐triggered model predictive control of nonlinear systems with additive disturbance
  publication-title: IEEE Trans. Cybern.
– ident: e_1_2_8_2_2
  doi: 10.1137/18M1176671
– ident: e_1_2_8_5_2
  doi: 10.1109/TAC.2013.2294618
– ident: e_1_2_8_19_2
  doi: 10.1109/TCYB.2017.2695499
– ident: e_1_2_8_12_2
  doi: 10.1049/iet-cta.2017.0886
– ident: e_1_2_8_16_2
  doi: 10.1016/j.automatica.2017.12.034
– ident: e_1_2_8_17_2
  doi: 10.1016/S0005-1098(98)00073-9
– ident: e_1_2_8_31_2
  doi: 10.1016/j.automatica.2005.12.008
– ident: e_1_2_8_7_2
  doi: 10.1049/iet-cta.2019.0168
– ident: e_1_2_8_10_2
  doi: 10.1109/TNNLS.2019.2921020
– ident: e_1_2_8_11_2
  doi: 10.1016/j.isatra.2019.10.004
– start-page: 1
  year: 2019
  ident: e_1_2_8_27_2
  article-title: Event‐triggered model predictive control with a statistical learning
  publication-title: IEEE Trans. Syst. Man Cybern., Syst.
– ident: e_1_2_8_28_2
  doi: 10.1016/j.automatica.2017.03.028
– ident: e_1_2_8_32_2
  doi: 10.1109/TAC.2007.900828
– ident: e_1_2_8_6_2
  doi: 10.1016/j.automatica.2018.12.037
– ident: e_1_2_8_14_2
  doi: 10.1016/S0005-1098(99)00214-9
– ident: e_1_2_8_3_2
  doi: 10.1049/iet-cta.2019.0273
– ident: e_1_2_8_20_2
  doi: 10.1049/iet-cta.2018.5412
– ident: e_1_2_8_22_2
  doi: 10.1109/TAC.2017.2702646
– ident: e_1_2_8_33_2
  doi: 10.1016/j.automatica.2006.07.008
– ident: e_1_2_8_24_2
  doi: 10.1109/TBME.2017.2707344
– ident: e_1_2_8_21_2
  doi: 10.1109/ACC.2010.5531089
SSID ssj0055645
Score 2.317649
Snippet Due to the features of event-triggered control in exploiting and saving system resources, they have been widely applied in sensor networks, multi-agent...
Due to the features of event‐triggered control in exploiting and saving system resources, they have been widely applied in sensor networks, multi‐agent...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 3320
SubjectTerms Brief Paper
continuous‐time nonlinear systems
control system synthesis
conventional model predictive control
developed min–max RETDMPC
distributed control
event‐triggered control
exploiting saving system resources
linear systems
minimax techniques
min–max model predictive control
min–max RETDMPC methodology
multiagent systems
multi‐agent systems
networked control systems
nonlinear control systems
parametric uncertainties
predictive control
robust control
robust event‐triggered
sensor networks
system state
uncertain systems
unknown uncertainties
SummonAdditionalLinks – databaseName: IET Digital Library Open Access
  dbid: IDLOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVou8CA-BTlSx4QA5Jp4sROOkKhKggYUCt1i2LXqSpoUrWJxMh_4B_yS7hL0kIlVNisxHGk8-X8Lva9R8gZZBEalg7FHO1akKBIBd8cN8wyoQilsTTP6Rgen2Sn5973Rf-7PHowGqJWBpv_ccO_5aaoPMCj2xCHG6WNC0ESwLcN6MB0ihxC3LoEH_MrpMY9z3arpHZ384ApVhGZBTKn5AWSwmY-AIHFLucvgyytUxW4vYxe8-WnvUU2S9xIr4qJ3iZrJt4hGz_YBHfJy3OisllKc04mlkLaPUQhTjpAblyUtYL2eBR_vn-MwzeaS-DQyRQ3ajDk0fLQOk2ivDmKsySbMdSep3ESM4Sj4ZQWzM-zPdJr33ZbHVZqKTCNtbYM7c5D15HgOVzLyFVS2J5nhBNGylOeo6RjAFppJbXQEdKXDyIpjYSJ064Wzj6pwsvMAaFuxAFmyqaAQArplQ5hWN8Y6dgiEr6y6sSaWy7QJdE46l28BvmGt9sMwJoBGDtAYwdo7Dq5WDwyKVg2VnU-x2tzP1jV0cln7O8hg1a3w6_bkKJL__C_wx-RdWzj2RZuH5NqOs3MCSCUVJ2WjvcFS2TjPA
  priority: 102
  providerName: Institution of Engineering and Technology
Title Robust event-triggered distributed min–max model predictive control of continuous-time non-linear systems
URI http://digital-library.theiet.org/content/journals/10.1049/iet-cta.2020.0518
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-cta.2020.0518
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF76uOhBfGJ9lD2IByGabrKb9FirpYovpIXeQna7kYJ92KTgsT-h4D_sL3FmkxaLUMFb2OxOYGbnld35hpAzyCIUuA5pOcq1IUEREnSOacvWIQ-FthUzcAyPT6LZdu87vJMj9UUtTIoPsfzhhpph7DUqeCjTLiQQ1IIQezqxVILQQcy-hK3l50kRS2wRQJ-5LwtzzBEuxVRF8orlg_dfHm1Wr36RWHFOeXi9GrIan9PYJltZsEhrqXR3SE4PdsnmDwjBPfLxOpSTOKEGiGk-nSWQbb9h_03aRUhc7GYFz_3eYD796oef1HS-oaMxns-gpaPZXXU6jMxjbzAZTmIk1OtrOhjCuhnyKhzTFPQ53iftxm2r3rSyNgqWwjJbC1nOQtcRsGmYEpErBa94nuZOGElPeo4UjoaoSkmhuIoQubwbCaEFyEy5ijsHpACf04eEuhGDCFNUOdhQyKxUCGR9rYVT4RH3pV0i9oJ_gcowxrHVxXtgzrrdagA8DYDlAbI8QJaXyMVyySgF2Fg3-RzHMjWL1010jNz-JhnUW0123YDsXPhH_1p1TDZwHO-4sMoJKSTjiT6FSCWRZbMTy6R4d_PwXPsGNJ_oMQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5zPqgP4hXnNQ_ig1Dt0iTtHnU6pk4R2WBvpYmpDNzFrQMf9xMG_sP9Es9Ju-EQJvhW2uQUvuTccvkOIaeQRWhwHcrxNHchQZEKdI4ZxzWRiKRxNbN0DI9Pstrg903RzJGb6V2YlB9ituCGmmHtNSo4LkinCSdHksyWSRydIHcQcy9gbgVLZJlL5qN6Mv48tccC-VLstUhRdAJw_7O9zdLlLxFz3mkJPs_HrNbpVDbIehYt0qt0eDdJznS2yNoPDsFt8vHSVcNBQi0T02Q0TiDdfsMCnPQVOXGxnBU8t1udyeirHX1SW_qG9vq4QYOmjmaH1Wk3to-tzrA7HKCgVtvQThf6jRGsqE9T1ufBDmlUbuvlqpPVUXA03rN1EHMWcU_CrGFaxlxJUfR9I7woVr7yPSU9A2GVVlILHSN1-WsspZEwaJpr4e2SPPzO7BHKYwYhpiwJMKKQWukIxAbGSK8oYhEot0DcKX6hzkjGsdbFe2g3u3kpBExDgDxEyEOEvEDOZ116KcPGosZn-C7Ts8Gihp4dt79FhuV6lV1XID2Xwf6_ep2QlWr9sRbW7p4eDsgqtsEDL6x4SPJJf2iOIGxJ1LGdld9uBuoR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF76ANGD-MT63IN4EKJpkt2mx1oN9VVEWileQna7kYJ92KTgsT-h4D_sL3FmkxaLUMHbksxOYHae2d1vCDmFKkJC6BCGLR0TChQuwOYsZZgqYAFXprQ0HMNjndeazl2LtTKkOrsLk-BDzH-4oWVof40GPmiHSb3pIEZmR8WGjBE6yDIvQLXcLMkjWh6odr7y0nxtzhwyQ8AUfS-SFQ0X4v98c7N8-YvJQnjKwuvFpFVHHW-DrKfpIq0k67tJMqq3RdZ-gAhuk4_nvhhFMdVQTNPxJIZ6-w07cNI2guJiPysYdzu96firG3xS3fuGDoa4Q4O-jqan1Wk_1MNOb9QfRcio01W014d5E5RWMKQJ7HO0Q5reTaNaM9JGCobEi7YGCt0KHJuD2liSh47grFgqKWYHoSiJki24rSCvkoJLJkPELm-HnCsOqyYdyexdkoPPqT1CndCCHJOXGXhRqK1kAGxdpbhdZCFzhVkg5kx-vkxRxrHZxbuvd7udsg8y9UHkPorcR5EXyPl8yiCB2FhGfIbPUkOLlhHaet3-ZulXGzXryoP6nLv7_5p1Qlaerj3_4bZ-f0BWkQQPvFjFQ5KLhyN1BGlLLI5TtfwGh3jrCQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+event%E2%80%90triggered+distributed+min%E2%80%93max+model+predictive+control+of+continuous%E2%80%90time+non%E2%80%90linear+systems&rft.jtitle=IET+control+theory+%26+applications&rft.au=Li%2C+Anni&rft.au=Sun%2C+Jitao&rft.date=2020-12-21&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-8644&rft.eissn=1751-8652&rft.volume=14&rft.issue=19&rft.spage=3320&rft.epage=3329&rft_id=info:doi/10.1049%2Fiet-cta.2020.0518&rft.externalDBID=10.1049%252Fiet-cta.2020.0518&rft.externalDocID=CTH2BF02768
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8644&client=summon